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Abstract

The numerical instability observed in the Electromagnetic-Particle-in-cell
(EM-PIC) simulations with a plasma drifting with relativistic velocities is
studied using both theory and computer simulations. We derive the numer-
ical dispersion relation for a cold plasma drifting with a relativistic velocity
and find an instability attributed to the coupling between the beam modes of
the drifting plasma and the electromagnetic modes in the system. The char-
acteristic pattern of the instability in Fourier space for various simulation se-
tups and Maxwell Equation solvers are explored by solving the corresponding
numerical dispersion relations. Furthermore, based upon these characteristic
patterns we derive an asymptotic expression for the instability growth rate.
The asymptotic expression greatly speeds up the calculation of instability
growth rate and makes the parameter scan for minimal growth rate feasible
even for full three dimensions. The results are compared against simulation
results and good agreement is found. These results can be used as a guide
to develop possible approaches to mitigate the instability. We examine the
use of a spectral solver and show that such a solver when combined with a
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low pass filter with a cutoff value of |l¥ | essentially eliminates the instability
while not modifying modes of physical interest. The use of spectral solver
also provides minimal errors to electromagnetic modes in the lowest Brillouin
zones.

Keywords: Particle-in-cell, plasma simulation, relativistic plasma drift,
numerical dispersion relation, numerical instability, numerical Cherenkov
radiation

1. Introduction

The effect of finite grid size and finite time step in electromagnetic sim-
ulations using the particle-in-cell method has been extensively studied both
theoretically and in simulations [I, 2, B, 4]. Understanding these effects
are crucial when one tries to separate numerical artifacts from real plasma
phenomena. In recent years simulations with plasmas drifting with relativis-
tic speeds have been conducted extensively, owing to using Lorentz boosted
frames for the study of Laser Wakefield Acceleration (LWFA) [7, 8, O, [10]
and for the study of relativistic collisionless shocks. These simulations have
revealed a numerical instability which only occurs in multi-dimensions and
which limits the range of parameters that can be explored in Lorentz boosted
frame simulations of LWFA and relativistic shocks [11, 12]. Godfrey stud-
ied the numerical instability induced by the a plasma drifting in 1D [3] and
in multi-dimensions [4]. These analysis did not include relativistic mass ef-
fects in the plasma response (and therefore did not include relativistic drifts)
and were applied to a code that solved the scalar and vector potential using
the Coulomb gauge. However, most present day codes solve directly for the
electric and magnetic fields and use a rigorous charge conserving current de-
position. Recent results indicate that there is only an instability in 2D and
3D [8, 10].

To better understand and with the hope of mitigating the observed insta-
bility, we present here an analysis of the numerical instability for a plasma
drifting relativistically in multi-dimensions in which the electric field £ and
magnetic field B are solved for directly and where only a current deposit is
included. We follow the basic method and notation of [4] and concentrate on
situations where the plasma is cold but is drifting near the speed of light. The
dispersion relation can be applied for various Maxwell field solvers and it in-
cludes finite size particle and aliasing effects. The dispersion relation reduces



to purely longitudinal plasma waves and purely transverse light waves in a
drifting plasma in the appropriate limits. The dispersion relation predicts
the growth rates and range (pattern) of unstable modes in Fourier space. By
comparing the theoretical predictions against the simulation results using the
EM-PIC FDTD code OSIRIS [13] and the UCLA PIC Framework [14] which
is based on spectral solver, we conclude that the observed instability is in-
deed induced by the relativistic plasma drift (and not due to under-resolved
backscattered radiation). It is found that the unstable modes lie near the
intersection between beam modes and transverse EM modes. We use this
fact to develop asymptotic expressions for the instability growth rate. These
observations can then be used as a guide for selecting alternative Maxwell
Equation solvers and smoothing schemes to mitigate the instability. Specif-
ically, we show that a spectral solver together with a cutoff filter in k space
can eliminate the instability.

The remainder of this paper is organized as follows. We first derive the
multi-dimensional numerical dispersion relation in section 2} In section [3] we
use the 2D dispersion relation obtained in section [2| to study the numerical
instability induced by relativistic plasma drift. The theoretical results are
compared against the simulation results, and good agreement is found. After
including a minor correction in an earlier version our dispersion relation now
predicts the time steps for which the minimal instability growth rate was
observed after reading Ref. [6]. We then use these results as a guide to
discuss the methods for mitigating this instability. It is found that by using
a spectral solver to advance the EM field in Fourier space (which supports
light waves with phase velocity greater than plasma drifting velocity), we
can obtain desirable patterns of the instability which makes the mitigation
of it more convenient. To better explore the instability in 3D scenario, we
developed an asymptotic form of the instability growth rate in section 5], and
used it to explain the observation that minimal growth rates occur under
certain time steps, as reported in [8]. Conclusions and direction for future
work are presented in section [} The detailed form of the field interpolation
functions, as well as the finite difference operator used in this paper are listed
in |[Append A



2. Numerical dispersion relation for cold plasma drift

2.1. Derwation of dispersion relation

We mainly follow the notation in Ref. [4] to derive the numerical disper-
sion relation for a cold plasma drifting with relativistic speeds. We note that
the multi-dimensional analysis in [4] solves for ¢ and A and is not valid for
relativistic drifts, and the 1D analysis in [3] predicts growth in 1D. On the
other hand, our analysis includes relativistic mass effects, is valid in multi-
dimensions, and it predicts instability only in multi-dimensions (in agreement
with our simulations). Since most EM-PIC codes now in use solve for the
electric field E and magnetic field B directly (with finite difference or spec-
tral solvers), we derive a numerical dispersion relation directly using these
two quantities. Gaussian units will be used; in addition, particle mass and
velocity will be normalized to electron mass and the speed of light.

