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ZKCM: a C++ library for multiprecision matrix computation with applications in

quantum information
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Abstract

ZKCM is a C++ library developed for the purpose of multiprecision matrix computation, on the basis of the GNU MP
and MPFR libraries. It provides an easy-to-use syntax and convenient functions for matrix manipulations including those
often used in numerical simulations in quantum physics. Its extension library, ZKCM QC, is developed for simulating
quantum computing using the time-dependent matrix-product-state simulation method. This paper gives an introduction
about the libraries with practical sample programs.
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Manuscript Title: ZKCM: a C++ library for multiprecision
matrix computation with applications in quantum information
Authors: Akira SaiToh
Program Title: ZKCM
Journal Reference:
Catalogue identifier:
Licensing provisions: GNU Lesser General Public License Ver.
3
Programming language: C++
Computer: General computers
Operating system: Unix-like systems, such as Linux, Free BSD,
Cygwin on Windows OS, etc.
RAM: Several mega bytes - several giga bytes, dependent on
the problem instance
Keywords: Multiprecision computing, Linear algebra, Time-
dependent matrix product state, Quantum information
Classification: 4.8 Linear Equations and Matrices, 4.15
Quantum Computing
External routines/libraries: GNU MP (GMP) [1], MPFR [2]
Ver. 3.0.0 or later
Nature of problem: Multiprecision computation is helpful to
guarantee and/or evaluate the accuracy of simulation results
in numerical physics. There is a potential demand for a
programming library focusing on matrix computation usable
for this purpose with a user-friendly syntax.
Solution method: A C++ library ZKCM has been developed
for multiprecision matrix computation. It provides matrix
operations useful for numerical studies of physics, e.g., the
tensor product (Kronecker product), the tracing-out operation,
the inner product, the LU decomposition, the Hermitian-
matrix diagonalization, the singular-value decomposition,
and the discrete Fourier transform. For basic floating-point
operations, GMP and MPFR libraries are used. An extension
library ZKCM QC has also been developed, which employs
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the time-dependent matrix-product-state method to simulate
quantum computing.
Restrictions: Multiprecision computation with more than a
half thousand bit precision is often a thousand times slower
than double-precision computation for any kind of matrix
computation.
Additional comments: A user’s manual is placed in the
directory “doc” of the package. Each function is explained in
a reference manual found in the directories “doc/html” and
“doc/latex”. Sample programs are placed in the directory
“samples”.
Running time: It takes less than thirty seconds to obtain a
DFT spectrum for 216 data points of a time evolution of a
quantum system described by a 4 × 4 matrix Hamiltonian
for 256-bit precision when we use recent AMD or Intel CPU
with 2.5 GHz or more CPU frequency. It takes three to five
minutes to diagonalize a 100 × 100 Hermitian matrix for
512-bit precision using the aforementioned CPU.
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1. Introduction

Precision of floating-point operations is sometimes of
serious concern in simulation physics when rounding er-
rors in variables or matrix elements considerably af-
fect numerical results for investigated physical phenom-
ena [1]. There are several programming libraries, e.g.,
Refs. [2, 3, 4, 5, 6, 7], for high-precision computing, which
are helpful in this regard. Among them, the library named
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ZKCM [7], which we have been developing, is a C++ li-
brary for multiprecision complex-number matrix computa-
tion. It provides several functionalities including the LU
decomposition, the singular value decomposition, the ten-
sor product, and the tracing-out operation and an easy-
to-use syntax for basic operations. It is based on the GNU
MP (GMP) [8] and MPFR [9] libraries, which are com-
monly included in recent distributions of UNIX-like sys-
tems.

There is an extension library named ZKCM QC. This
library is designed for simulating quantum computing [10,
11] by the time-dependent matrix-product-state method
[12] [or, simply referred to as the matrix-product-state
(MPS) method]. It uses a matrix product state [13, 14, 12]
to represent a pure quantum state. The MPS method is re-
cently one of the standard methods for simulation-physics
software [15]. As for other methods effective for simulat-
ing quantum computing, see, e.g., Refs. [16, 17]. With
ZKCM QC, one may use quantum gates in U(2), U(4),
and U(8) as elementary gates. Indeed, in general, quan-
tum gates in U(2) and U(4) are enough for universal quan-
tum computing [18], but we regard quantum gates in U(8)
also as elementary gates so as to reduce computational
overheads in circuit constructions.

A simulation of quantum computing with MPS is known
for its computational efficiency in case the Schmidt ranks
are kept small during the simulation [12, 19]. Even for
the case slightly large Schmidt ranks are involved, it is not
as expensive as a simple simulation. The theory of MPS
simulation will be briefly explained in Sec. 4.1. Numeri-
cal errors will be phenomenologically discussed in Sec. 4.3,
which will give a certain reason why we introduce multi-
precision computation for an MPS simulation of quantum
computing.

This contribution is intended to provide a useful intro-
duction for programming with the libraries. Section 2 de-
scribes two examples of the use of the ZKCM library: one
for showing the precision dependence of a solution of a
simple linear equation; the other for simulating an NMR
spectrum in a simple model. Performance evaluation of
the library is made in Sec. 3. Section 4 shows an overview
of the theory of the MPS method and an example of sim-
ulating a simple quantum circuit using the ZKCM QC li-
brary. In addition, later in the section numerical errors in
an MPS simulation of quantum computing are examined
using a certain setup of a quantum algorithm. We discuss
on the effectiveness and the performance of our libraries
in Sec. 5. Section 6 summarizes our achievements.

2. ZKCM Library

The ZKCM library is designed for general-purpose ma-
trix computation. This section concentrates on its main
library. It has two major C++ classes: “zkcm_class”
and “zkcm_matrix”. The former class is a class of a com-
plex number. Many operators like “+=” and functions like

trigonometric functions are defined for the class. The lat-
ter class is a class of a matrix. Standard operations and
functions like matrix inversion are defined. In addition, the
singular-value decomposition of a general matrix, the di-
agonalization of an Hermitian matrix, the discrete Fourier
transform, etc., are defined for the class. Functoins for the
tensor product (Kronecker product) and the tracing-out
operation (e.g., one can trace out the subsystem B of sys-
tem ABC) are also defined. A detailed document is placed
in the “doc” directory of the package of ZKCM.

As for installation of the library, the standard process
“./configure→ make → sudo make install” works in
most cases; otherwise the document should be consulted.

We will next look at simple examples to demonstrate
the programming style using the library. (Here, the latest
stable version, ver. 0.3.2, is used.)

2.1. Program examples

Example 1. There is a classical example [20] often men-
tioned to recall the importance of multiprecision compu-
tation. It clarifies that a sufficiently large precision is re-
quired even for a simple linear equation with only two
variables.

Consider the linear equation

A

(
x
y

)
=

(
1
0

)

with

A =

(
64919121 −159018721
41869520.5 −102558961

)
.

The exact solution is x = 205117922, y = 83739041.

One way to numerically find the solution is to com-
pute (x, y)t = A−1(1, 0)t using the matrix inversion. An-
other way is to utilize the Gaussian elimination (see, e.g.,
Refs. [21, 22]). We used functions “inv” and “gauss” of
ZKCM for the former and the latter ways, respectively (as
for pivoting, a partial pivoting is used in “gauss”). Then,
we plotted the computed value of x against the precision
[bits] as shown in Fig. 1. (Here, we refer to the number of
bits for a significand of a floating-point number as preci-
sion.1) We can see that low-precision computing resulted
in a wrong answer while high-precision computing resulted
in a correct answer. It should be emphasized that the dou-
ble precision (namely, 53 bits for the mantissa portion of
a floating-point number) is not enough in this example.

1Precision is defined as an exact length of the mantissa portion
of a floating-point number in MPFR while it is defined as a least
length in GMP [9]. In ZKCM, a complex number keeps each part
internally as an MPFR variable so that precision is an exact length.
However, it should be noted that an output from a function usually
carries over the best precision among those of involved variables in
ZKCM.
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Figure 1: Plot of the computed values of x against the precision (the
bit length of a mantissa) employed for floating-point numbers. Ei-
ther (i) the matrix inversion (pluses) or (ii) the Gaussian elimination
(circles) was used. For case (ii), there are data points with x values
< −1.0× 108 for some values of precision < 50; they are outside the
range in the figure.

The program used for this example is shown in Listing 1.
It is found as “samples/classic example.cpp” in the pack-
age. It is written to use the matrix inversion. To use the
Gaussian elimination, the line “B = inv(A) * B;” should
be replaced with “B = gauss(A, B);”.

#include "zkcm.hpp"

#include <fstream >

int main ()

{

std :: ofstream ofs (" classic_example.dat ");

if (!ofs)

{

std ::cerr << "Could not create the file\

classic_example.dat"

<< std :: endl;

return -1;

}

ofs << "# prec x y" << std ::endl;

for (int prec = 32; prec < 257; prec ++)

{

zkcm_set_default_prec (prec);

zkcm_matrix A(2, 2), B(2, 1);

A(0, 0) = "64919121";

A(0, 1) = " -159018721";

A(1, 0) = "41869520.5";

A(1, 1) = " -102558961";

B(0, 0) = 1;

B(1, 0) = 0;

B = inv (A) * B;

// Replace the above line with

//B = gauss(A, B);

//to use the Gaussian elimination instead .

ofs << prec << " "

<< B(0, 0) << " "

<< B(1, 0) << std ::endl;

}

zkcm_quit ();

return 0;

}

Listing 1: classic example.cpp

The program is compiled and executed in a standard way.2

Its output file “classic example.dat” can be visualized by
Gnuplot [23] using the file “classic example.gnuplot” found
in the “samples” directory.
In the program, one can see typical fea-

tures of the ZKCM library. The line
“zkcm_set_default_prec(prec);” sets the default
internal precision (the default bit length of a significand)
of an object to “prec”. Any object like “A” (this is a
2 × 2 matrix) constructed without specified precision
possesses the default precision. It is possible to specify a
particular precision (i.e., in case of a matrix object, the
length of the significand for each part of each element
of the matrix), say, 512, by constructing the object
as “zkcm_matrix A(2, 2, 512)”, for instance. For
a matrix object, say, “A”, it is convenient to access
its (i, j) element by “A(i,j)” that is a reference to
the element. The element is an object in the type of
“zkcm_class”. To assign a value into a “zkcm_class”
object (a complex number) “z”, one can write “z=...;”
where the right-hand side can be a number or a string
describing a complex number in the style "___+___*I"

(PARI/GP style [24]; here, “I” stands for i =
√
−1),

"___+___i", "___+___j" (here, “j” stands for i), etc.
(there are other acceptable styles). In the program, by
“A(0, 0) = "64919121";” the value 64919121 + 0i is
assigned to the (0, 0) element of matrix A. Other values
are assigned to corresponding elements in a similar way.
The solution of the linear equation is obtained by using
the function “inv” or “gauss”. The obtained result
is written into the output file stream “ofs” by using
the operator “<<”. In the program, the elements are
individually written out so as to meet the data format of
a data-plotting program. After computation is performed,
the program should be terminated. At this stage, it is
recommended to write “zkcm_quit();” so as to release
miscellaneous memories allocated for internal use of
background library functions.

