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Abstract

We present a program in C that employs spectral distribution theory for studies
of characteristic properties of a many-particle quantum-mechanical system and
the underlying few-body interaction. In particular, the program focuses on two-
body nuclear interactions given in a JT -coupled harmonic oscillator basis and
calculates correlation coefficients, a measure of similarity of any two interactions,
as well as Hilbert-Schmidt norms specifying interaction strengths. An impor-
tant feature of the program is its ability to identify the monopole part (centroid)
of a 2-body interaction, as well as its ‘density-dependent’ one-body and two-
body part, thereby providing key information on the evolution of shell gaps and
binding energies for larger nuclear systems. As additional features, we provide
statistical measures for ‘density-dependent’ interactions, as well as a mechanism
to express an interaction in terms of two other interactions. This, in turn, allows
one to identify, e.g., established features of the nuclear interaction (such as pair-
ing correlations) within a general Hamiltonian. The program handles the radial
degeneracy for ‘density-dependent’ one-body interactions and together with an
efficient linked list data structure, facilitates studies of nuclear interactions in
large model spaces that go beyond valence-shell applications.

Keywords: Spectral distribution theory, Similarity of interactions, Properties of
realistic and schematic interactions, Monopole interaction

PROGRAM SUMMARY

Program title: sdt

Catalogue identifier: AEQG v1 0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEQG v1 0.html

Program obtainable from: CPC Program Library, Queens University,
Belfast, N. Ireland

1

ar
X

iv
:1

30
8.

59
63

v1
  [

nu
cl

-t
h]

  2
7 

A
ug

 2
01

3

http://cpc.cs.qub.ac.uk/summaries/AEQG_v1_0.html


Licensing provisions: Standard CPC licence,
http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 10 888
No. of bytes in distributed program, including test data, etc.: 88 778
Distribution format: tar.gz
Programming language: C.
Computer: Laptop, Workstation.
Operating system: Linux [tested on Linux (Kernel 2.6.9) with a gcc, version 3.4.6]
RAM: Less than 10 MB
Classification: 17.15.
Nature of problem: The program calculates second-order energy moments, such
as variances and correlation coefficients, widely used as measures of the overall
strength of an interaction and its similarity to other interactions. It allows for
studies of the physical properties of various interactions and their effect on many-
particle systems.
Solution method: Calculations are based on spectral distribution theory and in-
voke statistical measures provided by the theory.
Running time: Less than 20 min (typically, several seconds) using a 1.80 GHz
processor.
References:
J. B. French and K. F. Ratcliff, Phys. Rev. C 3, 94 (1971);
F. S. Chang, J. B. French, and T. H. Thio, Ann. Phys. (N.Y.) 66, 137 (1971);
K. T. Hecht and J. P. Draayer, Nucl. Phys. A223, 285 (1974);
K. D. Sviratcheva, J. P. Draayer, and J. P. Vary, Nucl. Phys. A 786, 31 (2007).

1. Introduction

Spectral distribution theory (SDT) [1–4] originated as a complement to con-
ventional configuration-interaction spectroscopy (for a review, see [5]). The ef-
ficacy of the theory stems from the finding that low-order energy moments of a
microscopic interaction typically capture the dominant characteristic features of
a many-particle system. While not the primary focus of SDT, convergence of
the theory to exact eigensolution results improves, in principle, as higher-order
energy moments are taken into account, and/or in the limit of the many particles
occupying a much larger available single-particle (s.p.) space. The theory also
provides a relatively simple means to calculate important average properties, such
as level densities, the degree of symmetry violation, and various other important
features (e.g., [6–16]). In particular, in nuclear physics, the SDT approach has
been successfully applied to studies of energy spectra and reactions for p-, sd-,
and fp-shell nuclei [17–22], as well as for understanding dominant features and
differences among sd-shell realistic effective interactions [23, 24]. This has been
Preprint submitted to Elsevier March 6, 2022



achieved without the need for carrying out large-scale shell-model calculations,
which are not always feasible. Recent applications include explorations on quan-
tum chaos, nuclear structure, and parity/time-reversal violation (for example, see
[25–32, 5]).

