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Abstract

We present the benchmark of the polynomial expansion Moatio@nethod to a Kondo lattice model with classical
localized spins on a geometrically frustrated lattice. Tethod enables to reduce the calculation amount by using
the Chebyshev polynomial expansion of the density of sted@spared to a conventional Monte Carlo technique
based on the exact diagonalization of the fermion Hamiéomhatrix. Further reduction is brought by a real-space
truncation of the vector-matrix operations. We apply thehuod to the model with spin-ice type Ising spins on a
three-dimensional pyrochlore lattice, and carefully eksnthe convergence in terms of the order of polynomials
and the truncation distance. We find that, in a wide rangeeaftedn density at a relatively weak Kondo coupling
compared to the noninteracting bandwidth, the results bytitlynomial expansion method show good convergence
to those by the conventional method within reasonable nusrdfgoolynomials. This enables us to study the systems
up to 4x 8% = 2048 sites, while the previous study by the conventionahogtvas limited to 4 43 = 256 sites. On

the other hand, the real-space truncation is not helpfidducing the calculation amount for the system sizes that we
reached, as the flicient convergence is obtained when most of the sites aréviewavithin the truncation distance.
The necessary truncation distance, however, appears sbbte significant system size dependence, suggesting that
the truncation method becomefi@ent for larger system sizes.

Keywords: Monte Carlo method, polynomial expansion method, geowgtfiustration, Kondo lattice model, spin
ice, pyrochlore lattice

1. Introduction

Interplay between localized spins and itinerant electtuasbeen one of the major topics in the field of strongly
correlated electrons. Localized spins consideralibcss the charge degree of freedom of itinerant electroadijig
to fascinating transport phenomena, such as non Fermdlipehavior in the quantum critical region in rare-earth
compounds 1] and the colossal magneto-resistance (CMB@riovskite manganese oxides [2]. On the other hand,
for the localized spin degree of freedom, the kinetic motidritinerant electrons results inffective interactions
between localized spins, such as the Ruderman-Kittel-@¥osida (RKKY) interaction [3] and double-exchange
(DE) interaction |ﬂ4]. Theseftective interactions give rise to peculiar magnetic ordgsiim the spin-charge coupled
systems. Hence, in these systems, the charge and spin slefiffeedom fect each other in an entangled way, and it
is not allowed to treat only one degree of freedom by fixingdteer. The equilibrium state is obtained by optimizing
the total free energy of the system.

The study on the spin-charge coupling has recently been@atkto frustrated magnetic conductors in which itin-
erant electrons are coupled to localized spins on geora#yricustrated lattices. Experimentally, metallic pyhbare
oxides have attracted considerable attenﬁ)n [5], in whilchrantd electrons interact with localizeflelectrons. The-
oretically, however, geometrical frustration brings het dificulty into the problem of spin-charge coupled systems.
First, in the presence of frustration, the coupling betwiéaarant electrons and localized quantum spins leadseto th
negative sign problem, which hampers precise calculatbimv temperatures. Meanwhile, when the localized spins
are approximated as classical vectors and the electronstd@we any direct interaction between them (the situation
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that we focus on in the present work), the negative sign proldan be avoided. Even in this simplified situation,
however, systematic calculations are still challengingyrider to examine theffect of large fluctuations, it is desired

to make numerical simulations, but the calculation amosiosually large and increases rapidly as increasing system
sizes.

For the spin-charge coupled systems with classical loedl&pins, unbiased Monte Carlo (MC) calculations have
been developed and used in the field of CMR manganites in whizlyeometrical frustration does not play a major
role [B]. Originally, the MC method was implemented by usiing exact diagonalization (ED) for the electronic degree
of freedom to calculate the MC weight for sampling the configion of the classical spin@ [7]. We call this algorithm
EDMC. Later, several alternative methods were proposedefducing the calculation amount B@ 10 ﬂ,, 13].
One of the sophisticated methods is the polynomial expandio (PEMC) method proposed by one of the authors and
his coIIaboratorsﬂ&ﬂ 9]. In this method, the polynomial axpion of the density of states (DOS) is used to calculate
the MC weight, which reduces the calculation amount than t8B;method was further improved by introducing
the truncation in the vector-matrix operatiohs! [10, 11].nele, PEMC allows analyses on much larger system sizes
compared to EDMd [14, 15, 116,117,/18] 19].