For a multi-dimensional simulation setup in Cartesian coordinates, the
EM field interpolated on a particle can be expressed as

E(t.7) =" E;(t, m, T, i) B
B(t.#) = Sa(t.m. &,i0) B

m,n

where m is the time index and 77 is the grid index; ? is the interpolation
dyadic used to obtain the appropriate field at ¥ and ¢t = mAt; E,, 7 and B,, 5
stands for the electromagnetic forces at time grid index m and space grid

index 7. For momentum conserving field interpolation g and Sg are equal
and are scalar functions times the unit dyadic while for energy conserving field
interpolation @ and Sp are not equal in each direction (the interpolation

dyadics for E, E, and ; are given in [Appendix Al). The momentum change

of the particle is related to the change in the distribution function of the
plasma by the linearized Vlasov equation
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where p'is the particle momentum, and + is the particle Lorentz factor. After
Fourier transforming, the Vlasov Equation becomes
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Note that E and B are defined at the discrete grid position and discrete
time step, so its Fourier transform in (w, k) is periodic, i.e.,

E(w, k) =EW, k)  Bwk)=BW, k) (2)
where
W' = w+ pwy wg:2—7T pw=0,+1,+£2 ...
At
k/ = kz+yzkgz kgi = 2—7T v; :0,:]:1,:]:2, (3)
! Ax;

Note that when the EM field are staggered (such as on a Yee mesh), there
is an addition (—1)2:" term in E(w’, k') and B(w', k'), where 7 is summed
over the directions for which the EM fields are half—grld offset [5]; we absorb

these additional terms into ? and ? to keep Eq. correct (see|Appendi
A).
Replacing (w, lg) with (v, lg’) in Eq. , and using Eq. , we obtain
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The current density j due to the movement of the particles can be ex-
pressed as

7t %) :q/<S_>(x —m)v F({m+ 1/2}AL 7, 5)dT dp

<>
where S; (2 — Z) is the dyadic for the current deposit. After Fourier trans-
forming we obtain
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We can now proceed in the normal way to obtain a dispersion relation.
We start from Faraday’s and Ampere’s Law,
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which upon Fourier transforming gives,

[
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|k|g and [k]|p are the finite difference operator of the corresponding Maxwell
solver schemes for £ and B fields. We follow the notation in Ref. [4], and

-
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use [-| exclusively to indicate the finite difference operator. Applying [k]p x
to both sides of Eq. @, we end up with the coupled wave equation for E
and 7,

([w]? = [k]& - [K]5 + [K|e[k]p) E = —4milw]j 8)

Using Eq. and , we could obtain
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and if we normalize the distribution function such that fy = ngfj, use the
definition of plasma frequency

w2 = 4rg°ng (10)

and use the expression for the distribution function in Eq. , we finally
obtain
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which is a generalized dispersion relation for a plasma of finite size particles
drifting on a grid. We note that the use of additional smoothers and filters
can be incorporated into the dispersion relation by adding additional Sgp; (k')
terms outside the summation over Brillouin zones (essentially it multiplies
the w? term).



2.2. Elements of dispersion relation tensor

We next examine the dispersion relation in the limit of a cold plasma
including the possibility that the drift is near the speed of light.

2.2.1. 3D case

Note that ? for the fields and the current has only three diagonal el-
ements S;, Sa, Ss in each case. In 3D, we can expand Eq. explicitly
as

([w)* = [k (K] By — [F]2[k] B2 — [F]Es[k]Bs) By + (K] (K] g1 By + [K]g1[K] B2 B + [K] 1 (K] B3 Es
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Yw]SE2Es + p3Spi([k] g2 Es — [k g3 E2) + p1Sps([k] g2 Er — [/f]E1E2)
V[W]SE3E3 +p1532([k5]E3E1 - [k]ElE?,) + p2531([k3]E3E2 - [k]EZE?))
(12)
This can be rewritten as
. €11 €12 €13 Ey
?(w, ]{?)E = €21 €922 €923 EQ =0 (13)
€31 €32 €33 Es

where we note that €’ is not the dielectric tensor. In addition, we are most
interested in a cold plasma that is drifting. For such a case, the unperturbed
distribution function is given by

fo = 0(p1 — po)d(p2)d(ps) (14)

where pg = yvg, and vy is the drifting velocity of the plasma. Substituting the
above form for fy, Eq. , into Eq. , and carrying out the integration



we obtain after some algebra all the elements in the tensor as
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(15)
The dispersion relation is then finally obtained from the condition that
Det(%€’) = 0 (16)
which is valid in any number of dimensions.

