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Abstract

In Density Functional Theory simulations based on the LAPW method, each self-consistent field cycle comprises dozens of large
dense generalized eigenproblems. In contrast to real-space methods, eigenpairs solving for problems at distinct cycles have either
been believed to be independent or at most very loosely connected. In a recent study [7]], it was demonstrated that, contrary to
belief, successive eigenproblems in a sequence are strongly correlated with one another. In particular, by monitoring the subspace
angles between eigenvectors of successive eigenproblems, it was shown that these angles decrease noticeably after the first few
iterations and become close to collinear. This last result suggests that we can manipulate the eigenvectors, solving for a specific
eigenproblem in a sequence, as an approximate solution for the following eigenproblem. In this work we present results that are in
line with this intuition. We provide numerical examples where opportunely selected block iterative eigensolvers benefit from the
reuse of eigenvectors by achieving a substantial speed-up. The results presented will eventually open the way to a widespread use
of block iterative eigensolvers in ab initio electronic structure codes based on the LAPW approach.
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1. Introduction

Materials simulations based on Density Functional Theory [1]
(DFT) methods have at their core a set of partial differential
equations (Kohn-Sham [2]]) which eventually lead to a non-
linear generalized eigenvalue problem. Solving the latter di-
rectly is a daunting task and a numerical iterative self-consistent
approach is preferred. It starts off by inputting an approximate
electronic charge density to a cyclic process within which a
linearized version of the eigenvalue problem is initialized and
solved. At the end of each cycle a new charge density is com-
puted and compared with the initial one. Self-consistency is
reached when the distance between the input and output den-
sities is below a certain required threshold; the process is then
said to have converged. The entire simulation results in a series
of so called “outer-iteration cycles” often referred to as self-
consistent field iterations.

Roughly speaking, all the existing DFT-based methods dif-
fer from each other by the choice of linearization scheme (also
denoted as discretization), and by the choice of the effective
Kohn-Sham (KS) potential. There are three discretization strate-
gies commonly in use: 1) manipulation of localized functions
(Gaussians, etc.), 2) expansion of the eigenfunctions over a
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plane wave basis set, and 3) discretization of the KS equations
over a lattice in real space. While the first method is almost
exclusively used in Quantum Chemistry the last two are widely
used in Materials Science and present a series of pros and cons.
The plane wave expansion leads to Hamiltonians with kinetic
energy terms only on the main diagonal and are well suited to
simulate solid crystals. In turn this discretization needs to ap-
proximate the Coulomb potential near the nuclei substituting
it with a smooth pseudo-potential. In real-space discretization,
potential terms in the Hamiltonian decay exponentially away
from the diagonal [6] giving rise to quite sparse and large eigen-
value problems. This strategy is well suited mostly for disor-
dered systems and insulators.

Among the plane wave strategies, the Full-Potential Lin-
earized Augmented Plane Wave (FLAPW) [4] 5] method con-
stitutes one of the most precise frameworks for simulating tran-
sition metals and magnetic systems. The Kohn-Sham equations
are discretized using a mix of radial and plane wave functions
(see section [2), parametrized by a vector k within the Brillouin
zone of the momentum lattice. At each outer-iteration ¢ a set
of eigenpencils P, ), labeled by Kk, is initialized and solved. Be-
cause FLAPW uses full-potential together with a partial plane
wave expansion, each PS) is a dense and hermitian generalized
eigenvalue problem; its size n depends linearly — with a large
pre-factor — on the number of atoms considered in a simula-
tion, and typically ranges between 2,000 and 20,000. Only a
relatively small percentage of the bottom end of the spectrum is
required, never exceeding 15-20%, and often quite less.

In this work we consider sequences of generalized hermi-
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tian eigenvalue problems as they arise in FLAPW. In this con-
text a sequence is a set of N generalized eigenproblems identi-
fied by a progressive index ¢

(POYy=pW . p™ o PO A= BOx. (1)

Within a sequence each eigenproblem is characterized by a her-
mitian indefinite matrix A and a positive definite hermitian ma-
trix B. This setup is generally referred to as a matrix pencil or
eigenpencil and it is known to have a bounded discrete spec-
trum with real positive and negative eigenvalues

kmin:kl§x2§"'§7\w:7\'max- (2)

Eigenpencils usually admit » distinct eigenvectors x; satisfying
a B-orthonormality relation (x;, Bx;) = ;; even when they cor-
respond to identical eigenvalues. While in general B # I, in the
special case B = I the eigenpencil becomes a standard eigen-
value problem, and the orthonormality relation reduces to the
standard (x;,x;) = &;;.

In current codes implementing FLAPW [18-22]], each se-
quence of eigenpencils {P(m} is handled very much as a set of
uncorrelated problems: each P() is solved in complete isolation
from any other and independently passed as input to a prepack-
aged eigensolver of a standard library — like LAPACK [23] or
its parallel version ScaLAPACK [24] — which outputs the de-
sired portion of eigenspectrum and corresponding eigenvectors.
The eigensolver is thus used as a black box and has no knowl-
edge of the eigenproblems’ spectral properties nor of the ap-
plication from which they originated. As much as this process
grants standardization and reliability, it is also far from being
optimal. What is “lost in translation” is the possibility to render
manifest the correlation between eigenpencils of the sequence
{P()} in terms of precise numerical properties which are then
passed to a solver that can exploit them.

In a recent work [7] it has been reported that eigenpencils
with a successive outer-iteration index ¢ and the same k-vector
are strongly correlated. Consequently, problems in a sequence
are not only connected by a progressive index but, as for a se-
quence of numbers, there is a relation linking them. In FLAPW,
such a numerical correlation become evident in the way the
subspace angles between eigenvectors evolve from larger to
smaller values as the sequence progresses towards higher outer-
iteration indices [7]. It needs to be stressed that, contrary to
what happens in real-space methods, the correlation between
eigenvectors is a new and unexpected feature of FLAPW-based
methods: since the eigenfunctions are delocalized and the func-
tion basis set is modified at each successive outer-iteration, it
had been common belief that correlation was an unlikely phe-
nomenon.

