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Abstract

We present the benchmark of the polynomial expansion Monte Carlo method to a Kondo lattice model with classical
localized spins on a geometrically frustrated lattice. Themethod enables to reduce the calculation amount by using
the Chebyshev polynomial expansion of the density of statescompared to a conventional Monte Carlo technique
based on the exact diagonalization of the fermion Hamiltonian matrix. Further reduction is brought by a real-space
truncation of the vector-matrix operations. We apply the method to the model with spin-ice type Ising spins on a
three-dimensional pyrochlore lattice, and carefully examine the convergence in terms of the order of polynomials
and the truncation distance. We find that, in a wide range of electron density at a relatively weak Kondo coupling
compared to the noninteracting bandwidth, the results by the polynomial expansion method show good convergence
to those by the conventional method within reasonable numbers of polynomials. This enables us to study the systems
up to 4× 83 = 2048 sites, while the previous study by the conventional method was limited to 4× 43 = 256 sites. On
the other hand, the real-space truncation is not helpful in reducing the calculation amount for the system sizes that we
reached, as the sufficient convergence is obtained when most of the sites are involved within the truncation distance.
The necessary truncation distance, however, appears not toshow significant system size dependence, suggesting that
the truncation method becomes efficient for larger system sizes.

Keywords: Monte Carlo method, polynomial expansion method, geometrical frustration, Kondo lattice model, spin
ice, pyrochlore lattice

1. Introduction

Interplay between localized spins and itinerant electronshas been one of the major topics in the field of strongly
correlated electrons. Localized spins considerably affects the charge degree of freedom of itinerant electrons, leading
to fascinating transport phenomena, such as non Fermi liquid behavior in the quantum critical region in rare-earth
compounds [1] and the colossal magneto-resistance (CMR) inperovskite manganese oxides [2]. On the other hand,
for the localized spin degree of freedom, the kinetic motionof itinerant electrons results in effective interactions
between localized spins, such as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [3] and double-exchange
(DE) interaction [4]. These effective interactions give rise to peculiar magnetic orderings in the spin-charge coupled
systems. Hence, in these systems, the charge and spin degrees of freedom affect each other in an entangled way, and it
is not allowed to treat only one degree of freedom by fixing theother. The equilibrium state is obtained by optimizing
the total free energy of the system.

The study on the spin-charge coupling has recently been extended to frustrated magnetic conductors in which itin-
erant electrons are coupled to localized spins on geometrically frustrated lattices. Experimentally, metallic pyrochlore
oxides have attracted considerable attention [5], in whichitinerantd electrons interact with localizedf electrons. The-
oretically, however, geometrical frustration brings further difficulty into the problem of spin-charge coupled systems.
First, in the presence of frustration, the coupling betweenitinerant electrons and localized quantum spins leads to the
negative sign problem, which hampers precise calculationsat low temperatures. Meanwhile, when the localized spins
are approximated as classical vectors and the electrons do not have any direct interaction between them (the situation

Preprint submitted to Computer Physics Communications July 10, 2018

http://arxiv.org/abs/1307.2942v1


that we focus on in the present work), the negative sign problem can be avoided. Even in this simplified situation,
however, systematic calculations are still challenging; in order to examine the effect of large fluctuations, it is desired
to make numerical simulations, but the calculation amount is usually large and increases rapidly as increasing system
sizes.

For the spin-charge coupled systems with classical localized spins, unbiased Monte Carlo (MC) calculations have
been developed and used in the field of CMR manganites in whichthe geometrical frustration does not play a major
role [6]. Originally, the MC method was implemented by usingthe exact diagonalization (ED) for the electronic degree
of freedom to calculate the MC weight for sampling the configuration of the classical spins [7]. We call this algorithm
EDMC. Later, several alternative methods were proposed forreducing the calculation amount [8, 9, 10, 11, 12, 13].
One of the sophisticated methods is the polynomial expansion MC (PEMC) method proposed by one of the authors and
his collaborators [8, 9]. In this method, the polynomial expansion of the density of states (DOS) is used to calculate
the MC weight, which reduces the calculation amount than ED;the method was further improved by introducing
the truncation in the vector-matrix operations [10, 11]. Hence, PEMC allows analyses on much larger system sizes
compared to EDMC [14, 15, 16, 17, 18, 19].