2.2.2. 1D and 2D case

Much can be learned from examining the 1D and 2D limits to the general
dispersion relation. In 1D simulations all physical quantities only depend on
one coordinate x1, hence [E], lg, and K/ only have the I-component. It follows



then that the elements of the ¢’ are

€11 = [w]2 — ﬁ Z(_Du JlSEl[ ] /7

T (v’ —klvo)
(S Spgslk|g1v
€22 = €33 = [W] [ El Bl - Z ]2 EQ(E)]— kiiz[ ]El 0)
€12 = €13 = €91 = €23 = €31 — €32 = O (17)

Using Eq. , the dispersion relation for the 1D case is three uncoupled
modes,

€11 = 0 €99 — 0 (18)

where each mode corresponds to separate components of the electric fields
Ey, E5, and Ej respectively. Each of these modes is numerically stable as
long as At is sufficiently small. If we take the limit At — 0, and Az — 0,
then Eq. and reduce to the dispersion relations in a real drifting
plasma (which is completely stable).

Similarly, the elements of ¢’ in the 2D limit can be written as

€11 = [w]? — [K]pa[k]B2 — 2 Z Si(Sp1w'[w [(u]y/f ];Zv‘jf;[k]mkévg)
€12 = [K]m[k]p2 — = Z w k3055 *?jQE]k/U;§3UO[k]E1)

€22 = [w]* — [K] g [k]p1 — —Z Sj2 SEQ[ ] :Jzz[k]mvo)

e33 = (W] — [k]m[K]p1 — [K]m2[k] B2 — =~ Z 58 SE3[ ] liis[k]m%)
€13 = €93 = €31 = €33 = 0 (19)

Using Eq. , we can obtain the dispersion relation for the 2D case

€11€22 — €12€91 = 0 €33 =0 (20)



Note that Fj5 is de-coupled from the other two directions.

The numerical features of a particular simulation setup can now be in-
vestigated by solving the corresponding numerical dispersion relation. Due
to the use of the finite space and time steps, these dispersion relations not
only contain terms from the lowest order Brillouin zones (1 = 0 and 7 = 0),
but also the space aliasing (summation over /) and time aliasin%(summation

over 1) terms [I]. The elements of the interpolation dyadic S, and finite
difference operators [-| comes into the expression due to the finite difference
treatments when depositing currents and EM fields, and when solving the
Maxwell Equations. The modifications to the dispersion relation leads to
numerical instability in the otherwise stable physical system [I, 2], B3], 4].

2.8. Beam modes and EM modes

The 1D, 2D, and 3D dispersion relations show that a drifting plasma leads
to beam modes in the dispersion relation that are associated with longitudinal
oscillations. A beam mode roughly satisfies the dispersion relation

2

. w
(W — kjvg)? = 75 ~0 (21)

In addition, a drifting plasma also supports transverse EM waves that
are described by the dispersion relation

-, -, w2

M—[]E'k]BZTPNO (22)

which for the high gammas are the dispersion relation on the grid for trans-
verse EM modes in vacuum. In 3D, as the three components of the electric
field are coupled, we expect to find instabilities near the intersections of the
EM modes and beam modes in (ki, ko, and k3) space. However, in 2D FEj is
de-coupled from FE; and FEy; thus the instability (coupling) can only occur in
k1 and ks space.

In 1D, all the three components of the electric field are de-coupled so
instability can only occur if either the longitudinal beam or transverse EM
mode are numerically unstable themselves. We next concentrate on the 2D
case since it is easier than the 3D but it still has the possibility of numerically
unstable modes.

As we show next, we observe in the simulations and in the solutions to our
dispersion relation that in fact the unstable wave numbers and frequencies

10



lie at the intersection of w’ — kjvg = 0 (which we refer to as a vacuum beam
mode) and the vacuum dispersion relation for EM waves. We will use this
observation to derive asymptotic growth rates for the instability in section [5]

3. Numerical instability induced by relativistic plasma drift

3.1. Theoretical analysis of 2D dispersion relation

Without loss of generality, we use the results in section [2| to study the
numerical instability induced by the relativistic plasma drift in a 2D system.
According to the dispersion relation in 2D, we expect to observe instability
in Fy (and Bs). By calculating the maximum imaginary part of w for real
values of (k1, ko) for Eq. , we can obtain the characteristic pattern of the
instability in Fourier space, as well as the growth rate of the instability. We
can also plot the real part of w for ki, k. These results can be used later to
compare with the simulation results.