Because of the growing interests in frustrated magneticigotors, it is desired to apply such MC simulations
to the models with geometrical frustration. The applicattd PEMC, however, is anticipated to be lesgagent for
frustrated systems as, in general, DOS has a singular fodarunustration. For example, &function peak can
appear associated with a flat band in the case of a kagomee(esharing triangles) and a pyrochlore (corner-sharing
tetrahedra) lattice. A large number of polynomial basesegeired to reproduce suchsdunction in DOS with high
accuracy, implying slow convergence in the PEMC framewartk arger computational amount. Anotheftatiulty
is that the spin-charge coupling in frustrated magnetiadoeiors is often very weak compared to the large Hund’s-
rule coupling in CMR materials, and hence, the RKKY mecharissdominant to make thefective spin interactions
long-ranged and oscillating. This makes the truncatioesehless #icient since subtle energyftBrences originating
from further-neighbor interactions play a decisive role.

Due to these anticipated problems, MC studies of frustrgp@atcharge coupled systems have been very limited
so far. For instance, the DE model on a pyrochlore lattice stagied, but the accessible system sizes were small
since the studies were made by usin EDI‘&é @Eh 22]. Mddeiso dimensions were also studied on a triangular
lattice @E’AE‘S] and kagome lattioe [26], using EDMC. WHPEMC was recently applied to a triangular lattice
model, the studies focused on the case with a large Huntssawupling which is comparable to the bandwidth [27,
]. In addition, DOS of the triangular lattice model in trenimteracting limit does not have a flat band, in contrast to
the kagome and pyrochlore models. Hence, it does not inthbrdificulties due to thé-function structure in DOS.

Recently, the authors applied PEMC to a model for metallioplylore oxides, i.e., a spin-ice type Kondo lattice
model on a pyrochlore IatticEIZQ]. They calculated the nedigrand electronic properties of the three-dimensional
model in a relatively weak-coupling regime up te 8° sites systematically, and clarified the phase diagram ety
a variety of diferent phases. In the course of the study, the applicabflBEdIC was examined carefully, and a part
of the benchmark was reported in R[30]. The details, vawdave not been discussed yet.

In this paper, we present the detailed benchmark on thecagpiolh of PEMC to the spin-ice type Kondo lattice
model on a pyrochlore lattice. We focus on the low electromsitg region in the relatively weak-coupling regime,
which is considered to be relevant for the metallic pyroohlaxides. We perform the benchmark on the convergence
of PEMC in terms of the order of polynomials and the trunaatibvector-matrix operations by calculating both long-
range order parameters and local correlations. The raaditsate that although DOS has a singular form including
a 6-function peak in the noninteracting limit, PEMC turns ootlte applicable in a wide range of electron density
except for the very low density region. The required ordepaliynomials is within the range comparable to the
typical numbers in the previous studies for unfrustratediet® On the other hand, although the weak spin-charge
coupling makes the truncation less helpful to reduce theutation amount for currently accessible systems sizes,
our benchmark suggests that it will becontiogent in the simulations on larger size systems than those nsthe
present study.