Because of the growing interests in frustrated magnetic conductors, it is desired to apply such MC simulations
to the models with geometrical frustration. The application of PEMC, however, is anticipated to be less efficient for
frustrated systems as, in general, DOS has a singular form under frustration. For example, aδ-function peak can
appear associated with a flat band in the case of a kagome (corner-sharing triangles) and a pyrochlore (corner-sharing
tetrahedra) lattice. A large number of polynomial bases arerequired to reproduce such aδ function in DOS with high
accuracy, implying slow convergence in the PEMC framework and larger computational amount. Another difficulty
is that the spin-charge coupling in frustrated magnetic conductors is often very weak compared to the large Hund’s-
rule coupling in CMR materials, and hence, the RKKY mechanism is dominant to make the effective spin interactions
long-ranged and oscillating. This makes the truncation scheme less efficient since subtle energy differences originating
from further-neighbor interactions play a decisive role.

Due to these anticipated problems, MC studies of frustratedspin-charge coupled systems have been very limited
so far. For instance, the DE model on a pyrochlore lattice wasstudied, but the accessible system sizes were small
since the studies were made by using EDMC [20, 21, 22]. Modelsin two dimensions were also studied on a triangular
lattice [23, 24, 25] and kagome lattice [26], using EDMC. While PEMC was recently applied to a triangular lattice
model, the studies focused on the case with a large Hund’s-rule coupling which is comparable to the bandwidth [27,
28]. In addition, DOS of the triangular lattice model in the noninteracting limit does not have a flat band, in contrast to
the kagome and pyrochlore models. Hence, it does not involvethe difficulties due to theδ-function structure in DOS.

Recently, the authors applied PEMC to a model for metallic pyrochlore oxides, i.e., a spin-ice type Kondo lattice
model on a pyrochlore lattice [29]. They calculated the magnetic and electronic properties of the three-dimensional
model in a relatively weak-coupling regime up to 4×83 sites systematically, and clarified the phase diagram including
a variety of different phases. In the course of the study, the applicability of PEMC was examined carefully, and a part
of the benchmark was reported in Ref. [30]. The details, however, have not been discussed yet.

In this paper, we present the detailed benchmark on the application of PEMC to the spin-ice type Kondo lattice
model on a pyrochlore lattice. We focus on the low electron density region in the relatively weak-coupling regime,
which is considered to be relevant for the metallic pyrochlore oxides. We perform the benchmark on the convergence
of PEMC in terms of the order of polynomials and the truncation of vector-matrix operations by calculating both long-
range order parameters and local correlations. The resultsindicate that although DOS has a singular form including
a δ-function peak in the noninteracting limit, PEMC turns out to be applicable in a wide range of electron density
except for the very low density region. The required order ofpolynomials is within the range comparable to the
typical numbers in the previous studies for unfrustrated models. On the other hand, although the weak spin-charge
coupling makes the truncation less helpful to reduce the calculation amount for currently accessible systems sizes,
our benchmark suggests that it will become efficient in the simulations on larger size systems than those used in the
present study.

The organization of this paper is as follows. In Sec. 2, we introduce the model and method. The model Hamiltonian
and parameters are described in Sec. 2.1. A brief introduction on the PEMC method is given in Sec. 2.2 and Sec. 2.3.
In Sec. 3, we present the results of the benchmark. In Sec. 3.1, we show the temperature dependence of the sublattice
magnetization calculated by EDMC and PEMC. Detailed comparison of PEMC to EDMC for 4× 43 site systems is
shown in Sec. 3.2 and Sec. 3.3. The results for larger system sizes are presented in Sec. 3.4. Discussions on the results
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are elaborated in Sec. 4. Finally, Sec. 5 is devoted to the summary.