With evidence of the contrary in hand, it becomes natural
to consider eigenvectors of P{) as a set of approximate solu-
tions that can be used by an appropriate eigensolver to accel-
erate the solution of P(‘*1). The novelty of our contribution
consists in showing that, by exploiting the collinearity between
vectors of adjacent problems, we can significantly improve the
performance of certain classes of eigensolvers. Since no eigen-
solver (QR, MRRR, Divide&Conquer, etc.) for dense prob-
lems accepts as input approximate eigenvectors, our strategy

can only be carried out by using iterative eigensolvers. In the
rest of the paper we first illustrate, through numerical experi-
ments, the success of this strategy for three distinct block itera-
tive eigensolvers, each representing a specific class of available
methods. Then we focus on one of these solvers, develop a C
language version and obtain similar results with emphasis on
high-performance and scalability.

In section 2] we first give a short description of how se-
quences of eigenproblems arise in DFT and how they translate
into apparently uncorrelated dense eigenvalue problems. We
then proceed to briefly report on the correlation between adja-
cent eigenproblems as illustrated in [7]. Our core results are
presented in section [3] where we introduce the selected block
iterative eigensolvers followed by a description of the experi-
mental setup and the numerical tests performed. We summa-
rize our results in section[d} and conclude with future work and
acknowledgments.

2. Sequences of correlated eigenproblems

In this section we illustrate in some detail how sequences of
eigenpencils arise in DFT. We start with a brief recall of the
fundamentals of quantum mechanics, explain the need for an
effective theory dealing with many particles and describe the
FLAPW method self-consistent cycle. It is then shown why
correlation among eigenproblems in a sequence is unexpected,
and how the presence of such a correlation was exposed by
looking at the evolution of eigenvectors as a function of the
outer-iteration cycle index £.

2.1. The rise of sequences in Density Functional
Theory

The electronic structure of a quantum mechanical system with L
atoms and M electrons is described by the Schrédinger equation

HO(X1581, -y Xn38n) = ED(X1581, -+« s Xn38n)- 3)

= *% PRARGED M) Yyl \xii“ay\ +Yic) ﬁ is the Hamil-
tonian characterizing the dynamics of the electrons whose po-
sitions and spins are indicated by x and s respectively. E repre-
sents the energy of the system while ® is the high-dimensional
antisymmetric electronic wave function solving for eq. (3). Al-
ready at this stage the Schrodinger equation looks very much
like an eigenvalue problem, unfortunately one that is already
very challenging to solve for values M,L > 2.

During the 1960s, a series of simplifications were intro-
duced based on rigorous theorems [2, 3] where the exact high-
dimensional eq. (3] was replaced by a large set of one-dimensional
Kohn-Sham equations

. i
Va solve Hgsd,(r)= <—2mV2 +Vo(r)> 04 (r) = €404(r).
“
The most important element in these equations is the substi-
tution of the last two terms of H with an effective potential



Vo(r)[n] that functionally depends on the charge density n(r):
a function of all the one-particle wave functions ¢,(r). Because
of this interdependence between Vy and ¢,(r), eq. consti-
tutes a set of non-linear partial differential equations.

Typically this set of equations is solved using an outer-iterative

self-consistent cycle: it starts off with an initial charge density
ninit (1), proceeds through a series of iterations and converges to
a final density ny (r) such that [n¥) — nV=1| < 1, with ) as an
a priori parameter. Convergence is achieved by an oppurtune
mixing between output density n;(r) and one or more previous
input densities ny<;(r). In the particular case of FLAPW the
new density is computed by a quasi-Newton mixing with the
inverse Jacobian updated by Broyden’s second method [25] 26].

Initial input
Rinit (T)

I
Compute KS potential Solve KS equations
Vo(l‘) [n] — HKS¢a(r) = €,0, (I‘)
T No 1 ®)
Converged? Compute new density

n(r) = Lo [0a(r)?

| Yes

OUTPUT
Energy, forces, etc.

In practice this outer-iterative cycle is still quite computa-
tionally challenging and requires some form of broadly defined
discretization. In the FLAPW method, the wave functions ¢, (r)
are expanded on a basis set Yg (K, r) parametrized by vectors k
living in the momentum space discretized on a lattice

9a(r) — buy(r) = )

|G+k‘ <Kinax

g we(k,r). (6)

Here K, is a cut-off and its value determines the range of the
vector index G, ultimately controlling the size of the eigenprob-
lems n (not to be confused with the charge density n(r)). Thus,
the number of basis functions in the expansion equals the size
of the problem at hand. In FLAPW the basis functions y¢ (k,r)
are constructed by merging together radial-like functions u}*(r)
inside a spherical region around the atoms (also called Muffin-
Tin) and simple plane waves in the interstitial areas between
atoms

ye(k,r) =
\%ei<k+c)r — Interstitial
=\ X (e 00ut ) + b E ) ()| Yinlha) - —MT.
Im

At each iteration cycle the radial functions are computed
anew by solving auxiliary Schrodinger equations. Moreover a

new set of the coefficients a?:f and bg‘f is derived by imposing
continuity constraints on the surface of the Muffin-Tin spheres.
Consequently at each iteration the basis set yg(k,r) changes
entirely. As will be explained in the next section, this peculiar-
ity of the FLAPW method is one of the main reasons why cor-
relation between eigenvectors of adjacent eigenproblems had
been, until recently, considered unlikely.

