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Abstract

The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear
quantum many-body problem. UNEDF demonstrated that close associations among nuclear physicists, mathemati-
cians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational
developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.
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1. Introduction to UNEDF

Understanding the properties of atomic nuclei is cru-
cial for a complete nuclear theory, for element formation,
for properties of stars, and for present and future energy
and defense applications. From 2006 to 2012, the UNEDF
(Universal Nuclear Energy Density Functional) collabo-
ration carried out a comprehensive study of the nuclear
many-body problem using advanced numerical algorithms
and extensive computational resources, with a view toward
scaling to petaflop supercomputing platforms and beyond.

The UNEDF project was carried out as part of the
SciDAC (Scientific Discovery through Advanced Comput-
ing) program led by Advanced Scientific Computing Re-
search (ASCR), part of the Office of Science in the U.S.
Department of Energy (DOE). The SciDAC program was

started in 2001 as a way to couple the applied mathemat-
ics and computer science research sponsored by ASCR to
applied computational science application projects tradi-
tionally supported by other offices in DOE. UNEDF was
funded jointly by ASCR, the Nuclear Physics program of
the Office of Science, and the National Nuclear Security
Administration. Over 50 physicists, applied mathemati-
cians, and computer scientists from 9 universities and 7
national laboratories in the United States, as well as many
international collaborators, participated in UNEDF.

This review describes science outcomes in nuclear
many-body physics, with an emphasis on computational
and algorithmic developments, that have resulted from
the successful collaborations within UNEDF among math-
ematicians and computer scientists on one side and nuclear
physicists on the other. Such collaborations “across the di-
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vide” were newly formed at the early stage of the project
and became its unique feature, with high-performance
computing serving as a catalyst for new interactions.
The results described in this paper could not have been
achieved without such couplings.

1.1. UNEDF science

The long-term vision initiated with UNEDF is to ar-
rive at a comprehensive, quantitative, and unified descrip-
tion of nuclei and their reactions that is grounded in the
fundamental interactions between the constituent nucle-
ons [1, 2]. The goal is to replace phenomenological models
of nuclear structure and reactions with a well-founded mi-
croscopic theory that delivers maximum predictive power
with well-quantified uncertainties. Specifically, the mis-
sion of UNEDF was threefold:

1. Find an optimized energy density functional (EDF)
using all our knowledge of the nucleonic Hamiltonian
and basic nuclear properties.

2. Validate the functional using the relevant nuclear
data.

3. Apply the validated theory to properties of interest
that cannot be measured.

The main physics areas of UNEDF, defined at the be-
ginning of the project [1], were ab initio structure, ab ini-
tio functionals, density functional theory (DFT) applica-
tions, DFT extensions, and reactions. Few connections
between these areas existed at that time. As UNEDF ma-
tured, however, coherence grew within the effort. Indeed,
the project created and facilitated an increasing interplay
among the major areas where none had existed previously.
Each of the main physics areas now includes ongoing col-
laborations that cross over into other areas. These in-
terconnections are highlighted in the summary diagram
of the UNEDF strategy shown in Fig. 1. In addition to
physics links, numerous computer science/applied mathe-
matics (CS/AM) interconnections were established within
UNEDF as computational and mathematical tools devel-
oped in one area of UNEDF were used in other parts of the
project. These tools, motivated by nuclear needs, are now
available for other areas of science. Access to leadership-
class computing resources and large-scale compute time
allocations were critical for the scientific investigations.

At the intersection of the ab initio techniques and DFT
techniques are comparisons of observables among the var-
ious approaches, particularly through constraints on den-
sity. Such calculations have not been performed before
and require significant computational capability and an in-
creasing sophistication of data manipulation. Research on
the nuclear problem would be incomplete without a serious
effort to understand the nuclear interactions involved and
their connection to DFT. Therefore, the UNEDF project
also included elements that required less computational
capability but are integral to the project, such as the de-
velopment of nuclear forces using renormalization group

Figure 1: UNEDF project scope. Major science areas are indicated
by boxes; interconnections between areas are marked by arrows. The
green boxes indicate connections to experimental observations.

approaches. Another example is research on nuclear reac-
tion properties that requires both the use and development
of algorithms for the largest computers and more conven-
tional computing needed for algorithmic breakthroughs.

Another new aspect of the nuclear theory effort driven
by this project is a greatly enhanced degree of quality con-
trol. Integral to UNEDF was the verification of methods
and codes, the estimation of uncertainties, and other out-
put assessments. Methods used for verification and val-
idation included the crosschecking of different theoreti-
cal methods and codes, the use of multiple DFT solvers
with benchmarking, and benchmarking of different ab ini-
tio methods using the same Hamiltonian. A new way to es-
timate theory error bars was to use multiple Hamiltonians
with different energy/momentum cutoffs and then analyze
the cutoff dependence of calculated observables. The UN-
EDF assessment component necessitated the development
and application of statistical tools to deliver uncertainty
quantification and error analysis for theoretical studies as
well as to assess the significance of new experimental data.
Such technologies are essential as new theories and compu-
tational tools are applied to entirely new nuclear systems
and to conditions that are not accessible to experiment.
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1.2. Collaborative effort

The successes of the UNEDF project were built upon
certain best practices, some implemented originally and
some learned by experience, in organizing and implement-
ing the scientific effort. In order to foster the close align-
ment of the necessary applied mathematics and computer
science research with the necessary physics research, mul-
tiple direct partnerships were formed consisting of com-
puter scientists and applied mathematicians linked with
specific physicists to remove algorithmic and/or computa-
tional barriers to progress. The five-year lifetime of the
project provided time for these collaborations to become
deep, and they have continued into follow-up projects.

All these partnerships have success stories to tell, from
greatly improved load balancing on leadership-class ma-
chines, to new DFT solver technologies, to dramatically
improved algorithms for optimization of functionals, to
eigenvalues and eigenfunctions of extremely large matri-
ces, and more.

The SciDAC program aims at transformative science,
and this goal has been fulfilled by the new capabilities
stemming from UNEDF. But the outcomes reach beyond
the many compelling nuclear physics calculations. UN-
EDF has changed for the better the way that low-energy
nuclear theory is carried out, analogous to the shift in
experimental programs, moving from many small groups
working independently to large-scale collaborative efforts.

2. Science

The territory of UNEDF science is the chart of the nu-
clides in the (N,Z)-plane shown in Fig. 2. On this chart,
stable nuclei are represented by black squares, while the
yellow squares indicate unstable nuclei that have been seen
in the laboratory. The sizable green area marked “terra
incognita” is populated by unstable isotopes yet to be ex-
plored. Above the table of nuclides are shown three broad
classes of theoretical methods, which are also used in other
fields dealing with strongly interacting many-body sys-
tems, such as quantum chemistry and condensed matter
physics. Light nuclei and their reactions can be computed
by using ab initio techniques (quantum Monte Carlo, no-
core shell model) described in Sec. 2.1. Medium-mass nu-
clei can be treated by configuration interaction (CI) tech-
niques (Sec. 2.2). The bulk of the nuclides are covered by
the nuclear DFT described in Sec. 2.3, which provides the
theoretical underpinning and computational framework for
building a nuclear EDF. Time-dependent phenomena in-
volving complex nuclei, including nuclear reactions, can
be described by means of approaches going beyond static
DFT (Sec. 2.4). By enhancing and exploiting the overlaps
with ab initio and CI approaches, the goal is to construct
and validate a nuclear EDF informed by microscopic in-
teractions as well as experimental data.

Figure 2: Theoretical approaches for solving the nuclear quantum
many-body problem used by UNEDF. The lightest nuclei can be
computed by using ab initio methods based on the bare internucleon
interactions (red). Medium-mass nuclei can be treated by configu-
ration interaction techniques (green). For heavy nuclei, the density
functional theory based on the optimized energy density functional
is the tool of choice. (From [1].)