The dispersion relation is general and can be used to examine differ-
ent choices in Maxwell Equation solvers, in differences between energy and
momentum conserving field interpolation, in differences between charge con-
serving and direct current deposition schemes, and the use of smoothing and
low pass filters. In this paper, we are emphasizing that our dispersion re-
lation agrees well with the simulation results for cases studied, that we can
predict the region of unstable modes by plotting where the beam and EM
modes intersect in k and w space; that we can obtain an asymptotic expres-
sion for the growth in 3D which agrees well with the simulation for various
finite difference solvers (including the values of At tht minimize the growth
rate); and the advantages of using a spectral solver from the point of view of
eliminating the instability and not attempting to carry out a comprehensive
survey of all available choices listed above.

We illustrate the instability using a 2D case with the standard Yee solver
[15]. We choose the grid parameters and time step that satisfies the Courant
Condition [2] to eliminate known numerical instability from the EM modes.
We use the parameters in Tab. [I] and substitute the finite difference operator
for the Yee solver (see into the 2D dispersion relation. We
assume linear (area) interpolation, momentum conserving field interpolation,
and a charge conserving current deposition (see Appendix A).

After obtaining all the roots (w, k1, k2), we plot the dependence of the
growth rate in the (w,, k1) space [figure 1| (c)], as well as in the (k, ko) space
[figure [1| (d)]. It is evident that all the instabilities are near the main or
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Parameters Values

solver Yee

grid size (koAzy, koAzs) (0.1,0.1)
time step At 0.9x Courant limit
boundary condition Periodic
simulation box size (koL1, koLs) 51.2x25.6
plasma drifting velocity v = 50.0
plasma density n/ng =1

Table 1: Crucial simulation parameters for the 2D relativistic plasma drift simulation.

aliased beam modes. Since the terms with |u| < 1, and |v4| < 1 are the most
important, we neglect higher order terms when solving Eq. . Higher
order y and v terms can be included in the summation if needed. These ad-
ditional terms lead to additional unstable modes in (k1, k2) space with lower
growth rates as well as to small modifications to the growth rate and location
of the original modes. A plot in (kq, k2) space with more terms included are
presented in figure (1| (b), in which we use the asymptotic expression Eq.
for the growth rate (see section [5| for more details).

While the results in figure [I| (¢) and (d) are numerically calculated from
Eq. , the location of the unstable modes can also be conveniently pre-
dicted by plotting the intersection of the EM modes Eq. and beam
modes Eq. in (kq, ko, w,) space. This is shown in a 3D plot [figure
(a)]. By examining the unstable pattern in (ki, k2) space we see that the
central part of pattern comes from the intersections of the EM modes and
main beam mode (¢ = 0 and v = 0), while the part at the four corners can
be identified from the intersections of the EM modes and first order spatial
aliasing beam modes (¢ = 0 and v; = £1). As we argue in section [f a key
to mitigating the instability is to manipulate the instability pattern through
a careful choice of the Maxwell Equation solver. Making a plot in (ky, k2, w;)
of the intersection of the EM and beam modes for various solvers becomes a
useful method for examining where the unstable modes reside without having
to solve the full dispersion relation.

3.2. Simulation study of the instability

To compare with the results in section we conducted simulation stud-
ies in the 2D system using the EM-PIC code OSIRIS [13]. In these simu-
lations, a neutral plasma with both the ion and electrons drifting in z; at
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the same relativistic velocity of v = 50.0 is initialized throughout the en-
tire simulation box. Periodic boundary conditions for fields and particles are
used. Other crucial parameters for the simulation setup are identical to the
theoretical study in section [3.1]

As is shown in figure [2] (a), the total EM energy starts to grow violently
as the plasma drifts relativistically. The exponential growth indicates that
a numerical instability is occurring. In addition, the EM field energy in F,
and Bjs and that in F3 and By are shown separately. As predicted by the 2D
dispersion relation the E5 and By modes are stable and do not grow. The
pattern of E; at t = 100 w, ! is plotted in ﬁgure (e) and (f), and good
agreement for the location and relative amplitude of the unstable modes is
obtained when compared against the theoretical prediction [figure [1| (c) and
(d)).

The EM energy grows with a lower rate after ¢ = 110 w, " [figure 2| (a)].
The plasma density in this regime is highly modulated by the EM fields.
The first order perturbation in plasma electron density [figure [2| (b)] shows a
similar pattern as for Ey [figure [2| (d)] , which confirms they are coupling in
the system. Note that no exponential energy growth can be seen in the Fj
field [figure [2] (c)]

From the simulation we find that for later times after the instability has
evolved into a nonlinear state, the same pattern in (kq, ko) space as that of the
linear regime still exists. This indicates that the instability will remain near
the intersections of the EM modes and beam modes and that both the linear
and nonlinear growth can be mitigated through eliminating or controlling
the intersections.

We also carried out a numerical investigation of the 1D dispersion relation
Eq. , and using the same simulation parameters as in Tab.
(with the 1D Courant condition). This confirms that there is no numerical
instability under these parameters which is expected since E; is de-coupled
from E5 and Ej3 in Eq. and each mode is itself stable.

