
ar
X

iv
:1

30
6.

17
37

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 7

 J
un

 2
01

3

A flexible algorithm for calculating pair interactions on SIMD architectures

Szilárd Páll pszilard@kth.se, Berk Hess hess@kth.se

Theoretical and Computational Biophysics, Department of Theoretical Physics and Swedish e-Science Research Center, KTH

Royal Institute of Technology, 10691 Stockholm, Sweden

Science for Life Laboratory, Stockholm and Uppsala, 17121 Stockholm, Sweden

Abstract

Calculating interactions or correlations between pairs of particles is typically the most time-consuming task
in particle simulation or correlation analysis. Straightforward implementations using a double loop over
particle pairs have traditionally worked well, especially since compilers usually do a good job of unrolling
the inner loop. In order to reach high performance on modern CPU and accelerator architectures, single-
instruction multiple-data (SIMD) parallelization has become essential. Avoiding memory bottlenecks is
also increasingly important and requires reducing the ratio of memory to arithmetic operations. Moreover,
when pairs only interact within a certain cut-off distance, good SIMD utilization can only be achieved by
reordering input and output data, which quickly becomes a limiting factor. Here we present an algorithm
for SIMD parallelization based on grouping a fixed number of particles, e.g. 2, 4, or 8, into spatial clusters.
Calculating all interactions between particles in a pair of such clusters improves data reuse compared to the
traditional scheme and results in a more efficient SIMD parallelization. Adjusting the cluster size allows
the algorithm to map to SIMD units of various widths. This flexibility not only enables fast and efficient
implementation on current CPUs and accelerator architectures like GPUs or Intel MIC, but it also makes the
algorithm future-proof. We present the algorithm with an application to molecular dynamics simulations,
where we can also make use of the effective buffering the method introduces.

NOTICE: this is the authors version of a work that was accepted for publication in Computer Physics
Communications. Changes resulting from the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for publication.

Keywords

Pair interactions, SIMD, GPU, Molecular Dy-
namics, Verlet list

1. Introduction

In most particle simulations, more than half of
the computational time is spent in calculating pair
interactions with limited spatial range. When long-
range interactions are present, such as electrostat-
ics, the long-range part is usually calculated on a

mesh. Certain types of analysis, such as determin-
ing particle pair correlation functions, also involve
evaluating pair interactions with limited range.

Many codes that compute these kind of interac-
tions employ CPU algorithms consisting of a sim-
ple double loop to iterate through a list of particle
pairs. This näıve approach has a quadratic com-
putational complexity which makes it prohibitively
expensive already for moderate numbers of parti-
cles. However, by exploiting the limited interaction
range imposed by the typically spherical cut-off, the
computational cost can be reduced to linear. This

Preprint submitted to Elsevier June 10, 2013

http://arxiv.org/abs/1306.1737v1

is achieved by reducing the number of neighboring
particles that need to be considered. To do so the
Verlet list [1] and the linked cell [2] algorithms as
well as the combination of the two are widely used.
In particular, in molecular dynamics (MD) simula-
tion codes [3, 4, 5, 6, 7] these algorithms are most
commonly employed. Although these algorithms
suffer from limitations on modern SIMD architec-
tures [8, 9], there have been only a few attempts
to overcome them, most of them specific to GPUs
[10, 11] without achieving generality.
Before the advent of CPU SIMD units, the per-

formance of the simple double loop over the neigh-
bor list was quite good as the compiler can usu-
ally unroll the inner loop. Because the speed of
the main memory has not kept up with the pro-
cessor speed, caching became more important. In
calculating pair interactions this means that the lo-
cation of particles in memory should correlate with
their spatial location to increase cache hits. Several
publications have dealt with this issue [12, 13, 6].
However, as the width of the SIMD units increases,
reordering or shuffling the input and output data
for convenient access in the SIMD units becomes
a severe bottleneck. When calculating pair inter-
actions between all particle pairs in the system, a
perfectly linear memory access pattern can be used
that avoids shuffling. However, when a cut-off is
used, a significant part of the particle neighbor list
will
not be ordered sequentially. The relative cost of

shuffling depends on the cost of calculating a single
pair interaction and on the SIMD width. In molecu-
lar dynamics simulations particles usually interact
via a Lennard-Jones (LJ) and a Coulomb poten-
tial. When the popular particle-mesh Ewald (PME)
electrostatics method [14] is used, a complemen-
tary error function must be calculated. Pennycook
et al. [9] provide a detailed analysis of the shuf-
fling (also called gather-scatter) and their impact
on performance with only LJ interactions consid-
ered. In their work, with 8-way SIMD reordering
instructions represent a third of the total, with 16-
way SIMD the ratio is more than a half. In practice,
the performance is affected even more. Since shuf-
fling introduces more data dependencies between
instructions, reducing the instructions available for
scheduling will result in low instructions per cycle
(IPC). We will show that even when calculating LJ
and PME interactions, the shuffling ends up taking
more than half of the time with 4-way SIMD.
On GPUs, shuffling data is typically not required

as the execution model allows hardware threads to
access data from different memory locations. How-
ever, loading particle data requires scattered mem-
ory access which will waste GPU memory band-
width as well as cycles (due to instruction replay)
and will render a standard implementation memory
bound. Moreover, the throughput-oriented GPU
architecture requires high level of parallelism and
is sensitive to memory access patterns. In or-
der to target GPUs, some codes combine the tra-
ditional algorithms with data regularization tech-
niques [15, 10], but such approaches can still lead
to inefficient execution. Recasting the algorithms to
a more regular data access has been shown to result
in higher IPC on GPUs, but not without additional
trade-offs [16]. Although on CPUs the relative
memory bandwidth is higher, the data dependen-
cies can still cause bottlenecks in SIMD-optimized
algorithms.
The main issues faced when considering data

parallelization in traditional particle-pair based
neighbor-lists schemes are the irregular sizes and
non-contiguous nature of the neighbor lists of each
particle. We propose to address both of these is-
sues by considering pair-interactions between clus-
ters of particles of fixed size, similar to the work
of Friedrichs et al. [11]. However, important
distinguishing features of our algorithm are high
parallel work-efficiency and the inherent flexibil-
ity which enables tuning for the SIMD width and
other specifics of the hardware. By changing the
size of the clusters, our algorithm can be adapted
to SIMD units of different widths. Adjusting the
cluster size also allows tuning the number of opera-
tions “in flight” as well as the ratio of arithmetic to
memory operations. This flexibility, together with
the high ratio of arithmetic to load/store opera-
tions, ensures that the algorithm can reach high
performance on current, as well as future CPU and
GPU hardware. It is also well suited to more exotic
hardware such as FPGAs, but as the implementa-
tion is still ongoing, result will be reported in the
future. In case of CPUs, the additional major ad-
vantage is that, by matching the cluster size to the
SIMD width, no shuffle operations are required at
all. This not only improves performance by at least
a factor of 2, but also makes the code much easier
to write and read. There is a price to pay for the
improvements as the cluster pairs will contain par-
ticle pairs in addition to the ones in the original in-
teraction sphere. This results in extra interactions
calculated between particles otherwise not within

2

range, which we know will evaluate to zero. As we
will show later, although this does lead to reduction
in algorithmic work-efficiency, the performance gain
still outweighs the extra cost.
We would like to note that the algorithm operates

on the lowest level of the interaction calculation and
any optimization available in the literature can be
applied. For MD, we use it together with a Verlet
buffer. Furthermore, all parallelization strategies
developed for traditional algorithms can be used
with little or no modification.
We have designed and implemented non-bonded

pair interaction kernels for x86 SSE2, SSE4.1, AVX
and AVX+FMA (AMD Bulldozer) SIMD archi-
tectures, as well as NVIDIA GPUs. The ker-
nels utilize LJ interactions and monopole-monopole
electrostatic interactions of general form. We
implemented analytical electrostatics kernels for
reaction-field (RF) and PME, as well as tabulated
electrostatic potentials. We plan to support sphero-
symmetric potential of arbitrary shape through tab-
ulated interactions. While the required additional
table lookups per pair will lower the efficiency of
the kernels on current CPUs, on GPUs and with
AVX2 (which will support table lookups) perfor-
mance should be good.
The algorithms described here have been im-

plemented in the GROMACS molecular simula-
tion package [6, 17] and are available in the of-
ficial version 4.6 release, combined with hybrid
MPI+OpenMP parallelization. The source code
can be obtained under the LGPLv2 license from
http://www.gromacs.org. Note that the CPU
kernels in GROMACS 4.6 have an additional op-
timization, not discussed in this paper, for systems
where less than half of the particles have LJ interac-
tions. For water this improves kernel performance
by up to 10%.