2.1. Ab initio methods and benchmarking

Ab initio methods solve few- and many-body prob-
lems by using realistic two- and three-nucleon interactions
and obtain the structure and dynamic properties of nuclei.
The nuclear interaction depends on the spatial, spin, and
isospin coordinates of the nucleons. Consequently, calcu-
lations are much more computationally demanding than
typical quantum problems. Items of interest include nu-
clear spectra, charge and magnetic ground-state and tran-
sition densities, electron and neutrino scattering, and low-
energy reactions. The main goals are to reproduce known
nuclear properties and predict properties that are difficult
or impossible to measure.

Several ab initio methods have been developed for
studying light nuclei; all have analogues in the study
of condensed matter and electronic systems. Quantum
Monte Carlo (QMC) methods, including Green’s func-
tion Monte Carlo (GFMC), use Monte Carlo evaluations
of path integrals, explicitly summing over the spin states
and isospin states of the system. The most recent GFMC
calculations have concentrated on the 12C nucleus, a fas-
cinating system with a low-lying excited 0+ state, the
Hoyle state, very near the threshold of three-alpha par-
ticles. QMC methods have also been used to calculate the
properties of neutron matter and neutrons in inhomoge-
neous potentials.

No-core shell model (NCSM) methods, including the
large-scale many-fermion dynamics nuclear (mfdn) code,
expand the interacting states in products of single-particle
states and project the low-lying states through large-scale
matrix operations. mfdn calculations have been used, for
example, to explain the long lifetime of the 14C nucleus
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used in carbon dating. A combination of no-core shell
model techniques with the resonating group method is cur-
rently used to calculate important low-energy nuclear re-
actions.

The coupled-cluster method is an ideal microscopic ap-
proach to describe nuclei with closed (sub)shells and their
neighbors. It exhibits a low computational cost (scales
polynomially with system size) while capturing the dom-
inant parts of correlations in the wave function. This
method has been employed to describe and predict the
structure and reactions of neutron-rich oxygen and cal-
cium isotopes.

2.1.1. GFMC

Green’s function Monte Carlo calculations start with
an initial trial state ΨT and obtain expectation values in
the exact eigenfunction Ψ0 of the Hamiltonian. These
calculations are done by evolution in imaginary time τ :
Ψ0 = exp[−Hτ ]ΨT for sufficiently large τ . The evolution
is done in many small steps of τ , each step being a nested
3A-dimensional integral. GFMC was introduced in light
nuclei [3, 4] to include the strong correlations induced by
the nuclear interaction. This method has been used to
calculate the spectra of light nuclei up to 12C [4, 5], as
well as form factors, electron scattering, and low-energy
reactions [6].

Calculations of 12C require the largest-scale computers
available, using a combination of efficient load-balancing
for the Monte Carlo and large-scale linear algebra for the
spin-isospin degrees of freedom. The calculations of 12C
required the development of the Asynchronous Dynamic
Load Balancing (adlb) library to efficiently perform the
load balancing on more than 100,000 cores [5].

A program, agfmc, has been developed over the past
15 years to carry out these calculations [7, 8, 9]. It is a
large (80,000 lines) Fortran code that originally used MPI
to manage parallelism. At the beginning of this project,
the agfmc code was scaling well up to around 2,000 pro-
cesses and performing satisfactorily on IBM’s Blue Gene/L
computer. At that time it was becoming apparent that if
the code were to be able to take advantage of new, petas-
cale machines expected to come on line during the five-year
project to investigate larger nuclei, a significant increase
in the degree of parallelism would need to be incorporated
into its main algorithms. The greater degree of parallelism
(from thousands to tens of thousands of processes) would
give rise to load-balancing problems that would strain the
then-used approach.

One of the goals of UNEDF was to construct a soft-
ware library, intrinsically general-purpose but with fea-
tures driven by the requirements of agfmc, to attack the
load-balancing problem. The purposes of the library were
to supply a programming interface that would enable rel-
atively straightforward migration of the existing agfmc
code to the new load-balancing library and to scale the
entire system to much larger degrees of parallelism.
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Figure 3: Weak scaling of agfmc with adlb in terms of MPI ranks.
There are 8 ranks per BG/Q node; each rank is using 6 OpenMP
threads. Note the compressed vertical scale.

The result is the adlb library [5]. adlb generalizes the
classical manager-worker parallel programming model by
allowing application processes (workers) to put arbitrary
independent work units into a shared pool and get them
out to complete them, notifying other processes when they
have done so. Work units are assigned types and priorities
by the workers and retrieved according to these proper-
ties, allowing complex algorithms to be implemented, de-
spite the simple nature of the parallel programming model.
Scalability is achieved by dedicating a small percentage
(but still potentially a large number) of the job’s pro-
cesses to maintaining this work pool and responding to
put and get requests. These “server” processes execute
independently from the application processes, thus allow-
ing asynchronous load balancing of process load, memory
consumption for the work pool, and message traffic.

This scheme has worked well. Most of the MPI pro-
gramming in the original agfmc code has been absorbed
into the adlb library, yet the overall code structure has
been maintained. Scalability has been extended to more
than 32,000 processes on BG/P and more than 260,000
processes on BG/Q (see Fig. 3), enabling scientific results
unattainable before this project was undertaken.

The 12C nucleus is particularly intriguing because it
has a low-lying 0+ excited state (the “Hoyle” state) very
near the energy of the breakup into three alpha particles.
This state is essential for the nucleosynthesis of carbon in
stars through the triple-alpha process. For 12C the ΨT

are linear combinations of shell-model and alpha-cluster
states. Figure 4 shows the convergence of the calcula-
tions of the ground and Hoyle states in the agfmc calcula-
tions. Two different sets of initial states are propagated to
τ ≈ 1.0 MeV−1; they yield consistent results. The ground-
state energy is well reproduced, and the Hoyle state ex-
citation energy is approximately reproduced (see [10, 11]
for complementary calculations of the Hoyle state). The
ground-state form factor of 12C is also reproduced by these
calculations.

Other recent applications of agfmc include pair mo-
mentum distributions [12], electromagnetic transitions
[13], and the studies of trapped neutrons (“drops”) de-
scribed in Sec. 2.3.4.
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2.1.2. NCSM and mfdn

The measured lifetime of 14C, 5730±30 years, is a valu-
able chronometer for many practical applications ranging
from archeology to physiology. It is anomalously long com-
pared with lifetimes of other light nuclei undergoing the
same decay process, allowed Gamow-Teller (GT) beta de-
cay. This lifetime poses a major challenge to theory be-
cause traditional realistic nucleon-nucleon (NN) interac-
tions alone appear insufficient to produce the effect [14].
Since the transition operator, in leading approximation,
depends on the nucleon spin and charge but not the spatial
coordinates, this decay provides a precision tool to inspect
selected features of the initial and final nuclear states. To
convincingly explain this strongly inhibited transition, we
need a microscopic description that introduces all physi-
cally relevant 14-nucleon configurations in the initial and
final states and a realistic Hamiltonian.

Since the nuclear strong interaction governs the config-
uration mixing, the Hamiltonian matrix eigenvalue prob-
lem is a very large, sparse matrix in the configuration space
of 14 nucleons. We address this computational challenge
with the mfdn code [16, 17, 18, 19]. Aided by a collabora-
tion with applied mathematicians on scalable eigensolvers
and computational resources on leadership-class machines,
we are able to solve this beta decay problem with sufficient
accuracy to resolve the puzzle: the decay is inhibited by
the role of 3-nucleon forces (3NFs) as shown in Fig. 5 (see
[20] for complementary calculations).

We obtained our results on the Jaguar supercomputer
(see Sec. 4) using up to 35,778 hex-core processors (214,668
cores) and up to 6 hours of elapsed time for each set of
low-lying eigenvalues and eigenvectors. The number of
nonvanishing matrix elements exceeded the total memory
available and required matrix element recomputation “on
the fly” for the iterative diagonalization process employing
the Lanczos algorithm.