The organization of this paper is as follows. In $éc. 2, weihice the model and method. The model Hamiltonian
and parameters are described in $ed. 2.1. A brief introolucth the PEMC method is given in SEC.]2.2 and Bet¢. 2.3.
In Sec[B, we present the results of the benchmark. IN.Séon8.4how the temperature dependence of the sublattice
magnetization calculated by EDMC and PEMC. Detailed coiisparof PEMC to EDMC for 4x 4° site systems is
shown in Sed_3]12 and S&c.13.3. The results for larger systasm are presented in SEC.13.4. Discussions on the results
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are elaborated in Sdd. 4. Finally, Sec. 5 is devoted to thersumn

2. Model and method

In this section, we introduce the model and method used ihenchmark study in the following sections. We use
the PEMC method developed in the previous studie's [g, 10with]a minor modification in the truncation method.
The procedure of PEMC is briefly reviewed to make the papércssitained.

2.1. Model and parameters

We consider a Kondo lattice model with Ising spins on a pyla@hlattice Ebl__?zll] whose Hamiltonian is given
by

H=-t Z(ci"gcjg +H.c)-J Z ¢ Too G - S (1)

i, )0 i,o,07

The first term represents hopping of itinerant electrongreb,, (C:;;) is the annihilation (creation) operator of an
itinerant electron with spin- =1, | atith site, andt is the transfer integral. The sufn ) is taken over nearest-
neighbor sites on the pyrochlore lattice which consists tfrae-dimensional network of corner-sharing tetrahedra
[see Figs[R(d)-(f)]. The second term is the onsite inténadbetween itinerant electron spins is the Pauli matrix)
and localized Ising spin§ (/S| = 1), andJ is the coupling constant (the sign #loes not matter, since the localized
spins are classical). The anisotropy axis of Ising spin vemialong the loca{111y direction, i.e., along the line
connecting the centers of two tetrahedra which the spimigsito [see Figsl2(d)-(f)].

Considering the situations in many pyrochlore oxides, wai$oon the relatively low electron density region of
0 < n < 0.35 at a weak spin-charge couplidg= 2t compared to the noninteracting bandwidthi8ere, the electron
density is defined by

= o Z<%Cw> ()

whereN is the number of sites. Hereafter, we set the unit of energyl, the lattice constant of the cubic unit cell
a =1, and the Boltzmann constak = 1.

2.2. Polynomial expansion Monte Carlo method

In the model in eq.[{1), itinerant electrons have no diretéraction between them, but coupled only to the
classical Ising spins. The model belongs to the categoryadets in which noninteracting fermions couple with
classical fields. In general, the partition function forlsuodels is obtained by taking two traces; one is over the
classical fields and the other over the fermion degree ofirae For the present modé€l (1), the partition function is
written as

Z= Tr(Si)Tr(ci{,,cl } exp[ (H( } - ,UNC)] ) )

where Ty, and T, o are the traces over the Ising spins and the electron opsragspectively, anti({S}) is a

one-particle Hamiltonian matrix in ed.(1) defined for a gl\vemg spin configuratiof§} = (S1, S, -+, SN); 8= 1/T
is inverse temperaturg s the chemical potential, ard, = 3;., cI Ci- The formertrace can be calculated by classical
MC sampling of the spin configuratiofS } with the Boltzmann weight

1
P({S}) = 7 &Xp [-Ser({SH] (4)
where the fective action is given by the latter trace in the form

Sr((S1) = ~10g(Tr, o, exp[ B (H(S ) - )] ). 5)
3



A straightforward method to calculate thiextive action is ED oH({S;}), which is used in EDMd]?]. By using
the one particle eigenvalues fAI({S}}), {¢,({S})}, the dfective action is calculated by

Naim

Ser(S) = Y F &(SD), (6)
y=1

whereF(x) = —log[1 + exp{—-B(X — u)}] and Ngim is the dimension of the HamiltoniafNgm = 2N in the present
case).