Having defined a basis set of wave functions allows us to
translate the KS equations into a set of generalized eigenvalue
problems. First the expression (6) is inserted in eq. (@)

ve(kr) Y Axs cfy o (k1) = oy W5 (k1) Y e, v (k,r).
G G

(N
Then, by integrating the left and right hand side of eq. (7)) over
the configuration space, the matrix entries for the Hamiltonian
Ak and Overlap matrices B are computed

[Ak Bilge = Y. / dr y(k,r) [Hxs 1) ye (kr).  (8)

The end result is a set of generalized eigenvalue equations parametrized

by the vector k

P Y (Ao di = Mo Y (Bu)ge Oy = AXi = AiBix;.
G’ G’

As can be readily seen the coefficients cky play the role of
eigenvectors while the indices k and v can be compactly con-
densed in the single index i. Moreover because of the com-
plex structure of yg(k,r), interactions in HAks are “delocal-
ized” with the net effect of filling up the Hamiltonian matrix
A and losing any diagonal dominance. At the same time the
over-completeness of the basis set renders B dense as well as
somewhat ill-conditioned. These characteristics differentiate
FLAPW-based methods from real-space ones, and make them
very well suited to simulate physical systems where electrons
are partially delocalized (metals, semi-conductors, etc.).

The net effect of this discretization is the translation of the
KS equations into a set of generalized eigenvalue problems for
each outer-iteration

Solve KS equations
I:IKS(Pa(r) = an)a(r) =

Solve a set of eigenproblems

Py, ... Py,

In the end the entire process has at its core the initialization and
solution of a set of sequences of dense eigenpencils {Plié)}.

2.2. Correlation in the sequence

In analogy to the definition of a sequence of numbers, a se-
quence of eigenvalue problems is considered as such if P has
some connection to P+ . Therefore, we now focus on a
single sequence {P()} and describe how this correlation be-
comes manifest in the evolution of subspace deviation angles
between eigenvectors of successive eigenproblems.

In sequences arising from DFT the most obvious form of
connection comes from the fact that the problem with index



{41 is initialized only after the previous problem is solved. De-
spite this simple fact, the initialization and solution of the new
eigenproblem depends very indirectly on the solution of the old
one. Eq. shows that matrix entries are computed using a
new set of \Vgﬂ) (k,r), whose Muffin-Tin (MT) components
can be radically different from the one of \pg) (k,r). The same
MT components depend very non-linearly on the charge density
n(r) which, in turn, is a sum of linear combinations (see eq. @)
of eigenvectors cff;,) and the same basis functions qu)(k,r). In
conclusion at each outer-iteration, the Hamiltonian, the Overlap
and the basis function set vary substantially and in a way that
cannot be estimated. Due to this series of deductions, the corre-
lation between successive eigenvalue problems in FLAPW is a
rather novel discovery which had been considered by the com-
putational physics community to be a rather unlikely outcome.

In [7] the link between adjacent eigenproblems is unrav-
eled by looking at the existence of a correlation between eigen-
vectors as a numerical inverse problem. Starting from a con-
strained assumption, the authors conduct an a posteriori nu-
merical analysis of angles between eigenvectors with succes-
sive outer-iteration indices ¢. For instance, let us look at two
neighboring eigenproblems of a sequence

AOKD Z 0 BOXO  and AR+ Zj gD (0+1)

with B = L) LOT and B+ = (1) L(DT the Cholesky
decomposition of the respective Overlap matrices. In [7] it is
shown that the eigenvectors of these two problems satisfy the
following general relation

<xl§é‘) xﬁé+1>> _ C;;fi) O (T c,(f:') )
= 5ij+¢e [E,-,- —al 1O p T cl(f;f”} +o(e?),

where both E and D are block diagonal, each block being diag-
onally dominant, and € being an expansion parameter. As long
as € is small, eq. (9) implies that the matrix of scalar products
between eigenvectors of adjacent eigenproblems has a lumpy
structure with most of its dominant entries concentrated in the
neighborhood of the main diagonal. This structure makes it
possible to devise an algorithm establishing a one-to-one asso-

ciation between a generic eigenvector xl@ of A) and the corre-

sponding eigenvector xl(u D of AU+,
Once established, the one-to-one correspondence lays the
ground for a systematic numerical analysis of the distribution

of deviation angles 91@ = (xl@xl(”l)

) along the entire sequence.
Plots of 61@) illustrate how the eigenvectors become more and
more collinear as the sequence progresses (e.g. Figure [I). In
particular, we can observe how angles are already very small
— ~ 107* on average — after a few iterations, becoming almost
negligible towards the end of the self-consistent cycle. This
result confirms a posteriori the correctness and reliability of the
expansion (9) in powers of €.

The importance of the eigenvector collinearity is two-fold:
on the one hand it makes it clear that there is a deep connection
between the convergence of the charge density n(r) and the so-
lutions of the eigenpencils. At the same time it provides the

means to go beyond the current algorithmic paradigm so as to
improve the solving process of the entire sequence.

Table 1: Simulation data

# of Size of

Materials nev Kp.x iterations eigenproblems
CaFeyAs, 136 4.0 24 2,612
3.0 22 5,638
AuggAgio 972 55 29 8,970
3.0 13 3,893
Na;sCli4Li 256 3.5 13 6,217
4.0 13 9,273

We will see in the next section how this is possible for a
selected group of iterative eigensolvers. We conclude this sec-
tion by illustrating two examples of evolution of deviation an-
gles taken from real case solid-state crystals: CaFepAs, and
AuggAgio. The first is a superconducting compound that un-
dergoes a first order phase transition from a high temperature
tetragonal phase to a low temperature orthorhombic phase. The
latter is an artificial alloy of gold and silver. In order to avoid

cluttering, in Figure 955) are plotted only for a small fraction
of the eigenspectrum. In both plots, we can observe the devi-
ation angles decreasing quasi-monotonically during the entire
sequence. This behavior is not only characteristic of the lowest
portion of the spectrum; it is noticed for all values of the index
i. Simulation data for these two materials are shown in Table[1]

3. Exploiting the sequence evolution

In the following we present experimental evidence of the accel-
eration of iterative eigensolvers due to the use of approximate
solutions. We proceed in two stages: first, using a direct eigen-
solver, we compute the eigenpairs of eigenpencil P(¥) for a cer-
tain fraction of the eigenspectrum. Next, we feed these eigen-
pairs to a selected iterative eigensolver as an initial guess when
solving for P Finally we repeat the same computation with
randomly generated vectors and compare the respective CPU
times. These tests are repeated for three different choices of
crystals and at each increasing outer-iteration index. The result
of the comparison provides a measure of the possible speed-up
iterative methods can achieve when used in sequences of corre-
lated eigenvalue problems.