These calculations and many other achievements [21]
were made possible by dramatic improvements to mfdn
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Figure 5: Contributions to the 14C beta decay matrix element as a
function of the harmonic oscillator shell when the nuclear structure is
described by a chiral effective field theory interaction (adopted from
[15]). The top panel displays the contributions with (two right bars
of each triplet) and without (leftmost bar of each triplet) the 3NF
at Nmax = 8. Contributions are summed within each shell to yield
a total for that shell. The bottom panel displays the running sum of
the GT contributions over the shells. Note the order-of-magnitude
suppression of the 0p-shell contributions arising from the 3NFs.

capabilities during the UNEDF project [22]. The current
scaling performance of mfdn is demonstrated in Fig. 6.
Other recent applications of mfdn include the prediction
(before experimental confirmation) of the spectroscopy of
proton-unstable 14F [23] and studies of trapped neutrons
(“drops”) with a variety of interactions and other ab initio
computational methods [24].

2.1.3. NCSM and the resonating group method

Weakly bound nuclei, or even unbound exotic nuclei,
cannot be understood by using only bound-state tech-
niques. Our ab initio many-body approach, no-core shell
model with continuum (NCSMC), focuses on a unified
description of both bound and unbound states. With
such an approach, we can simultaneously investigate struc-
ture of nuclei and their reactions. The method com-
bines square-integrable harmonic-oscillator basis (i.e., via
the NCSM [21]) accounting for the short- and medium-
range many-nucleon correlations with a continuous basis
(i.e., via the NCSM with the resonating group method
(NCSM/RGM) [25, 26]) accounting for long-range corre-
lations between clusters of nucleons. With this technique,
we can predict the ground- and excited-state energies of
light nuclei (p-shell, A≤16) as well as their electromagnetic
moments and transitions, including weak transitions. Fur-
thermore, we can investigate properties of resonances and
calculate characteristics of binary nuclear reactions (e.g.,
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cross sections, analyzing powers).
Recent applications of our ab initio techniques include

an investigation of the unbound 7He [27], calculations of
3H(d,n)4He and 3He(d,p)4He fusion [28] (see Fig. 7), and
calculation of the 7Be(p,γ)8B radiative capture [29], which
is important for the standard solar model and neutrino
physics (see Fig. 8). We also developed a three-cluster
extension of the method to describe the Borromean nuclei
(e.g., 6He and 11Li).

2.1.4. Coupled-cluster method

The coupled-cluster method [30, 31, 32, 33] exhibits a
favorable scaling that grows polynomially with the mass
number of the nucleus and the size of the model space.
The UNEDF collaboration employed an m-scheme-based
coupled-cluster code [34] and an angular-momentum cou-
pled code [35]. The latter exploits the preservation of an-
gular momentum and pushed ab initio computation with
“bare” interactions from chiral effective field theory [36] to
medium-mass nuclei [37]. Coupled-cluster theory is based
on a similarity-transformed Hamiltonian and employs a
nontrivial vacuum such as the Hartree-Fock state. In prac-
tice, one iteratively solves a large set of nonlinear coupled
equations. The exploitation of rotational invariance con-
siderably reduces the number of degrees of freedom but
comes at the cost of working in a much more complicated
scheme (involving angular momentum algebra) that poses
challenges for a scalable and load-balanced implementa-
tion.

During UNEDF, several conceptual advances in physics
and computing were made with the coupled-cluster
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Figure 7: Experimental results for S-factor of 3He(d,p)4He reaction
from beam-target measurements. The full line represents the ab ini-
tio calculation. No low-energy enhancement is present in the theoret-
ical results, contrary to the laboratory beam-target data represented
by symbols; see [28] for details.
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evaluation (dashed line); see [29] for details.

method. On the physics side, these include the angular-
momentum coupled implementation of the coupled-cluster
method [37], the use of a Gamow basis for computation
of weakly bound nuclei [38, 39], a practical solution to
the center-of-mass problem in nuclear structure compu-
tations [40], the extension of the method to nuclei with
up to two nucleons outside a closed subshell [41], the ap-
proximation of three-nucleon forces as in-medium correc-
tion to nucleon-nucleon forces [42, 43, 44], and the de-
velopment of theoretically founded extrapolations in finite
oscillator spaces [45]. On the computational side, scal-
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ing was improved by a work-balancing approach [46, 47]
based on MPI and OpenMP such that the model-space
size has increased from ten oscillator shells at the incep-
tion of UNEDF [48] to 20 oscillator shells at UNEDF’s
completion [44]. Figure 9 shows how adding the use of
MPI and OpenMP in V2.0 improved the code’s scalability
to thousands of cores, beyond a few hundred cores in V1.0
using MPI only, when calculating the small system of 40Ca
in 12 oscillator shells. We note that the number of single-
particle orbitals grows as the third power with the number
of oscillator shells and that the number of computational
cycles – in the coupled-cluster method with singles and
doubles (CCSD) approximation – grows as n2

on
4
u (where

no and nu are the numbers of occupied and unoccupied
single-particle states, respectively). Thus, conceptual and
algorithmic improvements during UNEDF allowed us to
solve problems that näıvely required an increase of com-
putational cycles by about a factor 4,000. The combined
efforts culminated in the computation of neutron-rich iso-
topes of oxygen [44] and calcium [49].

Doubly magic nuclei are the cornerstones for our under-
standing of entire regions of the nuclear chart within the
shell model. For this reason, studies on the evolution of
structure in neutron-rich semi-magic isotopes of oxygen,
calcium, nickel, and tin are central to experimental and
theoretical efforts. With 40,48Ca being doubly magic nu-
clei, many studies were aimed at understanding the struc-
ture of the rare isotopes 52,54Ca and questions regarding
the N = 32, 34 shell closures [50, 51, 52, 53, 54].

A first-principles description of rare calcium isotopes is
challenging because it requires the control and understand-
ing of continuum effects (due to the weak binding) and
3NFs (as often pivotal contributions arise at next-to-next-
to leading order in chiral effective field theory [55, 56, 57]).
Reference [49] reports coupled-cluster results for neutron-
rich isotopes of calcium that include the effects of the
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Figure 10: Excitation energies of Jπ = 2+ states in Ca isotopes. The
theoretical results (red squares) agree well with data (black circles)
and predict a soft subshell closure in 54Ca.

continuum and 3NFs (see [58] for complementary calcu-
lations). It predicts a soft subshell closure in the N = 32
nucleus 54Ca and an ordering of single-particle orbitals in
neutron-rich calciums that is at variance with näıve shell-
model expectations. Figure 10 shows the computed ener-
gies of the first excited Jπ = 2+ state in some isotopes of
calcium and compares them with available data. The high
excitation energy in 48Ca is due to its double magicity,
and the somewhat increased excitation energies in 52,54Ca
suggest that these nuclei exhibit a softer subshell closure.
Where data are available, the theoretical results agree well
with experiment. For 54Ca, theory made a prediction that
has recently been verified experimentally [59].

2.2. Configuration interaction

The nuclear shell model has been very effective in
describing the physics of larger nuclei beyond the cur-
rent reach of pure ab initio methods; indeed, Eugene
Wigner, Maria Goeppert-Mayer, and J. Hans D. Jensen
were awarded the 1963 Noble prize for the fundamental
symmetries and mean field features that underlie the suc-
cessful nuclear shell model. The shell model for larger
nuclei uses the same configuration interaction methods as
the NCSM methods described previously, but with more
truncated model spaces where not all nucleons are “active”
and with effective interactions tailored for these spaces.

Since there are numerous challenging physical appli-
cations in nuclear physics that vary across the periodic
table, different CI approaches are needed to efficiently ex-
ploit the available computational resources. CI approaches
developed or improved within UNEDF include the follow-
ing:

• No-core shell model in the m-scheme basis (mfdn
[16, 18, 19]; bigstick [60, 61, 62]).
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• No-core shell model in a coupled angular momentum
basis (mfdnj [63, 64]).

• Shell model with a core in a coupled angular momen-
tum basis (nushellx [65, 62]).

UNEDF took advantage of common elements in the vari-
ous CI approaches to improve the effectiveness of the nu-
clear shell model for all nuclei.