2. The algorithm

We are looking for an algorithm that can execute
single instructions on multiple data (SIMD), while
not being limited by loading and storing data from
and to (cache-)memory. The standard implemen-
tation of the Verlet-list algorithm loads a particle
and calculates pair interactions by looping over its
neighbors. Thus a single pair interaction is calcu-
lated for each particle load and store. The relatively
cheap interactions in MD simulations render this al-
gorithm effectively memory bound. To remedy this,
our algorithm loads a cluster of M particles and

calculate M interactions for each neighbor loaded.
This increases the data reuse by a factor of M . The
loop over neighboring particles is replaced by a loop
over clusters consisting of N particles. The values
of M and N will be tuned for the SIMD hardware.
The standard implementation of the Verlet-list al-
gorithm can be seen as a special case of this cluster
algorithm where M=1 and N=1.

2.1. Limitations of the standard implementation

In general, the easiest way to achieve SIMD par-
allelization is to let the compiler vectorize loops,
possibly with the help of the programmer aided by
feedback from the compiler. At a first glance this
might seem to be a good strategy since a particle
usually has hundreds of neighbors which leads to
long vectorizable loops. For efficient loading, the
order of particles in memory needs to be strongly
correlated with spatial ordering to increase cache
hits. Ideally, sequential particles would be loaded
in groups of size equal to the SIMD width, but this
not compatible with a spherical interaction volume.
Even when particles can be loaded in groups, vec-
torizing the inner-loop will only give a small speed-
up on wider SIMD units, as memory operations
and data shuffling can take more time than the ac-
tual calculation. For LJ only with fixed parame-
ters on AVX 8-way SIMD, memory and shuffling
operations account for 32 of the 70 operations [9];
with parameter loading, the ratio increases beyond
50%. When calculating all interactions of neigh-
bors with one particle, we need to load 3 coor-
dinate components, 3 parameters, as well as load
and store 3 force components for each neighbor.
In theory, on current CPUs this should not lead
to a memory-bound algorithm, but in practice per-
formance will be far from peak due to limitations
on the instruction scheduling. The coordinates are
loaded per particle as triplets of x, y, z requiring
data-shuffling. The wider the CPU SIMD unit is,
the more data shuffling is required and the longer
the dependency chain gets between loading data,
computation and storing forces. Hence, for efficient
SIMD calculations it is very advantageous to use
packed sequences of coordinates, e.g xxxx, yyyy
and zzzz with 4-way SIMD. On GPUs, such pack-
ing is not needed as vector types are supported,
but a much higher arithmetic to memory operation
ratio is required to achieve peak performance. Con-
structing the neighbor list, also called pair list, is
a similar operation, but with less arithmetic, which
makes it even more memory intensive. Although

3

http://www.gromacs.org

the pair list is usually not reconstructed every step,
it involves looping over more pairs than the non-
bonded kernel processes, so this can become a lim-
iting factor. The only way to hide the latency of
memory operations1 is to perform more calculation
per load/store operation. At first sight this might
seem impossible, but this can actually be achieved
with a simple scheme.

2.2. The M ×N algorithm

The basic idea behind our work is to spatially
cluster particles in groups of fixed size and use such
a cluster as the computational unit of our algo-
rithm. These groups can then be mapped directly
to the SIMD hardware units, which have a fixed
width. Given a 4-way SIMD unit, we can spatially
cluster particles in groups of 4.
We can load a cluster of 4, so called, i-particles

in SIMD registers and then loop over the neigh-
boring clusters of 4, so called, j-particles (see Fig.
1). With this M × N = 4×4 setup, we compute
16 pair interactions while only performing memory
load and store operations for 4 j-particles. After
having looped over all neighboring j-clusters of an
i-cluster, usually a few hundred, we also have to do
memory operations for the i-particles, but the cost
of this is negligible. In this example the memory
bandwidth is reduced by a factor of 4, but more
importantly, as we always access particles in clus-
ter of size 4, we can organize all data packed in
groups of 4. This eliminates the need for data shuf-
fling which is the main performance bottleneck of
the standard way of calculating non-bonded inter-
actions on SIMD units. This is the simplest version
of the algorithm. The same 4×4 clusters can also
be processed on 8-way SIMD hardware. Then two
i-clusters are loaded in one SIMD register and each
j-cluster is duplicated in one SIMD register. This
setup halves the number of arithmetic operations
and adds a few shuffle operations. In CUDA, mem-
ory access is more flexible. Hardware threads on
NVIDIA GPUs are organized in “warps”. On cur-
rent GPUs, each warp consists of 32 threads which

1 The technique of overlapping multiple operations (typi-
cally arithmetic with memory) in order to avoid the memory
latency bottleneck is called latency “hiding.” The amount of
latency hiding possible depends on specifics of the architec-
ture like register set size, cache size and behavior, instruction
scheduling, as well as compiler optimizations; the mix and
order of instructions used are the only factors which the pro-
grammer can directly influence without writing raw assembly
code.

1x1 setup on 4−way SIMD

4x4 setup on 4−way SIMD

2 3 4 5 6 7 8 9

4x4 setup on SIMT−160 2 3 7 8 9 10 151 4 5 11121314 16

64 7 9 10111315

111 1

17

1716

6

0 1 5 6 9 10111213 15732 8 144 16

4 5 76 12131415

000 0

1111

22 2 2

33 3 3

17

1716

0 1 10

Figure 1: Illustration of the 1×1 and the 4×4 setups with
4-way SIMD and 16-way SIMT. All numbers are particle in-
dices, each black dot represents an interaction calculation
and the arrows indicate the computational flow. The SIMD
registers for i- and j-particles are shown in green and blue,
respectively. The 4×4 setup calculates 4 times as many in-
teractions per particle load/store and requires fewer memory
operations (shown in red). Unlike the 1×1 setup, the 4×4
setup does not require data shuffling in registers.

execute the same instruction every cycle. This re-
sults in a SIMD-like execution model called sin-
gle instruction multiple threads (SIMT). Unlike the
SIMD model which requires explicit programming
for the SIMD width, the SIMT architecture allows
thread-level parallel programming, and the warp-
based lockstep execution model needs to be con-
sidered only for performance. This enables more
flexible memory operations (different addresses in
different threads) and divergence among threads in
a warp. The SIMT model allows spreading out all
particle pairs in an 8×4 cluster pair over the 32
threads of a warp, thus processing one particle pair
on each thread. We illustrate this in Fig. 1, for the
sake of example using 16-way SIMT.

We will now describe in detail how the algorithm
works, starting with building the cluster pair list.