Among the many available iterative methods, only a few
possess the ability of taking advantage of multiple approximate
solutions and gain a sensible speed-up. In this respect an iter-
ative algorithm has to comply with two essential properties: 1)
the ability to receive as input a sizable set of approximate eigen-
vectors, and 2) the capacity to solve simultaneously for a sub-
stantial portion of eigenpairs. In particular we considered three
classes of iterative eigensolvers: Davidson, conjugate gradient
and subspace iteration. Krylov subspace methods [8, 9] were
not included due to their inability to even converge all the re-
quested eigenpairs without incurring in “stalled” computations.
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Figure 1: Evolution of subspace deviation angles between eigenvectors of ad-
Jjacent eigenvalue problems within a sequence.

For each class we choose a block eigensolver whose character-
istics are the closest to the requirements listed above. Block
methods generalize the action of an eigensolver on one single
approximate eigenvector to a set of vectors. As such they sat-
isfy quite clearly the first requirement while the ability to obtain
multiple eigenpairs in one shot is rather algorithm dependent.
In this section two sets of numerical results are illustrated:
first we test three iterative algorithms exclusively in a Matlab
environment. The objective is to gain an overview of the behav-
ior of the eigensolvers and their relative efficiency in exploit-
ing approximate solutions. In a second moment we focus on
one of the eigensolvers, briefly illustrate its implementation in
the C programming language and conduct a more performance-
oriented numerical analysis of its features. In section [3.1] we
illustrate the salient characteristics and properties of the block
algorithms under scrutiny. This is followed by a detailed de-

scription of the experimental setup. Finally in section [3.3] the
results of our numerical tests are presented and explained.

3.1. Block iterative eigensolvers

By their own nature iterative eigensolvers come in many vari-
ants and often some of their internal parameters can be tuned
opportunely. In block methods one obvious input parameter is
the block size blk; since block methods are notoriously more
efficient in dealing with multiple and clustered eigenvalues, ad-
justing b1k could improve the eigensolver performance. On the
other hand, knowing a priori the positions of clusters of eigen-
values is usually not possible, so a value of blk that is opti-
mal for a certain fraction of eigenspectrum may not work for
another. On algorithms augmented with a polynomial acceler-
ator another evident parameter is the polynomial degree deg.
In this case a good choice for deg would balance the influence
of two competing mechanisms: CPU time spent in performing
matrix-matrix operations and the efficiency with which vectors
converge to the solution.

In light of these considerations, it is important to understand
that an eigensolver that performs well for a certain problem may
become very slow for another. In particular we want to stress
that we utilize iterative eigensolvers outside the “comfort zone”
where they usually perform the best, namely sparse eigenprob-
lems. By using these solvers on dense eigenproblems we are
deliberately pushing them to the limit. The idea is to compen-
sate for the misuse of the solvers by providing them with ap-
proximate eigenvectors. In doing so we want to test how effec-
tively each eigensolver can gain in performance by exploiting
problem solutions of the previous outer-iteration.

In order to extract the best behavior, all the numerical tests
were carried out after optimizing each solver to the specific
problem at hand. Such an optimization was achieved by tun-
ing the values of the available parameters (see table [3). Despite
these efforts not all eigensolvers seemed to have been able to
take full advantage of the approximate solutions. We empha-
size that this behavior is in no way detrimental to the value of
the particular solver; it just indicates that the chosen eigensolver
was too stressed to be able to overcome the inherent difficulties
of the dense eigenproblems selected. All the eigensolvers de-
scribed below were inherently developed for the lower portion
of the spectrum. Unless otherwise specified, in the rest of the
paper we refer exclusively to this part of the eigenspectrum.

Block Chebyshev-Davidson (BChDav) — This eigensolver is
part of the Davidson-like methods. These methods sacrifice the
Krylov subspace structure by computing an approximate resid-
ual which, opportunely preconditioned, is used to augment the
subspace. In 2007 Saad and Zhou developed a version of the
Davidson algorithm for problems where the preconditioning
could be unknown or too expensive to compute [[L1]; in partic-
ular by filtering with Chebyshev polynomials the augmentation
vector instead of solving a correction equation, they achieve
better numerical results.

In 2010 Zhou implemented a block version of this method
by adding an inner restart loop beside the usual outer restart



one [12]. This version of the method succeeds in better de-
flating converged vectors and has the added ability to accept
approximate solutions in place of the standard augmentation
vectors. In particular the inner restart loop allows the addition
of a new block of approximate vectors as soon as some of the
sought after eigenpairs have converged. This is the first of the
Chebyshev filtered methods that we tested. In his work Zhou
has also shown that the method is not particularly sensitive to
blk nor to deg. In our test we verified that this is indeed true
and fairly small variations in computing time are observed by
varying one or both of the parameters independently of the size
of the eigenproblem. For our test we used a Matlab version of
BChDav kindly provided by Y. Zhou.

Locally optimized block preconditioned conjugate gradient
(Lobpcg) — Developed in 2001 by Knyazev [[13], this algorithm
uses a locally optimized version of a three-term recurrence rela-
tion for the preconditioned conjugate gradient method. In prac-
tice the Rayleigh-Ritz method is used for the eigenpencil on a
trial subspace generated by the current guess for the Ritz vec-
tor, the preconditioned residual, and a third Ritz vector built
by maximizing the Rayleigh quotient. Knyazev implemented a
block version of the algorithm where the three-term relation is
generalized for a block of vectors.

We performed our tests using the freely available Matlab
version of the code. In this version b1k is set by construction to
be equal to the number of requested eigenpairs nev. While this
choice seems natural, it encounters difficulties in converging
the last few vectors requested due to the reduced size of the
trial subspace. Despite being potentially disruptive, this limit
is usually overcome by setting a rather large tolerance for the
residuals and restarting the solver with the obtained solutions
and a smaller tolerance. In order to put this method on par
with the others analyzed, we augmented b1k by 5% of nev and
introduced a slight modification in the stopping criterion. In
this way we could use the eigensolver in one run and obtain
solutions possessing the required accuracy.