2. Model and method

In this section, we introduce the model and method used in ourbenchmark study in the following sections. We use
the PEMC method developed in the previous studies [8, 10, 11]with a minor modification in the truncation method.
The procedure of PEMC is briefly reviewed to make the paper self-contained.

2.1. Model and parameters

We consider a Kondo lattice model with Ising spins on a pyrochlore lattice [29, 31], whose Hamiltonian is given
by

H = −t
∑

〈i, j〉,σ
(c†iσc jσ + H.c.) − J

∑

i,σ,σ′
c†iσσσσ′ciσ′ · Si. (1)

The first term represents hopping of itinerant electrons, whereciσ (c†iσ) is the annihilation (creation) operator of an
itinerant electron with spinσ =↑, ↓ at ith site, andt is the transfer integral. The sum〈i, j〉 is taken over nearest-
neighbor sites on the pyrochlore lattice which consists of athree-dimensional network of corner-sharing tetrahedra
[see Figs. 2(d)-(f)]. The second term is the onsite interaction between itinerant electron spins (σ is the Pauli matrix)
and localized Ising spinsSi (|Si| = 1), andJ is the coupling constant (the sign ofJ does not matter, since the localized
spins are classical). The anisotropy axis of Ising spin is given along the local〈111〉 direction, i.e., along the line
connecting the centers of two tetrahedra which the spin belongs to [see Figs. 2(d)-(f)].

Considering the situations in many pyrochlore oxides, we focus on the relatively low electron density region of
0 < n < 0.35 at a weak spin-charge couplingJ = 2t compared to the noninteracting bandwidth 8t. Here, the electron
density is defined by

n =
1

2N

∑

iσ

〈c†iσciσ〉, (2)

whereN is the number of sites. Hereafter, we set the unit of energyt = 1, the lattice constant of the cubic unit cell
a = 1, and the Boltzmann constantkB = 1.

2.2. Polynomial expansion Monte Carlo method

In the model in eq. (1), itinerant electrons have no direct interaction between them, but coupled only to the
classical Ising spins. The model belongs to the category of models in which noninteracting fermions couple with
classical fields. In general, the partition function for such models is obtained by taking two traces; one is over the
classical fields and the other over the fermion degree of freedom. For the present model (1), the partition function is
written as

Z = Tr{Si}Tr{ciσ,c
†
iσ}

exp
[

−β
(

H({Si}) − µN̂c

)]

, (3)

where Tr{Si} and Tr{ciσ,c
†
iσ}

are the traces over the Ising spins and the electron operators, respectively, andH({Si}) is a
one-particle Hamiltonian matrix in eq. (1) defined for a given Ising spin configuration{Si} = (S1, S2, · · · , SN); β = 1/T
is inverse temperature,µ is the chemical potential, and̂Nc =

∑

iσ c†iσciσ. The former trace can be calculated by classical
MC sampling of the spin configurations{Si} with the Boltzmann weight

P({Si}) =
1
Z

exp [−S eff({Si})] , (4)

where the effective action is given by the latter trace in the form

S eff({Si}) = − log
(

Tr{ciσ,c
†
iσ}

exp
[

−β
(

H({Si}) − µN̂c

)]

)

. (5)
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A straightforward method to calculate the effective action is ED ofH({Si}), which is used in EDMC [7]. By using
the one particle eigenvalues forH({Si}), {εν({Si})}, the effective action is calculated by

S eff({Si}) =
Ndim
∑

ν=1

F (εν({Si})) , (6)

whereF(x) = − log
[

1+ exp{−β(x − µ)}] andNdim is the dimension of the Hamiltonian (Ndim = 2N in the present
case).