These CI codes utilize an input NN interaction file and
a Coulomb interaction between the protons. They all work
in the neutron-proton basis (i.e., break isospin) and allow
for charge-dependent NN interactions. In addition, several
of these codes accept 3NFs as input. All these codes eval-
uate the spectra, wavefunctions, and a suite of observables
for low-lying states of the nucleus.

The implemented algorithms differ considerably among
the codes as well as support systems for processing the
output files generated, such as the wavefunctions and one-
body density matrices, both static and transition. Nu-
merous cross-comparisons between the codes have been
accomplished and their respective accuracies confirmed.
Eigenenergies are obtained to the accuracy of 1 keV or
better. Other observables are found to differ at the level
of a few percent because of numerical noise in the wave-
functions.

Except for mfdnj (which followed mfdn), the codes
evolved along independent paths, which emphasized vari-
ous strategic physics and technological goals. For example,
the challenges of addressing heavier nuclei impel work-
ing with a nuclear core; the challenges of working with
leadership-class machines versus local clusters drive some
of the algorithmic decisions. The burden of communica-
tions and memory restrictions help resolve the challenge
of store-in-memory versus recompute-on-the-fly strategies
that are implemented differently in these CI codes.

In light of the need to store large amounts of data for
retrieval, postanalyses, and reproducibility, we have devel-
oped a prototype database management system. This pro-
totype records in the database the metadata of every run.
The data referenced in the database may include physical
observables, one-body density matrices, and wavefunctions
that result from the ab initio codes; such data are typi-
cally stored on the platforms where runs are performed.
A user can access this database over the web and find out
whether the runs of interest have already been performed
and where the results may be located.

2.3. Nuclear density functional theory

Because of the enormous configuration spaces involved,
the properties of complex heavy nuclei are best described
by the superfluid nuclear density functional theory [66]
– rooted in the self-consistent Hartree-Fock-Bogoliubov
(HFB), or Bogoliubov-de Gennes, problem. The main in-
gredient of nuclear DFT is the effective interaction be-
tween nucleons captured by the energy density functional.
Since the nuclear many-body problem involves two kinds of

fermions, protons and neutrons, the EDF depends on two
kinds of densities and currents [67, 68]: isoscalar (neutron-
plus-proton) and isovector (neutron-minus-proton). The
coupling constants of the nuclear EDF are usually ad-
justed to selected experimental data and pseudodata ob-
tained from ab initio calculations. The self-consistent HFB
equations allow one to compute the nuclear ground state
and a set of quasiparticles that are elementary degrees
of freedom of the system and that can be used to con-
struct better approximations of the excited states. The
HFB equations constitute a system of coupled integro-
differential equations that can be written in a matrix form
as a self-consistent eigenvalue problem, where the depen-
dence of the HFB Hamiltonian matrix on the eigenvectors
(quasiparticle wavefunctions) induces nonlinearities.

The atomic nucleus is also an open system having
unbound states at energies above the particle emission
threshold, and this has implications for the nuclear DFT.
The finiteness of the HFB potential experienced by a nu-
cleon implies that the energy spectrum of HFB quasipar-
ticles contains discrete bound states, resonances, and non-
resonant continuum states [69]. The size of the continuum
space may become intractable, especially for complex ge-
ometries where self-consistent symmetries are broken. To
this end, one has to develop methods [70] to treat HFB res-
onances and nonresonant quasiparticle continuum without
resorting to the explicit computation of all states.

The application of high-performance computing, mod-
ern optimization techniques, and statistical methods has
revolutionized nuclear DFT during recent years, in terms
of both developing new functionals and carrying out ad-
vanced applications. Optimizing the performance of a sin-
gle HFB run is crucial for making the EDF optimization
[71, 72] manageable and quickly computing tables of nu-
clear observables [73, 74, 75, 76], in order to assess theo-
retical uncertainties. These advances are described in the
following sections.

2.3.1. DFT solvers

Solutions of HFB equations can be obtained either by
direct numerical integration on a mesh, provided proper
boundary conditions are imposed on the domain, or by
expansion on a basis. For the latter case, the harmonic
oscillator (HO) basis proves particularly well-adapted to
nuclear structure problems, as it offers analytical, local-
ized solutions with convenient symmetry and separability
features. Although solving the HFB equations for a given
nuclear configuration is relatively fast on modern comput-
ers, accurate characterization of nuclear properties often
requires simultaneous computations of many different con-
figurations, from a few dozen (e.g., one-quasiparticle con-
figurations in odd mass nuclei) to a few billion or more in
extreme applications (such as probing multidimensional
potential energy surfaces of heavy nuclei during the fission
process).

The two primary DFT solvers based on HO expansion
used by the collaboration are hfbtho [77] and hfodd
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[78]; see [79] and [80], respectively, for their latest re-
leases. Both codes solve the HFB equations for generalized
Skyrme functionals in a deformed HO basis and have been
carefully benchmarked against one another up to the 1 eV
level. hfbtho assumes axial and time-reversal symmetry
of the solutions, making it a very fast program (execu-
tion completes in typically less than 1 minute on a sin-
gle node). It is particularly suited for EDF optimization
(see Sec. 2.3.3) or large-scale surveys of nuclear properties
[74, 75]. The solver hfodd is fully symmetry-unrestricted:
this versatility is necessary for science applications such as
the computation of fission pathways [81] or description of
high-spin states [82].

The new versions of each solver benefited significantly
from recent advances in high-performance computing and
from collaborations with computer scientists in UNEDF.
By expanding the use of tuned blas and lapack libraries,
significant performance gains were reported for both codes
and enabled new, large-scale studies [83]. The speed of
hfbtho was further improved by a factor of 2 by incor-
porating multithreading; hfodd was turned into a hybrid
MPI/OpenMP program: nuclear configurations are dis-
tributed across nodes, while on-node parallelism is imple-
mented via OpenMP acceleration.

Figure 11 illustrates two algorithmic improvements to
the DFT solver hfodd. The implementation of the Broy-
den method for nonlinear iterative problems [85] has re-
duced substantially the number of iterations needed to
converge the solution in practical applications. The sec-
ond example shows the application of the augmented La-
grangian method (ALM) to fission in 252Fm [84]. This
method is generally used for constrained optimization
problems; it allows precise calculations of multidimen-
sional energy surfaces in the space of collective coor-
dinates. Indeed, while the standard quadratic penalty
method often fails to produce a solution at the required
values of constrained variables on a rectangular grid, the
ALM performs well in all cases. Both improvements dis-
played in Fig. 11 are key to producing realistic large-scale
surveys of fission properties in heavy nuclei on leadership-
class computers, where walltime is limited and expensive.

Another HFB solver developed by UNEDF is hfb-
ax. It is based on the B-splines representation of co-
ordinate space and preserves axial symmetry and space
inversion [86]. The solver has been carefully bench-
marked with hfbtho and used in several applications
involving complex geometries, such as fission [87] and
competition between normal superfluidity and Larkin-
Ovchinnikov (LOFF) phases of polarized Fermi gases in
extremely elongated traps [88]. Hybrid parallel program-
ming (MPI+OpenMP) has been implemented in hfb-ax
to treat large box sizes that are important for weakly
bound heavy nuclei.

New generations of DFT solvers will be taking advan-
tage of emerging architectures, such as GPUs, and new
programming paradigms. In particular, the cost of per-
forming dense linear algebra in both hfbtho and hfodd

Figure 11: Algorithmic improvements to hfodd. Top: Convergence
for a typical HFB calculation in the ground state of 166Dy with
hfodd version 2.49t [80]. Using the Broyden method to iterate the
nonlinear HFB equations has provided significant acceleration com-
pared with traditional linear mixing techniques. Bottom: Compari-
son between the augmented Lagrangian method (black squares) and
the standard quadratic penalty method (open squares) for the con-
strained HFB calculations of the total energy surface of 252Fm in a
two-dimensional plane of elongation, Q20, and reflection-asymmetry,
Q30. (From [84].)

can become prohibitive as the size of the HO basis in-
creases, especially for more realistic energy functionals in-
volving some form of nonlocality; this necessitates novel
techniques to handle many-body matrix elements [89].
The massive amount of data generated by large-scale DFT
simulations will also require significant investments in vi-
sualization and data-mining techniques.