We deliberately used this method without a preconditioner,
since in general such an operator is unknown in DFT-generated
sequences {P(Z)}. Moreover Lobpcg accepts the matrices of
a generalized eigenproblem directly as input. We show that
for the case of FLAPW-generated eigenproblems this is a sub-
optimal use of the solver due to the high conditioning number
of the overlap matrices B. Much better behavior is observed
when the generalized eigenproblems are reduced to standard
form and then inputted to the eigensolver (see Table [2).

Chebyshev filtered subspace iteration (ChFSI) — This is the
second of the Chebyshev-filtered methods we tested. This method
is well known in the literature [9]] and has been developed in
the context of Density Functional Theory in real-space by Che-
likowsky et al. [14} [15] for the PARSEC code [27]]. Subspace
iteration is perhaps one of the oldest known iterative algorithms.
This is by nature a block solver since it simply tries to build an
invariant eigenspace by block-multiplying a set of vectors with
the operator to be diagonalized. It is well known that this class
of methods converges very slowly and could end up with blocks

of vectors spanning an invariant eigenspace that are linearly de-
pendent (rank deficient case). By using a polynomial filter on
the initial set of b1k vectors both these problems are improved
very efficiently and the method experiences a high rate of ac-
celeration.

Also in this case the degree of the filter deg does not par-
ticularly influence the convergence as long as it is sufficiently
high. In general the value for blk is chosen to be bigger than
the requested number of eigenpairs nev. This choice ensures
that the last eigenpairs converge quickly enough. In ChFSI, the
subspace iteration loop is preceded by a Lanczos step in order
to determine the boundaries of the interval out of which the set
of vectors is filtered.

Starting from the backbone of a routine first developed for
a Matlab version of the PARSEC code, we implemented a more
sophisticated algorithm including an inner loop and a natural
“deflation and locking” mechanism for the converged eigenvec-
tors. Contrary to the code used in PARSEC, our implementation
performs several filtering steps until all eigenpairs have con-
verged to the required tolerance. A more detailed description
of the routine is provided in Algorithm [I] below.

3.2. Experimental setup

In order to test the behavior of the selected solvers, we singled
out sequences of eigenproblems arising from three DFT sys-
tems presenting heterogeneous physical properties: a metal, an
ionic crystal and a high-temperature superconductor. Besides
having different physical properties, these systems differ in the
size of the eigenpencils, and in the structure of the eigenspec-
trum. Since the efficiency of iterative eigensolvers is often quite
sensitive to these characteristics, we could verify the robustness
of our conclusions in different conditions. Simulation data are
collected in Table[Tl

Each sequence {P(é)} of eigenproblems was generated by
running simulations using FLEUR, a FLAPW-based code de-
veloped in Jiilich [[18]]. By fixing a specific k-vector we identi-
fied one sequence per system and stored the relative AY) and
B) matrices. For all the simulations we adopted the value
N <le-03 (see eq. (3)) as a signal for convergence; in turn this
choice determines the maximum value of the iteration index for
each sequence. All simulations were run on JUROPA, a pow-
erful cluster-based computer operating in the Supercomputing
Centre of the Forschungszentrum Jiilich.

The first set of numerical tests was performed using Matlab,
version R2011b (7.13.0.564) under an OpenSuSE 12.1, running
on two Intel 17-870 (Nehalem “Lynnfield”) quad-core proces-
sors at 2.93 GHz. In order to avoid lengthy simulations, we
took advantage of Matlab multi-threaded routines so that up to
four cores and 8 Gb of RAM (2 DDR3, 1333 MHz) were fully
dedicated to computations. The second set of tests for the C
language implementation of ChFSI was performed on one node
of JUROPA equipped with 2 Intel Xeon X5570 (Nehalem-EP)
quad-core processors at 2.93 GHz and 24 GB memory (DDR3,
1066 MHz). All CPU times were measured by running each



Algorithm 1 Chebyshev Filtered Subspace Iteration with locking

Input: Matrix H¥) of the standard problem, approximate eigenvectors ¥ := o

Output: Wanted eigenpairs (A,Y).

1: Estimating upper bound for the largest eigenvalue
2: Repeat

3: Filtering the vectors ¥ = C4eq(Y). by a deg Chebyshev polynomial

ol )?ffl;l)] and eigenvalues 7»(1[7” and 7"1(f1;]+)1

> LANCZOS

> CHEBYSHEV FILTER
> RAYLEIGH-RITZ (Start)

> RAYLEIGH-RITZ (End)
> DEFLATION & LOCKING (Start)

Checking residuals of Ritz vectors.

Locking converged eigenpairs.

> DEFLATION & LOCKING (End)

4: Re-Orthonormalizing Y.
5: Compute the Rayleigh quotient G = Y THO)Y
6:  solve the reduced standard problem Gw = Aw giving (A,W).
7. Compute new ¥ = YW.
8: for i = converged — NEV do
AR v INTE R 2 Lo
9: if I )Y("l)_{\(l)y("lm < TOL then
POl
10: A« [AAG)]
1 Y+ [YY(:,i)]
12: else
13: break
14: end if
15: end for
16: converged < i
17: A+ [A(CONVERGED : END)]
18: ¥+ [V(;,CONVERGED : END)]

19: Until converged < NEV

test for each algorithm 12 times and taking the median of the
results.

Directly solving for the generalized eigenproblems makes a
fair comparison among the selected eigensolvers cumbersome.
One of the solvers can use B directly (i.e. Lobpcg) while the
other two deal with generalized eigenproblems by left multiply-
ing B~! to A. Unfortunately, because of the over-completeness
of the set of basis functions in eq. (6)), the overlap matrices B
are positive definite but usually quite ill-conditioned. This char-
acteristic prevents the inversion of B due to inherent numeri-
cal difficulties associated with a few singular values of B very
close to zero. Consequently, in order to set the solvers on equal
footing, we prepared our tests reducing all the eigenpencils to
standard eigenvalue problems. By using the Cholesky decom-
position of B = LLT, we defined H = L~'AL~T and solved for
P:Hy = Ay, with y = LTx. This choice solves the problem
of computing B~'A for both BChDav and ChFSI, but does not
justify a priori the use of H for Lobpcg.