2.3. Pair list construction

The algorithmic unit of particle data representa-
tion is a cluster rather than a single particle. Be-
side this minor, but important difference, the over-
all algorithm closely follows the standard Verlet or
neighbor list setup. Hence, in the following, un-
less explicitly stated, pair list will refer to a list of
cluster pairs. Note that the cluster pair list this
work uses as data representation does not define

4

a strict particle-particle in-range relationship be-
cause, as we will show later, the list by design in-
cludes particles not in-range. Moreover, the pre-
sented algorithms use Newton’s third law to calcu-
late pair interactions, hence the pair list contains
each pair only once, not twice. Since for each par-
ticle there is no explicit list of all particles in its
neighborhood, we prefer the term “pair list” to the
term “neighbor list”.
We construct a pair list using a Verlet buffer (also

called “skin”) which is essentially an extension of
the cut-off distance to account for particle move-
ment allowing the list to be retained for a number
of steps [1]. The exact number depends on the rela-
tive cost of the list construction and the dependence
of the buffer size on the lifetime of the list. Pair in-
teractions are then determined for the fixed list of
particle pairs defined by pairs of clusters. In the
most general case, we need to generate a pair list of
clusters of size M particles versus clusters of size N .
In the simplest setup, the SIMD width will be equal
to N , but a width of pN , where M is divisible by
p, will also work. On a GPU the best performance
will be achieved when matchingM×N to the width
of the SIMT execution model, i.e. 32 for CUDA.
First we need to group the particles into clusters

of fixed size. To minimize the number of additional
particle pairs in the pair list, the clusters need to be
as compact as possible. A simple and efficient way
of generating compact, fixed-size clusters is spatial
gridding in two dimensions and spatial binning in
the third dimension, see Fig. 2. First we construct
a rectangular grid along x and y with a grid spacing
of (max(M,N)/ρ)1/3, where ρ is the particle den-
sity. Then we sort the particles into columns of this
grid. For each column we sort the particles on z-
coordinate and as a result we get the spatial clusters
as consecutive groups of M or N particles. Because
the number of particles in a column is typically not
a multiple ofM , we add dummy particles to the last
cluster when needed. The fraction of dummy parti-

cles is 1/2 (max (M,N))
1/3

/#particles; with 10000
particles and clusters of size 8 this gives 4% dummy
particles in the CPU algorithm. For the GPU we
use a hierarchical cluster setup. As we can store 8
i-clusters in shared memory2, we group 2×2×2=8
clusters of size 8 together. This reduces the num-
ber of dummy particles to 1% with 10000 particles.
All these operations can be done efficiently in linear

2Shared memory on NVIDIA GPUs is a fast on-chip
memory, essentially a programmable L1 cache.

time. The next step is calculating bounding boxes
for each cluster, this can be done using SIMD in-
structions, as the number of particles in a cluster
is constant. In the case of M 6= N , adjacent pairs
of bounding boxes are combined to generate clus-
ters of double the number of particles. A pair list
can then be constructed by checking distances be-
tween the bounding boxes. This is very efficient,
as it requires one bounding box-pair distance check
for M × N particle pairs. However, this results
in more cluster or particle pairs than strictly nec-
essary, as bounding boxes might be within range
while none of the particle pairs falls within range.
To avoid this overhead we prune pairs of clusters at
distances close to the cut-off using a particle-pair
distance criterion. For the GPU implementation,
the pair list construction is performed on the CPU,
but the pruning is done on the GPU where this can
be done more efficiently. Periodic boundary condi-
tions can be implemented in a simple and efficient
fashion by moving the i-clusters by the required
periodic image shifts and storing these shifts in the
cluster pair list for use during the pair interaction
calculation.
At this point we would like to note that the clus-

ter pair list, being simply a Verlet list of particle
clusters, can be seen as a generalized version of the
classical neighbor list. Consequently, the neighbor
list corresponds to the special case of cluster size
M = N = 1 and in the following we will refer to it
as the 1×1 scheme.
The cluster-based pair list contains inherently

more particle pairs than the ones within the cut-
off radius, the number of pairs for different M ×N
is shown on Fig. 4. The fraction of extra inter-
actions increases rapidly with the cluster size and
decreases rapidly with the cut-off radius. However,
the increase in the efficiency of the presented algo-
rithm should outweigh the cost of calculating these
extra interactions. As can be seen in Fig. 4, when
it comes to the number of extra pairs, lists with
M 6= N are less favorable than N = M which re-
sults in clusters with close to cubic shape. This
shape minimizes the number intersecting cut-off
spheres, resulting in a more compact list.

2.4. Exclusion treatment

Having constructed the pair list, for each cluster
we now have the lists of all clusters in range. We
still need to take care of particle pairs that need
to be excluded. There are three types of exclu-
sions. Two of those occur within cluster self-pairs.

5

/* BB = cluster bounding box */

for each i-cluster ci

determine grid range in x within rlist of BB[ci]

for each grid cell gx in range

determine grid range in y within rlist of BB[ci]

for each grid cell gy in range

determine j-clusters at gx,gy within rlist of BB[ci]

for each j-cluster cj in range

if (BBdistance(ci,cj) < rlist)

if (BBdistance(ci,cj) < rBB or

atomdistance(ci,cj) < rlist)

put cj in cjlist[ci]

set forcefield exclusion masks in cjlist[ci]

Figure 3: Pseudocode for the cluster-pair search algorithm. We avoid the expensive, up to M × N cost, atom-pair distance
calculation when the bounding box distance is shorter then rBB.

r
list

cluster pair−search

x/y gridding, z binning

y

z

y

z

y

z

Figure 2: Illustration of the cluster pair-search algorithm for
clusters of 4 particles. The bottom figure shows the j-cluster
list in green for the red i-cluster.

0 0.5 1 1.5 2
r (nm)

0

1

2

3

#p
ai

rs
 /

(4
/3

πr
3 ρ

/ 2
)

1x1

2x2

4x8

4x2

4x4

Figure 4: Number of pairs in different M × N pair lists
normalized by the average number of pairs in a sphere of
radius r, as a function of the pair list radius r, for a 3-site
water model, number density ρ=100 nm−3.

6

Here particle pairs occur twice, whereas we should
only calculate them once and there are self inter-
actions. We want to calculate each pair interaction
only once and skip the self interactions. These two
types of exclusions are handled in the pair interac-
tion kernel. Additionally, there can be exclusions
defined by the force field. Normal LJ and electro-
static interactions should not be calculated for such
excluded pairs of particles, whereas the RF or PME
correction should still be applied. To treat these ex-
clusions in the non-bonded kernels, we encode them
in a bitmask stored per cluster pair in the pair list.
This compact representation saves memory and also
allows for easy and fast decoding of exclusions using
bitwise operations. On CPUs we sort the pair list
according to the presence of exclusions so we only
need to mask exclusions when really needed. This
improves performance by 15%.