Example 2. As the second example, a sample program
“NMR spectrum simulation.cpp” found in the “samples”
directory of the package of ZKCM is explained. This
program generates a simulated free-induction-decay (FID)
spectrum of liquid-state NMR for the spin system consist-
ing of a proton spin with precession frequency w1 = 400
MHz (variable “w1” in the program) and a 13C spin with
precession frequency w2 = 125 MHz (variable “w2”) at
room temperature (300 K) (variable “T”). A J coupling
constant J12 = 140 kHz (variable “J12”) is considered for
the spins.

2To make an executable file, the library flags typically “-lzkcm -lm
-lmpfr -lgmp -lgmpxx” are required. As for ZKCM QC, additionally
“-lzkcm qc” should be specified.
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The first line of the program is to include a header file
of ZKCM:

#include "zkcm.hpp"

int main(int argc, char *argv[])

{

In the beginning of the “main” function, the default pre-
cision is set to 280 bits by

zkcm_set_default_prec(280);

In the subsequent lines, some matrices like Pauli matrices
I and X , etc. are generated. For example, X is generated
as

zkcm_matrix X = "[0, 1; 1, 0]";

using a string representing a matrix in the PARI/GP style.
The Y90 pulse is generated as

zkcm_matrix Yhpi(2,2);

Yhpi(0,0) = sqrt(zkcm_class(0.5));

Yhpi(0,1) = sqrt(zkcm_class(0.5));

Yhpi(1,0) = -sqrt(zkcm_class(0.5));

Yhpi(1,1) = sqrt(zkcm_class(0.5));

Other matrices are generated by similar lines. After this,
values of constants and parameters are set. For example,
the Boltzmann constant kB [J/K] is generated as

zkcm_class kB("1.3806504e-23");

The Hamiltonian H of the spin system is generated in the
type of “zkcm_matrix” and is specified as

H = w1 * tensorprod(Z/2,I) + w2 * tensorprod(I,Z/2)

+ J12 * tensorprod(Z/2,Z/2);

This is used to generate a thermal state ρ:

zkcm_matrix rho(4,4);

rho = exp_H((-hplanck/kB/T) * H);

rho /= trace(rho);

Here, “exp_H” is a function to calculate the exponential of
an Hermitian matrix and “hplanck” is the Planck constant
(6.62606896 × 10−34 Js). The sampling time interval dt
to record the value of < X > for the proton spin is set
to 0.43/w1 (any number smaller than 1/2 might be fine
instead of 0.43) by

zkcm_class dt(zkcm_class("0.43")/w1);

The number of data to record is then decided as

int N = UNP2(8.0/dt/J12);

Here, function “UNP2” returns the integer upper nearest
power of 2 for a given number. Now arrays to store data
are prepared as row vectors.

zkcm_matrix array(1, N), array2(1, N);

The following lines prepare the X and Y90-pulse operators
acting only on the proton spin.

zkcm_matrix X1(4, 4), Yhpi1(4, 4);

X1 = tensorprod(X, I);

Yhpi1 = tensorprod(Yhpi, I);

To get an FID data, we firstly tilt the proton spin by the
ideal Y90 pulse.

rho = Yhpi1 * rho * adjoint(Yhpi1);

Now the data of time evolution of < X > of the proton
spin under the Hamiltonian H is recorded for the time
duration N× dt using

array = rec_evol(rho, H, X1, dt, N);

We now use a zero-padding for this “array” so as to en-
hance the resolution. This will extend the array by N
zeros.

array2 = zero_padding(array, 2*N);

To obtain a spectrum, the discrete Fourier transform is
applied.

array2 = abs(DFT(array2));

This “array2” is output to the file “example zp.fid” as
an FID spectrum data with df = 1/(2 × N × dt) as the
frequency interval, in the Gnuplot style by

GP_1D_print(array2, 1.0/dt/zkcm_class(2*N),

1, "example_zp.fid");

At last, the function “main” ends with “zkcm_quit();”
and “return 0;”. The program is compiled and executed
in a standard way.
The result stored in “example zp.fid” is visualized by

Gnuplot using the file “example zp.gnuplot” placed in the
directory “samples”, as shown in Fig. 2.

 0

 0.1

 0.2

 0.3
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 0.5
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398.5 399.0 399.5 400.0 400.5 401.0 401.5

Frequency [MHz]

Figure 2: Plot of the simulation data stored in “example zp.fid”. See
the text for the details of this simulation.

It should be noted that we have not employed
a high-temperature approximation. Under a high-
temperature approximation, the first order deviation −βH
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of exp(−βH) (here, β = h/(kBT )) is considered as a devi-
ation density matrix and calculations are performed using
the normalized deviation density matrix −H/const. This
approximation is commonly used [28] but it cannot be used
for simulations for low temperature. An advantage of us-
ing ZKCM for simulating NMR spectra is that the tem-
perature can be chosen. This is possible because of high
accuracy in computing the exponential of a Hamiltonian.
As we have seen in this example, ZKCM has useful func-

tions to handle matrices, especially those often used in
simulations in quantum physics. For the list of available
functions, see the reference manual found in the package.

3. Performance evaluation

We evaluate the performance of ZKCM (version 0.3.2)
in comparison with PARI [24] (version 2.5.3 with the
GMP kernel), a conventional highly-evaluated C library
for mathematical computing.

3.1. Speed of computing the Γ function

Here, we evaluate the performance of the function
“gamma” of ZKCM, which calculates Γ(z) for a complex
number z. It is implemented on the basis of the expansion
using the Stirling formula for Re z ≥ 0:

Γ(z) ≃ e−zzz−1
√
2πz exp

[
L∑

n=1

(−1)n−1|B2n|z1−2n

2n(2n− 1)
+RL

]
,

where Bm is the first or the second Bernoulli number (as
the absolute value is used, either is fine); L is a sufficiently
large (but not very large) integer to guarantee the accu-
racy; RL is the remainder of the sum (corresponding to the
sum of the terms for n = L + 1, . . . ,∞). It is known that
the expansion is not convergent since |B2n| grows rapidly
for large n. It was, however, proved by Spira [25] that

|RL| ≤ |B2L|
2L−1 |z|1−2L holds when Re z ≥ 0. Thus the ex-

pansion is usable for computation with enough accuracy
as long as z is appropriately scaled to a large value in
advance. We internally scale z to satisfy Re z ≥ 0 and
|z| ≥ 103 ∼ 210. In accordance with this scaling, L is ap-
propriately chosen so that RL becomes small enough for
required precision. For the scaling, the well-known formu-
lae Γ(z) = Γ(z + k)/[z(z + 1) · · · (z + k − 1)] (here, k is
an integer) and Γ(z) = −π/[−zΓ(−z) sin(−πz)] (here, z is
not a pole) are utilized. To compute Bernoulli numbers,
we utilize the relation

Bm = 1−
n−1∑

k=0

(
n
k

)
Bk

n− k + 1

and the fact thatB2j+1 vanishes for integer j ≥ 1. We keep
the computed values of binomial coefficients and Bernoulli
numbers inside a certain subblock of a function for com-
puting Γ(z). Therefore, the cost to compute Bm assum-
ing that we have already computed B0, . . . , Bm−2 for even

number m is small: O(m) rational-number operations are
enough3 (we make use of the C++ class “mpq_class” of
GMP for internally handling rational numbers).
Now, the speed of computing Γ(z) using “gamma” is eval-

uated for z = a + bi with random a, b ∈ [−10, 10]. It is
compared with the function with the same name, “gamma”,
of the PARI library. The PARI library uses a similar al-
gorithm to compute Γ(z). The main difference is that
PARI can utilize cached values of Bernoulli numbers that
are once calculated in any function during a process is
running. It can also use precomputed values of typical
constants.
As shown in Table 1, the average computation time of

Γ(z) in the ZKCM library is on the same order of magni-
tude as that in the PARI library in the absence of cached
values of Bernoulli numbers. However, in the presence
of cached values of Bernoulli numbers, the computation
speed of Γ(z) in PARI is quite much faster.

3.2. Speed of matrix multiplication

Here, we evaluate the speed of matrix multiplication.
We first generate a 100× 100 random Hermitian matrix A
satisfying

√
TrAA† = 1. We then continue to compute the

operations (i) A ← A2 and (ii) A ← A/
√
TrAA† sequen-

tially, i.e., (i) (ii) (i) (ii) ... from left to right. Operations
are performed under a specified precision “prec”. We com-
pare time consumption to perform ten sets of “(i) (ii)”.
Time spent for the matrix preparation is not included. As
shown in Table 2, computation time is on the same or-
der of magnitude for ZKCM and PARI and discrepancy
in time consumption is not large. This result is plausible
since both the libraries employ a straight-forward way to
implement matrix multiplication and rely on the GMP li-
brary for the speed of primitive operations. (ZKCM uses
MPFR for basic operations that is based on GMP; hence
ZKCM indirectly uses primitive operations of GMP.)

3.3. Speed of Hermitian-matrix diagonalization

We next evaluate the speed of diagonalization of an
Hermitian matrix for finding all the eigenvectors. The

3 For other use than computing Γ(z), we cannot use this as-
sumption in general. In this case, Akiyama-Tanigawa algorithm [26]
is employed to calculate the Bernoulli number. This takes O(m2)
rational-number operations.