We have done the same simulation studies on the use of other finite dif-
ference solvers beside the Yee solver, including the Karkkainen [8, [16] and
4th-order solver [17]. Good agreement between theory and simulations was
also found [I§]. Some results are shown in figure [5| and discussed in section

6.2
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4. Mitigation of numerical instability

Due to the fact that the EM dispersion curves for the Yee solver inevitably
bends down at high ky/kg [c.f. figure|1] (c)] such that the phase velocity of
electromagnetic (EM) waves on the grid is less than the plasma drifting
velocity then an instability is found at the low |k| region in the (ki, k)
space due to the fact that the beam mode can intersect the EM modes. In
addition, there can be instability at high |k| near the intersection of the EM
mode and the first order space aliasing beam mode (v; = £1). According
to the numerical dispersion relation, the high |E | part due to aliasing can be
conveniently smoothed out by applying low pass smoothing to the current
(and/or EM field) when pushing the particles. However, the part due to
intersection at the main beam mode is more difficult to mitigate, since the
physics we want to simulate can reside in this region.

Results from OSIRIS simulations with the Yee solver, linear order parti-
cles, and momentum conserving field interpolation with and without current
smoothing are presented in figure |3| (a)—(c). In the smoothing case 4-pass
binary smoothing (1,2,1) with 1-pass compensator (-5,14,5) is applied to
the current. We can see that the part near the first aliasing beam modes
(v = £1) is greatly reduced, while that at the main beam mode (v = 0) in
the low || region is still present.

We next explore the use of a spectral solver to eliminate the intersection
of the EM mode with the main beam mode. The use of spectral solver
to advance the EM field in Fourier space leads to the EM modes on the
grid having phase velocities greater than the drifting velocity of the plasma
which prevents any coupling with the main beam mode [3, [19]. As shown in
figure {4 (a), the intersection of the EM and beam modes occur first at the
v1 = +1 beam mode. Since the EM dispersion surface is a cone in (ki k2, w,.)
plot, we would expect its intersection with the aliasing beam modes to be
part of an ellipse that resides at high |l§| region. Numerical results obtained
by solving the corresponding numerical dispersion relation (spectral solver,
linear shaped particles, momentum conserving field interpolation, and direct
current deposit) are presented in figure {4| (b) and (c), which confirms the
empirical prediction in figure [ (a).

Moreover, since we are advancing the EM field in the Fourier space, it is
easy to apply customized filters directly to the EM field. In figure 3| (a), (d),
(e), we present simulation results using the spectral solver in the UCLA PIC
Framework [14]. We show results where no filter is used, where a Gaussian
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shaped low-pass filter is used, and where a low pass filter with a hard cutoff
is used. The Gaussian shaped filter was of the form, exp(—|k|2/a2), with
a = 0.9k; the RMS width of the filter in Fourier space, and the low pass
filter with a hard cutoff set modes with |k| > 0.9k, to zero. As we can see in
the hard cutoff case, the instability at 1y = £1 is essentially eliminated from
the simulation, thus only leaving instability with higher order terms. This is
confirmed by the fact that the energy of the transverse EM modes remains
at a very low level [figure [3] (a)].

5. Asymptotic expression for instability growth rate

5.1. Derivation of asymptotic expression

In section [3] we obtained the instability pattern and growth rate by nu-
merically solving the dispersion relation equation, which is feasible on a mod-
ern laptop computer in 2D scenario, but much more difficult in 3D. As men-
tioned above, we observed the highest growth rate at the intersections of
the beam modes and EM modes. Taking advantage of this observation, we
here derive an asymptotic expression for the solutions near the beam mode
w' = Kkjvg. These expressions will not only speed up the instability pat-
tern analysis in 3D, but also provide more insights into the dependence of
instability pattern and growth rate to the grid sizes and time step used in
simulation.

We denote the terms which are summing over p and 7 in ¢;; as @5, i.e.

€11 = [w]2 - [k]Ez[k]Bz - [k]Ez[k]st - Qn €12 = [k El[k]Bz - Q12 €13 = [k]El[k]BS - Q13
€21 = [k‘]Ez [k]Bl — Q2 €22 = [w]2 - [k]El [k‘]Bl - [k’]E3[k?]Bs — Q2 €23 = [k‘]Ez [k’]B?,
€31 = [k]E3[k]B1 — Q31 €32 = [k]E:S [k]BQ €33 = [cu]2 - [k]m [k?]m - [k?]m [/f]m — @33

We expand w’ around the beam mode w’ = kjvy, and write w’ = kjvy + 0w/,
where 0w’ is a small term. In addition, we will use the relativistic limit
vp — 1. We will also truncate the summation over v, and 5, keeping only
the vy = v3 = 0 terms. Using det(?) = 0, and dropping terms of higher
order of (w?/7)?%, (w?/v)3, ..., we can obtain

Aow? + Bow +C, =0 (23)
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where

Ay = [w]? ([w)* = [kl [K] 31 — (K] malk] B2 — [K]ms[k] Bs)
By = [k]p1[k]p2Qa1 + [K] g1 [kl B3Q31 — ([w]* — [K]E2[k]B2) Qa2 — (W] — [K]Es[k]Bs) Qss
Ci=— ([w]2 — [k]m[k]m) Q11 + [kl p2[k]B1Q12 + [kl e3[k] g1 Q13 (24)