2.5. Computational cost

The total computational cost of the pair list con-
struction is proportional to the number of particles.
To understand how the total cost scales with differ-
ent parameters, it is worth looking into the details
of the different tasks involved. Computational cost
in terms of cycles as a function of pairs per par-
ticle is shown in Fig. 5. For the implementation
of the sorting, after the gridding, we assume that
the particle distribution is homogeneous on longer
length scales, but other suitable sorting techniques
can be applied in the inhomogeneous case. Then a
simple pigeonhole sorting is used, which scales lin-
early and provides good performance. The cost of
the pair search is not proportional to the number of
pairs, as only the boundary of the interaction sphere
needs to be determined. This cost is high when
the number of pairs is small compared to M and
N and it is proportional to the radius squared for
large radius. When the radius is large, the cost of
search decreases proportionally with M ×N . This
makes the search far more efficient than a particle-
pair based search. Another implication of the much
lower number of (now cluster-) pairs, is that ad-
vanced search algorithms, such as interaction sort-
ing [18, 19], will not help and a simple search algo-
rithm performs well. Finally, the cost of interaction
calculation is proportional to the total number of
pair interactions calculated. But the overhead of
pairs beyond the cut-off distance decreases with in-
creasing number of pairs. The cost of the search and
LJ+PME force calculation on CPUs are similar, as
can been seen in Fig. 5; RF kernels are about twice

0 200 400 600 800
#pairs / #particles

0

2

4

6

8

10

10
00

 c
yc

le
s

/ #
pa

rt
ic

le
s

search 4x4
force 4x4
search 4x8
force 4x8
search 8x8
BB search 8x8

grid+sort+reorder

Figure 5: Computational cost in CPU cycles as a function of
the number of pairs per particle for the search and LJ+PME
force calculation for different M×N , for 8×8 the search cost
is also shown for checking bounding box distances only. The
pair count is within the spherical volume, not including the
extra pairs due to the irregular cluster-pair volume. Note
that the wiggles on the curves for searching are caused by
jumps in the number of grid cells fitting in a cut-off sphere.
All timings were done on an Intel Sandy Bridge CPU with
single precision 256-bit AVX kernels using a single thread.

as fast, which makes the search relatively more ex-
pensive. The optimal balance between search cost
and extra cost due to the Verlet buffer is usually
achieved with a pair list update interval of 10 and
20 when only using a CPU. On the GPU, the in-
teraction throughput is much higher which makes
the CPU search relatively more expensive. As men-
tioned, before, we do most of the cluster-pair prun-
ing on the GPU, which reduces the CPU search cost
significantly, as can been seen in Fig. 5. Depending
on the speed of the CPU versus the GPU, and espe-
cially the number of cores in each, the optimal pair
list update interval is between 10 and 50. Further-
more, as the search algorithm maps well to GPUs
[7], we plan to port it in the near future.

When the pair list needs to be updated for every
interaction calculation, the particle-pair distance
based pruning should be skipped and replaced by
a conditional in the interaction kernels. With very
cheap interactions, such as for a pair correlation
function calculation, no conditional should be used
at all.

7

for each ci cluster

load M coords+params for ci

for each cj cluster

load N coords+params for cj

/* These loops are unrolled using SIMD */

for j=0 to M

for i=0 to N

calculate interaction ci*M+i with cj*N+j

store N cj-forces

store M ci-forces

Figure 6: Pseudocode for the cluster-pair interaction kernel
on CPUs.

3. Pair interaction kernels

As in molecular simulations usually more than
half of the computational time is spent in the calcu-
lating non-bonded pair interactions, it is well worth
carefully optimizing these kernels. We now have a
list of cluster pairs of M versus N particles. As can
be seen in Fig. 6, writing a SIMD kernel for this
setup is rather straightforward. However, achieving
optimal performance is not trivial. It is often very
hard to judge how close the kernel performance is
to the maximum achievable performance, as it de-
pends both on hardware characteristics, mainly the
type of SIMD unit and the performance of the cache
system and load/store units, as well as on software
characteristics, mainly the compiler(s) used.

3.1. Kernel implementation

For CPUs we chose to write the kernels in C with
extensive use of SSE and AVX SIMD-intrinsics3 as
the current GNU and Intel compilers do a good job
at optimizing such code and typically achieve bet-
ter performance across multiple architectures than
equivalent hand-written assembly. For GPUs we
chose to concentrate on the NVIDIA CUDA pro-
gramming model as the available development tools
are more mature and provide higher performance
than that of the alternatives. There are two main
factors that affect kernel performance and require

3Intrinsic functions, also called compiler intrinsics or
builtins, are handled by the compiler in a special man-
ner, usually by replacing their call at compile time with a
sequence of instructions. SIMD intrinsics map to one or
more assembly instructions with additional optimization ap-
plied that integrate the inserted code. Hence, with modern
compilers, SIMD intrinsics achieve better performance than
equivalent inline assembly.

special attention. One is the choice ofM andN , the
other is the treatment of the exclusion and cut-off
checks. For the latter the options are using con-
ditionals, which should be avoided on CPUs, or
masking interactions using bitmasks. Masking is
usually more efficient than conditionals. On CPUs
SIMD bitwise AND operations are used for mask-
ing, whereas on GPUs we simply multiply by 0
or 1 and use a conditional for the cut-off check.
Using a conditional can reduce the number of in-
structions issued when all pairs stored in a SIMD
register are beyond the cut-off distance. On the
CPU this should only be used when all M × N
pairs are beyond the cut-off, as otherwise the force
reduction cost increases. This only improves the
performance when an overly long pair list buffer is
used, so we only use a conditional for the 1×1 ker-
nels where it helps in most cases. With the lat-
est CPU compilers, not much code optimization
is required, as long as the fastest possible intrin-
sic is used for the respective instruction set, e.g.
SSE2, SSE4.1 or AVX. In CUDA optimization is
less straightforward; as the architecture is chang-
ing rapidly, compilers and drivers are less mature.
Additionally, GPUs are massively parallel proces-
sors with more simple cores than CPUs, which puts
more burden on the programmer and compiler to
pick the right optimization which might not even
carry across hardware generations.
The main goal is to keep the computational units

as busy as possible by avoiding stalls due to depen-
dencies on memory operations or instruction laten-
cies. The ratio of compute to memory operations
scales with M , as for each loaded j-particle, M in-
teractions with M i-particles are calculated in a
single inner-loop iteration. On the CPU it turns
out that the best performance is achieved for M=4.
While using 2 i-particles is also possible, with 4
there seem to be enough arithmetic instructions fed
to the scheduler to hide most memory operations.
Using M > 4 will lead to a marginally higher IPC
and flop rate, at the expense of calculating many
more zeros. The choice of N depends on the the
SIMD width. Here, for CPUs, we only consider
value of N equal to the full or half SIMD width.
Fitting two j-clusters in a SIMD-width will simply
halve the number of arithmetic operations and add
a few shuffle operations. The instruction count is
largely independent ofN . The only exception is the
table lookup for tabulated electrostatics, the num-
ber of which scales with both M and N . The preci-
sion, either single or double, also doesn’t affect the

8

instruction count, except for the inverse square root
operation, which needs an extra Newton-Raphson
iteration in double precision. An issue specific to
CPU SIMD kernels is that LJ pair parameter look-
up is costly, as one SIMD load operation is required
for each particle pair. With geometric or Lorentz-
Berthelot combination rules only two loads are re-
quired per cluster pair, latency of which can be hid-
den with computation.
The CUDA kernels turn out to be instruction la-

tency limited, not memory limited, although this
requires some tricks and a tight packing of the pair
list in memory. The pseudocode of the kernel is
shown in Fig. 7. The inner loop calculates interac-
tions between clusters of M=8 and N=4, this way
32 threads of a warp calculate a pair interaction of
an entire cluster pair simultaneously. We chose N
smaller than M such that we have more computa-
tion per memory operation. We group cluster pairs
two by two in the pair list, hence the pair search
can be done on clusters of 8 particles and the com-
putation on two 8×4 clusters independently on two
warps. Additionally, we store clusters in range for
8 i-clusters in a single pair list with this further im-
proving the data reuse. A j-cluster interacts with
half of these 8 i-clusters on average, which addition-
ally reduces the memory pressure by a factor of 4.
As the pseudocode on Fig. 7 shows, non-interacting
j-clusters are skipped based on an bitmask-encoded
cluster interaction mask, which only causes a mi-
nor overhead. This hierarchical grouping requires
minor modifications in the pair-search code, only
storing the packed exclusions masks becomes more
complex. With this setup we can load the coor-
dinates, atom types, and charges for 64 i-particles
in registers on the GPU and thereby maximize the
number of calculations per j-particle load. Two
warps in a CUDA thread block operate on a group
of 8 i-clusters and their j-cluster neighbors. As the
two warps by definition access different j-particles,
they can run independently and no synchroniza-
tion is required during computing. On the Fermi
architecture partial forces are accumulated in reg-
isters and reduced in shared memory. In contrast,
the Kepler architecture provides a special “warp-
shuffle” operation which can be used for efficient
synchronization-free warp-level reduction. After a
lot of testing and optimization, the CUDA ker-
nels turned out to be compact and more readable
than the CPU SIMD kernels. More code is re-
quired for managing GPU device initialization, ker-
nel launches and transfers between CPU and GPU.