4This was because the improvement in running time due to set-
ting compiler optimization flags was negligible. (Of course, there
were other compiler flags for library specifications etc. which are
not of our concern in this context.) For instance, a program to find
eigenvectors of a normalized random 50×50 Hermitian matrix using
the function “diag H” of ZKCM (“eigen” of PARI) with 768-bit pre-
cision consumed 34.558 (14.550) seconds on average when compiled
without optimization flags, and consumed 34.314 (14.551) seconds
on average when compiled with the optimization flags “-O3 -fno-
strict-aliasing -fomit-frame-pointer”. (Here, we used the Frobenius
norm for normalization.) The average was taken over 100 trials. The
standard deviations were 0.0648 (0.143) and 0.0645 (0.122), respec-
tively. The compiler was GCC ver. 4.6.3 installed by default on the
operating system Fedora 15 64-bit. A computer with the Intel Core
i5 M460 2.53 GHz CPU (maximum clock frequency 2.80GHz) and
4GB RAM was used.
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Table 1: Comparison of the average real time consumption for com-
puting Γ(z) for z = a+ bi with random a, b ∈ [−10, 10]. The average
was taken over 1,000 trials. No I/O operation was involved. Time
for generating z was negligible (this was no more than 2.0 × 10−5

seconds). The standard deviation (we employ the sample standard
deviation) for each entry is shown in parentheses in small fonts un-
der the entry. “prec” stands for the precision (the bit length of
each mantissa) employed in a program. In a program using PARI,
function “nbits2prec” was used to convert the precision into the
number of code words that is defined as the precision for variables in
PARI. ZKCM version 0.3.2 and PARI version 2.5.3 were used. They
were compiled with GCC/G++ with their default optimization flags,
while test programs for this performance evaluation were compiled
without optimization flags.4 In this table, the middle and the right
columns show the results for PARI with and without precomputed
values of Bernoulli numbers, respectively. Environments: For up-
per entries (�): Fedora 15 64-bit operating system on Intel Core i5
M460 CPU (2.53 GHz, Max. 2.80GHz) with 4GB RAM. For lower
entries (♣): Fedora 16 64-bit operating system on AMD FX-8120
CPU (3.10GHz, Max. 4.00GHz) with 16GB RAM.

prec ZKCM [sec] PARI with-
out cache
[sec]

PARI with
cache [sec]

256

�3.73× 10−3

(8.72 × 10−5)
♣2.95× 10−3

(9.58 × 10−5)

1.38× 10−3

(7.91 × 10−5)

1.42× 10−3

(2.73 × 10−4)

1.63× 10−4

(6.10 × 10−5)

1.48× 10−4

(9.56 × 10−5)

512

9.04× 10−3

(2.95 × 10−4)

7.15× 10−3

(1.64 × 10−4)

4.70× 10−3

(6.79 × 10−4)

3.12× 10−3

(6.78 × 10−4)

3.43× 10−4

(1.49 × 10−4)

3.43× 10−4

(1.75 × 10−4)

768

1.86× 10−2

(2.62 × 10−4)

1.45× 10−2

(2.80 × 10−4)

9.58× 10−3

(1.82 × 10−3)

8.38× 10−3

(1.85 × 10−3)

6.61× 10−4

(3.67 × 10−4)

6.02× 10−4

(2.07 × 10−4)

1024

3.48× 10−2

(8.77 × 10−4)

2.59× 10−2

(3.67 × 10−4)

1.48× 10−2

(8.32 × 10−4)

1.34× 10−2

(6.35 × 10−4)

1.25× 10−3

(3.39 × 10−4)

1.03× 10−3

(3.64 × 10−4)

1280

5.37× 10−2

(1.41 × 10−3)

3.92× 10−2

(9.90 × 10−4)

2.44× 10−2

(9.68 × 10−4)

2.09× 10−2

(1.56 × 10−3)

1.95× 10−3

(6.87 × 10−4)

1.70× 10−3

(7.23 × 10−4)

Table 2: Comparison of the average real time consumption to per-
form ten sets of operations (i) and (ii) (see the text). The average
was taken over ten different A’s (again, see the text). The standard
deviation is shown in parentheses in small fonts. “prec” stands for
the precision (the bit length of a significand). Environments: Fedora
15 OS on Intel Core i5 M460 CPU with 4GB RAM for upper entries
(�) and Fedora 16 OS on AMD FX-8120 CPU with 16GB RAM for
lower entries (♣).

prec ZKCM [sec] PARI [sec]

256
�26.1 (0.115)
♣21.4 (0.248)

15.0 (0.204)

13.0 (0.567)

512
35.5 (0.206)

27.3 (0.202)

21.9 (0.0208)

18.7 (0.188)

768
46.4 (0.161)

36.9 (0.266)

30.8 (0.0702)

28.1 (0.247)

1024
65.8 (0.115)

53.2 (0.178)

50.5 (0.199)

41.3 (0.434)

1280
86.5 (0.0265)

69.3 (0.181)

67.8 (0.118)

54.9 (0.715)

functions used for this task are “diag_H” of ZKCM and
“eigen” and “jacobi” of PARI.
Let us briefly explain our design of “diag_H”. In the

function, the routine to diagonalize an Hermitian matrix
A employs a standard QR method (see, e.g., Refs. [31, 32])
to find eigenvalues, for which Householder reflections and
Wilkinson shifts are utilized. The eigenvalues λi are sorted
from larger to smaller. Then each corresponding eigenvec-
tor |vi〉 is calculated by the inverse iteration. During this
process, we set

A← A+ const.× |vi−1〉〈vi−1|

before calculating |vi〉. This resolves degeneracy (in case
we have), so that calculated eigenvector |vi〉 becomes or-
thogonal to |v0〉, . . . , |vi−1〉 with high accuracy. We still
test orthogonality and, in case required, perform an or-
thogonalization of |vi〉’s. Enhancement in accuracy of λi

is achieved during the inverse iteration steps. The steps
are retried, often with an initial vector set to the vector
found in the previous round of steps, and sometimes with a
randomly chosen initial vector, until sufficient convergence
of |vi〉 and λi for required precision is reached.
As for the functions of PARI, “eigen” firstly computes

the roots of the characteristic polynomial and secondly
uses the Gaussian elimination to find eigenvectors; in con-
trast, “jacobi” simply uses the Jacobi method. There
are known facts on PARI library functions [29]: func-
tion “eigen” uses a naive algorithm so that it fails to
compute eigenvectors for matrices with degenerate eigen-
values; function “jacobi” handles real symmetric matri-
ces only, so that an Hermitian matrix A should be re-

formed into a symmetric matrix

(
Re(A) −Im(A)
Im(A) Re(A)

)
(see

Ch. 11.5 of Ref. [30] for details about this reformation) as
a workaround to find eigenvalues and eigenvectors using
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the function.

We compare the average time consumption to find all
the eigenvectors of a random 100× 100 Hermitian matrix
A with a unit Frobenius norm for several different internal
precisions. To generate A, matrix elements aij = a∗ji are
simply randomly generated and then the normalization of
the matrix is performed. The eigenvectors found by a di-
agonalization are the column vectors of unitary matrix U
such that U−1AU = diag.

The probability for a random matrix to be degenerate
is very small. Tested matrices were in fact nondegenerate
and “eigen” worked fine except for the precision 256 [bits]
for which it stopped due to a low-accuracy error. As for
“jacobi”, we used the workaround as mentioned above
so that the matrix actually input into the function was a
200 × 200 real symmetric matrix. In this case, we had to
double the precision of the matrix in order to keep the off-
diagonal elements of D̃ = U−1AU sufficiently small (i.e.,

|D̃ij,i6=j | . 2−(prec−10)) for the specified precision prec.
This was not a theoretical consequence but an empirical
workaround for the use of “jacobi”. In fact, with precision
512 (1024) [bits], “jacobi” constantly achieved |D̃ij,i6=j | ∼
1.0× 10−78 ∼ 1.0× 2−256 (|D̃ij,i6=j | ∼ 1.0× 10−155 ∼ 1.0×
2−512). Thus, it was reasonable that doubled precision was
handed over to “jacobi” when it was called.

As shown in Table 3, time consumption for “diag_H”
of ZKCM is on the same order of magnitude as those for
the functions “eigen” and “jacobi” of PARI, as far as we
tested for the precision between 256 and 1280 [bits].

In addition, we also compare the average time consump-
tion to find all the eigenvectors of a random N×N Hermi-
tian matrix with a unit Frobenius norm for several different
values of N with fixed precision 768 [bits]. We doubled the
precision for “jacobi” due to the above-mentioned reason.
As shown in Table 4, time consumption of “diag_H” is on
the same order of magnitude as those for “eigen” and
“jacobi” as far as we tested for 25 ≤ N ≤ 125.

The evaluated functions are all designed to find eigen-
vectors in addition to eigenvalues. One may think of the
case only eigenvalues are needed, for which shorter com-
putation time is expected. The PARI library does not
have a function for this purpose. The ZKCM library has
the function “eigenvalues_H” which is created by simply
omitting the inverse iterations from “diag_H”. The prob-
lem is that the precision of computed eigenvalues cannot
be guaranteed without corresponding eigenvectors. The
achievable precision in the absence of inverse iterations is
evaluated as below together with the time consumption.

Numerical error in the absence of inverse iterations. The
performance of “eigenvalues_H” is evaluated in Tables
5 and 6 in comparison with “diag_H”. The real time
consumption to find all the eigenvalues of a normalized
randomly-generated N ×N Hermitian matrix and the nu-
merical error in the computed eigenvalues are used for this
comparison. Here, the matrix was generated by a random

Table 3: Comparison of the average real time consumption to find all
the eigenvectors of a normalized random 100×100 Hermitian matrix.
The average was taken over ten different matrices. The standard
deviation is shown in parentheses in small fonts. “prec” stands for
the precision. Environments: Fedora 15 OS on Intel Core i5 M460
CPU with 4GB RAM for upper entries (�) and Fedora 16 OS on
AMD FX-8120 CPU with 16GB RAM for lower entries (♣). Note:
For precision 256 [bits], function “eigen” of PARI stopped with an
error and output no result. ∗ Precision was doubled for“jacobi” (see
the text).

prec∗ ZKCM,
diag H [sec]

PARI,
eigen [sec]

PARI,
jacobi [sec]

256
�175 (0.105)
♣137 (0.769)

N/A (N/A)

N/A (N/A)

103 (0.324)

91.2 (0.372)

512
259 (0.160)

203 (1.41)

171 (1.27)

145 (0.426)

265 (0.974)

202 (0.502)

768
413 (0.378)

330 (4.14)

237 (1.24)

206 (0.764)

477 (2.10)

367 (5.43)

1024
632 (0.358)

501 (4.14)

378 (1.58)

309 (1.14)

726 (2.24)

506 (3.65)

1280
903 (0.315)

704 (3.53)

503 (1.21)

404 (1.13)

1020 (5.47)

734 (7.98)

Table 4: Comparison of the average real time consumption to find all
the eigenvectors of a normalized random N×N Hermitian matrix un-
der the fixed precision 768 [bits] [precision was doubled for“jacobi”
(see the text)]. The average was taken over ten different matrices.
The standard deviation is shown in parentheses in small fonts. Envi-
ronments: Fedora 15 OS on Intel Core i5 M460 CPU with 4GB RAM
for upper entries (�) and Fedora 16 OS on AMD FX-8120 CPU with
16GB RAM for lower entries (♣).