In the PEMC method, the sum over the eigenstates is replaced by the integration over DOS, and the integral is
evaluated by using the polynomial expansion technique [8];

S eff({Si}) =
∫

dεD{Si}(ε)F(ε) =
∑

m

µm fm, (7)

whereD{Si} is DOS for itinerant electrons for a spin configuration{Si}. In eq. (7), DOS andF are expanded by
Chebyshev polynomials as

µm =

∫ 1

−1
dxTm(x)D̃{Si}(x) = Tr Tm (H({Si})) , (8)

fm =
−1
αm

∫ 1

−1

dx

π
√

1− x2
Tm(x)F(x), (9)

whereαm = 1 for m = 0 and otherwise 1/2. Here, DOS is renormalized so that the entire spectrum fits into the range
of x = [−1, 1];

D̃{Si}(x) = aD{Si}(ax + b), (10)

wherea = (εtop− εbtm)/2 andb = (εtop+ εbtm)/2 with εtop = 2t+ J +1 andεbtm = −6t− J −1 (we afford a margin of 1
for bothεtop andεbtm). In eqs. (8) and (9),Tm is the Chebyshev polynomials defined in a recursive form asT0(x) = 1,
T1(x) = x, andTm(x) = 2xTm−1(x) − Tm−2(x).

In the MC update in PEMC, the Chebyshev momentµm is evaluated by calculating the Chebyshev polyno-
mials of the Hamiltonian matrix recursively. For the sparseHamiltonian matrix, the calculation amount ofµm is
O(N2 logN), as the necessary order of polynomials scales as logN. Hence, the total cost for one MC update in PEMC
is O(N3 logN) [8], which is reduced fromO(N4) in EDMC.

2.3. Truncation algorithm

To further reduce the calculation amount, one of the authorsand his collaborator proposed a truncation algo-
rithm [10]. In the truncation procedure, a real-space basise j(k) = δ j,k is chosen for the trace in eq. (8), wherek is
a site index. A new vectorv(m)

j is generated by multiplying the unit vector by themth Chebyshev polynomial of the
Hamiltonian, as

v(m)
j = Tm (H({Si})) e j ≡

∑

k

v(m)
j,k ek. (11)

If the hopping term in the Hamiltonian is limited to nearest-neighbor sites as in eq. (1), the coefficientv(m)
j,k takes a

nonzero value only if|| j − k|| ≤ m is satisfied, where|| j − k|| is the Manhattan distance between two sitesj andk.
Furthermore, the coefficient usually becomes small quickly as the Mahnattan distance increases. Hence, the vector
elements ofv(m)

j with such small amplitudes can be neglected in the calculation of the momentµm. In particular,
the truncation was done by introducing a threshold for the amplitude of vector elements,ǫ, and ignoring the small
elements which satisfy|v(m)

j,k | < ǫ in the calculation of eq. (11) [10]. A similar truncation wasalso introduced in the
trace operation to calculate the effective actionS eff({Si}). This algorithm further reduces the total cost of one MC
update toO(N) [10].
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In this paper, we test the efficiency of a similar but slightly different truncation algorithm for the model in eq. (1).
We here carry out the truncation by a real-space distance, not by a magnitude of the vector element in the original
scheme; namely, we set a truncation distanced and ignore all contributions out of the range of the Manhattan distance
d from a flipped spin (Fig. 1). In the present method, the list ofsites to be considered in the calculation is known in
advance and unchanged throughout the MC simulation. On the other hand, in the previous method, the list needs to
be updated by looking at the elements ofv(m)

j in each MC step. Therefore, the present algorithm is much simpler than
the previous one.

Figure 1: (color online). Schematic picture of the real-space truncation. The figure shows a projection of the pyrochlore lattice onto a〈001〉 plane,
and circles represent the lattice sites. The dark circle in the center represents the site with flipped spin. Light-colored circles indicate the sites
within the range of the truncation distanced. The picture shows an example ofd = 2.