3.2. Pair interaction functions

Calculating energies is only required infrequently
in molecular dynamics, therefore we will concen-
trate on force-only kernels. The Lennard-Jones
force is:

Fij(rij) = eij

(

12C12

ij

‖rij‖13
−

6C6

ij

‖rij‖7

)

rij

‖rij‖
(1)

where eij is 0 for excluded particle pairs and 1
otherwise. The LJ coefficients C12

ij and C6

ij can
be different for each atom pair i-j. In practice
there is a limited number of atom types and often
combination rules are used to obtain the parame-
ters between two atom types. With x86 SIMD in-
structions loading arbitrary pair parameters can be
costly due to the many load and shuffle operations
required. Using combination rules, either geometric
or Lorentz-Berthelot, is more efficient.
The electrostatic interaction form we consider is:

Fij(rij) =
qiqj
4πǫ0

(

eij
‖rij‖2

+ g(‖rij‖)
)

rij

‖rij‖
(2)

Where g(r) is the long-range correction force. For
reaction-field electrostatic we have g(r) = −2 k r
with k a constant. This can be evaluated effi-
ciently analytically. For PME we have g(r) =
d erf(β r) r−1/d r, with β a constant. Evaluation
of the PME correction force is more costly. But
as it is bounded and very smooth, linear table in-
terpolation can reach full single precision with a
limited table size. As a second option we consider
an analytical approximation using a quotient of two
polynomials. This requires 24 multiplications and
additions and one division to reach full single preci-
sion. Fused multiply-add (FMA) instructions, cur-
rently available on GPUs and the AMD Bulldozer
microarchitecture, can speed up this polynomial
evaluation significantly.

4. Performance in practice

Achieving good performance of load and store
intensive kernels requires detailed understanding
of many low-level software optimization aspects:
SIMD instruction set, throughput and latency
of instructions on different processor microarchi-
tectures, cache behavior, as well as experience
with compiler-related performance issues. Unfor-
tunately, it takes a lot of time and effort to reach
optimal performance. Fortunately, this effort is re-
quired infrequently and our results can be used by

9

/* Each of the MxN i-j pairs is assigned to a thread.

The sci i-supercluster consists of 8 ci clusters. */

sci = thread block index

for each ci in sci load i-atom data into shared mem.

/* loop over all cj in range of any ci in sci */

for each cj cluster

load j-i cluster interaction and exclusion mask /* per warp */

if cj not masked /* non-interacting cj-sci */

load j-atom data

/* loop over the 8 i-clusters */

for each ci cluster in sci

if cj not masked /* non-interacting cj-ci */

load i atom data from shared mem.

r2 = sqrt(|xj - xi|)

extract excl_bit exclusion/interaction bit for j-i pair

if ((r2 < rc_squared) * excl_bit)

calculate i-j Coulomb and LJ forces

accumulate i- and j-forces in registers

reduce j-forces

reduce i-forces

Figure 7: Pseudocode for cluster-pair interaction kernel, NVIDIA GPUs-specific implementation.

anyone, as our compute-kernels are released as part
of an open source project, freely available for any-
one to use.

4.1. Hardware and compilers

To compare the different variants of the algo-
rithm, we focus on the Intel Sandy Bridge CPU
architecture. The reason for this is that at the
time of writing this architecture supports AVX,
the newest and widest SIMD instruction set on the
x86 platform, and it also provides 256-bit opera-
tions. This allows a direct comparison between
the 4×4 and 4×8 setup, as well as between 128-
and 256-bit AVX. For comparison with other archi-
tectures, we also show results on the AMD Bull-
dozer architecture using 128-bit AVX and FMA in-
structions as well as NVIDIA Fermi (GF100) and
Kepler2 (GK110) [20] GPUs. As all CPU archi-
tectures in focus support the AVX instruction set,
form here on 128- or 256-bit SIMD will refer to
AVX instructions of the respective type. We report
all performance data in cycles which depends only
on the microarchitecture, but not the exact CPU

or GPU model4. All CPU kernels were compiled
with the GNU C compiler version 4.7.1 with -O3 as
the only optimization. Other optimization-related
compiler options did not improve the non-bonded
kernel performance. Both Intel C compiler versions
12.1.3 and 13.1.1 produced slightly slower code even
with CPU architecture-specific optimizations en-
abled. The GNU C compiler has greatly improved
with recent versions, the difference between version
4.5.3 and 4.7.1 on Sandy Bridge with analytical
Ewald kernels is 22% while with recent Intel compil-
ers even slight regressions have been observed. The
CUDA GPU kernel were compiled with the CUDA
compiler version 5.0.75 with -use fast math as
well as the architecture-specific optimization op-
tions -arch=sm 20 and -arch=sm 306 for Fermi and
Kepler2 GPUs, respectively.

4The amount of cache can vary among CPUs with the
same microarchitecture (e.g. desktop and server Sandy
Bridge), but this does not affect our benchmarks.

5 This pre-release version of the 5.0 compiler was used
because the final version generates slower code.

6Note that with the 5.0 CUDA compilers -arch=sm 35

optimization yields lower performance on GK110 than the
sm 30 optimized PTX code JIT compiled by the driver for
sm 35.

10

On the CPU we store the properties of the M i-
particles in SIMD registers and loop over the list of
clusters of N j-particles. The pair interactions for
the M different i-particles are not interdependent,
except that we want to load and store the j-particle
properties only once. There are several choices to
be made when transforming this algorithm into ac-
tual code. For instruction (re-)scheduling it is ad-
vantageous to write out the M operations for the i-
particles, so it is clear to the compiler that it can re-
order them. For most kernels N matches the SIMD
width, but for the 256-bit flavor we also consider
N=4, which is half the SIMD width. On new ar-
chitectures with wider SIMD units, such as Intel
MIC with 16-way SIMD in single precision, hav-
ing N smaller than the SIMD width is even more
important.

4.2. Kernel performance

Performance of the most important flavors of
the fully optimized kernel versions is reported in
Table 1 and Table 2 for RF and Ewald, respec-
tively. The metrics shown in Table 1 and Table
2 represent the peak performance of the respective
kernels. The performance of CPU kernels is con-
stant in the regime of 100-100000 particles. In con-
trast, GPUs are massively parallel multi-processors
which require a high level of data-parallelism and
hence many particle-pairs to reach peak perfor-
mance. The CUDA kernels are within 5% of the
peak performance from around 20000 particles; the
scaling depends both on generation of architecture
and number of multiprocessors.
We present four different performance metrics.