N ZKCM,
diag H [sec]

PARI, eigen
[sec]

PARI, jacobi
[sec]

25
�3.41 (0.0152)
♣2.68 (0.0130)

0.941 (0.00406)

0.841 (0.0399)

5.99 (0.0699)

4.79 (0.0219)

50
34.5 (0.0624)

27.1 (0.174)

14.5 (0.0248)

12.8 (0.0483)

50.9 (0.364)

40.9 (0.114)

75
146 (0.238)

114 (0.604)

74.3 (0.636)

64.9 (0.345)

182 (0.977)

144 (0.390)

100
413 (0.378)

330 (4.14)

237 (1.24)

206 (0.764)

477 (2.10)

367 (5.43)

125
961 (1.10)

752 (4.73)

596 (1.72)

508 (2.14)

1070 (7.40)

754 (4.62)

7



Table 5: Comparison of the average real time consumption for
“eigenvalues H” and “diag H” to find all the eigenvalues of a nor-
malized random 100×100 Hermitian matrix. The average numerical
error in the computed spectrum is also shown in the columns “Er-
ror”. The average was taken over ten different matrices. In each cell,
the standard deviation is shown in parentheses in small fonts. “prec”
stands for the precision. Environments: Fedora 15 OS on Intel Core
i5 M460 CPU with 4GB RAM for upper entries (�) and Fedora 16
OS on AMD FX-8120 CPU with 16GB RAM for lower entries (♣).

eigenvalues H diag H
prec Time

[sec]
Error Time

[sec]
Error

256

�9.24
(0.250)

♣7.26
(0.149)

1.70× 10−32

(2.98 × 10−32)

1.19× 10−32

(2.00 × 10−32)

173
(1.05)

136
(1.13)

7.24× 10−76

(8.69 × 10−76)

3.83× 10−76

(2.01 × 10−76)

512

13.2
(0.194)

10.4
(0.142)

1.32× 10−49

(2.99 × 10−49)

3.63× 10−49

(6.70 × 10−49)

259
(1.60)

202
(1.88)

3.86× 10−153

(1.26 × 10−153)

3.96× 10−153

(2.00 × 10−153)

768

19.1
(0.368)

15.2
(0.272)

9.35× 10−57

(8.62 × 10−57)

3.71× 10−56

(8.16 × 10−56)

413
(2.61)

327
(2.82)

3.01× 10−230

(1.12 × 10−230)

4.88× 10−230

(5.43 × 10−230)

1024

27.6
(0.454)

22.1
(0.346)

2.08× 10−56

(3.71 × 10−56)

4.00× 10−56

(7.49 × 10−56)

637
(3.27)

498
(2.99)

4.03× 10−307

(3.58 × 10−307)

3.55× 10−307

(3.01 × 10−307)

1280

35.9
(0.871)

28.4
(0.539)

6.00× 10−56

(9.69 × 10−56)

9.84× 10−54

(3.10 × 10−53)

904
(4.00)

706
(4.64)

6.65× 10−384

(1.18 × 10−383)

2.11× 10−384

(6.12 × 10−385)

unitary transformation of a diagonal matrix D with ran-
dom real elements, where D was normalized by its Frobe-
nius norm in advance. The numerical error in the com-
puted spectrum {e′i} for “eigenvalues_H” is quantified
by E({e′i}) =

∑
i |ei − e′i| where ei are the true eigenval-

ues. Here, {e′i} and {ei} are sorted in the same order (we
employed the descending order). Similarly, the numeri-
cal error in the computed spectrum {e′′i} for “diag_H” is
quantified by E({e′′i}) =

∑
i |ei−e′′i|. For each cell of the

tables, we performed the same simulation ten times with
different random matrices and took the average for the
time consumption or the numerical error. Note that this
performance evaluation was separately performed with the
evaluations shown in the previous tables. The matrix size
N was fixed to 100 and several values of precision were
tried for Table 5; the precision was fixed to 768 [bits] and
several values of N were tried for Table 6.

It has turned out that “eigenvalues_H” is faster than
“diag_H” by one or two orders of magnitude to compute
eigenvalues. The only difference in the internal struc-
tures of these functions is the inverse iterations to find
eigenvectors and at the same time enhance the accuracy

Table 6: Comparison of “eigenvalues H” and “diag H” in real time
consumption to find all the eigenvalues of a normalized random N ×

N Hermitian matrix, for several different matrix sizes N for the
fixed precision 768 [bits]. The average over ten trials is shown. The
columns “Error” show the average numerical error in the computed
spectrum. The standard deviation is shown in parentheses for each
value. Environments: Fedora 15 OS on Intel Core i5 M460 CPU
with 4GB RAM for upper entries (�) and Fedora 16 OS on AMD
FX-8120 CPU with 16GB RAM for lower entries (♣).

eigenvalues H diag H
N Time

[sec]
Error Time

[sec]
Error

25

�0.438
(0.0179)

♣0.343
(0.0153)

4.46× 10−57

(8.47 × 10−57)

3.42× 10−57

(8.76 × 10−57)

3.34
(0.0253)

2.69
(0.0302)

9.10× 10−231

(3.84 × 10−231)

6.35× 10−231

(1.72 × 10−231)

50

2.75
(0.0704)

2.19
(0.0824)

1.67× 10−56

(3.14 × 10−56)

9.67× 10−57

(1.49 × 10−56)

34.0
(0.220)

27.2
(0.190)

2.28× 10−230

(2.51 × 10−230)

2.08× 10−230

(1.02 × 10−230)

75

8.44
(0.149)

6.73
(0.163)

7.30× 10−56

(1.58 × 10−55)

2.64× 10−56

(3.56 × 10−56)

144
(0.762)

114
(0.692)

3.16× 10−230

(3.58 × 10−230)

2.40× 10−230

(1.03 × 10−230)

100

19.1
(0.368)

15.2
(0.272)

9.35× 10−57

(8.62 × 10−57)

3.71× 10−56

(8.16 × 10−56)

413
(2.61)

327
(2.82)

3.01× 10−230

(1.12 × 10−230)

4.88× 10−230

(5.43 × 10−230)

125

36.4
(0.794)

28.4
(0.478)

1.22× 10−55

(2.28 × 10−55)

1.52× 10−56

(2.08 × 10−56)

950
(5.58)

753
(5.25)

3.76× 10−230

(1.75 × 10−230)

3.15× 10−230

(8.01 × 10−231)
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of eigenvalues. Thus the result shows most of time con-
sumption in “diag_H” is spent for inverse iterations. A
drawback to use “eigenvalues_H” is the nonnegligible er-
ror in the computed eigenvalues. For instance, we have
< E({e′i}) >∼ 10−49 when the precision is 512 [bits], i.e.,
when the machine epsilon is ∼ 10−154. Indeed, the error
is much smaller than the machine epsilon for double pre-
cision (∼ 10−16), but is not in the acceptable range for
multiprecision computation.
So far, the ZKCM library has been introduced and eval-

uated on its performance. An extension library for the
study of quantum computation will be introduced in the
next section.

4. ZKCM QC library

The ZKCM QC library is an extension of the ZKCM
library. It has several classes to handle tensor data use-
ful for the (time-dependent) MPS simulation of a quan-
tum circuit. Among the classes, the “mps” class and the
“tensor2” class will be used by user-side programs. The
former class conceals the complicated MPS simulation pro-
cess and enables writing programs in a simple manner.
The latter class is used to represent two-dimensional ten-
sors which are often simply regarded as matrices. A quan-
tum state during an MPS simulation can be obtained as
a (reduced) density matrix in the type of “tensor2”. For
convenience, there are functions to convert a matrix in
the type of “tensor2” to the type of “zkcm_matrix” and
vice versa. More details of the classes are explained in the
document placed in the “doc” directory of the ZKCM QC
package.
It might be curious to condensed-matter physicists why

multiprecision computation is needed in an MPS simu-
lation. Indeed, truncations of Schmidt coefficients (and
corresponding Schmidt vectors) have been studied as a
possible source of errors [33] while precision of basic
floating-point operations has not been of main concern in
physics simulations using the MPS data structure. Pre-
cision shortage cannot be a main source of errors in light
of truncation errors. However, it has been uncommon5

to use a truncation of nonzero Schmidt coefficients in
time-dependent MPS simulations of quantum computing
[12, 19, 27]. Under this condition, precision shortage be-
comes the only crucial source of errors and it is hence of
our main concern how much precision is required for an ac-
curate simulation of quantum computing. We will discuss
more on this issue in Sec. 4.3. In particular, we will show
an example of simulating a quantum algorithm for which a
truncation of at most a single nonzero Schmidt coefficient
for each step results in a significant error; in addition, a
precision slightly beyond the double precision is necessary
for this example.

5Here, we are considering the standard quantum circuit model
for quantum computing. It is not the case in a Hamiltonian-based
adiabatic-evolution model [34].

As for installation of the ZKCM QC library,
the standard process “./configure → make →
sudo make install” should work; if not, the docu-
ment should be consulted.
We briefly overview the theory of the MPS simulation

before introducing a program example.

4.1. Brief overview of the theory of time-dependent MPS

simulation

Consider an n-qubit pure quantum state

|Ψ〉 =
1···1∑

i0···in−1=0···0
ci0···in−1

|i0 · · · in−1〉

with
∑

i0···in−1
|ci0···in−1

|2 = 1. If we keep this state as
data as it is, updating the data for each time of unitary
time evolution spends O(22n) floating-point operations.
To avoid such an exhaustive calculation, in the matrix-
product-state method, the data is stored as a kind of com-
pressed data. The state is represented in the form

|Ψ〉 =
1∑

i0=0

· · ·
1∑

in−1=0

[m0−1∑

v0=0

m1−1∑

v1=0

· · ·
mn−2−1∑

vn−2=0

Q0(i0, v0)V0(v0)Q1(i1, v0, v1)V1(v1) · · ·
· · ·Qs(is, vs−1, vs)Vs(vs) · · ·

· · ·Vn−2(vn−2)Qn−1(in−1, vn−2)

]
|i0 · · · in−1〉,

(1)

where we use tensors {Qs}n−1
s=0 with parameters is, vs−1, vs

(parameters v−1 and vn−1 exceptionally do not exist) and
{Vs}n−2

s=0 with parameter vs; ms is a suitable number of
values assigned to vs with which the state is represented
precisely or well approximated. This form is one of the
forms of matrix product states (MPSs). The data are kept
in the tensors. We can see that neighboring tensors are
correlated to each other; the data compression is owing to
this structure.
Let us explain a little more details: Qs(is, vs−1, vs) is a

tensor with 2×ms−1 ×ms elements; Vs(vs) is a tensor in
which the Schmidt coefficients for the splitting between the
sth site and the (s+1)th site (i.e., the positive square roots
of nonzero eigenvalues of the reduced density operator of
qubits 0, . . . , s) are stored. This implies that, by using
Vs and eigenvectors |Φ0...s

vs
〉 (|Φs+1...n−1

vs
〉) of the reduced

density operator ρ0...s (ρs+1...n−1) of qubits 0, . . . , s (s +
1, . . . , n− 1), the state can also be written in the form of
Schmidt decomposition

|Ψ〉 =
ms−1∑

vs=0

Vs(vs)|Φ0...s
vs
〉|Φs+1...n−1

vs
〉. (2)

In an MPS simulation, very small coefficients and cor-
responding eigenvectors can be truncated out unlike a
usual Schmidt decomposition. It may happen that all the
nonzero coefficients are nonnegligible. This is actually the
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case in practice when we simulate quantum computing as
we will discuss in Sec. 4.3. We can still enjoy a consid-
erable data-size reduction since vanishing coefficients are
truncated out.