2.4. Monte Carlo details and physical quantities

PEMC is a well-controlled approximation in the sense that the results converge to the EDMC results when one
takes the polynomial expansion up to a sufficiently high order and sufficiently long truncation length. In the following
sections, we present the benchmark results for such convergence by changing the total number of polynomialsmtot

and the truncation distanced. The calculations were conducted up toN = 4×83 for various temperatures and electron
fillings. We also performed EDMC forN = 4× 43 to compare with the PEMC results. Typically, we performed 3000
MC measurements after 500 MC steps of thermalization. One MCupdate for the system sizeN = 4×83 with mtot = 40
and no truncation takes about 50 seconds by using 1024 CPU cores in the System B (SGI Altix ICE 8400EX) at ISSP
supercomputer center.

In the benchmark study, we measure two types of physical quantities which characterize the long-range ordering
and short-range correlations, respectively. For the long-range ordering, we calculate the sublattice magnetization

Mq =

[

4
N

S αα(q)

]1/2

, (12)

whereS αα(q) is theαth diagonal component of the spin structure factor. Here, the spin structure factor is given by

S αβ(q) =
1
N

∑

n,l

〈Sαn · S
β

l 〉 exp[iq · (rαn − rβl )], (13)

whereSαn is the classical Ising spin atαth sublattice site innth unit cell, andrαn is the position vector of the Ising spin
Sαn . Here,q represents the characteristic wave number for the low-temperature magnetic structure, which depends
on the electron densityn as well asJ. In the calculations below, we present the results for threemagnetic phases:
ice-ferro, 32-sublattice, and all-in/all-out order [29] (see Sec. 3 for the details). The characteristic wave numberq is
given byq = (0, 0, 0) for the ice-ferro and all-in/all-out orders, andq = (π, π, π) for the 32-sublattice order. As the
diagonal component of the structure factorS αα(q) does not depend onα for these three orders, we show the results
for the sublatticeα = 1.
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In addition to the sublattice magnetization, we also measure short-range correlations. Here we use the local corre-
lation parametersP22, P31, andP40 defined by the probabilities of a tetrahedron to be in two-in two-out configuration,
three-in one-out or one-in three-out configuration, and all-in or all-out configuration, respectively. The magnetic
ordering pattern is determined by these local correlation parameters in addition to the spin structure factor.

3. Benchmark result

In this section, we present the benchmark of PEMC on the spin-ice type Kondo lattice model in eq. (1) atJ = 2t.
In Sec. 3.1, we present overallT dependences of the sublattice magnetization,Mq, while varying the total number of
polynomialsmtot for N = 4 × 43 at several electron fillings withd = 6. The detailed analysis ofMq and the local
correlation parameters is discussed for the convergence with respect tomtot and the truncation distanced in Sec. 3.2
and Sec. 3.3, respectively. Results for larger system sizesare presented in Sec. 3.4.

3.1. Temperature dependence of sublattice magnetization

mtot=10
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mtot=30
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T
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Figure 2: (color online).T dependences ofMq calculated by PEMC at (a)µ = −5.9 [n = 0.030(2)], (b)µ = −3.7 [n = 0.180(5)], and (c)µ = −1.3
[n = 0.348(6)]. The wave numberq is q = (0, 0, 0) for (a) and (c), andq = (π, π, π) for (b). Different symbols correspond to the results of MC
simulation with different numbers of polynomials. Crosses with solid lines showthe results by EDMC. The PEMC calculations are done with
d = 6 for 4× 43 site systems. The right figures depict the magnetic structures for (d) ice-ferro, (e) 32-sublattice, and (f) all-in/all-out orders, which
correspond to the low-T states in the data in (a), (b), and (c), respectively.

