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Multi-frequency based location search algorithm of small

electromagnetic inhomogeneities embedded in two-layered medium
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Abstract

In this paper, we consider a problem for finding the locations of electromagnetic inhomo-
geneities completely embedded in homogeneous two layered medium. For this purpose, we
present a filter function operated at several frequencies and design an algorithm for finding
the locations of such inhomogeneities. It is based on the fact that the collected Multi-Static
Response (MSR) matrix can be modeled via a rigorous asymptotic expansion formula of
the scattering amplitude due to the presence of such inhomogeneities. In order to show the
effectiveness, we compare the proposed algorithm with traditional MUltiple SIgnal Classifi-
cation (MUSIC) algorithm and Kirchhoff migration. Various numerical results demonstrate
that the proposed algorithm is robust with respect to random noise and yields more accurate
location than the MUSIC algorithm and Kirchhoff migration.
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layered medium, Multi-Static Response (MSR) matrix, numerical results
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1. Introduction

In the non-destructive evaluation area, an inverse problem is finding the specific char-
acteristics (location, geometry, internal constitution etc.) of small inhomogeneities from
measurements of scattered or far-field data. This problem, which arises in fields such as
physics, engineering, and biomedical science, is highly related to everyday human life and is
still a challenging problem [2, 6, 9].

Among them, finding the locations of anti-personnel mines (embedded in the soil) from
electromagnetic data (measured in the air) is an interesting and important problem in the
military services. The mines have different material properties from the surrounding medium
and they are small relative to the area. The main purpose of this kind of application is to
find their locations more accurately, not to retrieve complete information. For this purpose,
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non-iterative MUSIC-type algorithm for finding locations of small inhomogeneities buried
within a half-space at a fixed frequency has been developed, refer to [4]. MUSIC type
algorithms are advantageous in the sense that they are fast, stable, can easily be extended
to the multiple inhomogeneities, and they do not require specific regularization terms that
are highly dependent on the problem at hand. However, due to the reason that one is faced
with an aspect-limited inverse problem in the reflection mode because sources and receivers
are located upper half-space, sometimes inexact locations are identified. Hence, in order
to obtain an accurate locations of such inhomogeneities, an alternative algorithm that can
overcome these problems is necessary.

Motivated by the above fact, we propose an effective, non-iterative location search al-
gorithm at multiple frequencies that can work on limited view data in order to find the
accurate locations of small electromagnetic inhomogeneities completely embedded within a
homogeneous (lower) half-space. The starting point is that the collected MSR matrix can
be approximated by a rigorous asymptotic expansion formula of the scattering amplitude in
the presence of such inhomogeneities. This approximation leads us to proceed the singular
value decomposition of the MSR matrix and to identify the structure of singular vectors.
Applying the structure of singular vectors, a filter function operated at several frequencies
can be designed for finding exact locations of inhomogeneities. Moreover, based on the
statistical hypothesis testing, we can confirm that the proposed location search algorithm
offers more exact information of locations than the established MUSIC-type algorithm and
Kirchhoff migration.

Various numerical examples with noisy data will illustrate the behavior of the proposed
location search algorithm operated at several frequencies. Unlike the numerical setting in [4],
computational examples under the narrow/wide range of incident and observation directions
configuration and the closely located small inclusions situation show the feasibilities and
limitations of the proposed algorithm.

This paper is organized as follows. In section 2, we briefly survey the two-dimensional
direct scattering problem for two-layered medium and introduce an asymptotic expansion
formula for the scattering amplitude. In section 3, we design a location search algorithm
by producing a filter function operated at several frequencies and compare its detection
performance with traditional MUSIC-type algorithm and Kirchhoff migration. In section
4, corresponding numerical experiments with random noise are shown and compared with
the result via MUSIC-type one and Kirchhoff migration to demonstrate its performance. In
section 5 we give a brief conclusion.

Finally, we will refer to [13] as a useful reference that investigates the so-called reciprocity
gap MUSIC as another algorithm linked to the MUSIC one. In this reference, the author
shows that reconstructed positions of the small inhomogeneities via reciprocity gap MUSIC
algorithm are slightly more accurate than the traditional MUSIC one.

2. Survey on two-dimensional direct scattering problem

In this section, we briefly discuss the two-dimensional, time-harmonic electromagnetic
scattering from a small inhomogeneity buried within a homogeneous half-space. A more
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detailed description can be found in [4].
Let us decompose the two-dimensional space R2 into the lower and the upper half-spaces

as

R
2
− =

{

x = (x1, x2)
T ∈ R

2 : x2 < 0
}

and R
2
+ =

{

x = (x1, x2)
T ∈ R

2 : x2 > 0
}

,

respectively and assume that these spaces are homogeneous. Let ∂R2 denote the border
between R2

− and R2
+, represented as

∂R2 =
{

(x1, x2)
T ∈ R

2 : x2 = 0
}

.

Throughout this paper, we assume that all the electromagnetic small inhomogeneities
Dm, m = 1, 2, · · · ,M , are completely embedded in the lower half-space R2

−. For convenience,
let D denote the collection of such inhomogeneities as

D =

M
⋃

m=1

Dm =

M
⋃

m=1

(zm + rBm),

where r is a small (with respect to the wavelength of the electromagnetic field in the em-
bedding space at the given frequency of operation ω) positive constant which denotes the
diameter of the inhomogeneities, Bj is a simply connected smooth domain containing the
origin, and zj ∈ R2

− indicates the location of inhomogeneities. Throughout this paper, we
assume that these inhomogeneities are separated enough from each other and from ∂R2.