Now we use the condition that (', k}) sits near the EM modes,
(w]* = [k]palK] p1 + [k]p2lk] 52 + [K] B3] B3 (25)

We further expand the finite difference operator [w] = & + 0w'&;, where

_ sin(kAL/2) -
0= T/2 51 = COS(kAt/Q) (26)
and
/; = kl + Vlkgl — MWy (27)

We further expand [w] to first order in A; since this term is sensitive near
the EM mode, while keeping only zero order of [w] in By, and C;. We then
obtain a cubic equation

Agéwlg + BQ(S(.UQ + CQ(SCL)/ + D2 =0 (28)
with the coefficients

Ay = 2856

By = & [&5 — (K g1 [K] g1 + (K] p2[k] B2 + [K] ms[K] gs)]

Co = (k|1 (k] 2Qa + [Fle1 [kl p3Qs1 — (53 - [k]EQ[k]BQ) Q22 — (53 - [k]EB[k]BB) 33
Dy = — (53 — [k g1 k] 1) Qu + (K] g2k 1Q12 + [K]p3 (k] 31 Qus (29)

When calculating the instability growth rate, we obtain the imaginary part

of roots %{&u'(%, w, 1)} for each p and vy by solving Eq. 1'1' and the
growth rate I'(kg) for a particular mode kq is chosen to be max{S{dw’(ko, 11, 1)} }.
When solving for each ${dw’ (lg, i, 1)}, we only keep the corresponding p and

11 terms in the above cubic equation. Eq. 1) can be used to plot the
growth rate in Fourier space, and can be conveniently simplified to 2D. In fig-
ure [1| (b) we plot the asymptotic instability growth rate with u =0, 14| < 4

for 2D Yee solver using the same parameter listed in table [T}
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Near the transverse EM modes [w]? ~ &2 ~ [k]z - [F] 5, we can drop the B,
term in Eq. . According to our numerical results, we can further simplify
the analytical expressions by dropping the small C5 term. The asymptotic

growth rate I'(k) for this mode corresponds to the maximum imaginary part
for the three roots,

TN o \/g (fg - [k]El[k]Bl) Qll - [k]E2[k]B1Q12 - [k]E3[k]BlQ13 1/
Ho~ ‘ 26361
V3|35 {(Spao = Spalk]m) (K paks + (S2b0 — Sealkp1) [Fesks} v
2 2’75851
(30)

This expression shows the relation between the instability growth rate and
grid sizes, time step, interpolation and smoothing functions, and finite dif-
ference operators. Note that from the positions of the interpolation func-
tions we could immediately see that using higher particle shape, or using a
stronger smoother helps mitigate the instability pattern at high |IZ| region,
which agrees well with our simulation.

5.2. Parameter scans for minimal instability growth rate

With the asymptotic expression Eq. —, and also Eq. , we can
greatly speed up the solution of numerical dispersion relation in 2D and 3D.

In addition, the asymptotic expression makes the parameter scan to study
the dependence of instability pattern and growth rate between various grid
sizes and time step more convenient.

In figure , we scanned the grid sizes Az and time step At/Ax; for the 2D
and 3D Yee solver, and Karkkainen solver, and compared the growth rates
with the OSIRIS simulations. We have kept Az; = Axzs(= Axj) during
the parameter scan for 2D (and 3D). We likewise plotted out the OSIRIS
simulation data for Az; = 0.1 together with the asymptotic data (similar to
the plots in Ref. [0]). There are several interesting points worth noting in
figure [5l First, we can see there is a “magic time step” [8] At,,/Ax; where
the growth rate is minimized in most cases; on the other hand, the instability
growth rate decreases monotonically as the grid sizes increases; second, when
the grid sizes are square (2D) or cubic (3D), the “magic time step” At,,/Ax;
is an invariant for different Az, in both the momentum conserving (MC)
scheme, and energy conserving (EC) scheme; third, the instability growth
rate for 2D and 3D are nearly the same for given Az; and At/Ax; under
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the same field interpolation scheme; the values for the magic time steps are
also nearly the same in 2D and 3D (note that according to the asymptotic
expression, the magic time step for Yee solver 3D EC scheme also resides at
around At,,/Ax; =~ 0.65, but we did not plot it out since that At,, is beyond
the Courant limit for this solver). The parameter scan using the asymptotic
expression for the Karkkainen solver with EC scheme shows the “magic time
step” at around At,,/Ax; = 0.7, which agrees with the results reported in
Ref. [§]. However, according to our simulation and theoretical results, we
found the “magic time step” not only in Karkkainen solver, but also in Yee
solver; and not only for EC scheme, but also for MC scheme. This is also
reported in [6] for the 2D cases.