2.3.2. Multiresolution 3D DFT framework

A parallel, adaptive, pseudospectral-based solver,
madness-hfb, has been developed to tackle the fully
symmetry-unrestricted HFB problem for both real and
complex wavefunctions in large and asymmetric boxes.
The main mathematical and algorithmic advantage of
madness-hfb is its multiscale-multiresolution and sparse
approximation of functions and the application of oper-
ators in coordinate space with guaranteed accuracy but
finite precision. madness-hfb prefers to work with func-
tions and operators with pseudo-spectral approximations
based on a multiwavelet basis (up to order 30). Since
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Figure 12: Quasiparticle wavefunction for a DFT simulation (left,
top) and its six levels of multiresolution structure (left, bottom).
The refinement structure is especially noticeable at levels 5 and 6.
Right: The parallel speedup of one iteration of madness-hfb, for
solving the DFT problem for 1,640 3D quasiparticle wavefunctions
with over 4.4 billion equations and unknowns; this simulation was
performed within a box with a spatial dimension of 120 fermis, using
8 multiwavelets, up to level 8+ of refinement, and with a relative
precision of 10−6.

the multiwavelets consist of smooth, singular, and discon-
tinuous functions with spatial locality (compact support),
they are well suited for localized approximation of weak
singularities and discontinuities or regions of high curva-
ture [90, 91, 92]. Gibbs effects are also reduced. The
object-oriented (OO) nature of the software and template-
based programming allow each wavefunction and each in-
tegral or differential operator to have its own boundary
condition and its own sparse pseudospectral expansion.
The usual boundary conditions (e.g., Dirichlet, Neumann,
Robin, quasi-periodic, free, and asymptotic conditions) are
supported. Fast applications of Green’s function for the
direct solution of Poisson’s equation and the Yukawa scat-
tering kernel are available [93, 94, 95]. In the multiwavelet
representation, these approximate Green’s functions and
their applications are again based on sparse data with
guaranteed precision, in contrast to dense tensors based
on the use of some other basis sets. Other Green’s func-
tions can also be constructed.

If desired, the user can specify solvers and routines
from other dense and sparse linear algebra packages such
as lapack or scalapack. For example, parallel and vec-
torized adaptive quadrature permit the construction of
the Hamiltonian matrix in the usual manner by using
the `2 norm. The Hamiltonian can be diagonalized by
using multithreaded lapack (or a parallel eigensolver),
and the eigenvectors can be converted back to coefficients

for the multiwavelet representation. Other capabilities,
such as high-order approximation of propagators and time-
stepping required for the solution of time-dependent DFT,
are also available from applications in time-dependent
molecular DFT, as well as from simulation of attosecond
dynamics [96, 97].

Underlying this mathematical capability is a parallel
runtime system that permits the software to scale to hun-
dreds of thousands of processors and runs on platforms
from laptops to leadership-class computers. The ability
to use laptops and workstations is particularly attractive
for model and code development and testing. In addi-
tion, the embedding of a parser permits the OO-based
C++ templated codes representing operations on the co-
efficients of each wavefunction to be executed as parallel
tasks. This parser permits out-of-order, distributed mul-
tithread executions with task- and data-dependency anal-
ysis. This reduces the stalling of execution units due to
data dependencies. A user-configured and executed paral-
lel load-balancing method is also available, as is a parallel
checkpoint and restart method.

The 3D madness-hfb has been benchmarked with the
spline-based 2D solver hfb-ax [86], 3D hfodd [80], and
the 1D code hfbrad [98] for a variety of problems. Be-
cause madness-hfb has no limit on the size of the com-
putational domain, we were able to capture quasiparticle
wavefunctions with long tails or nonsymmetric potentials
with steep curvatures and cut-offs to overcome some of the
limitations of the other solvers. The adaptive structure is
illustrated in Fig. 12.

The current madness-hfb approach to the HFB prob-
lem is as follows [99]. Let the coefficients of the wavefunc-
tions in the tensor product multiwavelet representation be
the unknowns. The user provides an initial relative pre-
cision, a set of initial wavefunctions (e.g., in terms of the
HO basis, splines, etc.), and boundary conditions to start
the iterative procedure. All the functions, potentials, op-
erators, and expansion lengths are adaptively represented
as needed by the user-defined precision. A generalized ma-
trix eigenvalue problem is formed by adaptive quadrature.
The solution eigenvectors are converted to a sparse mul-
tiwavelet representation for updating the lengths of the
expansion and the coefficients in the potentials, gradients,
and other terms before the next iteration and diagonaliza-
tion. The speed and performance depend on the number
of coefficients. Usually, the simulations begin with a low
relative precision, to capture the low-order terms quickly,
before adaptively increasing the order of approximation
and the precision for more accurate results.

2.3.3. EDF optimization

One of the focus areas of UNEDF was the development
of an optimization protocol for determining the coupling
constants of nuclear EDFs. In particular, the collabora-
tion paid special attention to estimating the errors associ-
ated with such a procedure and exploring the correlations
among the coupling constants. The UNEDF optimization
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protocol was established by focusing on the Skyrme energy
density. We recall that, in this framework, the energy of
an even-even nucleus in its ground state is a functional of
the one-body density matrix and the pairing tensor. The
Skyrme energy density reads

χt(r) = Cρρt ρ2
t + Cρτt ρtτt + CJ

2

t J2
t

+Cρ∆ρt ρt∆ρt + Cρ∇Jt ρt∇ · Jt, (1)

where the isospin index t labels isoscalar (t=0) and isovec-
tor (t=1) densities, ρt is the one-body density matrix, and
τt and Jt are derived from ρt [67]. In the pairing chan-
nel, we took a density-dependent pairing energy density
with mixed surface and volume nature, characterized by

the two pairing strengths V
(n)
0 and V

(p)
0 for neutrons and

protons, respectively. The set of coupling constants Cuu
′

t ,

V
(n)
0 , and V

(p)
0 are the parameters x to be determined.

The development of fast DFT solvers (see Sec. 2.3.1),
together with the availability of leadership-class comput-
ers, permitted us for the first time to set up an opti-
mization protocol at a fully deformed HFB level. Our
first parametrization, unedf0, was obtained by consider-
ing only three types of experimental data: nuclear binding
energies of both spherical and deformed nuclei, nuclear
charge radii, and odd-even mass differences in selected nu-
clei [71]. After recognizing that deformation properties
needed to be better constrained [100], a fourth data type,
corresponding to excitation energies of fission isomers in
the actinides, was added. The resulting parametrization,
unedf1, gave a significantly better description of fission
properties [72], see Fig. 13 (bottom). With the oncoming
unedf2 parametrization, we will expand the optimization
data set with single-particle level splittings. The new data
are expected to better constrain the tensor coupling con-
stants and improve single-particle properties.

Formally, we solve the optimization problem

min
x

{
χ2(x) =

nd∑
i=1

(
si(x)− di

wi

)2

: x ∈ Ω ⊆ Rnx

}
, (2)

where d ∈ Rnd represents the experimental data, w > 0
represent weights, and the parameters x to be determined
are possibly restricted to lie in a domain Ω. This prob-
lem is made difficult because some of the derivatives with
respect to the parameters x, ∇xsi(x), may be unavailable
for some of the theory simulation observables si.

Traditional approaches for solving (2) in the absence
of derivatives typically either estimate these derivatives
by finite differencing or treat χ2 as a black-box function of
x. The former approach can be sensitive to the choice of
the difference parameter, and care must be taken that the
expense of the differencing does not grow unnecessarily as
the number of parameters nx grows. The latter neglects
the structure (in the form of the nd residuals) inherent to
(2).