All materials are characterized by their dielectric permittivity and magnetic permeability
at the given frequency ω; ε−, ε+ and εm denotes the electric permittivity of R2

−, R
2
+ and Dm,

respectively. The magnetic permeabilities µ−, µ+ and µm can be defined analogously. Using
these notations, we can define the piecewise constant electric permittivity 0 < ε(x) < +∞
and magnetic permeability 0 < µ(x) < +∞ as

ε(x) =







ε+ for x ∈ R2
+

ε− for x ∈ R
2
−\D

εm for x ∈ Dm

and µ(x) =







µ+ for x ∈ R2
+

µ− for x ∈ R
2
−\D

µm for x ∈ Dm,

respectively. For convenience, we also define the electric permittivity ε0(x) and magnetic
permeability µ0(x) when there are no inhomogeneities such as

ε0(x) =

{

ε+ for x ∈ R2
+

ε− for x ∈ R
2
−

and µ0(x) =

{

µ+ for x ∈ R2
+

µ− for x ∈ R
2
−,

respectively. Accordingly, the piecewise positive real-valued wavenumber k(x;ω) reads as

k(x;ω) =

{

k+(ω) = ω
√
ε+µ+ for x ∈ R2

+

k−(ω) = ω
√
ε−µ− for x ∈ R2

−.

Let θ = (θ1, θ2)
T be a two-dimensional vector on the unit circle S1 ⊂ R2 and uinc(x) =

exp(ik+(ω)θ ·x) be a planar incident wavefield generated in the upper half-space on R2
+. At
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a given frequency ω, utot(x;ω) denotes the time-harmonic electromagnetic total field which
satisfies the following two-dimensional Helmholtz equation

∇ ·
(

1

µ(x)
∇utot(x;ω)

)

+ ω2ε(x)utot(x;ω) = 0 in R
2, (1)

with transmission conditions holding at boundaries ∂R2 and ∂Dm as

[utot(x;ω)] =

[

1

µ(x)

∂utot(x;ω)

∂x2

]

= 0 on ∂R2 and [utot(x;ω)] =

[

1

µ(x)

∂utot(x;ω)

∂νm(x)

]

= 0 on ∂Dm,

respectively. Here, νm denotes the unit outward normal to ∂Dm, m = 1, 2, · · · , m.
Let ubac(x;ω) be the solution to the Helmholtz equation (1) in the absence of inhomo-

geneities. Then the scattering amplitude is defined as a function K : (S1\{0})× (S1\{0})×
R −→ C that satisfies

utot(x;ω)− ubac(x;ω) =
{k−(ω)}2µ+(1 + i)

4µ−

√

k+(ω)π

exp(ik(y;ω)|y|)
√

|y|
K(ϑ, θ;ω) + o

(

1
√

|y|

)

as |y| −→ ∞ uniformly on ϑ = y

|y|
.

In order to represent asymptotic expansion formula ofK(ϑ, θ), we need some ingredients.
First, based on the fact that the scattered field data acquisition is possible only on the upper
half-space R

2
+, we divide the unit circle S1 into

S1
− = R

2
− ∩ S1 and S1

+ = R
2
+ ∩ S1.

Next, by letting ξ = k+(ω)
k
−
(ω)

, define a vector φ(θ;ω) : S1\{0} −→ C2×1 as

φ(θ;ω) =

(

ξθ1, sign(θ2)
√

1− ξ2θ21

)T

, (2)

and a function Φ(θ;ω) : S1\{0} −→ C as

Φ(θ) =
2µ−ξθ2

µ−ξθ2 + µ+sign(θ2)
√

1− ξ2θ21
, (3)

respectively. With these, an asymptotic expansion formula of scattering amplitude can be
written as follows. This formula plays a key role of the location search algorithm that will
be designed in the next section.

Theorem 2.1. For every ϑ ∈ S1
+ and θ ∈ S1

−, the asymptotic formula for the scattering
amplitude K(ϑ, θ) at frequency ω is expressed as

K(ϑ, θ;ω) =r2Φ(ϑ;ω)Φ(θ;ω)

M
∑

m=1

(

γε,m|Bm|+ γµ,mφ(ϑ;ω) · P(zm) · φ(θ;ω)
)

×

exp

(

− ik−(ω)[φ(ϑ;ω)− φ(θ;ω)] · zm
)

+ o(r2),

(4)
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where the remaining term o(r2) is independent of ϑ ∈ S1
+, θ ∈ S1

− and the set of points

{zm}Mm=1, P(zm) is a 2× 2 positive, symmetric matrix

P(zm) =
2µ−

µ− + µm

|Bm|I2,

and constants γµ,m and γε,m are given by

γε,m =
εm
ε−
− 1 and γµ,m =

µm

µ−

− 1.