We focus on second-order energy moments, such as variances and correlation
coefficients, widely used as measures of the overall strength of an interaction and
its similarity to other interactions. Furthermore, these moments can be prop-
agated straightforwardly beyond the defining two-nucleon system to derivative
systems with larger numbers of nucleons [3] and higher values of isospin [4]. As a
result, SDT allows one to gain further insight into the physical properties of vari-
ous interactions and above all, into their effect on many-particle nuclear systems.
For example, correlation coefficients can be used to extract important informa-
tion on how well pairing/rotational features develop in a nucleus given a specific
interaction [33].

In addition, SDT gives an exact and simple prescription for identifying ‘density-
dependent’ monopole (centroid), one-body (induced single-particle energies), and
its residual, irreducible two-body parts. The theory is readily extensible to 3-body
interactions and beyond and can be of special interest when such interactions are
invoked, e.g., [34–36]. Hence, SDT framework provides important information on
the evolution of the shell structure, shell gaps, binding energies and contribution
of 3-body forces with increasing number of particles [37–39].

In this paper, we present a detailed explanation of a computer code in C
that utilizes SDT. The program is applicable to microscopic two-body nuclear
interactions, regardless of whether they are realistic (like N3LO [40], Argonne 18
[41], and CD-Bonn [42]) or schematic (like pairing interaction), given in the JT -
coupled basis of the harmonic oscillator (HO) potential or an arbitrary spherically
symmetric potential. The program, as implemented, can be straightforwardly
modified to accommodate other coupling schemes (e.g., uncoupled, m-scheme,
basis [39]). The computer program is also extensible to 3-body interactions and
beyond (see, e.g., Ref. [39] for derivations in the m scheme), and, in principle, can
be expanded to include higher-order energy moments. The program introduces a
new feature, namely, it handles the radial degeneracy of the ‘density-dependent’
one-body interactions and together with an efficient linked-list data structure,
facilitates studies in large model spaces that go beyond valence-shell or two-shell
applications of earlier Fortran programs [9, 43, 44]. We also provide additional
features that allow for studies of ‘density-dependent’ interactions, as well as of
interactions that can be expressed in terms of two other interactions that are
mutually orthogonal. This, in turn, can provide, for example, a key indication
regarding how well a realistic nucleon-nucleon interaction may or may not repro-
duce – without actually employing shell-model calculations – prominent features
of nuclei, such as pairing gaps in nuclear energy spectra or enhanced electric
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quadrupole transitions in collective rotational bands. The code is an essential
computational tool that we have utilized in recent explorations to provide impor-
tant nuclear structure information [32, 33, 39] and can enable further studies of
interest to nuclear theory (e.g., as suggested in [45]).

2. Spectral Distribution Theory – notation and definitions

Spectral distribution theory (or statistical spectroscopy) is well documented
in the literature [2, 3, 6, 4, 9] and is accompanied by early computational codes
[9, 43] for evaluating various measures. In this section, we specify the notation
we use as well as present the formulae used in the program to calculate the
measures by following the appendix of Ref. [32]. In addition, we include the
radial degeneracy concept [3] to accommodate many HO major shells, together
with a discussion on orthogonalizing an interaction with respect to a reference
Hamiltonian and on expanding a Hamiltonian in terms of two other Hamiltonians.

In a standard second quantized form, a one- plus two-body isospin-conserving1

Hamiltonian is given in terms of fermion creation a†ηjm(1/2)σ and annihilation

ãηj−m(1/2)−σ = (−1)j−m+1/2−σaηjm(1/2)σ tensors, where the operator a† (a) cre-
ates (annihilates) a particle of type σ = ±1/2 (proton/neutron) in a state of
oscillator quantum number η (η = 0, 1, 2, . . . for s, p, sd, . . . oscillator shells,
respectively), total angular momentum j (half integer) with projection m in a
finite space 2Ω = Σj(2j + 1),

H =
∑
r

√
[r]εr{a†r ⊗ ãr}(00)

−1

4

∑
rstuΓ

√
(1 + δrs)(1 + δtu)[Γ]WΓ

rstu{{a†r ⊗ a†s}Γ ⊗ {ãt ⊗ ãu}Γ}(00),(1)

where the labels are r = {ηr, jr, τr = 1
2}, [r] = 2(2jr + 1), and [Γ] = (2J +

1)(2T + 1). In Eq. (1), εr is an (external) single-particle energy and W JT
rstu =

〈rsJTMT0|H|tuJTMT0〉 is a two-body antisymmetric matrix element for JT -

coupled normalized basis states, |tuJTMT0〉 = 1√
1+δtu

{a†t ⊗ a
†
u}JTMT0 |0〉, with

WΓ
rstu = −(−)r+s−ΓWΓ

srtu = −(−)t+u−ΓWΓ
rsut = (−)r+s−t−uWΓ

srut = WΓ
turs. (2)

The underlying principle of SDT is the mapping of Hamiltonians onto a multi-
dimensional linear vector space with an inner product. That is, a Hamiltonian H
can be realized as a vector with coordinates specified by the independent matrix
elements of H. For the one- plus two-body H, this space is spanned by a complete

1Equivalently, the isospin-conserving part of a charge-dependent interaction (see Sec. 3).