Recently, the authors have conducted a systematic study on the phase diagram of the spin-ice Kondo lattice model
in eq. (1) [29]. The results indicate that four dominant magnetic phases arise in the electron densityn . 0.3: ice-ferro
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[Fig. 2(d)], ice-(0, 0, 2π), 32-sublattice [Fig. 2(e)], and all-in/all-out [Fig. 2(f)]. To gain an overview on how PEMC
works, we first showT dependences of the sublattice magnetizationMq in the ice-ferro, 32-sublattice, and all-in/all-
out ordered regions. The data were calculated forN = 4× 43 with d = 6. As we show later, the deviation due to the
truncation is sufficiently small ford = 6. We omit the results for the ice-(0, 0, 2π) phase as PEMC shows extremely
slow convergence in terms of the number of polynomialsmtot.

Figure 2(a) showsT dependence ofMq calculated by PEMC atµ = −5.9 in comparison with the EDMC result.
The electron density is almostT independent atn = 0.030(2) [32]. In this very low density region, the ice-ferro order
develops at lowT , whose ordering pattern is shown in Fig. 2(d). The PEMC results are shown by the open symbols,
while the EDMC results are shown by crosses connected by the solid line. All the results show a rapid increase
of Mq asT decreases, signaling the phase transition to the ice-ferrophase. However, the PEMC results show slow
convergence to the EDMC ones; even the results formtot = 40 show considerable deviations.

On the other hand, for higher electron densities, the PEMC results show good convergence to the EDMC results.
Figures 2(b) and 2(c) show the results atµ = −3.7 andµ = −1.3, respectively. In the intermediate density region in
Fig. 2(b), the 32-sublattice order is stabilized at low-T [see Fig. 2(e)], while for the higher density in Fig. 2(c), the
all-in/all-out order appears [see Fig. 2(f)]. As shown in Fig. 2(b),at µ = −3.7, while the results formtot = 10 and 20
show considerable deviations from the EDMC results, the results for mtot = 30 and 40 show good agreement except
for a slight deviation in the critical region (the critical temperature is estimated asTc = 0.043(2) from the inflection
point of theT dependence ofMq [29]). The situation is similar forµ = −1.3 in Fig. 2(c);mtot = 30 and 40 appear to
be enough for the convergence except for the critical regionnearTc = 0.085(5), whereas the results for smallermtot

are oscillating in terms ofmtot.
These results indicate that the PEMC results show sufficient convergence formtot & 30 in the relatively high

density region ofn & 0.15. The results away from the critical region converge faster than those in the critical region.
These aspects are further discussed in the next section.

3.2. Convergence in terms of the number of polynomials
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Figure 3: (color online). PEMC results formtot dependences of (a)Mq, (b) P22, (c) P31, and (d)P40. The calculations are done forN = 4× 43 and
µ = −5.7 with d = 6. For comparison, the results and statistical errors by EDMC are shown by horizontal solid lines and shades, respectively.

We investigate the convergence of PEMC with respect tomtot in the three density regions shown in Figs. 2(a)-(c),
respectively, forN = 4 × 43. We here show the convergence in three differentT regions: a low-T ordered region,
high-T paramagnetic region, and in the vicinity of the critical temperature. The critical temperatures forµ = −5.7,
−3.7, and−1.3 are estimated to beTc = 0.023(2), 0.043(2), and 0.085(5), respectively, from the inflection point of the
T dependence ofMq [29].
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Figure 3 shows the results forµ = −5.7 (ice-ferro ordered region) atT = 0.012, 0.020, and 0.030, corresponding
to the ordered, critical, and paramagnetic regions, respectively. Figure 3(a) is the result forMq, and Figs. 3(b)-3(d)
are the results for the local correlation parametersP22, P31, andP40, respectively. The EDMC results are indicated by
horizontal solid lines (the error bars are shown by shades).In all T regions, the convergence of PEMC results to the
EDMC ones is slow;mtot & 80 appears to be necessary for sufficient convergence in this low density region.
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Figure 4: (color online). PEMC results formtot dependences of (a)Mq, (b) P22, (c) P31, and (d)P40. The calculations are done forN = 4× 43 and
µ = −3.7 with d = 6. For comparison, the results and statistical errors by EDMC are shown by horizontal solid lines and shades, respectively.