In the PEMC method, the sum over the eigenstates is replacéutebintegration over DOS, and the integral is
evaluated by using the polynomial expansion techniue [8];

Sen(1S)) = [ deDig IF(e) = Y . ™

whereDys, is DOS for itinerant electrons for a spin configurati@y. In eq. [T), DOS and~ are expanded by
Chebyshev polynomials as

1

im = L AXTr(0)Bis)(X) = Tr Tm (H((S)) . ®
-1t dx

fm=— . ﬁTm(X)F(X)’ ®)

wherean, = 1 form = 0 and otherwise /2. Here, DOS is renormalized so that the entire spectrunmfitsthe range
of x=[-1,1];

Dis)(¥) = aDis)(ax + b), (10)

wherea = (&op — £btm)/2 andb = (&op + £btm)/2 With &rop = 2t + J + 1 andepm = —6t — J — 1 (we dford a margin of 1
for botheyp andepm). In egs. [(B) and (9)T is the Chebyshev polynomials defined in a recursive forifiogs) = 1
T1(X) = X, andTm(X) = 2XTm-1(X) — Trm2(X).

In the MC update in PEMC, the Chebyshev momggtis evaluated by calculating the Chebyshev polyno-
mials of the Hamiltonian matrix recursively. For the spakkmiltonian matrix, the calculation amount gf, is
O(N?logN), as the necessary order of polynomials scales al ldgence, the total cost for one MC update in PEMC
is O(N2log N) [8], which is reduced fronD(N*) in EDMC.

2.3. Truncation algorithm

To further reduce the calculation amount, one of the authacs his collaborator proposed a truncation algo-
rithm [10]. In the truncation procedure, a real-space baglg = 5;« is chosen for the trace in edl (8), whérés
a site index. A new vectorgm) is generated by multiplying the unit vector by timth Chebyshev polynomial of the
Hamiltonian, as

Vi = T (H(S) g = Z\/‘fﬂ’@. (11)

If the hopping term in the Hamiltonian is limited to nearasighbor sites as in ed.](1), the ttﬁ)eent\/(m) takes a
nonzero value only iflj — k|| < mis satisfied, wher@j — k|| is the Manhattan distance between two sLtemdk
Furthermore, the cdaicient usually becomes small quickly as the Mahnattan distamcreases. Hence, the vector
elements of/™ with such small amplitudes can be neglected in the calanatf the momenty,. In particular,
the truncation was done by introducing a threshold for theldade of vector elements, and ignoring the small
elements which SatISfD(IJ k| < € in the calculation of equllE.O] A similar truncation walso introduced in the
trace operation to calculate th&ective actionSe;({S}). This algorithm further reduces the total cost of one MC
update toO(N) [Ld].



In this paper, we test theficiency of a similar but slightly dierent truncation algorithm for the model in €g. (1).
We here carry out the truncation by a real-space distanddyyna magnitude of the vector element in the original
scheme; namely, we set a truncation distathead ignore all contributions out of the range of the Manhediiatance
d from a flipped spin (Fid:]1). In the present method, the lissités to be considered in the calculation is known in
advance and unchanged throughout the MC simulation. Onttiex band, in the previous method, the list needs to
be updated by looking at the elementsvgﬂ?) in each MC step. Therefore, the present algorithm is mucplsinthan
the previous one.

XL I IXT
X IIx
X1 T IXT

IXE_IXT TXT T Jf
1T IT X XTI

Figure 1: (color online). Schematic picture of the realegptuncation. The figure shows a projection of the pyroehlattice onto §001) plane,
and circles represent the lattice sites. The dark circldéncenter represents the site with flipped spin. Light-edlazircles indicate the sites
within the range of the truncation distandeThe picture shows an exampledf 2.

2.4. Monte Carlo details and physical quantities

PEMC is a well-controlled approximation in the sense thatrsults converge to the EDMC results when one
takes the polynomial expansion up to d@aiently high order and dficiently long truncation length. In the following
sections, we present the benchmark results for such coeweedoy changing the total number of polynomials
and the truncation distance The calculations were conducted uphto= 4 x 82 for various temperatures and electron
fillings. We also performed EDMC fdX = 4 x 4° to compare with the PEMC results. Typically, we performe@@®0
MC measurements after 500 MC steps of thermalization. Oneiptiate for the system sidé = 4x 83 with my = 40
and no truncation takes about 50 seconds by using 1024 CRd itothe System B (SGI Altix ICE 8400EX) at ISSP
supercomputer center.