3. Non-iterative location search algorithm & its performance

3.1. Non-iterative location search algorithm at multiple frequencies

We apply the asymptotic formula for the scattering amplitude (4) in order to build up
the location search algorithm. For this purpose, we will use the eigenvalue structure of the
Multi-Static Response (MSR) matrix K := K(ω) = (Kjl(ω)) ∈ CNobs×Ninc, whose element
Kjl(ω) := K(ϑj , θl;ω) is the scattering amplitude collected at observation number j for the
incident wave numbered l. In this paper, we denote

{ϑj : j = 1, 2, · · · , Nobs} and {θl : l = 1, 2, · · · , Ninc}

be the set of observation and incident directions, respectively. Note that when the upper half-
space is more refractive than the lower one, i.e., if k+ > k−, the number Nobs of propagating
transmitted waves might be less than Ninc (see [4] for instance). Then since jl−th element
of the MSR matrix Kjl(ω) can be approximated as

Kjl(ω) =K(ϑj, θl;ω)

≈r2Φ(ϑj ;ω)Φ(θl;ω)
M
∑

m=1

(

γε,m|Bm|+ γµ,mφ(ϑ;ω) · P(zm) · φ(θ;ω)
)

×

exp

(

− ik−(ω)[φ(ϑj ;ω)− φ(θl;ω)] · zm
)

,

(5)

MSR matrix K can be decomposed as follows:

K = DEH
T , (6)

where E ∈ C3M×3M is a diagonal matrix with components

E =

[

Eε 0
0 Eµ

]

for

Eε = M ×M diagonal matrix with components r2γε,m|Bm|,
Eµ = 2M × 2M diagonal matrix with 2× 2 blocks − r2γµ,mP(zm),
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matrix D ∈ C
Nobs×3M is of the form

[

D
1
ε D

2
ε · · · D

M
ε D

1
µ D

2
µ · · · D

2M
µ

]

with Nobs × 1 matrices

D
m
ε =

[

Φ(ϑ1;ω) exp

(

− ik−(ω)φ(ϑ1;ω) · zm
)

, · · · ,

Φ(ϑNobs
;ω) exp

(

− ik−(ω)φ(ϑNobs
;ω) · zm

)]T

,

D
2(m−1)+s
µ =

[

es · φ(ϑ1;ω)Φ(ϑ1;ω) exp

(

− ik−(ω)φ(ϑ1;ω) · zm
)

, · · · ,

es · φ(ϑNobs
;ω)Φ(ϑNobs

;ω) exp

(

− ik−(ω)φ(ϑNobs
;ω) · zm

)]T

,

and matrix H ∈ CNinc×3M can be written as follows

[

H
1
ε H

2
ε · · · H

M
ε H

1
µ H

2
µ · · · H

2M
µ

]

with Ninc × 1 matrices

H
m
ε =

[

Φ(θ1;ω) exp

(

ik−(ω)φ(θ1;ω) · zm
)

, · · · ,Φ(θNinc
;ω) exp

(

ik−(ω)φ(θNinc
;ω) · zm

)]T

,

H
2(m−1)+s
µ =

[

es · φ(θ1;ω)Φ(θ1;ω) exp

(

ik−(ω)φ(θ1;ω) · zm
)

, · · · ,

es · φ(θNinc
;ω)Φ(θNinc

;ω) exp

(

ik−(ω)φ(ϑNinc
;ω) · zm

)]T

.

Here {es}s=1,2 =
{

e1 = (1, 0)T , e2 = (0, 1)T
}

is an orthonormal basis of R2. Based on the
decomposition (6), a location search algorithm can be established as follows.

1. (Singular Value Decomposition) Let us perform Singular Value Decomposition (SVD)
of matrix K and let M be the number of nonzero singular values for the given ω. Then,
K can be represented as follows:

K = U(ω)S(ω)V∗(ω) ≈
M
∑

m=1

σm(ω)Um(ω)V
∗
m(ω),

where superscript ∗ denotes the complex conjugate, σm(ω) are the singular values,
Um(ω) and Vm(ω) are the left and right singular vectors of K, respectively for m =
1, 2, · · · ,M .
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2. (Structure of singular vectors) For test vectors cd, ch ∈ R
3\ {0}, define vectors

d : R2
+ × R −→ CNobs×1 and h : R2

− × R −→ CNinc×1as

d(x;ω) =

[

cd · (1,φ(ϑ1;ω))Φ(ϑ1;ω) exp

(

− ik−(ω)φ(ϑ1;ω) · x
)

, · · · ,

cd · (1,φ(ϑNobs
;ω))Φ(ϑNobs

;ω) exp

(

− ik−(ω)φ(ϑNobs
;ω) · x

)]T (7)

and

h(x;ω) =

[

ch · (1,φ(θ1;ω))Φ(θ1;ω) exp

(

ik−(ω)φ(θ1;ω) · x
)

, · · · ,

ch · (1,φ(θNinc
;ω))Φ(θNinc

;ω) exp

(

ik−(ω)φ(θNinc
;ω) · x

)]T

,

(8)

respectively. With this, generate corresponding normalized unit vectors

WD(x;ω) =
d(x;ω)

|d(x;ω)| and WH(x;ω) =
h(x;ω)

|h(x;ω)| .

Note that the structure of vectors WD(x;ω) and WH(x;ω) is motivated by the matrix
D and H in (6), respectively. Then by virtue of [14], following relationship holds for
m = 1, 2, · · · ,M ,

Um(ω) ∼WD(zm;ω) and Vm(ω) ∼WH(zm;ω). (9)

Since the first M columns of the matrix U(ω) and V(ω), {U1(ω),U2(ω), · · · ,Um(ω)}
and {V1(ω),V2(ω), · · · ,Vm(ω)}, are orthonormal, we can observe that

WD(x;ω)
∗Um(ω) 6= 0 and WH(x;ω)

∗Vm(ω) 6= 0, if x = zm

WD(x;ω)
∗Um(ω) ≈ 0 and WH(x;ω)

∗Vm(ω) ≈ 0, if x 6= zm,
(10)

for m = 1, 2, · · · ,M .