In UNEDF, we instead employed a new optimization
solver, pounders, that exploits the structure in nonlinear
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Figure 13: Top: Performance of the pounders algorithm on the min-
imization of the χ2 of Eq. (2) as compared with the standard Nelder-
Mead method. Bottom: Fission pathway for 240Pu along the mass
quadrupole moment Q20 calculated with SkM, unedf0, and unedf1
EDFs. The experimental energy of fission isomer (EII) and the inner
(EA) and outer (EB) barrier heights are indicated [72].

least-squares problems and avoids directly forming compu-
tationally expensive derivative approximations. pounders
follows a model-based Newton-like approach, where the
first- and second-order information is inferred by itera-
tively forming local interpolation models for each resid-
ual. Figure 13 (top) shows the efficiency of the solver:
not only does it converge faster than the standard Nelder-
Mead algorithm, but it also gives a more accurate solution.
pounders is available in the open-source Toolkit for Ad-
vanced Optimization (TAO [101]).

2.3.4. Neutron droplets and DFT

The properties of homogeneous and inhomogeneous
neutron matter play a key role in many astrophysical sce-
narios and in the determination of the symmetry energy
[102, 103, 104]. The equation of state of homogeneous neu-
tron matter has been studied in many earlier investigations
(see, e.g., [105]). Since neutron matter is not self-bound,
inhomogeneous neutron matter has been theoretically in-
vestigated by confining neutrons in external potentials.
Although neutron drops cannot be realized in experimen-
tal facilities, they provide a model to study neutron-rich
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Figure 14: Calculated total energies for neutron droplets in ~ω =
5 MeV and 10 MeV harmonic potentials as a function of the neutron
number N . The figure shows AFDMC, GFMC, SLy4, and adjusted
SLy4 results of [109] together with the unedf0 and unedf1 results.

isotopes [106, 107, 108] and can bridge ab initio methods
and DFT. The external potential confining neutrons has
been chosen to change the geometry and density of the
system. A Woods-Saxon form produces saturation, mak-
ing neutron drops similar to ordinary nuclei. Instead, a
harmonic potential permits one to better control the cal-
culation of larger systems and to test the approach to the
thermodynamic limit.

Nuclear EDFs are commonly optimized to reproduce
properties of nuclei close to stability, with close numbers
of protons and neutrons. The use of such functionals to
study neutron-rich nuclei or the neutron star crust requires
large extrapolations in neutron excess. In [109], neutron
droplets were studied by using QMC methods starting
from a realistic nuclear Hamiltonian that includes the Ar-
gonne AV8’ two-body interaction supported by the Ur-
bana IX three-body force. This Hamiltonian fits nucleon-
nucleon phase shifts, gives a satisfactory description of
light nuclei, and produces an equation of state of neu-
tron matter that is compatible with recent neutron star
observations [110]. The neutron drop’s energy calculated
by using QMC methods was compared with DFT calcu-
lations. The QMC results showed that commonly used
Skyrme EDFs typically overbind neutron drops and that
this effect is due mainly to the neutron density gradient
term. The adjustment of the gradient together with the
pairing and spin-orbit terms improves the agreement be-
tween ab initio QMC calculations with Skyrme both for
the energy and for neutron densities and radii [109].

These results can be compared with the predictions of
unedf0 and unedf1 EDFs. Figure 14 shows the calcu-
lated total energies for neutron droplets in ~ω = 5 MeV
and 10 MeV harmonic potentials. The auxiliary field dif-
fusion Monte Carlo (AFDMC) and GFMC QMC results
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Figure 15: Top: Deformation energy curves for 100Zr calculated
using microscopic EDFs derived from chiral EFT interactions at dif-
ferent orders [111]. Bottom: Comparison of microscopic EDF calcu-
lations of neutron drops at increasing levels of approximation with
full NCFC calculations starting from the same Hamiltonian [112].

of [109], calculated with the AV8’+UIX interactions, agree
well with the DFT calculations [72]. These are encourag-
ing, since neither unedf0 nor unedf1 was optimized to
the pure neutron matter data. Future EDF optimization
schemes will use ab initio results on neutron droplets as
pseudodata to improve EDF properties in very neutron-
rich nuclei.

2.3.5. Ab initio functionals

In parallel with efforts to improve the optimization
of nuclear EDFs with conventional Skyrme-type terms,
UNEDF members sought to construct ab initio func-
tionals based on microscopic chiral effective field theory
(EFT) [113]. A pathway to such functionals was opened
with the development of new renormalization group meth-
ods, which led to softer nuclear Hamiltonians, including
three-body forces [114]. These soft interactions dramat-
ically improve convergence properties in many-body cal-
culations [115], extending the reach of ab initio methods
to heavier systems [116, 117, 118]. At the same time,
they make feasible the construction of a microscopically
based EDF using many-body perturbation theory [119]
together with improved density matrix expansion (DME)
techniques [120, 121, 122]. Carrying out this long-term
program by individual researchers would be a formidable
task, but progress was made possible within UNEDF by
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teaming up with two of the physics–CS/AM partnerships
described earlier.

An intermediate step toward a fully ab initio EDF was
a new hybrid functional that incorporated long-range chi-
ral EFT interactions to describe pion-range physics and a
set of Skyrme-like contact interactions with coupling con-
stants to be fit. The resulting functional has a much richer
set of density dependencies than do conventional Skyrme
functionals. These were incorporated in the DFT solvers,
and new preoptimization procedures were developed by
the DFT functional group [111]. A proof-of-principle test
in the top panel of Fig. 15 shows deformation energies
in 100Zr calculated using the DME functional at differ-
ent orders in the chiral expansion (LO, NLO, N2LO). The
deviations from the Skyrme result show nontrivial effects
from the finite-range nature of the underlying NN and 3N
interactions [111]. On-going work includes a rigorous op-
timization with the procedure outlined in Sec. 2.3.3 and
then detailed evaluations of the predictive power of the
DME functional.

In order to directly validate the new DME procedures
used in [111], it was necessary to benchmark against ex-
act results. The first-ever such calculations were made
possible by teaming up with the NCSM–mfdn effort (see
Sec. 2.1.2) using neutron droplets as a controlled the-
oretical test environment as in Sec. 2.3.4. The DME
functional was constructed and evaluated for the same
(model) Hamiltonian used to generate exact results from
mfdn [112] for different numbers of neutrons and varied
traps. Figure 15 (bottom) shows the agreement between
no-core full configuration (NCFC) results and microscopic
EDF calculations at different levels of approximation [112],
which validates the optimal strategy used to construct
a microscopically based EDF (the points labeled “fit”),
while establishing theoretical error bars. Further impor-
tant DME developments made by external collaborators
in the FIDIPRO project [123, 124] will be tested in future
investigations.

2.4. Beyond DFT

Static DFT provides excellent tools for investigating
nuclear binding energies and other ground-state proper-
ties. In certain cases, it also can be used to treat dy-
namical processes. The path to scission during fission, for
example, sometimes can be predicted accurately by static
DFT. A reliable description of excitation/decay and reac-
tions, however, usually requires methods that go beyond
static DFT. Since an ab initio treatment of the nuclear
time-evolution is difficult, we employ extensions of DFT
and related ideas. The simplest extension, the quasiparti-
cle random phase approximation (QRPA), can be viewed
as an adiabatic approximation to the linear response in
time-dependent DFT. It provides the entire spectrum of
excitations with the same EDF used in static DFT. The
adiabatic approximation is, of course, severe (as are the
approximations in the density functional itself) but can
be applied in any nucleus and folded with reaction theory.

DFT-based QRPA and its applications to nuclear excita-
tion and reactions are discussed in Sec. 2.4.1.

DFT-based methods that go beyond the adiabatic ap-
proximation are also now in use. One can exploit the
relatively simple dynamics of Fermi gas systems to con-
struct an approximate time-dependent extension of DFT,
the time-dependent superfluid local density approxima-
tion (TDSLDA). The approximation and related compu-
tational techniques can be applied to such classic problems
as photoabsorption but also to other time-dependent pro-
cesses that go beyond linear response. The TDSLDA and
its applications are discussed in Sec. 2.4.2.