The the number of pairs calculated per 1000 com-
pute cycles (pairs/cycle) is the only relevant mea-
sure for the raw performance of the algorithm. The
instructions per cycle (IPC) provides an estimate of
the hardware utilization. The last two are the num-
ber of floating point operations per pair (flops/pair)
and per cycle (flops/cycle), where we try to mini-
mize the former and maximize the latter. As a ref-
erence we show performance for 1×1 kernels which
fill the SIMD unit by unrolling the inner loop over
j. These kernels do not use LJ combination rules,
as parameters need to be looked up either way,
which saves two floating point operations per pair.
This standard way of employing SIMD results in
low performance and low flop rates (the theoretical
peak rate for Intel Sandy Bridge is 8 for 128-bit and
16 for 256-bit instructions, respectively). The high
measured IPC indicates that the instructions are

scheduled very efficiently. However, a large part of
the instructions load, store and shuffle data, rather
than doing computation. The 256-bit RF kernel is
only 13% faster than the 128-bit variant while it
has similar IPC. As both kernels execute the same
arithmetic instructions, the observed rather small
performance increase is explained by the overhead
of shuffle and data load operations. We aim to
address these bottlenecks with the proposed algo-
rithms by reducing the need for shuffles and loads.
In comparison to the work of Pennycook [9], here,
the effect is much more pronounced as we need to
load two LJ parameters and a charge per j parti-
cle, while they only implement an LJ potential with
fixed particle type. The large drop in performance
when using a single thread shows that the 1×1 ker-
nels are mainly limited by instruction scheduling
and HyperThreading (HT) improves performance
by offering the possibility of scheduling instructions
from both threads running on the same physical
core.
In double precision with 128-bit AVX we can use

2-way SIMD and we can compare the performance
for small M and N . The 4×2 RF kernel is 26%
faster than the 2×2 kernel, which outweighs the
negative impact of zero interactions in most cases.
Additionally, the pair search for 2×2 takes signifi-
cant time. This shows that M = 2 is not a viable
option and we therefore only consider M = 4 or
larger. In the 256-bit kernels we can use the 4×4
scheme which gives 50% higher performance than
4×2 and even more on a single thread.
We continue with the single precision kernels for

different functional forms. With 256-bit AVX the
M × N RF kernels have a 3.3 times higher pair
rate than 1×1, for Ewald this factor is 2.2. This
shows that our approach works. 256-bit is 25% to
65% faster than 128-bit depending on the interac-
tion type and the of use HT. The performance of
the analytical Ewald kernels is similar to that of
the tabulated version with HT, even though the
flop rate is very different. Without HT the tab-
ulated kernels get significantly slower because of
the latencies involved in reading table entries. The
AMD Bulldozer, in contrast with the simultaneous
multi-threading Intel HT implements, uses a clus-
ter multi-threading architecture with much of the
functional units, including SIMD units, shared be-
tween a pair of cores organized in a so called mod-
ule. Therefore, we compare performance of a hy-
perthreaded core on Intel with a module on AMD,
both of which support two threads. Even though

11

Bulldozer has double the theoretical throughput of
4-way SIMD instructions and FMA gives another
doubling of the theoretical flop rate, the perfor-
mance is only marginally higher than 128-bit SIMD
on Sandy Bridge. Moreover, Sandy Bridge using
256-bit SIMD provides a 20% higher pair rate. The
CUDA GPU kernels provide significantly higher
performance when comparing one streaming mul-
tiprocessor with one CPU core. The analytical and
tabulated Ewald kernels have similar performance,
the former being slightly faster on the Kepler archi-
tecture even though this kernel executes about 10%
more instructions. This is explained by the fact
that the additional instructions are mainly FMA-s
and intrinsics which allow higher instruction level
parallelism, higher IPC and better absolute perfor-
mance than the texture-based table loads. The an-
alytical PME kernels achieve about half of the real-
world peak flop rate, which is mainly because they
don’t contain enough FMA instructions. Also, the
presence of conditionals for checking the interaction
of each of the 8 i-clusters in a super-cluster deteri-
orates the performance by 15%.

5. Effective pair list buffering

The number of pair interactions calculated in a
cycle reflects how a non-bonded algorithm performs
on a certain hardware. However, this measure is not
the best indicator of the effective performance, since
both the buffer region and the cluster-pair scheme
add interactions beyond the cut-off, which by defi-
nition evaluate to zero. To get a useful pair interac-
tion rate which reflects the absolute performance,
only the non-zero interactions should be considered.
As shown on Fig. 4, at a commonly used cut-off dis-
tance of 1 nm the 4×4 setup adds 86% additional
pair interactions. However, as shown later, with a
more than doubled pair interaction evaluation rate,
the 4×4 still proves to be faster than 1×1.

Moreover, in certain cases we can actually make
use of the extra pairs that the cluster schemeM×N
kernels add. In molecular dynamics the standard
procedure is to ensure that no interacting pair of
particles is ever missed. This is usually done by gen-
erating a pair list with a so-called Verlet buffer [1]
which allows particles to move over a small distance
without invalidating the pair list. At any step, if
any of the particles has moved by more than half
the buffer length, the pair list is regenerated [3].
This condition is sufficient, but not necessary. The

pair list needs to be invalidated only when the dis-
tance between a pair of particles decreases by the
buffer length, which will happen far less frequently.
Additionally, this commonly used setup is inconve-
nient for parallel simulations. In practice, we can
often tolerate small imperfections in the pair list.
In a constant temperature ensemble perfect energy
conservation is not a requirement, as a thermostat
will remove excess heat. Moreover, the amount of
energy drift that can be tolerated is very problem
dependent. As there are multiple factors affecting
the energy conservation in a simulation, we can al-
low the non-bonded interactions to cause a drift
of similar magnitude like all other factors. If the
buffer is too small, some particle pairs which are
not in the pair list can move within the cut-off. We
can determine an upper bound to the drift caused
by such events in a constant temperature ensem-
ble, this is derived in the appendix. The upper
bound can be used to set the buffer size for simu-
lations. With PME, the pair potential at the cut-
off is very small, hence the effect of missing pairs
will also be very small. To quantify this effect, we
show the drift as a function of the Verlet buffer size
for SPC/E water [21] with a pair list lifetime of
18 fs, see Fig. 8. This is a representative system
as hydrogens in water are the fastest moving parti-
cles in nearly all atomistic simulations. With single
precision floating point coordinates, the SETTLE
[22] and SHAKE [23] constraint algorithms cause
an energy drift of -0.01 and 0.1 kBT /ns per atom,
respectively7. The 4×4 setup shows a drift of sim-
ilar magnitude even without any additional buffer-
ing. Thus, in practice, no explicit buffer is required
in single precision. One thing to note is that at
longer buffer length only repulsive hydrogen pairs
contribute to the drift. At zero length, attractive
oxygen-hydrogen pairs also contribute which leads
to a cancellation of errors.
The effective performance is given by the number

of interactions within the cut-off radius that can be
calculated per cycle. To compare the traditional
and cluster schemes we show the performance of
1×1, and 4×4 256-bit AVX kernels, as well as 8×4
CUDA GPU kernels with both RF and Ewald elec-
trostatics in Table 3. There is one factor that com-
plicates the comparison. The ratio of the cost of
the search and the force calculation affects the op-
timal list update frequency, which in turn affects

7 Note that for SHAKE one should pay attention to how
the velocity is corrected [24]

12

precision SIMD width M ×N pairs/kcycle 1 thread IPC flops/pair flops/cycle
single 4 1×1 67 −23% 2.32 38 2.6
single 8 1×1 76 −24% 2.16 38 2.9

single 4 4×4 175 −19% 2.36 40 7.0
single 8 4×4 223 −27% 1.96 40 8.9
single 8 4×8 248 −2% 1.68 40 9.9

double 4 2×2 52 −30% 1.74 45 2.3
double 4 4×2 66 −25% 2.16 45 3.0
double 8 4×4 98 −10% 1.58 45 4.4

Table 1: Performance of the reaction-field SIMD kernels on Intel Sandy Bridge CPU with HT enabled, valid at “normal”
atomistic simulation conditions with geometric LJ combination rules; to fully utilize the HT capability of the CPU we use two
threads on a single physical core, the performance difference with a single thread per core (without disabling HT) is also shown.