3. (Filter function) For a search domain Ω ⊂ R2
−, construct a normalized filter function

F : Ω× N −→ R at several frequencies {ωf : f = 1, 2, · · · , F} as

F(x;F ) =
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

WD(x;ωf)
∗Um(ωf)

)(

WH(x;ωf)
∗Vm(ωf)

)

∣

∣

∣

∣

∣

. (11)

Then, based on the observation (10), we can find locations zm ∈ Dm by finding x
which satisfies F(x;F ) ≈ 1.

Remark 3.1 (A priori information). In order to build up the filter (11), we need a priori
information of the values ε− and µ−. If one has no information of ε− or µ−, simultaneous
reconstruction of multiple parameters must be performed (see [11, Section 10.3] for instance).

The location search algorithm is summarized in Algorithm 1.
7



Algorithm 1 Location Search Algorithm

1: procedure LSA(F )
2: identify values ε− and µ−

3: initialize K(x)
4: for f = 1 to F do
5: collect MSR matrix data K(ωf)
6: perform SVD of K(ωf )
7: discriminate nonzero singular values
8: choose Um(ωf) and Vm(ωf)
9: for x ∈ Ω ⊂ R2

− do
10: generate WD(x;ωf) and WH(x;ωf)
11: initialize I(x, f)
12: for m = 1 to M do
13: I(x, f)← I(x, f) + (WD(x;ωf)

∗Um(ωf))(WH(x;ωf)
∗Vm(ωf)).

14: end for
15: K(x)← I(x, f)
16: end for
17: end for
18: plot F(x;F ) = |K(x)|/F
19: find x = zm ∈ Dm

20: end procedure

3.2. Some properties of normalized filter function F

At this moment, we explore some properties of normalized filter function F in (11). For
this purpose, we assume that there exists one inhomogeneity (m = 1) and

cd · (1,φ(θn;ωf)) 6= 0, ch · (1,φ(θn;ωf)) 6= 0 and Φ(θn;ωf) 6= 0 (12)

for all n = 1, 2, · · · , N and f = 1, 2, · · · , F . Then applying relation (9) to (11) yields

F(x;F ) =
1

F

∣

∣

∣

∣

∣

F
∑

f=1

(

WD(x;ωf)
∗U1(ωf)

)(

WH(x;ωf)
∗V1(ωf)

)

∣

∣

∣

∣

∣

=
1

F
|FD(x;F )FH(x;F )| ,

where

FD(x;F ) =
N
∑

n=1

|cd · (1,φ(ϑn;ωf))Φ(ϑn;ωf)|2
|d(zm;ωf)||d(x;ωf)|

exp

(

− ik−(ωf)φ(ϑn;ωf) · (zm − x)

)

FH(x;F ) =

N
∑

n=1

|ch · (1,φ(θn;ωf))Φ(θn;ωf)|2
|h(zm;ωf)||h(x;ωf)|

exp

(

ik−(ωf)φ(θn;ωf) · (zm − x)

)

.

8



With this, by letting ϑn := (ϑn
1 , ϑ

n
2 )

T , θn := (θn1 , θ
n
2 )

T and z := (z1, z2)
T , we can observe

that

FD(x;F ) ∼
N
∑

n=1

exp

(

− ik−(ωf)
(

ξϑn
1 (z1 − x1) +

√

1− (ξϑn
1)

2(z2 − x2)
)

)

FH(x;F ) ∼
N
∑

n=1

exp

(

ik−(ωf)
(

ξθn1 (z1 − x1)−
√

1− (ξθn1 )
2(z2 − x2)

)

)

where A ∼ B means that there exists a constant C such that A = BC. Throughout
this paper, we assume that Nobs and Ninc are even number Nobs = 2L, {ϑn} and {θn} are
symmetric to y−axis, i.e., if ϑn := (ϑn

1 , ϑ
n
2 )

T then ϑn
1 = −ϑ2L−n−1

1 and ϑn
2 = ϑ2L−n−1

2 , and so
on. Then we can explore some properties of F(x;F ) as follows

1. Assume that k+(ωf) satisfies k+(ωf) > k−(ωf) and ξϑn
1 > 1. Then since

√

1− (ξϑn
1 )

2 ∈
C\{0}, by letting

√

1− (ξϑn
1 )

2 = iρn, FD(x;F ) can be written as

FD(x;F ) ∼
N
∑

n=1

exp

(

− ik+(ωf)ξϑ
n
1 (z1 − x1)

)

exp

(

ρnk−(ωf)(z2 − x2)

)

.

This means that F(x;F ) ≈ 1 when

x1 = z1 +
sπ

k+(ωf )θ
n
1

, x1 = z1 +
sπ

k+(ωf)θ
n
1

+
π

2
and x2 = z2

for all s ∈ Z, f = 1, 2, · · · , F , and n = 1, 2, · · · , Nobs. This relation tells us that
in order to obtain an accurate location z, one must applies high frequency and large
number Nobs. Nevertheless, some replicas will appear along the x−axis. However, if
one adopt symmetric observation configuration, FD(x;F ) becomes

FD(x;F ) ∼
L
∑

n=1

cos

(

− ik+(ωf)ξϑ
n
1(z1 − x1)

)

exp

(

ρnk−(ωf)(z2 − x2)

)

.