Besides the truncation, a significant advantage to use
the MPS form is that we have only to handle a small num-
ber of tensors when we simulate a time evolution under
each quantum gate. For example, when we apply a uni-
tary operation ∈ U(4) acting on, say, qubits s and s + 1,
we have only to update the tensors Qs(is, vs−1, vs), Vs(vs),
and Qs+1(is+1, vs, vs+1). For the details of how tensors
are updated, see Refs. [12, 27]. The simulation of a sin-
gle quantum gate ∈ U(4) spends O(m3

max) floating-point
operations where mmax is the largest value of ms among
the sites s. (Usually, unitary operations ∈ U(2) and those
∈ U(4) are regarded as elementary quantum gates.) A
quantum circuit constructed by using at most g single-
qubit and/or two-qubit quantum gates can be simulated
within the cost of O(gnm3

max,max) floating-point opera-
tions, where n is the number of wires and mmax,max is
the largest value of mmax over all time steps.

The computational complexity may be slightly differ-
ent for each software using MPS. In the ZKCM QC li-
brary, we have functions to apply quantum gates ∈ U(8)
to three chosen qubits. Internally, three-qubit gates are
handled as elementary gates. This makes the complex-
ity a little larger. A simulation using the library spends
O(gnm4

max,max) floating-point operations, where g is the
number of single-qubit, two-qubit, and/or three-qubit
gates used for constructing a quantum circuit. As the pro-
cess to update the tensors to simulate a three-qubit gate
has not been written in detail in the literature as far as
the author knows, it is explained in Appendix A.

The MPS simulation process, which is in fact often com-
plicated, can be concealed by the use of ZKCM QC. One
may write a program for quantum circuit simulation in
an intuitive manner. Here is a very simple example. In
the followings, we use version 0.1.0 of ZKCM QC for our
programs.

4.2. Program example

As a simple example, we simulate the time evolution

|000〉 H7→ 1√
2
(|000〉+ |100〉)

CNOT7→ 1√
2
(|000〉+ |101〉)

where Hadamard operation H = 1√
2

(
1 1
1 −1

)
acts on

qubit 0 and CNOT = |00〉〈00|+|01〉〈01|+|10〉〈11|+|11〉〈10|
acts on qubits 0 and 2. Then we see the reduced density
matrix of qubits 0 and 2.

The program example is shown in Listing 2. (A slightly
extended sample code is placed in the “samples” directory
of the ZKCM QC package.) It utilizes several matrices

declared in the namespace “tensor2tools” (see the doc-
ument placed in the “doc” directory for the details of this
namespace).

#include "zkcm_qc .hpp "

int main (int argc , char *argv [])

{

// Use the 256- bit precision .

zkcm_set_default_prec (256);

// Num. of digits for each output is set to 8.

zkcm_set_output_nd (8);

//First , we make an MPS representing |000 >.

mps M(3);

std :: cout << "The initial state is "

<< std :: endl;

// Print the reduced density operator of the

// block of qubits from 0 to 2, namely , 0,1,2,

// using the binary number representation for

// basis vectors .

std :: cout << M.RDO_block (0, 2). str_dirac_b ()

<< std :: endl;

std :: cout << "Now we apply H to the 0th qubit ."

<< std :: endl;

M.applyU (tensor2tools::Hadamard , 0);

std ::cout << "Now we apply CNOT to the \

qubits 0 and 2."

<< std ::endl;

M.applyU (tensor2tools::CNOT , 0, 2);

// The array is used to specify qubits to compute

//a reduced density matrix . It should be

// terminated by the constant mps ::TA.

int array [] = {0, 2, mps ::TA};

std :: cout << "At this point , the reduced \

density matrix of the qubits 0 and 2 is "

<< std :: endl

<< M.RDO(array ). str_dirac_b ()

<< std :: endl;

zkcm_quit ();

return 0;

}

Listing 2: qc simple example.cpp

The program is compiled and executed typically in the
following way.

[user@localhost foo]$ c++ -o qc_simple_example \

qc_simple_example.cpp -lzkcm_qc -lzkcm -lmpfr -lgmp \

-lgmpxx

[user@localhost foo]$ ./qc_simple_example

The initial state is

1.0000000e+00|000><000|

Now we apply H to the 0th qubit.

Now we apply CNOT to the qubits 0 and 2.

At this point, the reduced density matrix of \

the qubits 0 and 2 is

5.0000000e-01|00><00|+5.0000000e-01|00><11|\

+5.0000000e-01|11><00|+5.0000000e-01|11><11|

Besides this example, the package of ZKCM QC has
sample programs for simulating Grover’s quantum search
[38] and simulating a simple projective measurement. In
addition, we will see an example to simulate the quantum
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search under the simplest setting in Appendix A.1, which
is written as a part of the explanation of how to handle a
three-qubit gate in an MPS simulation.

4.3. Source of numerical errors in an MPS simulation of

quantum computing

It is a standard strategy in the MPS simulation and re-
lated methods in computational condensed matter physics
to impose a certain threshold mtrunc to the number of
Schmidt coefficients; only larger mtrunc Schmidt coeffi-
cients (and corresponding Schmidt vectors) are employed
and the remaining are discarded at each time when ten-
sors are updated [13, 14]. It has been tacitly assumed that
truncations are the main source of numerical errors and a
numerical error due to precision shortage has not gathered
attention. Venzl et al. [33] pointed out that hardness of a
time-dependent MPS simulation depends on the distribu-
tion of Schmidt coefficients. They reported certain param-
eter choices in the tilted Bose-Hubbard model, for which
the distribution has a rather long tail for larger Schmidt
coefficients, i.e., negligibly small ones are not dominant. In
such a case, mtrunc should be rather close to the maximum
Schmidt rank (over all splittings between consecutive sites
and over all time steps) in order to keep the truncation
error small. In contrast, a usual time-dependent MPS sim-
ulation for other nearest-neighbour coupling models stud-
ied so far uses a relatively small value for mtrunc, typically
fifty to one hundred [35]. With this much value of mtrunc,
a time-dependent MPS simulation usually does not exhibit
notable accumulation of numerical errors unless more than
several hundred time steps of evolution is tried [35]. A sig-
nificant accumulation of truncation errors were reported
for a larger number of time steps [35, 36].
As mentioned before, it has been uncommon to use trun-

cations in (time-dependent) MPS simulations of quantum
computing [12, 19, 27]. This is reasonable because quan-
tum algorithms involves many H and CNOT operations
(see Sec. 4.2 for their definitions). This makes a quan-
tum state evolving under a quantum circuit quite often
a nearly equally biased superposition of several indices.
By tracing-out some subsystem under this condition, we
have a reduced density matrix whose nonzero eigenvalues
are all nonnegligible. Thus it is not possible to truncate
out even a single nonzero Schmidt coefficient, irrespective
of the number of time steps. In addition, we have re-
cently shown [37] that an accumulation of errors due to
precision shortage is significant even without truncation of
nonzero Schmidt coefficients as far as we have seen in an
example to iterate the quantum search routine [38]. Thus
high-precision computation has a practical advantage in
an MPS simulation for a quantum circuit model with a
large circuit depth.
Here, we show a typical example where truncating out

at most a single nonzero Schmidt coefficient for each time
causes a significant error. In this example, slightly more
than double precision is required for a stable simulation
although the depth of the quantum circuit is not very large.
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Figure 3: (a) Quantum circuit of the Deutsch-Jozsa algorithm for
the specified function (see the text). (b) Internal structure of gate
g. Gate g−1 is the reverse of g.

We consider the Deutsch-Jozsa algorithm [39]. In a
brief explanation, there is a promise that function f :
{0, 1}l → {0, 1} is either balanced (i.e., #{x|f(x) = 0} =
#{x|f(x) = 1}) or constant (i.e., f(x) is same for all x)
where x ∈ {00 · · · 0l−1, . . . , 10 · · · 1l−1}. The task is to de-
cide whether a given function f is balanced or constant.
This takes 1 + 2l−1 queries for the worst case in classical
computation while it takes only a single query in quantum
computation with the Deutsch-Jozsa algorithm. The al-
gorithm is described as follows: (i) Apply H⊗lVfH

⊗l to l
qubits initially in the state |00 · · · 0l−1〉 where Vf is an op-
eration to put the factor (−1)f(x) to each |x〉; (ii) Measure
the l qubits in the computational basis. When f is bal-
anced, the probability of finding the qubits simultaneously
in 0’s in this measurement vanishes; when f is constant, it
is exactly unity. For the details of the theoretical analysis
of the algorithm, see, e.g., Sec. 3.1.2 of Ref. [10].

Let us consider a particular function f(y0 · · ·yNg−1) =⊕Ng−1
i=0 g(yi) with g(x0x1x2x3) = (x0 ∧ x1) ∨ (x1 ∧ x2) ∨

(x2 ∧ x3) where yi ∈ {0, 1}4 and xj ∈ {0, 1}; Ng is a
positive integer (here, symbol

⊕
stands for the exclusive

OR operation). Figure 3 shows the quantum circuit of
the algorithm for this function. This function is balanced
for any value of Ng ≥ 1. In the figure, a single • and
the connected ⊕ represent the CNOT operation with the
control qubit specified by • and the target qubit specified
by ⊕. It flips the target qubit if the control qubit is in
|1〉. Similarly, two •’s and ⊕ connected to each other rep-
resent the CCNOT operation. It flips the target qubit if
the two control qubits are in |11〉. (See also Appendix A
for the implementation of three-qubit operations in our
library.) By the structure of the circuit, each of the Ng

measurements should report Prob(0000) = 0 if there is no
numerical error. (This is easily proved: assuming different
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values of Prob(0000) for two different bundles of qubits
contradicts to the fact that the bundles are equivalent to
each other by the circuit structure.)
It is straight-forward to write a program code for the

quantum circuit using the ZKCM QC library. We begin
with header file descriptions:

#include <zkcm_qc.hpp>

#include <sys/time.h>

The second header file is needed by the following function
to obtain the current time in seconds:

double current_time_in_sec ()

{

timeval T;

::gettimeofday(&T, NULL);

return ((double)(T.tv_sec)

+ 1.0e-6 * (double)(T.tv_usec));

}

We use this function when we record the data of time
consumption for Table 7. We may omit it otherwise. The
main function begins with

int main (int argc, char *argv[])

{

zkcm_set_default_prec (prec);

with some precision “prec” and ends with

zkcm_quit();

return 0;

}

We describe the quantum circuit step by step in
the middle part of the main function. (We call
“current_time_in_sec()” before and after this part to
calculate the time consumption.) First of all, an object of
the MPS data structure for n = 9Ng + 2 qubits is created
by

mps M(n);

M.set_m_trunc(mtrunc);

where we also set the value of mtrunc by our option as in
the second line. Then we write each gate operation one by
one. For example, a Pauli X gate (or a bit flip) acting on
the ith qubit is written as

M.applyU(tensor2tools::PauliX, i);

Similarly, an Hadamard gate operation is written in the
same manner with tensor2tools::Hadamard. A CNOT
gate with control qubit c and target qubit t is written as

M.applyU(tensor2tools::CNOT, c, t);

A CCNOT operation with control qubits a, b, and target
qubit t is written as

M.CCNOT(a, b, t);