We also need efficient methods to accurately compute
average properties of excited states, such as spin- and
parity-dependent level densities, which suffice to treat re-
actions that proceed primarily through a compound nu-
cleus. Obtaining these densities through a direct diago-
nalization of the nuclear Hamiltonian and a subsequent
level counting is not efficient, but several techniques based
on statistical spectroscopy can be used instead. However,
even statistical spectroscopy poses computational chal-
lenges that demand high-performance computational tech-
niques and resources. Some advances in computational
spectroscopy, leading to the first accurate calculation of
densities of levels with unnatural parity, are described in
Sec. 2.4.3.

2.4.1. QRPA and reactions

Members of the UNEDF collaboration developed and
exploited both an extremely accurate spherical Skyrme
QRPA code [125] and an equally accurate, though com-
putationally much more intensive, deformed (axially sym-
metric) Skyrme QRPA code [126]. The latter, which can
treat both spherical and deformed nuclei, is at the fore-
front of the modern QRPA. Other groups have developed
their own versions of the deformed Skyrme, Gogny, or rel-
ativistic QRPA [127, 128, 129, 130, 131]; most of these
have some disadvantages compared with ours (e.g., a lack
of full self-consistency, oscillator bases that don’t capture
continuum physics, etc.) but also the occasional advan-
tage (e.g., full continuum wavefunctions rather than the
approximate representation of the continuum we describe
below).

Both our spherical and deformed codes diagonalize
the traditional QRPA A-B matrix [132], constructed from
single-quasiparticle states in the canonical basis [132] in a
large box (typically 20 fm in each coordinate), so that con-
tinuum states are taken into account in discretized form.
Both codes work with arbitrary Skyrme density function-
als plus delta pairing, include all rearrangement terms, and
break neither parity nor time-reversal symmetries. Both
output transition amplitudes to the entire spectrum of ex-
cited states.

The two codes have some differences as well. The
spherical code gets its single-quasiparticle wavefunctions,
represented on an equidistant mesh, from an HFB program
called hfbmario, which derives from the code hfbrad
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[69]. The deformed code takes its wavefunctions from the
Vanderbilt HFB program [133], which uses B-splines to
represent wave functions. Each QRPA code represents
those wavefunctions in the same manner as the HFB pro-
grams it relies on.

Both QRPA codes have been tested in many ways, in-
cluding against one another. With the spherical code, we
calculated energy-weighted sums in Ca, Ni, and Sn iso-
topes from the proton drip line through the neutron drip
line for Jπ = 0+, 1−, and 2+ multipoles with Skyrme
parameter sets SkM∗ and SLy4 and found excellent agree-
ment with analytical values [125]. Spurious states in the
Jπ = 0+, 1+, and 1− channels are well separated from
physical states in both codes, though the spherical one
performs a bit better because it can include all combina-
tions of HFB two-quasiparticle states in the QRPA basis
without making the calculation intractable.

The collaboration used the spherical QRPA to study
systematics of 2+ states across the table of isotopes and
for microscopic calculations of reaction rates; they used
the deformed version for a more limited study of 2+ states
and giant resonances in rare-earth nuclei [134].

The collaboration also used transition densities from
the spherical QRPA to calculate nucleon-nucleus scatter-
ing. The transition amplitudes produced by our spherical
matrix QRPA, when combined with single-particle wave
functions, yield radial transition densities. These can in
turn be folded with the interaction between the projectile
and the nuclear constituents (i.e., the nucleon-nucleon in-
teraction) to produce transition potentials that excite tar-
get states. References [135, 136, 137] report the develop-
ment of a code to fold the densities for all QRPA states be-
low 30 MeV with a Gaussian-shaped nucleon-nucleon po-
tential. The result is a microscopic coupled-channels cal-
culation that successfully produces angular distributions
and inelastic cross sections for nucleon-induced reactions—
quantities that can be compared directly with scattering
data—at scattering energies between 10 and 70 MeV. To
satisfactorily describe observed absorption, we had to ex-
plicitly couple also to all one-nucleon pickup channels lead-
ing to intermediate deuteron formation. Figure 16 illus-
trates the effect of such couplings on nucleon-induced ab-
sorption cross sections. The direct connection between the
calculated cross sections and the nuclear structure ingre-
dients makes this kind of reaction calculation a good test
of the structure model.

The collaboration also took significant steps to develop
a much more efficient implementation of the QRPA. The
finite amplitude method [140, 141] allows one to effectively
take the derivatives of mean fields that enter the QRPA
equations numerically, through relatively straightforward
modifications to the mean-field codes themselves. A simple
iterative procedure then solves the equations. Our initial
application, to monopole resonances in the deformed nu-
cleus 240Pu [142], consumes a small fraction of the time our
matrix QRPA implementation would use (see [143, 144] for
complementary work based on iterative Arnoldi diagonal-
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Figure 16: Reaction cross section as a function of incident energy
for p + 90Zr. The results are shown for couplings to the inelas-
tic states (dash-dotted line) and to the inelastic and transfer chan-
nels with nonorthogonality corrections (solid line). The Koning-
Delaroche [138] optical model calculations are also shown (dashed
line). (Data from [139].)

ization).

2.4.2. Time-dependent DFT for superfluid systems

The application of DFT to nuclear physics requires two
nontrivial elements: the ability to describe both superflu-
idity and time-dependent phenomena. In order to avoid
the nonlocal character of the DFT extension to super-
fluid systems, the superfluid local density approximation
(SLDA) and its time-dependent extension TDSLDA have
been developed [145, 146, 147, 148, 149, 150, 151, 152, 153,
154].

SLDA and TDSLDA have been applied to a large num-
ber of fermionic systems and phenomena: vortex structure
in neutron matter and cold atomic systems, generation and
dynamics of quantized vortices and their crossing and re-
connection, excitation of the Anderson-Higgs modes, the
LOFF phase, quantum shock waves and excitation of do-
main walls, one- and two-nucleon separation energies, gi-
ant dipole resonance in superfluid triaxial nuclei, and com-
plex collisions. In Fig. 17, we illustrate the case of a head-
on collision of two superfluid fermion clouds, which was
studied experimentally. Both SLDA and TDSLDA are de-
rived by using appropriately determined EDFs with QMC
input for homogeneous systems and validating the predic-
tions on independent QMC calculations of inhomogeneous
systems in the well-studied case of a unitary Fermi gas;
see [147, 148, 150] for details. The form of the EDF for
a unitary Fermi gas is largely determined by dimensional
arguments; translational, rotational symmetry, and parity;
gauge and Galilean covariance (which specifies the depen-
dence on current densities); and renormalizability of the
TDSLDA formalism.

For nuclear systems we lack ab initio results of the same
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Figure 17: Three consecutive frames of the head-on collision of two
fermion clouds of ≈750 particles in which quantum shock waves and
domain walls/solitons (topological excitations) are formed [152]. The
x- and y-directions have an aspect ratio of ≈30.

quality and rely on a more phenomenological approach,
but with significant microscopic input. The nuclear EDFs
should satisfy the usual symmetries [68] and the consis-
tency with the best available ab initio results.

The numerical implementation of the SLDA and TD-
SLDA equations leads to hundreds of thousands of cou-
pled nonlinear 3D time-dependent PDEs, which are solved
by using the discrete variable representation approach
[155, 156] on desktops [147, 148, 149, 150] and—as a re-
sult of UNEDF collaborations with computer scientists—
leadership-class supercomputers [150, 151, 152, 153, 154].
In Fig. 18 we illustrate the first calculation of the photoex-
citation of a triaxial superfluid nucleus performed within
TDSLDA (188Os) and two other axially deformed nuclei,
as well as a comparison with the absolute experimental
data (without any fitting parameters). The determination
of the ground-state properties of these nuclei and their
subsequent time-evolution required full diagonalizations of
Hermitian matrices of sizes up to 5 · 105× 5 · 105 and solu-
tions of 5 · 105 coupled time-dependent 3D PDEs. Further
studies of excitation of medium- and heavy-mass nuclei
with γ-rays, neutrons, relativistic heavy ions, and induced
nuclear fission are the next steps.