Hence, we can obtain more accurate location z. See Figure 4.

2. When the value F is large enough, due to the different values of ωf , F(x;F ) will yields
more accurate location z. This means that application of multiple frequencies will
enhance detection performance.

3. Assume that k+(ωf) ≈ k−(ωf) and ϑn
1 −→ ±1 for some n, i.e., one has wide observation

direction, then since
√

1− (ξϑn
1)

2 ≈ 0, location x such that F(x;F ) ≈ 1 is independent
to the z2. Hence we cannot identify location z via F(x;F ), refer to Figure 10.

4. If k+(ωf) < k−(ωf) then since
√

1− (ξϑn
1)

2 ∈ R\{0}, F(x;F ) ≈ 1 when

k−(ωf)
(

ξϑn
1 (z1 − x1)−

√

1− (ξϑn
1 )

2(z2 − x2)
)

= sπ or sπ +
π

2
(13)

for all s ∈ Z, f = 1, 2, · · · , F , and n = 1, 2, · · · , N . Therefore, map of F(x;F ) will
offers exact location z but unexpected some ghost replicas will obstruct it.
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5. If k+(ωf)≪ k−(ωf), (13) becomes

k−(ωf)
(

ξϑn
1 (z1 − x1)−

√

1− (ξϑn
1 )

2(z2 − x2)
)

= k+(ωf)ϑ
n
1 (z1 − x1)−

√

k−(ωf)2 − (k+(ωf)ϑn
1 )

2(z2 − x2)

≈ k+(ωf)ϑ
n
1 (z1 − x1)− k−(ωf)(z2 − x2) = sπ or sπ +

π

2

for all s ∈ Z, f = 1, 2, · · · , F , and n = 1, 2, · · · , N . This shows that F(x;F ) ≈ 1 if

x1 = z1, x2 ≈ z2 +
sπ

k−(ωf)
or x1 = z1, x2 ≈ z2 +

(2s+ 1)π

2k−(ωf)
.

Since k−(ωf) is large enough, huge amounts of replicas will appear along the y−axis
in the map of F(x;F ) (see Figure 9).

The case of FD(x;F ) can be handled in similar manner.

3.3. Introduction to MUSIC and Kirchhoff migration

By combining the results of [4, 20], we can design a MUSIC-type image function at a
single frequency ω. We define a projection onto the null (or noise) subspace Pnoise as

Pnoise(d(x;ω)) =
∑

m>M

Um(ω)U
∗
m(ω)d(x;ω). (14)

Then the image of x = zm, m = 1, 2, · · · ,M , follows from the computation via a MUSIC-
type imaging functional FMUSIC : R2

− × R −→ R,

FMUSIC(x;ω) =
1

|Pnoise(d(x;ω))|
. (15)

With this, we can find locations x = zm which satisfy FMUSIC(x;ω) =∞.
We introduce the traditional Kirchhoff migration FKIR : R2

− × R −→ R

FKIR(x;ω) = |WD(x;ω)
∗
KWH(x;ω)| =

∣

∣

∣

∣

∣

N
∑

m=1

σm(ω)

(

WD(x;ω)
∗Um(ω)

)(

WH(x;ω)
∗Vm(ω)

)

∣

∣

∣

∣

∣

(16)
Then similar to the filter function (11), map of FKIR(x;ω) will yields locations zm.

3.4. Comparison of detection performance

Now, we will briefly compare the detection performance of (11), (15) and (16). Roughly
speaking, the following relationship holds for F > 1

FMUSIC(x;ω)✂ FKIR(x;ω)✂ F(x; 1)✂ F(x;F ), (17)

where A✂B means B offers more accurate location zm ∈ Dm than A.
10



First, based on the recent work [3], the relationship FMUSIC(x;ω)✂ FKIR(x;ω) holds for
homogeneous space case and we can easily verify that it also holds for two-layered medium
problem interested herein (see [18] for numerical experiments).

Next, when K is affected by random noise, significant changes of singular values will
appear. In this problem, such noise generates many nonzero singular values (see [4, Figure
5.25] so that (16) generates a result with poor resolution. However, (11) is not influenced
by the singular values and therefore, map of F(x; 1) yields a better result than FKIR(x;ω),
refer to Figure 2.

Remark 3.2 (Synthetic Aperture Radar (SAR) and Kirchhoff migration). Synthetic
Aperture Radar (SAR) is one of the classical back-projection imaging technique developed for
airborne radar applications (see [7, 8, 23, 25] and references therein). Based on the research
in [23], results via SAR and Kirchhoff migration are almost the same.

Finally, based on the section 3.2, we can examine the relationship F(x;F1)✂F(x;F2) holds
for F1 < F2. It is worth emphasizing that we can observe this relationship via statistical
hypothesis testing (see [3, 12, 16] for detailed discussion).

4. Numerical simulations and discussion

In this section, various numerical results are presented to demonstrate the effectiveness
of the proposed algorithm. Same as the numerical configuration in [4], we choose three small
homogeneous inhomogeneities, D1, D2 and D3, embedded in the lower half-space. They are
taken as ball of radius r = 0.1 and are centered at z1 = (0.63,−2.47), z2 = (1.72,−4.97) and
z3 = (−2,−3.63), respectively. The applied frequency is ωf = 2π

λf
, where λf , f = 1, 2, · · · , 10,

are given wavelengths. In this paper, frequencies ωf are equi-distributed within the interval
[2π, 2π

0.5
]. The observation and incident directions ϑj and θl are taken as

ϑj = (cos ζj , sin ζj) , ζj =
π

4
+

(j − 1)π

2(Nobs − 1)
, and θl = − (cos ςj , sin ςj) , ςj =

π

4
+

(l − 1)π

2(Ninc − 1)
,

respectively for j = 1, 2, · · · , Nobs and l = 1, 2, · · · , Ninc. See Figure 1 for an illustration of
the test configuration.