In the benchmark study, we measure two types of physicaltdiggnwhich characterize the long-range ordering
and short-range correlations, respectively. For the llage ordering, we calculate the sublattice magnetization

4 1/2
o = gse@)| 12)

whereS®*¥(q) is theath diagonal component of the spin structure factor. Heresthin structure factor is given by

S%(a) = = D (Sh - explia - (g ~ )], (13)
n,l

whereS! is the classical Ising spin ath sublattice site imth unit cell, and ¢ is the position vector of the Ising spin
St. Here,q represents the characteristic wave number for the low-¢eatpre magnetic structure, which depends
on the electron density as well asJ. In the calculations below, we present the results for timegnetic phases:
ice-ferro, 32-sublattice, and all/all-out order[L_Zb] (see SeL] 3 for the details). The charistie wave numbeq is
given byqg = (0,0, 0) for the ice-ferro and all-iall-out orders, and) = (r, =, n) for the 32-sublattice order. As the
diagonal component of the structure fac89 (q) does not depend am for these three orders, we show the results
for the sublatticer = 1.



In addition to the sublattice magnetization, we also meashort-range correlations. Here we use the local corre-
lation parameterR,,, P31, andP4o defined by the probabilities of a tetrahedron to be in twosio-but configuration,
three-in one-out or one-in three-out configuration, andrabr all-out configuration, respectively. The magnetic
ordering pattern is determined by these local correlatemameters in addition to the spin structure factor.

3. Benchmark result

In this section, we present the benchmark of PEMC on the isgitiype Kondo lattice model in ed.](1) at= 2t.
In Sec[3.], we present overdlldependences of the sublattice magnetizatidq, while varying the total number of
polynomialsmy; for N = 4 x 43 at several electron fillings witd = 6. The detailed analysis @i, and the local
correlation parameters is discussed for the convergertbergspect tan, and the truncation distancein Sec[3.2
and Sed_3]3, respectively. Results for larger system sizegresented in Sdc. B.4.

3.1. Temperature dependence of sublattice magnetization
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Figure 2: (color online)T dependences dily calculated by PEMC at (@) = —5.9 [n = 0.030(2)], (b)u = 3.7 [n = 0.180(5)], and (ck = -1.3

[n = 0.348(6)]. The wave numbegis q = (0,0,0) for (a) and (c), and| = (r,n, x) for (b). Different symbols correspond to the results of MC
simulation with diferent numbers of polynomials. Crosses with solid lines stt@wesults by EDMC. The PEMC calculations are done with
d = 6 for 4x 43 site systems. The right figures depict the magnetic strestfor (d) ice-ferro, (e) 32-sublattice, and (f) alldh-out orders, which
correspond to the lowW- states in the data in (a), (b), and (c), respectively.

Recently, the authors have conducted a systematic studyegrhiase diagram of the spin-ice Kondo lattice model
in eq. ) [29]. The results indicate that four dominant metgnphases arise in the electron density 0.3: ice-ferro
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[Fig.[2(d)], ice-(Q0, 2r), 32-sublattice [Fig12(e)], and all4all-out [Fig.[2(f)]. To gain an overview on how PEMC
works, we first showl dependences of the sublattice magnetizaliyrin the ice-ferro, 32-sublattice, and all4dl-
out ordered regions. The data were calculated\fes 4 x 4% with d = 6. As we show later, the deviation due to the
truncation is sfficiently small ford = 6. We omit the results for the ice5(@, 2r) phase as PEMC shows extremely
slow convergence in terms of the number of polynommals

Figure[2(a) show3 dependence dfl, calculated by PEMC gt = —5.9 in comparison with the EDMC result.
The electron density is almostindependent at = 0.030(2) @]. In this very low density region, the ice-fernaler
develops at lowl, whose ordering pattern is shown in Hig. 2(d). The PEMC tssre shown by the open symbols,
while the EDMC results are shown by crosses connected bydiie I;e. All the results show a rapid increase
of Mgy asT decreases, signaling the phase transition to the ice-fdrase. However, the PEMC results show slow
convergence to the EDMC ones; even the resultsifgr= 40 show considerable deviations.