After writing instructions corresponding to individual
quantum gate operations, we need some code lines to ob-
tain the probability of finding zeros in the output. Al-
though we have a function to perform a projective mea-
surement acting on a single qubit, this is not conve-
nient. We instead compute the (0, 0) element of the re-
duced density matrix of qubits of our interest. To obtain
Prob(00010203), for example, we write

std::cout << "Prob(0_0 0_1 0_2 0_3)="

<< M.RDO_block(0, 3).get(0, 0)

<< std::endl;

In this way, one can easily write a program code for the
quantum circuit.
In the present context, it is also demanded to see the

intrinsic data of the MPS step by step. To obtain the
number ms of surviving Schmidt coefficients Vs(vs) for the
splitting between sites s and s+ 1, one may write, e.g.,

int num = M.get_m(s);

for some integer 0 ≤ s ≤ n− 2. In addition, each Schmidt
coefficient is accessible by “M.V(s)(i)” which is a ref-
erence to the ith element of Vs. It is also convenient
to use “M.get_m_max()” (mmax = maxsms for the cur-
rent time step) and “M.get_m_maxmax()” (mmax,max =
maxtmaxsms where t stands for time) so as to find the
time step where the Schmidt rank reaches the maximum.
It should be noted that sometimes the maximum Schmidt
rank appears during the internal process hidden behind
each gate operation. This is because each gate operation
for nonconsecutive qubits needs to internally move them to
consecutive places before operation and move them back
to their original places after operation owing to the one-
dimensional data structure of MPS. This is done by swap-
ping consecutive qubits step by step. For tracing the inter-
nal time evolution ofms’s, one needs to mimic this process
by using the operation “M.SWAP(a,b);” (this swaps spec-
ified qubits a and b) manually.
We have explained how the program code is written

to simulate the quantum circuit of Fig. 3. Now we set
Ng to 7; we have 65 qubits in total in the circuit. It is
certainly intractable to handle the circuit by the brute-
force method because the dimension of the Hilbert space
is 265 ≃ 3.69 × 1019. It was numerically found, however,
that the largest possible Schmidt rank of the MPS dur-
ing evolution in the circuit is only 28 as shown in Fig. 4.
Because of this reason, the MPS simulation of the algo-
rithm took only approximately seven minutes (see Table
7) when the precision was set to 256 [bits] and no trunca-
tion of nonzero Schmidt coefficients was employed. Here,
we used a computing server with the Red Hat Enterprise
Linux 6 64-bit OS, Intel Xeon E7-8837 2.67GHz (2.80GHZ
maximum) CPU, and 315GBRAM, instead of the common
PCs that we normally used.6

6This was because a PC with 4GB RAM became unstable due to
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Figure 4: Error in the computed value of Prob(00010203) and
mmax,max as functions of mtrunc. Precision was fixed to 256 bits.

The main aim of the simulation is to investigate if
any truncation of nonzero Schmidt coefficients is possi-
ble. Figure 4 shows the error in the computed value of
Prob(00010203) (the discrepancy from zero) as a function
ofmtrunc. The maximum Schmidt rankmmax,max observed
during the simulation is also plotted in the figure as a func-
tion of mtrunc. It is clearly shown that mtrunc should be
equal to or more than the exactly maximum Schmidt rank
that is observed in the absence of truncations; otherwise
a significant numerical error appears. (In Ref. [37], we
have shown a similar result for a smaller circuit of the al-
gorithm for a different balanced function.) As previously
mentioned, the distribution of nonzero Schmidt coefficients
is closely related to this phenomenon. We show the distri-
bution in Fig. 5, which was taken at the point where the
second CNOT gate was being processed among the 2Ng+1
CNOT gates in the middle part of Fig. 3(a). It clearly de-
picts that none of the nonzero Schmidt coefficients was
negligible.

In addition, it was found that precision slightly more
than the double precision was required to perform a stable
simulation even when we did not impose any truncation
of nonzero Schmidt coefficients, as shown in Table 7. For
precision less than or equal to 55 bits, some of matrix
diagonalization routines failed after the half point of the
circuit, which indicates an accumulated error due to preci-
sion shortage. More specifically speaking about this case,
a small non-Hermitian fraction due to the accumulated er-
ror in a reduced density matrix resulted in the convergence
error of eigenvectors during an update of tensors.

memory shortage for this simulation for precision ≥ 1024 bits. Each
run of the simulation in the computing server consumed at most
approximately 8GB memory space for precision 1024 bits and 1280
bits.
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Figure 5: Distribution of nonzero Schmidt coefficients at the point
where the second CNOT gate was being processed among the 2Ng+1
CNOT gates (Ng was set to 7) in the middle part of Fig. 3(a). Note
that we are employing the definition of Schmidt coefficients with
square roots in this paper. Thus the sum of squared values of the
Schmidt coefficients equals to one.

Table 7: Precision (prec) dependence of the numerical error (Error)
in the computed value of Prob(00010203). No truncation of nonzero
Schmidt coefficients was employed. The real time consumed for the
simulation is also shown (Time), which is an average over 10 trials of
the same simulation (the standard deviation is shown in the paren-
theses). The simulated circuit had 65 qubits because Ng was set to
7. Environment: Red Hat Enterprise Linux 6 64-bit OS, Intel Xeon
E7-8837 2.67GHz (2.80GHZ maximum) CPU, and 315GB RAM.

prec Error Time [sec]

≤ 55
Convergence failure in
some of eigenvectors

N/A

56 1.80× 10−32 341 (10.4)

57 5.66× 10−26 335 (10.2)

58 1.72× 10−32 338 (7.82)

59 1.55× 10−33 379 (6.45)

60 1.92× 10−34 348 (13.3)

...
...

...
256 5.91× 10−139 416 (8.50)

...
...

...
512 7.16× 10−121 709 (19.0)

...
...

...
768 1.78× 10−460 922 (19.7)

...
...

...
1024 6.50× 10−615 1620 (12.3)

...
...

...
1280 7.77× 10−770 2170 (16.9)
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5. Discussion

5.1. Discussion on the ZKCM library

With the ZKCM library, standard tasks in numerical
matrix calculations can be completed within the time con-
sumption on the same order of magnitude as that with
the PARI library as we have seen in the comparison per-
formed in Sec. 3. The comparison also showed that ZKCM
is slower than PARI, even in a simple matrix multiplica-
tion, which suggests that basic arithmetic operations make
a certain gap in speed of the two libraries. In fact, ZKCM
uses MPFR functions while PARI uses GMP functions
for the basic arithmetic computation. MPFR is approxi-
mately two and a half times as slow as GMP in multiplying
floating-point numbers as far as we tested.7 Thus it is rea-
sonable to find a certain gap in computational speed. We
believe the gap is acceptable as long as it does not change
the order of magnitude of computation time for basic ma-
trix computation. It has been probably a historical reason
that PARI has not used MPFR so far.8 We chose MPFR
because it has floating-point exceptions and other useful
functionalities for real floating-point numbers by default.
The only unexpected result in Sec. 3 is the one about

Hermitian matrix diagonalization shown in Tables 3 and
4. It has been shown that time consumptions of functions
“diag_H” of ZKCM and “eigen” and “jacobi” of PARI
are on the same order of magnitude. This is an unusual
result because the Jacobi method employed in “jacobi”
looks as fast as a variant of the QR method employed in
“diag_H” for a 100× 100 matrix.
It is likely that “diag_H” and “jacobi” are used for

a similar purpose or under a similar situation, since they
both work fine for a matrix with degenerate eigenvalues.
(It is known [29] that “eigen” almost always fails for a
matrix with degenerate eigenvalues.) In this point of view,
too, it is meaningful to compare “diag_H” and “jacobi”.
As mentioned above, function “jacobi” of PARI is an

implementation of a standard Jacobi method. Function
“diag_H” of ZKCM employs the Householder-QR method
with the Wilkinson shift for computing approximate eigen-
values and uses several sets of inverse iterations to find
eigenvectors and at the same time to enhance the accu-
racy of eigenvalues. It has been commonly known that the
Jacobi method is slower than the QR method: “For matri-
ces of order greater than about 10, however, the algorithm

7We wrote a test program to compute x ←− x ∗ y with y =
1.00 − 1.00 × 10−7 for 108 times where the initial value of x was
set to 1. The precision was set to 512 bits. It took 15.3 seconds
on average (with standard deviation 1.09 × 10−1) when we used
MPFR’s “mpfr t” structure for floating point numbers while it took
only 6.11 seconds on average (with standard deviation 4.91× 10−2)
when we used GMP’s “mpf t” structure. The average was taken over
ten trials. This test was performed on a machine with the Fedora 15
64-bit OS, Intel Core i5 M460 CPU, and 4GB RAM. GMP version
4.3.2 and MPFR version 3.0.0 were used.

8 PARI has been developed since 1979 [24]. GMP appeared in
1991 [8] and MPFR appeared in 2000 [9]. PARI already had plenty
of fast floating-point functionalities at the time MPFR appeared.

is slower, by a significant constant factor, than the QR
method...”—page 571 of Ref. [30]; “...the Jacobi method
is several times slower than a reduction to tridiagonal form,
followed by Francis’s algorithm.”—page 488 of Ref. [40].
Thus, it is unusual that, for a relatively large matrix with
the order 100, there is no significant advantage in using
the Householder-QR method. In a phenomenological ex-
planation, this is due to the large cost of inverse iterations.
By using the Gprof program [41] (a monitoring software),
it turned out that, in “diag_H”, more than 71.1 percent of
running time was spent for the inverse iterations in case of
a 100× 100 matrix with the precision ≥ 512 [bits]. In fact
speedup of one or two orders of magnitude was possible
by omitting inverse iterations for finding eigenvalues as we
have shown in Tables 5 and 6. It was however impossible
to achieve a required precision without inverse iterations
as clearly shown in the tables.
Thus, it was unexpectedly expensive to achieve a suffi-

cient convergence by inverse iterations. We, of course, used
the LU decomposition to reduce the cost of each inverse
iteration. This, however, did not mitigate the total cost of
the inverse iterations sufficiently. As a matter of fact, the
total number of the inverse iterations had to be increased
along with the increase in required precision. This, at a
glance, does not look in accordance with a conventional
theory of inverse iteration [42] suggesting that the ma-
chine epsilon does not make a difference in the process of
inverse iteration. The conventional theory, however, con-
siders the process where the inverse iteration is used for
computing an eigenvector for a given approximate eigen-
value. In our case, in contrast, we also improve accuracy of
the eigenvalue using the computed eigenvector. A routine
of inverse iteration is often called several times in order for
achieving sufficient accuracy for each pair of an eigenvalue
and the corresponding eigenvector. Furthermore, program
routines called by the routine of inverse iteration are not
error-free in practice. Thus it was not surprising that the
choice of precision considerably affected the cost of inverse
iterations (and hence the time consumption of “diag_H”
shown in Table 5).
Another factor that makes inverse iterations expensive

is the cost of basic arithmetic operations in multipreci-
sion computing. Unlike double-precision computing where
every basic arithmetic instruction is performed within a
few clock cycles, it takes quite many cycles.9 It is fast in
double-precision computing to successively perform arith-
metic instructions because this does not involve any con-
ditional branching. In contrast, it is inevitable to involve
several conditional branching instructions in every arith-
metic operation in multiprecision computing. Thus, the
simple fact that basic arithmetic instructions are not hard-
ware instructions should be a large factor.