Throughout this section, we adopt the squared search domain Ω = [−3, 3]×[−6, 0] ⊂ R2
−.

The step size of the search points x ∈ Ω is taken of the order of 0.05 and vector c of (7) is
selected as

1. Permittivity contrast case: c = (1, 0, 0),

2. Permeability contrast case: c = (0, 1, 5),

3. Both permittivity and permittivity contrast case: c = (5, 1, 1).

Note that this selection of c satisfies (12). A detailed discussion about the choice of the vector
c can be found in [21, Section 4.2.1]. In every example, the data set of the MSR matrix is
computed within the framework of the Foldy-Lax equation, refer to [10, 20, 24]. Then, a
white Gaussian noise with 20dB SNR(Signal to Noise Ratio) is added to the unperturbed
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Figure 1: Sketch of the test configuration.

data in order to show the robustness of the proposed algorithm. Note that from the various
numerical experiments in [4, 18, 20], similar results were obtained for both cases ε+ > ε−
and ε+ = ε− (permeability and both contrast cases too). Thus, we do not consider the cases
ε+ = ε− and/or µ+ = µ−.

4.1. Permittivity contrast case: εm 6= ε− and µm = µ− = µ+

At this stage, we consider the purely dielectric contrast case. In this case, we set µ(x) = 1
for x ∈ R2. For ε+ > ε− case, we choose the values ε+ = 5 and ε− = 4 and permittivities
εm of Dm equal to 2, 5, 3 for m = 1, 2, 3. As already mentioned, the number of observation
directions Nobs must be smaller than the number of incidence directions Ninc. Hence, we
choose Ninc = 10 and Nobs = 6 directions.

Let us check the detection performance of (11) and (16). As the results illustrated in
Figure 2, map of F(x; 1) offers more accurate location of small inhomogeneities (specially,
D3) than the one of FKIR(x;ω). Moreover, by comparing the result in [4, FIG 5.3] and the
map of FKIR(x;ω), we can see that the relationship FMUSIC(x;ω)✂ FKIR(x;ω) holds.

Figure 3 shows the influence of the number of applied frequencies. By comparing maps
of F(x;F ), we can easily observe that large number of F guarantees an exact location
of Dm. In various numerical tests, we observed that if one applied more than F = 7
different frequencies, map of F(x;F ) yields an accurate location of Dm, so we adopt F = 10
frequencies in order to guarantee an admissible result.

In order to examine the influence of direction configuration, odd number of incident and
observation directions is applied and corresponding results are illustrated in Figure 4. By
comparing result in Figure 3, as we mentioned in section 3.2, some replicas appeared under
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Figure 2: (Compare the detection performance) Map of FKIR(x) (left) and F(x; 1) (right) for ω = 2π when
ε+ = 5 and ε− = 4.

the odd number configuration but when the number of directions and frequencies is large
enough, we can identify location of Dm accurately.

For ε+ < ε− case, we choose the values ε+ = 1 and ε− = 5 and permittivities εm of
Dm equal to 2, 4, 3 for m = 1, 2, 3. In this case, although a few ghost replicas appeared, the
location of three inhomogeneities are successfully identified, refer to the right-hand side of
Figure 5.

4.2. Permeability contrast case: εm = ε− = ε+ and µm 6= µ−

Now, let us consider the purely magnetic permeability contrast case. In this case, we set
ε(x) ≡ 1 for x ∈ R2. Similar to the section 4.1, we choose the values µ+ = 5 and µ− = 4
and permeabilities µm of Dm equal to 2, 5, 3 for m = 1, 2, 3. We apply F = 10 frequencies,
and Ninc = 14 and Nobs = 8 as directions of incidence and observation, respectively. For
µ+ < µ− case, we choose the values µ+ = 1 and µ− = 5 and permeabilities µm of Dm equal
to 2, 4, 3 for m = 1, 2, 3. Figure 6 shows the corresponding result. Similarly to Figure 5, the
location of three inhomogeneities are successfully identified.

4.3. Both permittivity and permeability contrast case: εm 6= ε− and µm 6= µ−

In this case, we consider both permittivity and permeability contrast case. Three different
situations of interest are considered:

• ε+ 6= ε− and µ+ = µ−,

• ε+ = ε− and µ+ 6= µ−,

• ε+ 6= ε− and µ+ 6= µ−.

13
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Figure 3: (Influence of number of applied frequency) Map of F(x;F ) for F = 1 (top, left), F = 3 (top,
right), F = 5 (bottom, left), and F = 7 (bottom, right) when ε+ = 5 and ε− = 4.