On the other hand, for higher electron densities, the PENMGIt€show good convergence to the EDMC results.
Figured2(b) anfl2(c) show the resultsiat —3.7 andu = —1.3, respectively. In the intermediate density region in
Fig.[A(b), the 32-sublattice order is stabilized at [dwWsee Fig[2(e)], while for the higher density in Fig. 2(c)eth
all-in/all-out order appears [see Fig. 2(f)]. As shown in Elg. 2éb); = —3.7, while the results fomy; = 10 and 20
show considerable deviations from the EDMC results, thelte$or my; = 30 and 40 show good agreement except
for a slight deviation in the critical region (the critica&rperature is estimated &g = 0.043(2) from the inflection
point of theT dependence d¥l [@]). The situation is similar for = —1.3 in Fig.[2(c);mot = 30 and 40 appear to
be enough for the convergence except for the critical regearT. = 0.085(5), whereas the results for smabhag;
are oscillating in terms af.

These results indicate that the PEMC results shofficéent convergence famye, = 30 in the relatively high
density region oh = 0.15. The results away from the critical region converge fabten those in the critical region.
These aspects are further discussed in the next section.

3.2. Convergencein terms of the number of polynomials

(a)1.0 T T T T T (b) 1.0
o0 o
0.8 |- O o P 09 F T=0.012 4
. e N o T=0.020
06 L N i 08 L o0 A T=0.030
R Q <]
Mq A * P)ZZ & ©
04 | o B 07 £ RS-
©
i T=0.012 ]
027 gike 0 T=0.0207 080 go6 Ao, ]
0.0 | | | | A\ r= 0\-030 05 : Baph s | | | |
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Mot Mot
(c)os —_— (d) 004 — ——
Arbbpb _ — ‘V"‘AA T7=0.012
04 [o%000 el 3 ool i ® o T=0.020 |
T ea ' a T=0.030
03 - @ + -
[] @ L i
Py s o By 002 Po M e
02 | e & T=0.0121 C T e
¢ 0 T=0.020 o001 1€ * |
04 | 2 T=0.030- :
o2 ©
0.0 | | i | | | 0.00 \ L O pg @ ©
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Mot Mot

Figure 3: (color online). PEMC results foko; dependences of (&g, (b) P22, (¢) P31, and (d)P4o. The calculations are done fbr = 4 x 43 and
u =-5.7 withd = 6. For comparison, the results and statistical errors by ECGlve shown by horizontal solid lines and shades, respgctive

We investigate the convergence of PEMC with respeatgpin the three density regions shown in Figs. 2(a)-(c),
respectively, foN = 4 x 43. We here show the convergence in thre@edentT regions: a lowT ordered region,
high-T paramagnetic region, and in the vicinity of the critical frature. The critical temperatures joe= -5.7,
—3.7, and-1.3 are estimated to bE. = 0.023(2), 0043(2), and M85(5), respectively, from the inflection point of the
T dependence dfl, [2d].