PU SIMD width Ewald M ×N pairs/kcycle 1 thread IPC flops/pair flops/cycle
SB 4 ana. 1×1 51 −31% 2.20 66 3.4
SB 8 ana. 1×1 63 −16% 1.98 66 4.2

SB 4 tab. 4×4 111 −15% 2.42 43 4.8
SB 8 tab. 4×4 147 −26% 2.26 43 6.3
SB 8 tab. 4×8 134 −6% 1.88 43 5.8
SB 4 ana. 4×4 110 −14% 2.40 68 7.5
SB 8 ana. 4×4 139 −11% 1.76 68 9.5
SB 8 ana. 4×8 137 +1% 1.52 68 9.3

BD 4 ana. 4×4 114 −23% 2.16 68 7.8

Fermi 32 tab. 8×4 549 1.66 41 24
Kepler2 32 tab. 8×4 1130 3.2 41 46
Kepler2 32 ana. 8×4 1151 3.7 69 85

Table 2: Performance of the single precision Ewald tabulated and analytical SIMD kernels, valid at “normal” atomistic
simulation conditions with geometric LJ combination rules. PU is the type of SIMD processing unit, SB: one physical Intel
Sandy Bridge core (with HT), BD: one AMD Bulldozer module (two cores), and one streaming multiprocessor on NVIDIA Fermi
(GF100) and Kepler2 (GK110) GPUs. On CPUs we consider for comparison an SB core with HT enabled and a BD module,
both of which support two threads. Hence, we present performance using two threads; for SB the performance difference when
running one thread per core (without disabling HT) is also shown.

13

0 0.02 0.04 0.06 0.08 0.1
Verlet buffer (nm)

10
−3

10
−2

10
−1

10
0

dr
ift

 p
er

 a
to

m
 (

k B
T

/n
s)

1x1 dp
1x1 sp
4x4 dp
4x4 sp

Figure 8: Energy drift per atom in SPC/E water at 298 K
as a function of the Verlet buffer size, ”sp“ represents single
precision, ”dp“ double precision. A 2 fs time step was used
with a pair list update frequency of 10 steps. PME was
used with a relative error of 10−5 at a cut-off distance of 0.9
nm. The SETTLE algorithm causes negative drift in single
precision for large buffers.

the required buffer size. In our implementation,
the pair list construction for the 1×1 setup takes
four times longer than calculating the interactions
once, where for a 4×4 setup both take about equal
time. We think there is some room for speed-up in
our 1×1 search implementation, which has not been
fully optimized. If we assume we can get it twice as
fast, the optimal list update frequency is somewhere
between 10 and 15 steps. The optimal update fre-
quency for 4×4 and 8×4 is around 10 steps. For the
following comparison we will use the same update
frequency of 10 steps for all setups to simplify the
comparison. The effective speed-up of the force cal-
culation of the 4×4 over the 1×1 scheme on CPUs
is a factor of 1.8 and 1.4 for RF and Ewald electro-
statics, respectively. This speedup is mainly due to
higher achieved pair rate, but the smaller buffer also
contributes. Assuming the 1×1 search cost can be
brought down to twice the force calculation cost,
the total performance improvement including the
search cost is a factor of 2.0 and 1.5 for RF and
Ewald electrostatics, respectively. The 8×4 scheme
results in a lower algorithmic work-efficiency due to
the increase in the ratio of zero interactions calcu-
lated. Note that these results are for a cut-off of
1 nm or 210 non-zero pairs per particle. With in-
creasing cut-off radius, the efficiency increases and
the performance improvement approaches a factor
of 3. As we run the pair search on the, slower,

CPU, a longer list update interval often provides
better total performance. The GPU kernels use a
conditional for skipping pairs beyond the cut-off,
unlike the CPU M × N kernels, which use mask-
ing. Therefore the pair-rate increases with buffer
size. But calculating more pair distances always de-
creases the effective performance. Still, the cluster
algorithm demonstrates the potential of streaming
architectures with an effective performance of a fac-
tor of 5 and 7 higher than the 4×4 CPU RF and
Ewald kernels, respectively.

6. Conclusions

For calculating non-bonded interactions in molec-
ular simulations, the standard particle-based
pair interaction algorithms commonly SIMD-
parallelized by loop unrolling have reached their
limits. Kernels based on these approaches are often
limited by the high memory to arithmetic opera-
tion ratio, the number of data shuffle operations
required, and restrictions in instruction schedul-
ing which reduces the potential for memory latency
hiding. The pair list construction is affected by
the same issues. We have presented a simple and
flexible approach to overcome these problems. A
scheme using cluster pairs of M versus N atoms
leads to kernels that efficiently utilize current CPU
and GPU SIMD units. The memory pressure is re-
duced by a factorM on CPUs. We found thatM=4
usually provides the best performance. On GPUs
we useM=8 and the memory pressure is reduced by
another factor of 4 by loading and operating on up
to 8 i-clusters at once. The algorithm reorganizes
the data representation at the lowest, particle level.
Therefore, any method in the literature that applies
to particles, can be applied to the clusters in our
method. An example used here is the Verlet buffer.
While the widely used linked cell list for reducing
the search space can be applied, this does not of-
fer any advantage as the locality of the clusters is
already available through the grid used to gener-
ate the clusters. The performance advantage of our
method over traditional algorithms depends on the
computational cost of the interactions, the number
of particle pairs within the cut-off and the SIMD
width. While in many cases our cluster-based algo-
rithm significantly outperforms the particle-based
algorithms, in some cases it can be less advanta-
geous. For cheap interactions the reduction of shuf-
fling and memory operations will favor the cluster

14

PU elec. M ×N pairs/kcycle list upd. buffer effective ratio effective
(steps) (nm) pair ratio vs 1×1 pairs/kcycle

SB RF 1×1 76 10 0.09 0.77 59
SB RF 4×4 223 10 0.07 0.48 0.62 107

Kepler2 RF 8×4 1351 10 0.07 0.40 0.52 544
Kepler2 RF 8×4 1386 20 0.10 0.37 0.48 519

SB Ewald 1×1 63 10 0.05 0.86 54
SB Ewald 4×4 139 10 0.00 0.53 0.61 74

Kepler2 Ewald 8×4 1151 10 0.00 0.47 0.55 545
Kepler2 Ewald 8×4 1181 20 0.03 0.44 0.51 521

Table 3: Effective performance of the 256-bit AVX and Keper2 CUDA kernels in single precision at an energy drift of 0.1
kBT/ns per atom for water at 298 K with a 1 nm cut-off and a 2 fs time step. The last three columns show the ratio of
non-zero and total calculated pairs and the effective performance, only counting the non-zero pairs. The second-last column
shows the effective ratio of M ×N versus 1× 1 with a pair-list update every 10 steps.

setup, whereas for expensive interactions the extra
zero interactions can outweigh the gains.

For typical atomistic molecular simulations our
method performs very well and is a factor 1.5 to
3 faster on 8-wide SIMD than traditional meth-
ods. On Intel Sandy Bridge CPUs as well as CUDA
GPUs the flop rate is above 60% of the peak. Most
importantly, our scheme inherently maps well to
future CPU and GPU architectures as well as ex-
isting ones not discussed here. As the number of
floating point operation per load/store operation
can be tuned, a reduction of the arithmetic cycles
per kernel, e.g. by introduction of FMA instruc-
tions, will result in higher performance. Addition-
ally, wider SIMD units, for example 16-way SIMD
in Intel Xeon Phi, can be used efficiently with a
limited amount of effort.

Funding

This work was supported by the European Re-
search Council (grants nr. 258980 and nr. 209825),
the Swedish e-Science Research Center and the
ScalaLife EU FP7 project.