First, let us consider the case ε+ > ε− and µ+ = µ−. We set µ(x) ≡ 1 for x ∈ R2, ε+ = 5
and ε− = 4 and permittivities εm and permeabilities µm of Dm equal to 2, 5, 3 for m = 1, 2, 3.
We apply F = 10 frequencies and adopt Ninc = 20 and Nobs = 12 as directions of incidence
and observation, respectively. The result, as illustrated in Figure 7, remains very good and
should be acceptable. Now, let us consider the case ε+ < ε− and µ+ = µ−. Let ε+ = 1 and
ε− = 5 and permittivities εm and permeabilities µm of Dm are equal to 2, 4, 3 for j = 1, 2, 3
while keeping remaining test configurations. Similarly to the previous example, a good result
appeared, refer to Figure 7. With a similar argument, we can obtain a good result when
ε+ = ε− and µ+ 6= µ−, refer to Figure 8.

For the case ε+ 6= ε− and µ+ 6= µ−, we set ε+ = µ+ = 5, ε− = µ− = 4 and ε+ = µ+ = 1,
ε− = µ− = 5 while keeping the configuration of the previous situation. The result is
exhibited in Figure 9. Although we could obtain a reasonably good result when ε+ > ε−
and µ+ > µ−, one can not determine accurate locations of inhomogeneities when ε+ < ε−
and µ+ < µ− based on the discussions in section 3.2.
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Figure 4: (Influence of direction configuration) Map of F(x;F ) for Nobs = 5, Ninc = 7, F = 5 (left), and
Nobs = 11, Ninc = 13, F = 10 (right) when ε+ = 5 and ε− = 4.

x−axis

y−
ax

is

 

 

−3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x−axis

y−
ax

is

 

 

−3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5: (Permittivity contrast case) Map of F(x; 10) when ε+ = 5, ε− = 4 (left) and ε+ = 1, ε− = 5
(right).

Various results in this paper show that the proposed algorithm is very stable and effective
but it still contains some factors for further improvements.

4.4. Robustness with respect to random noise and influence of range of incident and obser-
vation direction

At this moment, we add a white Gaussian noise with 10dB SNR to the unperturbed data
and change the range of incident and observation directions. For this purpose, we adopt the
same test configuration as section 4.3 except that the ranges of observation directions

ϑj = − (cos ζj, sin ζj) , j = 1, 2, · · · , Nobs,
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Figure 6: (Permeability contrast case) Map of F(x; 10) when µ+ = 5, µ− = 4 (left) and µ+ = 1, µ− = 5
(right)

x−axis

y−
ax

is

 

 

−3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x−axis

y−
ax

is

 

 

−3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7: (Both permittivity and permeability contrast case) Map of F(x; 10) when ε+ = 5, ε− = 4, µ(x) = 1
(left) and ε+ = 1, ε− = 5, µ(x) = 1 (right).

are varied by changing the values of ζ1 and ζNobs
. Incident directions are also changed

similarly. Figure 10 shows the map of F(x; 10) when ε+ = µ+ = 5, ε− = µ− = 4 under the
narrow and wide range of observation and incident direction configurations. Regarding the
top, left-hand side of Figure 10, we can see that under the narrow range of incident and
observation direction configuration, map of F(x; 10) contains some ghost replicas similar to
the case of ε+ < ε− (see Figure 7). From the top, right-hand side of Figure 10, we can clearly
identify three locations of zm. Therefore, we can conclude that the proposed algorithm is
robust with respect to the large amount of random noise since the normalized filter function
(11) is not significantly influenced by the noise. Unfortunately, based on the section 3.2, by
regarding the bottom line of Figure 10, map of F(x;F ) yields poor result when the range
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Figure 8: (Both permittivity and permeability contrast case) Map of F(x; 10) when ε(x) = 1, µ+ = 5,
µ− = 4 (left) and ε(x) = 1, µ+ = 1, µ− = 5 (right).
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Figure 9: (Both permittivity and permeability contrast case) Map of F(x; 10) when ε+ = µ+ = 5, ε− =
µ− = 4 (left) and ε+ = µ+ = 1, ε− = µ− = 5 (right)

of directions become wider. Hence, we can conclude that when the range of incident and
observation directions become wider, we cannot find the location zm via map of F(x;F ).
This shows a limitation of the proposed algorithm.

4.5. On the Rayleigh resolution limit

Now, we briefly consider the image resolution. From the Rayleigh resolution limit, we
can distinguish any inhomogeneities D and D′ when

dist(D,D′) ≥ λ

2
.
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Figure 10: (Both permittivity and permeability contrast case) Map of F(x; 10) when 5π
12
≤ ζj , ςl ≤ 7π

12
(top,

left), π
3
≤ ζj , ςl ≤ 2π

3
(top, right), π

6
≤ ζj , ςl ≤ 5π

6
(bottom, left), and π

12
≤ ζj , ςl ≤ 11π

12
(bottom, right)

In order to examine such phenomenon, we consider the detected location of two disks D4

and D5 of the same radius r = 0.01 with permittivity contrast case. The centers of D4 and
D5 are selected as z4 = (−0.1,−2.5) and z5 = (0.1,−2.5), respectively. In Figure 11, we
illustrate corresponding results with large and small wavelengths while keeping remaining
test configurations. Therefore, it is hard to distinguish two inhomogeneities from the image
via map of F(x; 10) with large wavelengths. On the other hand, when we apply smaller
wavelengths (i.e., higher frequency) than the previous one, the two inhomogeneities become
distinguishable.