Figure[3 shows the results faor= —5.7 (ice-ferro ordered region) a = 0.012, 020, and 30, corresponding
to the ordered, critical, and paramagnetic regions, reéspée Figure[3(a) is the result fdvlg, and Figs[B(b)43(d)
are the results for the local correlation parameRegs P31, andP4g, respectively. The EDMC results are indicated by
horizontal solid lines (the error bars are shown by shadesll T regions, the convergence of PEMC results to the
EDMC ones is slowmy; = 80 appears to be necessary foffimient convergence in this low density region.
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Figure 4: (color online). PEMC results foko; dependences of (&g, (b) P22, (¢) P31, and (d)P4o. The calculations are done fbr = 4 x 43 and
u =-3.7 withd = 6. For comparison, the results and statistical errors by EClve shown by horizontal solid lines and shades, respgctive

On the other hand, the PEMC resultgiat —3.7 (the 32-sublattice ordered region) show better convexgenhe
results are shown in Fi§l 4. Both the sublattice magnetimaind the local correlation parameters show reasonable
convergence fomy; > 30. The situation is similar fqe = —1.3 (the all-inall-out ordered region), as shown in Hig. 5.
The results show good convergencerfgy; = 35. In both cases with = —3.7 and-1.3, the data in the critical region
appear to show relatively slower convergence comparecettoth-T and highT region, but the remnant deviation is
in a reasonable range and not harmful to the estimation afritieal temperature [29].

The results in Figd14 arld 5 indicate that PEMC worKiciently in a wide range of for the relatively high
electron density of > 0.15. Typically,myq: = 30-40 is enough for the convergence. On the other hand, ilober
electron density region, quantitativelyfBaient convergence requires much largeg. These points are discussed in
Sec[4.

3.3. Convergencein terms of the truncation distance

Next, we investigate the convergence with respect to thiespce truncation distanace Here, the calculations
are done gt = —3.7 and-1.3 with my; = 40, for which PEMC results show good convergence to the EDMéES@s
discussed in the previous sections. The system siess4 x 4%, in which the Manhattan distance to the furthest site
isd=8.

Figure[® shows the PEMC results in the 32-sublattice ordeggibn aty = -3.7 for different temperatures,
T = 0.035, Q045, and M55, which correspond to the magnetically ordered, ctitisad paramagnetic regions,
respectively. In alll regions, the PEMC data converge to the EDMC oneslfar6, except for the data dt = 0.045
in the critical region. This shows again that the convergdrecomes slower in the critical region.

The situation is similar in the all-jiall-out region. Figur€l7 shows the results foe= —1.3 atT = 0.070, Q080,
and 0090. The results fok in Fig.[7(a) show good convergence tbg> 5 for all T shown. ForPz,, P31, andPyg in
Figs[T(b)EY(d), the results &t = 0.070 and Q090 also show well converged results tbp, 5. On the other hand, the
data aff = 0.080 shows a slight deviation from EDMC data updte: 7.
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From the above results, it appears that the truncationdvithé gives siificient convergence in a wide rangeTof
andn. In this system siz&l = 4 x 4%, d = 6 already covers a large part of the lattice sites, and héineéruncation is
less useful to the reduction of the calculation amount., In@avever, expected from the truncation algorithm that the
necessary truncation distance for the same accuracy dodspend so much on the system size; hence, the truncation
will be efficient for larger system sizes. We examine this point in the: section.

3.4. Convergencein terms of the truncation distancein larger systems

To confirm the @iciency of the truncation in larger system sizes, here we ecindhe PEMC calculations for
N = 4 x 6% and 4x 8% in the 32-sublattice ordered region. For the system sizzEDMC is inapplicable due to the
large calculation amount, we perform only PEMC and checlctirerergence with respect to the truncation distance
d. In these sizes, the Manhattan distance to the farthesssite 12 forN = 4 x 6% andd = 16 forN = 4 x 82.

Figurel® shows the results in the 32-sublattice orderedneafiz = —3.4 [n = 0.195(1)] forN = 4 x 6°. Here, we
takemy: = 40, as the necessany, for the convergence is expected to be less dependent onsttmyizesﬂd] 9.
As shown in Fig[B(a), fod > 8, the results foMq show reasonable convergence to the results without triomciat
all T regions. The results fd?,,, P31, andP4g also show convergence with>> 8, as shown in Figgl 8(b)-(d). Similar
behavior is also observed fdr = 4 x 82. Figurd[® shows the results for = 4 x 8% with T = 0.035, Q045, and 055.
All the results also show good convergencedar, 8.