On the other hand, the PEMC results atµ = −3.7 (the 32-sublattice ordered region) show better convergence. The
results are shown in Fig. 4. Both the sublattice magnetization and the local correlation parameters show reasonable
convergence formtot & 30. The situation is similar forµ = −1.3 (the all-in/all-out ordered region), as shown in Fig. 5.
The results show good convergence formtot & 35. In both cases withµ = −3.7 and−1.3, the data in the critical region
appear to show relatively slower convergence compared to the low-T and high-T region, but the remnant deviation is
in a reasonable range and not harmful to the estimation of thecritical temperature [29].

The results in Figs. 4 and 5 indicate that PEMC works efficiently in a wide range ofT for the relatively high
electron density ofn & 0.15. Typically,mtot = 30-40 is enough for the convergence. On the other hand, in thelower
electron density region, quantitatively sufficient convergence requires much largermtot. These points are discussed in
Sec. 4.

3.3. Convergence in terms of the truncation distance

Next, we investigate the convergence with respect to the real-space truncation distanced. Here, the calculations
are done atµ = −3.7 and−1.3 with mtot = 40, for which PEMC results show good convergence to the EDMC ones as
discussed in the previous sections. The system size isN = 4× 43, in which the Manhattan distance to the furthest site
is d = 8.

Figure 6 shows the PEMC results in the 32-sublattice orderedregion atµ = −3.7 for different temperatures,
T = 0.035, 0.045, and 0.055, which correspond to the magnetically ordered, critical, and paramagnetic regions,
respectively. In allT regions, the PEMC data converge to the EDMC ones ford & 6, except for the data atT = 0.045
in the critical region. This shows again that the convergence becomes slower in the critical region.

The situation is similar in the all-in/all-out region. Figure 7 shows the results forµ = −1.3 atT = 0.070, 0.080,
and 0.090. The results forMq in Fig. 7(a) show good convergence ford & 5 for all T shown. ForP22, P31, andP40 in
Figs. 7(b)-7(d), the results atT = 0.070 and 0.090 also show well converged results ford & 5. On the other hand, the
data atT = 0.080 shows a slight deviation from EDMC data up tod ≃ 7.
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Figure 5: (color online). PEMC results formtot dependences of (a)Mq, (b) P22, (c) P31, and (d)P40. The calculations are done forN = 4× 43 and
µ = −1.3 with d = 6. For comparison, the results and statistical errors by EDMC are shown by horizontal solid lines and shades, respectively.
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From the above results, it appears that the truncation withd & 6 gives sufficient convergence in a wide range ofT
andn. In this system sizeN = 4× 43, d = 6 already covers a large part of the lattice sites, and hence,the truncation is
less useful to the reduction of the calculation amount. It is, however, expected from the truncation algorithm that the
necessary truncation distance for the same accuracy does not depend so much on the system size; hence, the truncation
will be efficient for larger system sizes. We examine this point in the next section.

3.4. Convergence in terms of the truncation distance in larger systems
To confirm the efficiency of the truncation in larger system sizes, here we conduct the PEMC calculations for

N = 4× 63 and 4× 83 in the 32-sublattice ordered region. For the system sizes, as EDMC is inapplicable due to the
large calculation amount, we perform only PEMC and check theconvergence with respect to the truncation distance
d. In these sizes, the Manhattan distance to the farthest siteis d = 12 for N = 4× 63 andd = 16 for N = 4× 83.

Figure 8 shows the results in the 32-sublattice ordered region atµ = −3.4 [n = 0.195(1)] forN = 4× 63. Here, we
takemtot = 40, as the necessarymtot for the convergence is expected to be less dependent on the system sizes [8, 9].
As shown in Fig. 8(a), ford & 8, the results forMq show reasonable convergence to the results without truncation in
all T regions. The results forP22, P31, andP40 also show convergence withd & 8, as shown in Figs. 8(b)-(d). Similar
behavior is also observed forN = 4× 83. Figure 9 shows the results forN = 4× 83 with T = 0.035, 0.045, and 0.055.
All the results also show good convergence ford & 8.