In order to address this disparity in the use of Lobpcg we
investigated its performance when solving directly for the gen-
eralized eigenproblem versus the combined time spent in reduc-
ing the problem to a standard one before feeding it to this solver.
The results are shown in Table 2l In the column labeled “GEN
Problem” the CPU time to completion is listed for the eigen-
solver when the two matrices A and B are directly inputted. In
the column “STD Problem” the CPU time is the sum of the re-
duction of the generalized eigenproblem to standard form H,
plus the solution of the standard eigenproblem by the solver.
The tests were executed on the CaFe;As, system (n=2612) for

iter=17, nev=136, blk=142, maxiter=200dﬂ All the numbers
refer to median values over 10 repetitions performed for both
random vectors and approximate solutions. The results clearly
show that as the solution accuracy grows, Lobpcg increasingly
struggles to solve the generalized eigenproblems directly: a di-
rect consequence of the ill-conditioned nature of B. Conse-
quently, as for the other algorithms, we performed numerical
tests for Lobpcg on just the reduced problem P : Hy = Ay.

Table 2: Lobpcg — Generalized vs. Standard eigenproblems

Initial CPU time (sec) CPU time (sec)
Accuracy  vectors  GEN Problem STD Problem
e
oo S ORET
oo e bme e

For each sequence of eigenproblems we tested the eigen-
solvers for all outer-iteration indices and the choices of nev
required by the DFT simulation (see Table [I). For each of
these choices the numerical experiments can be schematically
divided into four stages:

ISee sectionfor a detailed explanation of the parameters meaning.



1. solving the standard problem H Oy=2ny using a direct
method (i.e. the MRRR algorithm) and storing a fraction
of the eigenvectors in a matrix Y (@;

2. solving H(“tDy = A y utilizing the iterative eigensolvers
with randomly generated vectors and recording the CPU
time to completion, tyq;

3. solving H(*1)y = L y utilizing iterative eigensolvers with
the eigenvectors in ¥(©) and recording the CPU time to
completion, typp;

4. comparing the CPU times measured at 3. and 4. by plot-

ting the speed-up, :‘;‘Tl‘i.

In the Matlab tests, speed-up and tap, are plotted separately
with respect to the iteration index for all three eigensolvers. On
the one hand we expect to observe a growth in speed-up as the
outer-iteration index increases; eigenvectors become more and
more collinear as the sequence progresses (see Figure[I)), a be-
havior that should enhance the efficiency of the iterative eigen-
solvers. On the other hand, from the absolute time t,p, plots,
we gain some perspective on which algorithm, among the three,
may have a performance advantage. To conclude we focus on
the ChFSI algorithm, program a C language version, and test its
speed-up, performance and scalability.

3.3. Numerical results and discussion

Once more we would like to stress that we tested a range of val-
ues for all the parameters available to each eigensolver. The aim
was to optimize the algorithms for the sequences of problems at
hand when started with random vectors before endeavoring in
the task of evaluating the eigensolvers’ speed-up. Once deter-
mined, the optimal set of parameters was maintained for all the
sequences of the physical systems under scrutiny. A schematic
list of these values is available in Table[3] In this table nkeep
is a parameter indicating the number of vectors that are kept
after a restart of the inner loop. vimax and vomax are the maxi-
mum size of the augmentation subspace for the inner and outer
loop (not to be confused with the outer-iteration DFT cycle)
of BChDav, while the maxiter sets the maximum number of
iterations for the inner loop. lanczos-iter indicates the max-
imum number of iterations of the Lanczos step that ChFSI uses
to bound the spectrum to be filtered out; this number can vary
substantially depending on the nature (random or approx.) of
the starting vectors. All tests for each eigensolver were run re-
quiring the same accuracy for the residuals El

3.3.1. Matlab tests

In Figures 2 and 3] we have plotted the speed-up and CPU times
for all three eigensolvers BChDav, Lobpcg and ChFSI. We aim
at visualizing the improvement in performance of each algo-
rithm and, at the same time, gaining some insights on the be-
havior of the different methods. Due to the limited memory

2While BChDav uses relative residuals, for both Lobpcg and ChFSI abso-
lute residuals are employed. Since ||H|| was in most cases of the order of 10,
differences between the use of two definitions of residuals are not very signifi-
cant.

Table 3: Parameter settings

Parameters BChDav Lobpcg ChSI
blk 35 1.05xnev nev+40
deg 25 - 25
nkeep 3xblk blk—nconv blk—nconv
vimax max([ 251, 5xblk, 30) — —
vomax nev+50 - -
maxiter max(| 5 |, 300) 1000 -
lanczos-iter — — 10 + 3xblk
TOL 10710 1010 10710

available on the desktop machine running Matlab, we measure
the execution time only for the two smallest physical systems
listed in Table[I] In Figure [2] the data refers to the lowest 136
eigenpairs of the CaFe;Asy system, corresponding to 5.2% of
the eigenvalue spectrum. In Figure |3| the plots pertain to the
lowest 256 eigenpairs of the n = 3898 Na;5Cl4Li system, cor-
responding to the lowest 6.6% of the spectrum. In order to
clearly address the performance of each algorithm, the numer-
ical results on the plots are discussed independently for each
solver.

BChDav — In both figures the behavior of this algorithm is
clearly influenced by the outer-iteration index; in the first half
of the sequence the solver does not gain almost any advantage
from the use of approximate solutions and only in the second
half it does experience a limited speed-up, never reaching val-
ues higher than 1.5X. In particular, plot (a) of Figure [2] shows
the solver is actually penalized by the approximate eigenvectors
and slows down at the beginning of the sequence. This anoma-
lous behavior of BChDav could largely be caused by its non-
optimal use. In particular the Chebyshev filtering step could
be aligning more than one approximate eigenvector along the
same direction leading to a rank deficient subspace. This fact in
combination with the modest size of the matrices may explain
the negative speed-up for the first outer-iterations.