9Theoretically, each instruction with precision prec takes
O(precc) time with c ≤ 2 dependent on the chosen algorithm. In
real CPU time, it should scale slightly better in practice because of
vectorization of operands. See the manual of GMP [8] for the details
of algorithms for arithmetic instructions.
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In future, we should find a strategy for faster Hermi-
tian matrix diagonalization. As a possible approach, the
precision of computation for finding approximate eigen-
values can be internally enlarged so that a relatively small
number of subsequent inverse iterations should be enough
to achieve a required precision. Table 5, however, shows
that accuracy of approximate eigenvalues is not very much
enhanced by simply increasing the preset precision in the
Householder-QR method. So far, the author could not
find the reason of this tendency. A detailed theoreti-
cal and practical analyses of the present implementation
(and perhaps the method itself) will be required to over-
come this difficulty. For another approach, there is a
possibility that a certain method uncommon under the
double-precision environment possesses an advantage un-
der a high-precision environment in a practical sense. It
is of interest to re-investigate practical usefulness of con-
ventional methods [43] for eigenvalue problems under a
high-precision environment.
Apart from computational speed, the syntax of a library

is also important for usability. As a C++ library, ZKCM
provides an easy-to-use syntax for handling matrices by
operator overloading. It also provides various functionali-
ties for matrix computation as member functions of a class
as well as as external functions. Thus a program code
using the library should look simpler than those written
with some other multiprecision libraries for Fortran or C
languages. In general, it is relatively easy to write an ex-
tension library of a C++ library. As we have introduced,
ZKCM has an extension library named ZKCM QC devel-
oped for a (time-dependent) MPS simulation of quantum
circuits. The main library and the extension are under
steady development. Latest development versions can be
downloaded from the repositories linked from the URL [7].

5.2. Discussion on the ZKCM QC library

As for the ZKCM QC library, it is worth mentioning
that multiprecision computation is useful in MPS simu-
lations of quantum computing as discussed in Sec. 4.3.
Indeed, truncation errors are dominant whenever trunca-
tions of nonzero Schmidt coefficients are employed. It is
however uncommon to employ such truncations in simulat-
ing quantum computing since they cause an unacceptably
large error as we have discussed. As a consequence, the
rounding error become the only possible error. In our ex-
ample, slightly more than double precision was required
for reliable MPS simulation. This is true in a different
example to simulate quantum search, which is shown in
our related contribution [37]. Thus, time-dependent MPS
simulation is fragile not only against accumulating trunca-
tion errors [35, 36] but also against accumulating rounding
errors. High-precision computation is therefore beneficial
to the MPS method.
Apart from the MPS method, there have been several

simulators of quantum computing which make use of par-
allel programming techniques [44, 45, 46, 47] to mitigate
the time consumption of the brute-force method. They

use a parallelized exact matrix computation and spend a
massive computational resource (e.g., more than one thou-
sand CPU processes and several hundred gigabytes physi-
cal memory to handle less than forty qubits [45]). It seems
that an accumulation of rounding errors is not significant
for these simulators although they use double precision
computation, as this was not reported so far. In contrast
to their approach, use of the MPS method is quite eco-
nomical. As we have shown in Sec. 4.3, we could handle
65 qubits in the MPS simulation of the Deutsch-Jozsa al-
gorithm under a certain setup, which ran as a single CPU
process10 and took only (approximately) seven minutes in
case of 256-bit floating-point precision.

Besides the MPS method, Viamontes et al.’s method
[16, 56, 57] using a compressed graph representation is also
quite economical to simulate quantum computation. Ac-
cording to Refs. [16, 57], its compressed data structure is
sensitive to rounding errors so that they used multipreci-
sion computation based on the GMP library. The MPS
data structure (1) is of course a compressed data struc-
ture for which we needed multiprecision computation for
stable quantum circuit simulation. It will be interesting to
theoretically investigate if a simulation of quantum com-
puting utilizing a compressed data structure generally has
a certain inevitable sensitivity to rounding errors.

Finally, we discuss on the computational cost of the
MPS method, which is known to grow polynomially in
the maximum Schmidt rank mmax,max during the simu-
lation [12] as mentioned in Sec. 4.1. It is expected that
MPS simulation becomes very expensive for quantum cir-
cuits of algorithms for hard problems like those for quan-
tum prime factorization [48] of a large composite num-
ber. It has been discussed [49] that large entanglement
(this usually leads to a large Schmidt rank) must be in-
volved in quantum prime factorization. So far, Kawaguchi
et al. [50] found Schmidt rank 92 in a modular exponenti-
ation circuit (this is used in quantum prime factorization)
with 35 qubits in their MPS simulation. Nevertheless,
it has been neither proved nor numerically verified that
mmax,max grows exponentially in the number n of qubits as
far as the author knows. Although there have been several
studies on entanglement during quantum prime factoriza-
tion [51, 52, 53, 54], they have not reached an answer to
how entanglement grows in n. It is still an open problem
how we rigorously estimate the value of mmax,max for a
given quantum circuit. Presently, a known upper bound
for mmax,max is a function exponentially growing in the
number of basic quantum gates overlapping to each other
(i.e., those stretching across the same bundle of wires)
[55]; this is however not practically useful for a user of
the MPS method to estimate the value of mmax,max for
his/her simulation. More theoretical and numerical efforts
are required to understand the scalability of the method.

10Every simulation with ZKCM or ZKCM QC shown in this paper
was run as a single CPU process.
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6. Summary

We have introduced the ZKCM library which is a C++
library developed for multiprecision complex-number ma-
trix computation. It is especially usable for high-precision
numerical simulations in quantum physics; it has an easy-
to-use syntax for matrix manipulations and helpful func-
tionalities like the tensor-product and tracing-out opera-
tions, the discrete Fourier transform, etc. An extension
library ZKCM QC has also been introduced, which is a li-
brary for a multiprecision time-dependent matrix-product-
state simulation of quantum computing. It enables a user-
friendly coding for simulating quantum circuits.

Appendix A. Updating tensors of an MPS for

simulating a three-qubit gate oper-

ation

The library ZKCM QC uses three-qubit gates as ele-
mentary gates in addition to single- and two-qubit gates.
As it is not usually explained in detail how a three-qubit
gate is simulated in a time-dependent MPS simulation, a
detailed explanation is given here. As for simulations of
single- and two-qubit gates, see Refs. [12, 27] for detailed
explanations.
Consider the quantum gate

U =
111∑

ilil+1il+2=000

111∑

klkl+1kl+2=000

uilil+1il+2,klkl+1kl+2

× |ilil+1il+2〉〈klkl+1kl+2|

acting on the three qubits l, l+1, and l+2. With a focus
on the three qubits, the MPS of n qubits can be written
as

|Ψ〉 =
111∑

ilil+1il+2=000

ml−1−1,ml−1,ml+1−1,ml+2−1∑

vl−1,vl,vl+1,vl+2=0,0,0,0

[
Ql(il, vl−1, vl)

× Vl(vl)Ql+1(il+1, vl, vl+1)Vl+1(vl+1)Ql+2(il+2, vl+1, vl+2)

× |v0,...,l−1
l−1 〉|il〉|il+1〉|il+2〉|vl+3,...,n−1

l+2 〉
]

with |v0,...,l−1
l−1 〉 = Vl−1(vl−1)|Φ0,...,l−1

vl−1
〉 and |vl+3,...,n−1

l+2 〉 =
Vl+2(vl+2)|Φl+3,...,n−1

vl+2
〉, where |Φ0,...,l−1

vl−1
〉 are the Schmidt

vectors of the block of qubits 0, . . . , l − 1 for the splitting
between l−1 and l, and |Φl+3,...,n−1

vl+2
〉 are those of the block

of qubits l+3, . . . , n−1 for the splitting between l+2 and
l + 3.
What we should do as a simulation of applying the quan-

tum gate U to |Ψ〉 is to update tensors Ql, Vl, Ql+1, Vl+1,

and Ql+2 to Q̃l, Ṽl, Q̃l+1, Ṽl+1, and Q̃l+2, respectively, so
that the MPS with the updated tensors represents the re-
sultant state |Ψ̃〉. This process is explained hereafter step
by step. (Here is some note on the description: In case
l − 1 = −1, the tensor Vl−1 should be regarded as unity
and the parameter vl−1 should be dropped. Similarly, in

case l + 2 = n− 1, the tensor Vl+2 should be regarded as
unity and the parameter vl+2 should be dropped.)
The state after U is applied to the qubits l, l + 1, and

l + 2 can be written as

|Ψ̃〉 =
∑

vl−1

∑

vl+2

∑

ilil+1il+2

Θ(il, il+1, il+2, vl−1, vl+2)

× |v0,...,l−1
l−1 〉|il〉|il+1〉|il+2〉|vl+3,...,n−1

l+2 〉
(A.1)

with the tensor

Θ(il, il+1, il+2, vl−1, vl+2) =
∑

vl

∑

vl+1

∑

klkl+1kl+2

[

uilil+1il+2,klkl+1kl+2
Ql(kl, vl−1, vl)Vl(vl)

×Ql+1(kl+1, vl, vl+1)Vl+1(vl+1)Ql+2(kl+2, vl+1, vl+2)

]
.

First, we are going to compute the tensors Q̃l(il, vl−1, vl)

and Ṽl(vl) of the resultant state. The reduced density
matrix of qubits 0, ..., l calculated from Eq. (A.1) is

ρ0,...,l =
∑

ilvl−1i′lv′
l−1

[ ∑

il+1il+2vl+2

[Vl+2(vl+2)]
2

×Θ(il, il+1, il+2, vl−1, vl+2)Θ
∗(i′l, il+1, il+2, v

′
l−1, vl+2)

]

× |vl−1〉|il〉〈v′l−1|〈i′l|

=
∑

ilvl−1i′lv′
l−1

[ ∑

il+1il+2vl+2

[Vl+2(vl+2)]
2

×Θ(il, il+1, il+2, vl−1, vl+2)Θ
∗(i′l, il+1, il+2, v

′
l−1, vl+2)

× Vl−1(vl−1)Vl−1(v
′
l−1)

]
|Φvl−1

〉|il〉〈Φv′
l−1
|〈i′l|

=
∑

ilvl−1i′lv′
l−1

ailvl−1i′lv′
l−1
|Φvl−1

〉|il〉〈Φv′
l−1
|〈i′l|

with ailvl−1i′lv′
l−1

=
[∑

il+1il+2vl+2
· · ·

]
. The matrix ρ0,...,l

is a (2ml−1)×(2ml−1) matrix. This is now diagonalized to

achieve the eigenvalues λ̃vl = [Ṽl(vl)]
2 and the correspond-

ing eigenvectors |Φ̃0,...,l
vl
〉 under the basis {|Φ0,...,l−1

vl−1
〉|il〉}.