5. Concluding remarks

In this paper, we suggest a location search algorithm operated at several time-harmonic
frequencies in order to find accurate locations of small electromagnetic inhomogeneities
completely embedded within a homogeneous lower half-space. The approach is based on
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Figure 11: (Permittivity contrast case with ε+ = 5 and ε− = 4) Map of F(x; 10) when λ1 = 2, λ10 = 1 (left)
and λ1 = 0.2, λ10 = 0.1 (right).

the asymptotic formulation due to the existence of small electromagnetic inhomogeneities.
Throughout numerical simulations, we can conclude that the proposed algorithm not only
performs quite well even in the existence of random noise but also successfully improves
existing limitations (poor longitudinal resolution against an excellent transverse resolution)
of MUSIC algorithm proposed in [4] and Kirchhoff migration. In addition, it still has
some points of improvement for finding the locations of inhomogeneities under the situation
ε+ < ε−, µ+ < µ− and wide range of incident/observation directions.

It is worth mentioning that such results obtained at low computational costs can be a
good initial guess of a level-set evolution [1, 9, 11, 22] or of any other standard iterative
algorithm. Although only two-dimensional problem have been considered herein, we expect
that the proposed strategy, e.g., asymptotic formula, filter design, etc., could be extended to
the three-dimensional problem, refer to [5, 15] for related works. Moreover, inconveniences
of the proposed algorithm are also the same as those of SAR1. Hence, comparison of SAR
and the proposed algorithm will be an interesting subject.

Finally, we would like to emphasize that the proposed algorithm can be extended to the
shape identification of electromagnetically thin, arc-like, penetrable inhomogeneities, refer
to [17, 18, 20]. Although, further mathematical investigation is necessary, we believe that it
can also be extended to the identification of small or extended perfectly conducting cracks.
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[1] D. Álvarez, O. Dorn, N. Irishina, and M. Moscoso, Crack reconstruction using a level-set strategy, J.
Comput. Phys., 228 (2009), 5710–5721.

[2] H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Mathematics and
Applications Series, 62 (2008), Springer-Verlag, Berlin.

[3] H. Ammari, J. Garnier, H. Kang, W.-K. Park, and K. Sølna, Imaging schemes for perfectly conducting
cracks, SIAM J. Appl. Math, 71 (2011), 68–91.

[4] H. Ammari, E. Iakovleva and D. Lesselier, A MUSIC algorithm for locating small inclusions buried
in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul. 3 (2005),
597–628.

[5] H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, MUSIC type electromagnetic imaging of a
collection of small three-dimensional inclusions, SIAM J. Sci. Comput., 29 (2007), 674–709.

[6] H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements,
Lecture Notes in Mathematics, 1846 (2004), Springer-Verlag, Berlin.

[7] L. Borcea, T. Callaghan and G. Papanicolaou, Synthetic aperture radar imaging with motion estimation
and autofocus, Inverse Problems, 28 (2012), 045006.

[8] T.-K. Chan, Y. Kuga, and A. Ishimaru, Experimental studies on circular SAR imaging in clutter using
angular correlation function technique, IEEE Trans. Geosci. Remote., 37 (1999), 2192–2197.

[9] F. Delbary, K. Erhard, R. Kress, R. Potthast, and J. Schulz, Inverse electromagnetic scattering in a
two-layered medium with an application to mine detection, Inverse Problems, 24 (2008), 015002.

[10] A. J. Devaney, E. A. Marengo and F. K. Gruber, Time-reversal-based imaging and inverse scattering
of multiply scattering point targets, J. Acoust. Soc. Am., 118 (2005), 3129–3138.

[11] O. Dorn and D. Lesselier, Level set methods for inverse scattering, Inverse Problems 22 (2006), R67–
R131.

[12] A. Fannjiang and K. Sølna, Broadband resolution analysis for imaging with measurement noise, J. Opt.
Soc. Am. A, 24 (2007), 1623–1632.

[13] R. Griesmaier, Reciprocity gap MUSIC imaging for an inverse scattering problem in two-layered media,
Inverse Problems Imag., 3 (2009), 389–403.

[14] S. Hou, K. Huang, K. Sølna, and H. Zhao, A phase and space coherent direct imaging method, J.
Acoust. Soc. Am., 125 (2009), 227–238.

[15] E. Iakovleva, S. Gdoura, D. Lesselier and G. Perrusson, Multi-static response matrix of a 3-D inclusion
in half space and MUSIC imaging, IEEE Trans. Antennas Propagat., 55 (2007), 2598–2609.

[16] S. M. Kay, Fundamentals of Statistical Signal Processing, Detection Theory, Prentice Hall, 1998.
[17] W.-K. Park, Non-iterative imaging of thin electromagnetic inclusions from multi-frequency response

matrix, Prog. Electromagn. Res., 106 (2010), 225–241.
[18] W.-K. Park, On the imaging of thin dielectric inclusions buried within a half-space, Inverse Problems,

26 (2010), 074008.
[19] W.-K. Park and D. Lesselier, Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like

cracks at single frequency, J. Comput. Phys., 228 (2009), 8093–8111.
[20] W.-K. Park and D. Lesselier, Fast electromagnetic imaging of thin inclusions in half-space affected by

random scatterers, Waves Random Complex Media, 22 (2012), 2–23.
[21] W.-K. Park and D. Lesselier, MUSIC-type imaging of a thin penetrable inclusion from its far-field

multi-static response matrix, Inverse Problems, 25 (2009), 075002.
[22] W.-K. Park and D. Lesselier, Reconstruction of thin electromagnetic inclusions by a level set method,

Inverse Problems, 25 (2009), 085010.
20
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