For a larger matrix system (see plot (a) of Figure[3)) we again
observe that BChDav does not take much advantage of the ap-
proximate solutions at the beginning of the sequence but it is
at least not penalized by them. Despite its limited speed-up,
CPU timings decrease substantially as the iteration index grows
when the solver is fed approximate vectors. In turn this obser-
vation indicates that the correlation among eigenvectors in the
sequence has nonetheless a certain influence on the behavior of
the eigensolver.

Lobpcg — Quite different is the performance of Lobpcg: this
solver has speed-ups larger than 1.5X already at the beginning
of the sequence. Both figures show that as the sequence pro-
gresses, Lobpcg speed-up presents moderate oscillations instead
of a steady increase. Moreover while it reaches more than 2.5X
for the last two outer-iteration indices of the CaFe,As; system,
it never does so for the larger system. The oscillation could
be the consequence of different eigenvalue clustering for eigen-
problems of distinct iteration indices. The decrease in speed-up
for the larger system can be explained by the effectiveness of
the conjugate gradient method to converge vectors even when
Lobpcg is inputted random vectors. Conversely this trend im-
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Figure 2: Comparison between the 3 most effective block iterative eigensolvers
for CaFeyAsy with respect to the outer-iteration index.

plies a decreasing threshold for the speed-up for larger matrix
sizes as signaled by the flattening of the CPU time curve in go-
ing from Figure 2] to Figure 3] This last observation suggests
that, despite the nice speed-up, Lobpcg may take less and less
advantage of approximate solutions as the size of the eigenprob-
lem increases.

ChFSI — Among all the eigensolvers ChFSI seems to be able to
take greater advantage of the approximate solutions and have a
more predictable behavior: in plot (a) of Figure [2]its speed-up
proceeds in 3 different steps jumping from ~ 1.8X to ~ 2.2X
and to almost 3X at the end of the sequence. In Figure [3] the
same trend appears in just two steps: ChFSI speed-up starts
at ~ 2X and reaches just above 3X towards the end of the se-
quence. In the next subsection we explain in more detail the
reasons for this step-like behavior. For the moment it is enough
to say that ChFSI exploitation of approximate solutions seems
to increase with the matrix size. This aspect together with the
fact that its CPU time curve is not very different from Lobpcg’s

delivers a better promise for this eigensolver to be the optimal
one to take advantage of the correlation magnification as the
sequence progresses. With this last consideration in mind we
decided to single out ChFSI and implement it in the more effi-
cient C programming language in order to be able to evaluate
its performance and scalability.

Speed-up vs. lteration index for Na1SCI14Li (n=3893)
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Figure 3: Comparison between the 3 most effective block iterative eigensolvers
for NaysCly4Li with respect to the outer-iteration index.

We conclude this small section reiterating that, despite the
differences in their behavior, all eigensolvers considered suc-
ceed to exploit the eigenvectors increasing collinearity, con-
firming the expectations that motivated this study.

3.3.2. The performance of ChFSI

The numerical tests of this section have their origin in an C
language implementation of ChFSI that, for sake of clarity, we
will refer to as ChFSIc. Besides being able to carry out per-
formance tests, this implementation also allows us to run ChF-
Slc on JUROPA, a Jiilich-based general purpose cluster with a



large memory per node (24 Gb). We are able now to run the
same tests of Section [3.3.1] on the larger matrix size systems
of Table [I] The immediate objective is to verify the claim we
made over the proportionality between eigenproblem size and
effectivity of the algorithm to exploit approximate solutions.

Figure [ clearly shows a tendency for the speed-up to grow
as the size of the matrices increases. A closer analysis suggests
that the extent of the speed-up is not only influenced by the
iteration index, but additionally by the sought-after eigenspec-
trum fraction. From both plots it seems that both factors play
a not-easy-to-predict role in the trend towards higher effectiv-
ity. A closer look at the algorithm (see Algorithm [I) reveals
that speed-up is strongly related to the number of inner-loops
that are necessary for all the eigenpairs to converge. Experi-
mentally we observed that the total number of loops required
by any eigenproblem is well below 10 and tends to decrease
suddenly by one or more units every few outer-iteration cycles.
For larger eigenproblem sizes this transition typically happens
at later outer-iteration indices. For instance in plot (a) of Figure
[] the number of inner loops goes from 4 to 3 at the ninth itera-
tion for n = 6217, while the same change happens at the twelfth
iteration for n = 9273.

Table 4: Number of inner loop and filtered vectors w.r.t. iteration index for
n=_8970

Tteration

Index 11 12 13 17 18 19 20 21
Number

of loops 6 6 5 5 4 5 4 4
Number of
filtered vectors || 2794 | 2366 | 1999 1839 | 1766 | 1807 | 1711 | 1680

In the same figure plot (b) follows the same trend of plot
(a) with the difference that the speed-up amplification is more
gradual than step-like. Consider for example the n = 8970 case,
and observe the increase in speed-up from iteration index 10 on
with the help of the data printed in Table [ We can notice
that there are two jumps in the number of loops: a sharp one
between indices 12 and 13 where the total number of filtered
vectors decreases suddenly by a factor of more than 200, and a
less definite one across the range of indices 17-20. In the latter
the total number of filtered vectors does not change so dramat-
ically. In practice progressively less vectors are filtered during
the fifth loop and progressively more by the fourth loop. There
is not a sharp transition here probably due to the absence of a
large block of vectors that suddenly succeed to converge during
the fourth loop. This behavior of the algorithm does not make
it less effective but indicates that eigenproblems appearing in
materials without an energy gap can affect the behavior of the
filter.