2.4.3. Level densities

The properties of the excited states of nuclei are key to
reliably describing reactions and decays. One important
type of reaction mechanism is the compound nuclear reac-
tion, which can be described with the statistical model
of Hauser and Feshbach [157]. The important ingredi-
ent entering the Hauser-Feshbach theory is the spin- and
parity-dependent nuclear level density (NLD). Experimen-
tal information about NLD is limited for stable nuclei and
not available for radioactive nuclides of interest for nu-
clear astrophysics. Therefore, a large effort is underway to
accurately calculate NLD, and an interacting shell model
approach would be the best model taking into account the
relevant many body correlations beyond DFT. A direct
approach by direct CI diagonalization and level counting
is not feasible because of the exponential increase in CI
dimensions. We recently proposed [158] an approach to
calculate shell model spin- and parity-dependent NLD us-
ing methods of statistical spectroscopy. In addition, we
showed [159] how one can improve this approach to cal-
culate the unnatural parity NLD by removing the con-
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Figure 18: Photoabsorption cross section (solid black line) calcu-
lated within TDSLDA using two Skyrme force parameterizations for
three deformed open-shell nuclei and the experimental (γ, n) cross
sections (solid purple circles with error bars); see [153] for details.
With dashed (green), dotted (red), and dot-dashed (blue) lines, we
display the contribution to the cross section arising from exciting the
corresponding nucleus along various symmetry axes.

tribution due to the spurious center-of-mass excitations.
The associated algorithms were implemented in a high-
performance computer code, jmoments, [160, 161, 162],
which runs on massively parallel computers and scales well
up to 10,000 processors [160, 162].

Figure 19 shows positive- and negative-parity NLD for
26Al calculated with jmoments compared with the avail-
able experimental data obtained by level counting. Some
known levels have no clear assignment of the parity, which
leads to upper and lower limits. The calculated positive-
parity NLD is not new, an sd-shell calculation being avail-
able for some time. However, the negative-parity NLD was
calculated only recently by our approach [161].

3. Uncertainty Quantification

Uncertainty quantification is a key element for assess-
ing the predictive power of a model. When working with
effective theories with degrees of freedom relevant to the
problem, the parameters of the theoretical model often
need to be adjusted to the empirical input. To quantify the
model uncertainties, sensitivity analysis yields the stan-
dard deviations and correlations of the model parameters,
usually encoded as a covariance matrix [165, 166, 167, 168].

The calculation of the covariance matrix requires com-
puting derivatives of the observables with respect to the
model parameters. When a closed-form expression for the
derivatives is not available, we estimate the derivatives nu-
merically using finite differences. To account for the nu-
merical uncertainty associated with the underlying DFT-
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based calculations, we compute the “noise level” of each
observable following the approach in [169]. The difference
parameters used for estimating the Jacobian matrix asso-
ciated with (2) are then obtained using these noise levels
[170].

Uncertainty quantification was one of the key topics of
the EDF optimization work performed in the UNEDF col-
laboration [71, 72]. The upper panel of Fig. 20 shows the
unedf1 correlation matrix, obtained from the sensitivity
analysis. As can be seen, some of the surface parame-
ters of the unedf1 EDF are strongly correlated. In [76]
we used this information to assess the robustness of the
current EDFs in the predictions of the nuclear landscape
limits. This is illustrated in the lower panel of Fig. 20,
which shows calculated and experimental two-neutron sep-
aration energies for the isotopic chain of even-even zir-
conium isotopes. The differences between model predic-
tions are small in the region where data exist and grow
steadily when extrapolating toward the two-neutron drip
line (S2n = 0). Nevertheless, the consistency between the
models was found to be surprisingly good. This study re-
quired massive parallel calculations of the nuclear mass
tables [75].

4. High-Performance Computing Resources

UNEDF science has benefited from access to some of
the largest computers in the world, provided primarily by
DOE’s Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program [171]. In par-
ticular, the largest computations of UNEDF were carried
out on the “Jaguar” machine at Oak Ridge National Lab-
oratory and the “Intrepid” machine at Argonne National
Laboratory. Jaguar has gone through several processor
upgrades during the project, taking it from 30,976 cores
(Cray XT4 in 2008) to 298,592 cores (Cray XK6 in 2012);
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Figure 20: Top: unedf1 correlation matrix. Presented are the ab-
solute values of the correlation coefficients between the parameters
characterizing the energy density (1). Bottom: Theoretical extrapo-
lations toward drip lines for the two-neutron separation energies S2n

for the isotopic chain of even-even Zr isotopes using different EDFs
(sly4, sv-min, unedf0, unedf1) [76] and frdm [163] and hfb-21
[164] mass models. Detailed predictions around S2n = 0 are illus-
trated in the inset. The bars on the sv-min results indicate statistical
errors due to uncertainty in the coupling constants of the functional.

Intrepid is an IBM Blue Gene/P with 163,840 processing
cores.

Figure 21 shows the UNEDF utilization of these
computing resources over the years 2008-2013 provided
through INCITE. The figure highlights the increasing de-
mand for computing time in low-energy nuclear physics
research. The combined 2008 INCITE utilization across
Jaguar and Intrepid was nearly 20 million core-hours and
by 2012 had increased fourfold. This growth illustrates
the increasing application of high-performance computing
in nuclear theory enabled by the physics/computer sci-
ence/applied mathematics collaborations fostered by UN-
EDF.

For the 2013 calendar year, members of the SciDAC-3
NUCLEI project [172] were granted the sixth largest allo-
cation of the 61 INCITE projects awarded, with a total al-
location of 155 million core-hours across three leadership-
class computing resources, Titan, Mira, and Intrepid. Ti-
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Figure 21: UNEDF allocation and utilization (in millions of core-
hours) of leadership-class computing resources from 2008 to 2013.

tan is a Cray XK7, a hybrid CPU-GPU system with
299,008 CPU cores and 261,632 GPU streaming multipro-
cessors, and Mira is an IBM Blue Gene/Q with 786,432
processing cores. The substantial changes to comput-
ing systems at both Argonne and Oak Ridge, indicative
of future trends in high-performance computing, create
new computational challenges but also new possibilities
to achieve larger and more accurate calculations. Through
the close collaborations enabled through UNEDF, and now
NUCLEI, members are working to continuously scale codes
to increase physics capabilities and improve performance
for efficient utilization of these leadership-class resources.

5. Conclusions

The examples presented here illustrate the multifaceted
outcomes of the UNEDF project, both in terms of land-
mark calculations of nuclear structure and reactions and in
terms of how nuclear theory is done. The project was very
productive, as can be assessed by going to the project’s
website, http://unedf.org, which documents the con-
crete deliverables of UNEDF: publications, highlights, re-
ports, conference presentations, and computer codes. UN-
EDF also placed great importance on recruiting the next
generation of scientists. Annually it provided training to
30 young researchers. The UNEDF experience has been
a springboard for advancement, with many UNEDF post-
docs obtaining permanent positions at U.S. universities,
national laboratories, and overseas institutions.

By fostering broad new collaborative efforts between
physicists, mathematicians, and computer scientists, the
SciDAC-2 UNEDF project showed how to tackle scientific,
algorithmic, and computational challenges in the era of
extreme-scale scientific computing. This effort continues
with the SciDAC-3 NUCLEI project [172], which builds
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Figure 22: Physics and computing in NUCLEI. The major areas of
research are marked, together with connections between them and
theoretical and computational tools. For more details, see [172].

on the successful strategies of UNEDF. Figure 22 shows
the key elements of NUCLEI.
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054311.
[166] J. Toivanen, J. Dobaczewski, M. Kortelainen, K. Mizuyama,

Phys. Rev. C 78 (2008) 034306.
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