4, Discussion

Let us discuss our results in comparison with the previoesam similar Kondo lattice models. In the previous
studies using PEMC, the number of polynomials for well cogee calculations was typically 3§ mq < 40 B
[11,[29) 27| 28]. Our results presentegiat —3.7 and-1.3 in Sec[31L and Selc_B.2 indicate that good convergence
is reached for similar range of:. This shows that PEMC is also afffieient approach even in the presence of
severe geometrical frustration. We note that the range efmital potential: corresponds to a moderate electron
densityn > 0.15. Considering the fact that most of the previous studiegwenducted in the region forZD < n <
0.80 Ejﬁbmﬂ& this also supports the applicabilitPBMC in the frustrated models in the similar density
region.

On the other hand, our results in the lower electron densijjon show much slower convergence, and even the
results formy; = 80 show considerable deviations from the EDMC results, asshin Fig.[3. This might be owing
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to the fact that the Fermi level is close to the band bottonthdésmall electron density region, the precise structure of
DOS near the band edge plays a crucial role for the thermadipsato reproduce the details of DOS requires larger
number of polynomials. Another possible source is the serargy scale in the low density region. Because of the
small kinetic energy, thefective interactions between localized spins become saradlhence, the relevahtrange
including T, is much lower than that in the higher density region. This aésjuires larger number of polynomials for
sufficient convergence.

Next, we discuss the convergence with respect to the realesppuncation. The results in Fi§$. 8 &nd 9 show that
sufficient convergence is obtianed for> 8 for bothN = 4 x 6° and 4x 83. This is consistent with the expectation
that the necessary truncation distance is not stronglyrabse on the system size. Unfortunatelydas 8 covers the
large part of the system witN = 4 x 6% and 4x 83, the truncation method is not helpful to reducing the caitah
amount for the present system sizes. It is, however, expéatee d€ficient for much larger system sizes if accessible.

5. Summary

To summarize, we have presented the benchmark results appiieation of polynomial expansion Monte Carlo
method to a geometrically-frustrated spin-charge cougystem, a spin-ice type Kondo lattice model on a pyrochlore
lattice. We have investigated the convergence of MonteaGasdults with respect to the number of polynomialg
and the truncation Manhattan distartceThe results indicate that, in the electron density regid® & n < 0.35,
the polynomial expansion Monte Carlo results with; = 40 show s#icient convergence to those obtained by
the conventional Monte Carlo method using the exact diagaiemn. The results show that, although the current
model has @-function singularity in the density of states in the noanaicting limit associated with the geometrical
frustration, the polynmial expansion Monte Carlo resutisvg good convergence within the number of polynomials
comparable to previous studies for unfrustrated modelstHeoreal-space truncation, our results indicate that 8
gives well converged results fo = 4 x 6 and 4x 82, whiled > 6 is enough foN = 4 x 43. Although the truncation
algorithm is not useful for reducing the calculation amadi@nthe system sizes that we calculated, the small system-
size dependence of the necessary truncation distanceesrtplat the truncation becomesi@ent for larger system
sizes.

Recent experiments in the metallic pyrochlore oxides htweugated the studies on spin-charge coupled systems
on frustrated lattices. There, the polynomial expansiomtddCarlo method will be a powerful theoretical tool if
it is not sufered from the dficulty specific to the frustrated systems, the pathologicejudarity in the density of
states. Our results indicate that, in contrast to what wéisipated, the polynomial expansion Monte Carlo method
is efficiently applied to the frustrated systems. As the methodiges numerically exact solutions, the present
benchmark will further stimulate numerical studies on thi@sharge coupled systems on frustrated lattices.
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