Since realistic utilization of an iterative eigensolver in a
FLAPW-based code requires evidence of scalability when used
on multiple cores, we proceeded to test ChFSIc in a final set of
numerical tests. From the pie chart in Figure[5]one can observe
that the great majority of computational time for the sequential
code is spent on the Chebyshev filter fraction (see Algorithm|T)).
The data refers to the algorithm as used with approximate so-
lutions and the fractions of computational time remain pretty
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Figure 4: Speed-up for distinct matrix sizes. The matrix sizes are determined
by distinct choices for Kmax: namely Kmax = [3.0 3.5 4.0] for Na;5Cly4Li, and
Kmax = [3.0 3.5] for AuggAgio. The speed-up is plotted with respect to the
outer-iteration index.

much the same for any system tested. In turn this chart sug-
gests that parallelizing the filter is the first priority in order to
scale on many cores. Since the Chebysheyv filter uses almost en-
tirely BLAS-3 kernels, it seems natural to call a multi-threaded
version of BLAS.

For our tests we used MKL BLAS version 11.0 (Intel com-
piler version 12.0.3) over the possible range of cores available
on one node of JUROPA. In plot (b) of Figure [5|speed-up of to-
tal execution of ChFSIc w.r.t. the number of cores is illustrated
for three larger increasingly eigenproblems. As expected, the
larger the physical systems the better it scales over an increas-
ing number of cores. What is remarkable is the efficiency of
the algorithm: due to the repetitive use of the ZGEMM routine
by the polynomial filter, its scalability is as close to ideal as one
can hope for. Clearly we do not claim this is the whole story, but



it is suggestive of what ChFSIc could deliver when opportunely
parallelized for a larger number of cores. Ultimately such a par-
allelization would allow the community of computational ma-
terials scientists to simulate larger and larger systems: an objec-
tive that is difficult to achieve with the present implementations
of FLAPW-based codes.

Residuals convergence

/Rayleigh—Ritz

Lanczos <1%

\

Chebyshev filter
90%

(a) CPU time for sequential fractions of the algorithm. The fractions refer to com-

putation on the n=8970 system.
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Figure 5: The ChFSIc promise for optimal scalability. All measurements refer
to the use of the algorithm when inputted approximate solutions.

4. Summary and conclusions

Sequences of generalized eigenvalue problems emerge in many
common applications. In DFT they arise quite naturally in the
search for a self-consistent solution for a set of coupled non-
linear eigenvalue equations. In the FLAPW method, the matrix
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pencils making up each sequence are dense and are generally
solved in isolation using direct solvers straight out of standard
libraries. In this paper we started off from the idea that a se-
quence of eigenproblems should be considered as a whole and
solved accordingly. The final aim is to uncover the possibil-
ity of a different approach where the connecting factor between
eigenproblems can be exploited to accelerate the solution of the
entire sequence.

To this end we illustrate the existence of the correlation be-
tween eigenpencils: subspace angles between eigenvectors of
adjacent problems decrease monotonically as the sequence pro-
gresses towards convergence of the FLAPW DFT self-consistent
cycle. In other words, eigenproblems of growing outer-iteration
indices enjoy increasingly collinear eigenvectors. Our approach
focuses on exploiting this property of the sequence by employ-
ing an iterative eigensolver tailored to accept the solution of an
eigenproblem at a certain iteration to solve the eigenproblem at
the next one. Out of the several variants of currently available
iterative methods we selected three promising eigensolvers and
proceeded to devise numerical experiments to test the alterna-
tive approach. In the context of the FLAPW method this is a
novel and unexplored methodology.

The block solvers we evaluate represent three different classes
of iterative methods: Davidson, conjugate gradient and sub-
space iteration methods. We carried out an exhaustive series
of CPU time measurements for each algorithm. Times to reach
solution were taken initializing the solvers with both random
vectors and approximate solutions with respect to the outer-
iteration index. Each measurement was performed for eigen-
problems of different sizes, a 5-10% range of sought-after eigen-
spectrum, and sequences {P“)} of increasing length. Speed-
ups were plotted as the ratio between “random” over “approxi-
mate” CPU times.

The numerical results show that all eigensolvers take an in-
creasing advantage of the approximate solutions as the outer-
iteration index increases. While BChDav is probably over pe-
nalized by its use on dense eigenproblems, Lobpcg and ChFSI
seem to be able to counter-balance their non-optimal use by
substantially increasing their performance. In particular both
solvers experience a speed-up larger than 2.5X towards the end
of the sequence. These results carry evidence that a different
approach to solve sequences of correlated eigenproblems aris-
ing in DFT is not only possible but desirable.

Among the three solvers ChFSI seems to have an extra per-
formance edge thanks to a consistent increase of effectivity for
larger sized systems. This result is confirmed by numerical
tests run on a C language version of the algorithm and it is fur-
ther strengthened by the promise for excellent scalability of this
eigensolver: when the solver is run in a multi-threaded BLAS
environment it scales increasingly better for larger sized eigen-
problems reaching an efficiency above 85%. Since the size of
the eigenproblems depends linearly on the number of atoms,
optimal scalability is the crucial element which enables the use
of a larger number of processors in order to maximally expand
the size of the physical system that can be simulated [[16].

In conclusion we observe that out of three iterative block
eigensolvers, two of them greatly benefit from the use of ap-



proximated solutions. This result indicates the possibility of a
different strategy in solving sequences of dense eigenproblems
in the context of DFT. Instead of using a direct solver for each
single eigenproblem in isolation it could be more efficient to ex-
ploit the numerical properties of the sequence as a whole. Even-
tually this change in strategy could lead to substantial speed-up
of the entire self-consistent outer-iterative process.

While our conclusions constitute a proof of concept, they
do not claim to be an exhaustive performance analysis. Some of
the described algorithms are already available on working plat-
forms more appropriate for performance studies [17]. More-
over, current efforts are underway to parallelize ChFSIc for
shared, distributed and hybrid architectures and a thorough study
on its performance will be presented in a follow-up publica-
tion. Eventually, our goal is to conclusively demonstrate that,
despite the dense nature of DFT eigenproblems, a promising
block iterative eigensolver like ChFSIc together with an appro-
priate strategy to reuse previous solutions, can be competitive
with direct solvers when only a fraction of the eigenspectrum is
sought after.
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