The fact that the “magic time step” At,,/Ax; does not depend on Ax;
for square (and cubic) cell for the Yee and Karkkainen solver is evident from
Eq. (30). Applying the detailed form of finite difference operators [k|g; for
Yee and Karkkainen solver (note they have the same [k]p;, see[Appendix A)),
for both MC and EC scheme, the expression of I' can be expressed as |k}|'/3
times a function of At/Axy, and k[/k,;. (this function is different for different
field interpolation schemes). Since k]/ky; ranges from (—0.5,0.5) regardless
of Az, when calculating the growth rate, the extreme value of I" resides at
the same At/Ax; for different Ax; (although different field interpolation
schemes give different “magic time step”). In particular, in MC scheme the
terms

Sp3o — Sk2[k]p Spao — Seslk]p1 (31)

(or only the first one in 2D) in Eq. are zero when At/Ax; = 1/2 for
these two solvers. As a result, both Yee and Karkkainen solver reach the
minimal growth rate at At/Ax; = 1/2 in MC scheme, which agrees well
with OSIRIS simulations.

6. Conclusions and future work

We derived a general multi-dimensional numerical dispersion relation for
the relativistic plasma drift in the EM-PIC simulation that can include dif-
ferent choices in Maxwell solvers, differences between energy and momentum
conserving field interpolation, differences between charge conserving and di-
rect current deposition schemes, and the use of smoothing and low pass
filters. In this paper we emphasized trying to understand the source of the
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instability and the structures of the dispersion relation. We confirmed that
no instability occurs in 1D, and that in 2D and 3D a strong instability occurs
due to the coupling between beam modes and transverse EM modes in the
system. We can predict the pattern and growth rate of the instability for a
particular simulation by solving the corresponding numerical dispersion rela-
tions. An asymptotic expression which permits rapid parameter scan for the
ranges of unstable modes was derives. These results are compared against
simulation results using the EM-PIC code OSIRIS [13], as well as UCLA PIC
framework [I4], and good agreement is obtained.

Moreover, by plotting the intersection of the EM and beam modes in
(k1, ko, w,) space the numerical instability patterns can be conveniently pre-
dicted. Maxwell Solvers, such as spectral solvers, that have EM waves with
phase velocities greater than the plasma drifting velocity are therefore free
of any instability due to the main beam mode. We showed that the use of
a spectral solver does indeed eliminate any instability from the main beam
mode, leading to instability predominantly from coupling between the EM
wave and the lowest order aliased beam modes. This coupling exists only
at high |E\ area at the edge of the lowest order Brillouin zone. We showed
that a low pass filter with a hard cutoff can eliminate these modes without
effecting lower |E | modes that are physically important in a properly resolved
simulation.

In addition, by using the fact that the modes with highest growth rate are
found near the intersection of the beam modes and EM modes, we derived
an asymptotic expression for the growth rate that can be useful to study
the growth rates with various smoothing functions and different cell sizes.
The asymptotic expression speeds up the calculation of instability growth
rate and makes the investigation of instability pattern and growth rate in 3D
feasible. By conducting parameters scan using the asymptotic expression for
the Yee, and Karkkainen solver in 2D and 3D, we confirmed the “magic time
step” that minimize the growth rate, as reported in [§]. We found the ratio of
the magic time step over the grid size along the drifting direction, At,,/Ax;
is determined by the field interpolation scheme used in the simulation, yet
stays constant for different Ax;. These observations agree well with the
simulation results.

This paper reports on efforts to understand and mitigate the instability
in cases in which there is only a drifting plasma. Areas for future work
include trying to optimize the particle order, field smoother, and field solver
for mitigating this numerical instability in LWFA simulation, understanding
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how the various solvers and use of specific time steps effect the numerical
dispersion relation for light waves, and for studying if the use of the Yee
mesh together with a spectral solver also leads to an optimal time step.
In addition, future work should include exploring the tradeoffs in accuracy,
computational speed, and parallel scalability for the different choices.

This work was supported by DOE awards DE-FC02-07ER41500, de-sc0008491,
DE-FG02-92ER40727, and de-sc0008316, and by NSF grants NSF PHY-
0904039 and NSF PHY-0936266. Simulations were carried out on the UCLA
Hoffman 2 Cluster.

Appendix A. Interpolation dyadic and finite difference operator

In this appendix we will write out the explicit expressions for the in-
terpolation dyadics ? for the fields and the currents. For a momentum
conserving scheme, in 3D the interpolation dyadic for the EM field after the
Fourier transform can be expressed as:

SE1 = s11812513M  SE2 = 1151251312 SE3 = 51,151,251.373
Sp1 = COS(WAt/Q)51,181,281,37727]3 Spa = COS(WAt/2)Sl,181,281,37]1773
Sps = cos(wWAL/2)s;1512513MM2 (A.1)

where

 (sin(kAx/2) "™
S = (m) (A.2)

and n; = (¥, ( = —1 when the EM field has half-grid offset in the ¢ direction,
and ¢ = 1 when it is defined at grid point (this was the term missing in our
earlier version). [ refers to the order (I = 1 is area weighting or linear
interpolation for the charge).