Immediately we find the values of Ṽl(vl). We may trun-
cate out negligibly small eigenvalues11 to reduce m̃l (the

updated value of ml, namely, the number of data in Ṽl).
In addition, we have vector elements Cl(il, vl−1, vl) of just
computed eigenvectors:

|Φ̃0,...,l
vl
〉 = Cl(il, vl−1, vl)|Φ0,...,l−1

vl−1
〉|il〉,

from which we can derive

Q̃l(il, vl−1, vl) = Cl(il, vl−1, vl)/Vl−1(vl−1).

11We should not employ a threshold for the number of eigenvalues
as we have discussed in Sec. 4.3.
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Thus we have obtained

|Φ̃0,...,l
vl
〉 = Q̃l(il, vl−1, vl)|vl−1〉|il〉.

Second, we are going to compute the tensors Ṽl+1(vl+1)

and Q̃l+2(il+2, vl+1, vl+2) from Eq. (A.1). The reduced
density matrix of qubits l + 2, . . . , n− 1 is

ρl+2,...,n−1 =
∑

il+2vl+2i′l+2v′
l+2

[ ∑

ilil+1vl−1

[Vl−1(vl−1)]
2

×Θ(il, il+1, il+2, vl−1, vl+2)Θ
∗(il, il+1, i

′
l+2, vl−1, v

′
l+2)

]

× |il+2〉|vl+2〉〈i′l+2|〈v′l+2|

=
∑

il+2vl+2i′l+2v′
l+2

[ ∑

ilil+1vl−1

[Vl−1(vl−1)]
2

×Θ(il, il+1, il+2, vl−1, vl+2)Θ
∗(il, il+1, i

′
l+2, vl−1, v

′
l+2)

× Vl+2(vl+2)Vl+2(v
′
l+2)

]
|il+2〉|Φvl+2

〉〈i′l+2|〈Φv′
l+2
|

=
∑

il+2vl+2i′l+2v′
l+2

bil+2vl+2i′l+2v′
l+2
|il+2〉|Φvl+2

〉〈i′l+2|〈Φv′
l+2
|

with bil+2vl+2i′l+2v′
l+2

=
[∑

ilil+1vl−1
· · ·

]
. The matrix

ρl+2,...,n−1 is a (2ml+2)× (2ml+2) matrix. This is now di-

agonalized to achieve the eigenvalues λ̃vl+1
= [Ṽl+1(vl+1)]

2

and the corresponding eigenvectors |Φ̃l+2,...,n−1
vl+1

〉 under the
basis {|il+2〉|Φvl+2

〉}. The values of Ṽl+1(vl+1) are immedi-
ately found. We may truncate out negligibly small eigen-
values to reduce m̃l+1 (the updated value of ml+1). In
addition, we have vector elements Cl+2(il+2, vl+1, vl+2) of
just computed eigenvectors:

|Φ̃l+2,...,n−1
vl+1

〉 = Cl+2(il+2, vl+1, vl+2)|il+2〉|Φl+3,...,n−1
vl+2

〉,

from which we can derive

Q̃l+2(il+2, vl+1, vl+2) = Cl+2(il+2, vl+1, vl+2)/Vl+2(vl+2).

Thus we have obtained

|Φ̃l+2,...,n−1
vl+1

〉 = Q̃l+2(il+2, vl+1, vl+2)|il+2〉|vl+2〉.

Third, we are going to compute the tensor

Q̃l+1(il+1, vl, vl+1). By the definition of this tensor,
we have

Q̃l+1(il+1, vl, vl+1) =
〈Φ̃0,...,l

vl
|〈il+1|〈Φ̃l+2,...,n−1

vl+1
|Ψ̃〉

Ṽl(vl)Ṽl+1(vl+1)

=
1

Ṽl(vl)Ṽl+1(vl+1)

∑

ilil+2vl−1vl+2

{(
〈Φ̃0,...,l

vl
|vl−1〉|il〉

)

×
(
〈Φ̃l+2,...,n−1

vl+1
|il+2〉|vl+2〉

)
Θ(il, il+1, il+2, vl−1, vl+2)

}
.

We substitute the equations
{
|Φ̃0,...,l

vl
〉 = Q̃l(il, vl−1, vl)|vl−1〉|il〉

|Φ̃l+2,...,n−1
vl+1

〉 = Q̃l+2(il+2, vl+1, vl+2)|il+2〉|vl+2〉

into the above equation to obtain

Q̃l+1(il+1, vl, vl+1) =
1

Ṽl(vl)Ṽl+1(vl+1)

∑

ilil+2vl−1vl+2

{

[Vl−1(vl−1)]
2Q̃l

∗
(il, vl−1, vl)Q̃l+2

∗
(il+2, vl+1, vl+2)

× [Vl+2(vl+2)]
2Θ(il, il+1, il+2, vl−1, vl+2)

}
.

In this way, we have obtained the updated tensors

Q̃l(il, vl−1, vl), Ṽl(vl), Q̃l+1(il+1, vl, vl+1),

Ṽl+1(vl+1), and Q̃l+2(il+2, vl+1, vl+2).

The described process to simulate a three-qubit gate is
implemented as the function “applyU8” in ZKCM QC. We
will see an example to use the function in the following.

Appendix A.1. Example

Here is an example program to use a three-qubit oper-
ation. It simulates the simplest case of Grover’s quantum
search [38]. One may also see the simulation performed in
Sec. 4.3 for another example.
For a brief sketch of the quantum search, suppose that

there is an oracle function f : {0, 1}n → {0, 1} that has r
solutions w (namely, strings w such that f(w) = 1). Clas-
sical search for finding a solution takes O(2n/r) queries. In
contrast, the Grover search finds a solution in O(

√
2n/r)

queries. In particular when n = 4 and r = 1, a single query
is enough for the Grover search. For example, consider the
parent data set {00, 01, 10, 11} and the solution 01 for a
certain oracle with a single oracle bit. A single Grover
iteration R maps |s〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉)|−〉o
to |01〉|−〉o, where R = UsUf with Uf = 1 − 2|01〉〈01|
and Us = 1 − 2|s〉〈s| acts on the left side qubits; |−〉o =
(|0〉o − |1〉o)/

√
2 is a state of the oracle qubit (the right-

most qubit). Uf is a unitary operation corresponding to
f and Us is a so-called inversion-about-average operation.
To implement Uf and Us, we utilize the fact that flipping
|−〉o changes the phase factor ±1, following a common im-
plementation [11].
Here, we consider a very simple oracle structure, namely

that, it flips |−〉o when the left side qubits are in |01〉 using
a very straight-forward circuit interpretation. Note that
there is no realistic benefit to perform a search in such a
case because we know the solution beforehand. Usually a
search is performed because we cannot guess the solutions
by the circuit appearance (consider, e.g, an instance of a
satisfiability problem [58]). The sample program to simu-
late the Grover search for the present simple case is shown
in Listing 3.

#include "zkcm_qc .hpp "

int main()

{

zkcm_set_default_prec (256);

mps M(3);
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// Prepare the state for the parent data set and

//the initial state of the oracle qubit.

M.applyU ( tensor2tools:: Hadamard , 0);

M.applyU ( tensor2tools:: Hadamard , 1);

M.applyU ( tensor2tools::PauliX , 2);

M.applyU ( tensor2tools:: Hadamard , 2);

// Oracle function with the solution 01.

zkcm_matrix U_f(8, 8);

U_f .set_to_identity ();

U_f (2, 2) = U_f(3, 3) = 0;

U_f (2, 3) = U_f(3, 2) = 1;

// Inversion -about -average operation

zkcm_matrix U_s(8, 8);

U_s .set_to_identity ();

U_s (0, 0) = U_s(1, 1) = 0;

U_s (0, 1) = U_s(1, 0) = 1;

zkcm_matrix H = zkcm_matrix ("[1, 1; 1, -1]")

/ sqrt(zkcm_class (2));

zkcm_matrix I = zkcm_matrix ("[1, 0; 0, 1]");

H = tensorprod ( tensorprod (H, H), I);

U_s = H * U_s * H;// This is 1-2|s><s|.

std ::cout << "Initially , Prob (01)="

<< M. RDO_block (0, 1). get (1, 1)

<< std :: endl

<< "Go into Grover ’s iteration ..."

<< std :: endl;

for (int i = 0; i < 8; i++)

{

M.applyU8 (U_f , 0, 1, 2);

M.applyU8 (U_s , 0, 1, 2);

std ::cout << "After " << i + 1

<< " times iteration , Prob (01)="

<< M.RDO_block (0, 1). get (1, 1)

<< std :: endl;

}

zkcm_quit ();

return 0;

}

Listing 3: simple q search.cpp

The program is compiled and executed in the following
way.

[user@localhost foo]$ c++ -o simple_q_search \

simple_q_search.cpp -lzkcm_qc -lzkcm -lmpfr \

-lgmp -lgmpxx

[user@localhost foo]$ ./simple_q_search

Initially, Prob(01)=2.500000000e-01

Go into Grover’s iteration...

After 1 times iteration, Prob(01)=1.000000000e+00

After 2 times iteration, Prob(01)=2.500000000e-01

After 3 times iteration, Prob(01)=2.500000000e-01

After 4 times iteration, Prob(01)=1.000000000e+00

After 5 times iteration, Prob(01)=2.500000000e-01

After 6 times iteration, Prob(01)=2.500000000e-01

After 7 times iteration, Prob(01)=1.000000000e+00

After 8 times iteration, Prob(01)=2.500000000e-01

We see that the success probability, i.e., the probability to
find 01 in the left side qubits if we measure them in the
computational basis, is unity after a singleR is applied. By
continuing the iteration, the success probability oscillates.
We have seen a sample program that uses a three-qubit

gate by calling the function “applyU8”. In addition to this

function, there are functions for typical three-qubit gates.
They are briefly mentioned below.

Appendix A.2. Typical three-qubit gates

The first typical three-qubit gate is the CCNOT
gate already introduced in Sec. 4.3, which flips a sin-
gle target qubit t under the condition that two con-
trol qubits a and b are in |11〉. ZKCM QC has
a particular member function (of class “mps”) for it:
“mps & mps::CCNOT (int a, int b, int t);”. The
second typical one is the controlled-SWAP (CSWAP)
gate, which swaps two target qubits p and q un-
der the condition that the control qubit c is in |1〉.
The member function corresponding to this gate is
“mps & mps::CSWAP (int c, int p, int q);”.
In summary of this appendix, the process to simulate a

three-qubit gate operation in a time-dependent MPS simu-
lation has been theoretically described. A sample program
to simulate a simple quantum search has been provided,
which uses one of the three-qubit gate functions of the
ZKCM QC library.
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namics in spin- 1

2
chains with adaptive time-dependent density

matrix renormalization group, Phys. Rev. E 71 (2005) 036102.
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