Acknowledgments

The authors thank Erik Lindahl for providing the
analytical approximation of the Ewald correction
force and for his advice on x86 SIMD optimiza-
tion, NVIDIA for advice on CUDA optimization
and Mark Abraham for thoroughly reviewing the
code and this manuscript.

Appendix

For a canonical ensemble, an upper bound on the
average energy drift due to the finite Verlet buffer
size can be derived. This depends on the atomic
displacements and the shape of the potential at the
cut-off. The displacement-distribution along one di-
mension for a freely moving particle with mass m
over time t at temperature T is Gaussian with zero
mean and variance σ2 = t kBT/m. The variance
of the distance between two non-interacting parti-
cles is σ2 = σ2

12 = t kBT (1/m1 + 1/m2). In prac-
tice, particles interact with each other over time
t. These interactions make the displacement dis-
tribution narrower, since any interaction will hin-
der free motion of particles. Ignoring the effect of
interactions on the displacements thus provides an
upper bound. We calculate interactions with a non-
bonded interaction cut-off distance of rc and a pair
list cut-off of rℓ = rc + rb, where rb is the Ver-
let buffer size. We can then write the average en-
ergy drift over time t for pair interactions between
a particle of type 1 surrounded by particles of type
2 with number density ρ2, when the inter-particle
distance changes from r0 to rt, as: Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Ut pu-
rus elit, vestibulum ut, placerat ac, adipiscing vitae,
felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate
a, magna. Donec vehicula augue eu neque. Pellen-
tesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Mauris ut leo.
Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tel-
lus sit amet tortor gravida placerat. Integer sapien
est, iaculis in, pretium quis, viverra ac, nunc. Prae-

15

sent eget sem vel leo ultrices bibendum. Aenean
faucibus. Morbi dolor nulla, malesuada eu, pulv-
inar at, mollis ac, nulla. Curabitur auctor semper

nulla. Donec varius orci eget risus. Duis nibh mi,
congue eu, accumsan eleifend, sagittis quis, diam.
Duis eget orci sit amet orci dignissim rutrum.

〈∆V 〉 =

∫ rc

0

∫

∞

rℓ

4πr2
0
ρ2V (rt)G

(

rt − r0
σ

)

dr0 drt (3)

≈
∫ rc

−∞

∫

∞

rℓ

4πr20ρ2

[

V ′(rc)(rt − rc) + (4)

V ′′(rc)
1

2
(rt − rc)

2

]

G

(

rt − r0
σ

)

dr0 drt (5)

≈ 4π(rℓ + σ)2ρ2

∫ rc

−∞

∫

∞

rℓ

[

V ′(rc)(rt − rc) + (6)

V ′′(rc)
1

2
(rt − rc)

2

]

G

(

rt − r0
σ

)

dr0 drt (7)

= 4π(rℓ + σ)2ρ2

{

1

2
V ′(rc)

[

rbσG
(rb
σ

)

− (r2b + σ2)E
(rb
σ

)]

+ (8)

1

6
V ′′(rc)

[

σ(r2b + σ2)G
(rb
σ

)

− rb(r
2

b + 3σ2)E
(rb
σ

)]

}

. (9)

Lorem ipsum dolor sit amet, consectetuer adip-
iscing elit. Ut purus elit, vestibulum ut, plac-
erat ac, adipiscing vitae, felis. Curabitur dictum
gravida mauris. Nam arcu libero, nonummy eget,
consectetuer id, vulputate a, magna. Donec vehic-
ula augue eu neque. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra me-
tus rhoncus sem. Nulla et lectus vestibulum urna
fringilla ultrices. Phasellus eu tellus sit amet tor-
tor gravida placerat. Integer sapien est, iaculis in,
pretium quis, viverra ac, nunc. Praesent eget sem
vel leo ultrices bibendum. Aenean faucibus. Morbi
dolor nulla, malesuada eu, pulvinar at, mollis ac,
nulla. Curabitur auctor semper nulla. Donec varius
orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.

Here, G(x) is a Gaussian distribution with zero
mean, unit variance, and E(x) = 1

2
erfc(x/

√
2). We

always want to achieve small energy drift, so σ will
be small compared to both rc and rℓ. Thus, the ap-
proximations in the above equations are good since
the Gaussian distribution decays rapidly. To cal-
culate the total energy drift, the drift needs to be

averaged over all particle pairs and weighted with
the particle count.

References

[1] L. Verlet., Phys. Rev. 159 (1967) 98–103.
[2] R. W. Hockney, S. P. Goel, J. Comp. Phys. 14 (1974)

148.
[3] S. Plimpton, J. Comp. Phys. 117 (1995) 1–19.
[4] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,

E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,
L. Kalé, K. Schulten, J. Comp. Chem. 26 (2005) 1781–
802.

[5] J. A. Anderson, C. D. Lorenz, A. Travesset, J. Comp.
Phys. 227 (2008) 5342–5359.

[6] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J.
Chem. Theory Comput. 4 (2008) 435–447.

[7] W. M. Brown, P. Wang, S. J. Plimpton, A. N. Thar-
rington, Comp. Phys. Comm. 182 (2011) 898–911.

[8] S. Pennycook, S. Jarvis, in: 3rd International Work-
shop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems
(PMBS12).

[9] S. J. Pennycook, C. Hughes, M. Smelyanskiy, S. Jarvis,
in: IEEE International Parallel & Distributed Process-
ing Symposium.

[10] J. van Meel, A. Arnold, D. Frenkel, S. Portegies Zwart,
R. Belleman, Molecular Simulation 34 (2008) 259–266.

[11] M. S. Friedrichs, P. Eastman, V. Vaidyanathan,
M. Houston, S. Legrand, A. L. Beberg, D. L. Ensign,

16

C. M. Bruns, V. S. Pande, J. Comp. Chem. 30 (2009)
864–72.

[12] Z. Yao, J.-S. Wang, G.-R. Liu, M. Cheng, Comp. Phys.
Comm. 161 (2004) 27–35.

[13] S. Meloni, M. Rosati, L. Colombo, J. Chem. Phys. 126
(2007) 121102.

[14] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden,
H. Lee, L. G. Pedersen, J. Chem. Phys. 103 (1995)
8577–8592.

[15] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy,
L. G. Trabuco, K. Schulten, J. Comp. Chem. 28 (2007)
2618–40.

[16] P. Eastman, V. S. Pande, J. Comp. Chem. 31 (2009)
1–5.

[17] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar,
R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson,

D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics
(2013).

[18] P. Gonnet, J. Comp. Chem. 28 (2007) 570–573.
[19] U. Welling, G. Germano, Comp. Phys. Comm. 182

(2011) 611–615.
[20] NVIDIA, CUDA C Programming Guide, 2012.
[21] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, J.

Phys. Chem. 91 (1987) 6269–6271.
[22] S. Miyamoto, P. A. Kollman, J. Comp. Chem. 13 (1992)

952–962.
[23] J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J.

Comp. Phys. 23 (1977) 327–341.
[24] R. A. Lippert, K. J. Bowers, R. O. Dror, M. P. East-

wood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary,
D. E. Shaw, J. Chem. Phys. 126 (2007) 046101.

17

	1 Introduction
	2 The algorithm
	2.1 Limitations of the standard implementation
	2.2 The M N algorithm
	2.3 Pair list construction
	2.4 Exclusion treatment
	2.5 Computational cost

	3 Pair interaction kernels
	3.1 Kernel implementation
	3.2 Pair interaction functions

	4 Performance in practice
	4.1 Hardware and compilers
	4.2 Kernel performance

	5 Effective pair list buffering
	6 Conclusions