For an energy conserving scheme, we have

Sg1 = S1-1,151,251,3M1 Spa = S1,151-1,251,372 Sp3 = 51,151,251-1,3"3
Sp1 = cos(wAt/2)s;151-1251-13M2M3  Sp2 = cos(WAL/2)S;_1,15251-1,3T 3
Sps = cos(WAL/2)s;-1151-1,251,3M72 (A.3)

For the rigorous charge conserving scheme (as is used in OSIRIS), the current
interpolation dyadic is approximately:

Si1 = S1—11812513M  Sj2 = S1181-1251302  Sjz = Si1S1251-1303  (A4)
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We note that the expressions for S; are strictly valid for the charge conserving
scheme in the limit of At — 0. Meanwhile, when the current is directly
deposited (as is done in the UPIC framework), the current interpolation
functions are,

Sjl = 51,151,251,3T Sj2 = 81,151,251,37)2 Sj3 = 51,151,251,37)3 (A‘5>

The space finite difference operator for the Yee solver is:

= "5 (A6)

and is the same for electric and magnetic field. The space finite difference
operator for the Karkkainen solver is the same as Yee solver for the magnetic
field, as for the electric field, we used

sin(k;Az;/2)

where

c1 = 01 + 202{cos(kaAxy) + cos(ksAxs)} + 465 cos(kaAxs) cos(ksAxs)

¢y = 01 4 202{cos(ksAx3) + cos(kiAxq)} + 463 cos(ksAxs) cos(k1Axy)

c3 = 01 + 205 {cos(k1Axy) + cos(kaAxy)} + 405 cos(k1 Axy) cos(koAxs)
A.

(A.8)

and
0, =7/12 Oy =1/12 05 = 1/48 (A.9)

are the tunable parameters for the Karkkainen solver [16]. The space finite
difference operator for the spectral solver is

[k]; = ki (A.10)

The time finite difference operator for the Yee, Karkkainen, and spectral
solver are the same

_ sin(wAt/2)

[w] = A2 (A.11)
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035

Figure 1: Numerical instability pattern in the Yee solver. Growth rate are color-coded,
and normalized with wy. (a) EM modes intersect with the main beam mode (1 = 0,
v = 0), and first order space aliasing modes (u = 0, v; = =£1); (b) is the instability
pattern (p = 0, |v1| < 4) in (ky, k2) space, plotted using Eq. (28)-([29); (c) and (d) are
the instability pattern (|u| < 1, |vi] < 1) in (wr, k1) and (K1, k2) spaces obtained from
solving Eq. and . EM modes for different propagating angles [in degree] and the
beam modes are likewise plotted in (c). (e)presents the corresponding simulation results
in (wr, k1) space, and (f) in (k1, k2) space. Data in (e) and (f) show the modes present at
t =100 w™!, and are not a measurement of the growth rates.
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Figure 2: We present in (a) the energy evolution of the EM energy for the two cases.
The corresponding dotted line indicates their variation in time after ¢ = 100 w,, L. (b) is
the plasma electron density perturbation in (kq, k2) space. (c) presents the E3 in (ki1, ko)

space, and (d) presents the Fs in (k1, k2) space.

25



—
[s9]
—

— OSIRIS no smooth
— OSIRIS 5-pass smooth
— UPIC no filter

— UPIC low-pass filter
— UPIC cutoff filter

Iog(IE2I2) [norm unit]

0 100 200 300 400 500 600

t [norm unit]

10 0.5
8 (©)
6 & i

< 0
4 xN iy
2
0

-0.
3.5

10 0.5
3 (e)
6 [aY}

xm O
4 B
2
g A%

035 0 05 03
k,/k
1 91

Figure 3: Instability mitigation in 2D simulation for the Yee and spectral solver. (a)
Energy evolution of the Fs field in various simulation setups; (b) presents Fy in (ki, k2)
space for the Yee solver case in which a 4-pass binary smoothing with compensator is
applied to the current, while (d) is the Es in (k1, k2) space for spectral solver with cutoff
smoothing. (¢) and (e) is the F5 field in (k1, k2) space for the non-smoothing case for the
Yee, and spectral solver respectively. (b)-(e) are plotted at ¢ = 240 w,!.
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Figure 4: Numerical instability pattern for the spectral solver. Growth rate are color-
coded, and normalized with w,. (a) EM mode intersects with the first order space aliasing
mode (u = 0, 11 = %£1); (b) and (c) is the instability pattern in (w,, k1), and (k1, k2)
spaces obtained from solving Eq. and (20). Beam modes (u =0, [v1| < 1) and EM
modes for different propagating angles [in degree] are likewise plotted in (b).
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Figure 5: Parameter scan of Az, and At/Ax; for the Yee (first two rows), and Karkkainen
(last two rows) solver. The first and third row uses momentum conserving (MC) scheme,
while the second and fourth row uses energy conserving (EC) scheme. The simulation
results are likewise plotted in (c), (f), (i), and (1) at Azy = 0.1 for comparisons. In (c)
and (f) the dotted line at At/Axy ~ 0.577 is the 3D Courant limit (CL), and that at at
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