4. Discussion

Let us discuss our results in comparison with the previous ones on similar Kondo lattice models. In the previous
studies using PEMC, the number of polynomials for well converged calculations was typically 30. mtot . 40 [8,
11, 19, 27, 28]. Our results presented atµ = −3.7 and−1.3 in Sec. 3.1 and Sec. 3.2 indicate that good convergence
is reached for similar range ofmtot. This shows that PEMC is also an efficient approach even in the presence of
severe geometrical frustration. We note that the range of chemical potentialµ corresponds to a moderate electron
densityn & 0.15. Considering the fact that most of the previous studies were conducted in the region for 0.20. n .

0.80 [8, 11, 19, 27, 28], this also supports the applicability of PEMC in the frustrated models in the similar density
region.

On the other hand, our results in the lower electron density region show much slower convergence, and even the
results formtot = 80 show considerable deviations from the EDMC results, as shown in Fig. 3. This might be owing
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µ = −3.4 with mtot = 40.
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to the fact that the Fermi level is close to the band bottom. Inthe small electron density region, the precise structure of
DOS near the band edge plays a crucial role for the thermodynamics; to reproduce the details of DOS requires larger
number of polynomials. Another possible source is the smallenergy scale in the low density region. Because of the
small kinetic energy, the effective interactions between localized spins become small,and hence, the relevantT range
includingTc is much lower than that in the higher density region. This also requires larger number of polynomials for
sufficient convergence.

Next, we discuss the convergence with respect to the real-space truncation. The results in Figs. 8 and 9 show that
sufficient convergence is obtianed ford & 8 for bothN = 4× 63 and 4× 83. This is consistent with the expectation
that the necessary truncation distance is not strongly dependent on the system size. Unfortunately, asd = 8 covers the
large part of the system withN = 4× 63 and 4× 83, the truncation method is not helpful to reducing the calculation
amount for the present system sizes. It is, however, expected to be efficient for much larger system sizes if accessible.

5. Summary

To summarize, we have presented the benchmark results on theapplication of polynomial expansion Monte Carlo
method to a geometrically-frustrated spin-charge coupledsystem, a spin-ice type Kondo lattice model on a pyrochlore
lattice. We have investigated the convergence of Monte Carlo results with respect to the number of polynomialsmtot

and the truncation Manhattan distanced. The results indicate that, in the electron density region 0.15 . n . 0.35,
the polynomial expansion Monte Carlo results withmtot = 40 show sufficient convergence to those obtained by
the conventional Monte Carlo method using the exact diagonalization. The results show that, although the current
model has aδ-function singularity in the density of states in the noninteracting limit associated with the geometrical
frustration, the polynmial expansion Monte Carlo results show good convergence within the number of polynomials
comparable to previous studies for unfrustrated models. For the real-space truncation, our results indicate thatd & 8
gives well converged results forN = 4×63 and 4×83, while d & 6 is enough forN = 4×43. Although the truncation
algorithm is not useful for reducing the calculation amountfor the system sizes that we calculated, the small system-
size dependence of the necessary truncation distance implies that the truncation becomes efficient for larger system
sizes.

Recent experiments in the metallic pyrochlore oxides have stimulated the studies on spin-charge coupled systems
on frustrated lattices. There, the polynomial expansion Monte Carlo method will be a powerful theoretical tool if
it is not suffered from the difficulty specific to the frustrated systems, the pathological singularity in the density of
states. Our results indicate that, in contrast to what was anticipated, the polynomial expansion Monte Carlo method
is efficiently applied to the frustrated systems. As the method provides numerically exact solutions, the present
benchmark will further stimulate numerical studies on the spin-charge coupled systems on frustrated lattices.
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