4



set of unit tensors (basis), {a†r⊗ ãr}(00) and {{a†r⊗a†s}Γ⊗{ãt⊗ ãu}Γ}(00), and all
such Hamiltonians expand along this basis according to Eq. (1). In this multi-
dimensional space, an inner product, (H,H ′), for a pair of Hamiltonians H and
H ′, is introduced (defined below), which, in turn, defines important measures;
namely, a norm of H, σH =

√
(H,H) (“size” of a Hamiltonian), an angle between

two Hamiltonians, cos θH,H′ = (H,H ′)/σHσH′ (“orientation” of one Hamiltonian
relative to the other), and a metric (“distance”), d(H,H ′) = σ(H−H′). For exam-
ple, for the 3-dimensional coordinate space, an inner product is introduced by the
scalar product of two vectors, (x,x′) =

∑3
i=1 xix

′
i = Tr(xx′), which defines σx =√

x2
1 + x2

2 + x2
3, the length of a vector, and a metric d(x,x′) =

√∑3
i=1(xi − x′i)2,

the distance between two points in space. Note that these measures are indepen-
dent of the basis representation, but are properties of the vectors.

The inner product in SDT is defined in terms of traceless operators, H −
〈H〉(α), where

〈H〉(α) =
1

Nd
Tr(α)H (3)

is the expectation value of H averaged over the subset of basis states α (distri-
butions) with dimensionality Nd and thus, is related to the trace of the operator.
E.g., for the matrix representation of a Hamiltonian with matrix elements Hfi =
〈f |H|i〉 for a final |f〉 and initial |i〉 basis state, 〈H〉(α) =

∑
i⊂αHii/

∑
i⊂α 1,

and clearly, H − 〈H〉(α) is traceless, such that Tr(α)(H − 〈H〉(α)) =
∑

i⊂αHii −
〈H〉(α)

∑
i⊂α 1 = 0. We consider two distributions α, namely, a scalar distri-

bution (denoted by “n” in the formulae) for a set of all states with a fixed n
particle number, as well as isospin-scalar distribution (denoted by “n, T”) for a
set of all states with fixed n particle number and T isospin value2. For a spectral
distribution α (α is n or n, T ), the inner product is defined as,

(H,H ′)(α) = 〈(H† − 〈H†〉α)(H ′ − 〈H ′〉α)〉α = 〈H†H ′〉α − 〈H†〉α〈H ′〉α. (4)

Hence, the correlation coefficient between two Hamiltonian operators, H and
H ′, is given as

ζ
(α)
H,H′ =

(H,H ′)(α)

σ
(α)
H σ

(α)
H′

=
〈H†H ′〉α − 〈H†〉α〈H ′〉α

σ
(α)
H σ

(α)
H′

, (5)

2A technical detail is that the model space in spectral distribution theory is partitioned
according to particular group symmetries and each subsequent subgroup partitioning yields
finer and more detailed spectral estimates. Specifically, for n particles distributed over 4Ω
single-particle states, the scalar distribution averaged over all n-particle states is associated
with the U(4Ω) group structure and the isospin-scalar distribution averaged over the ensemble
of all n-particle states of isospin T is associated with U(2Ω)⊗U(2)T .

5



where the “width” of H (related to the Hilbert-Schmidt norm) is the positive
square root of the variance,

(σ
(α)
H )2 = (H,H)(α) = 〈H2〉α − (〈H〉α)2. (6)

The steps for computing these quantities are outlined in Sections 2.1 and 2.2.
The significance of a positive correlation coefficient is given by Cohen [46] and
later revised to the following, ζ = 0.00 − 0.09 represents a trivial correlation,
ζ = 0.10−0.29, 0.30−0.49, 0.50−0.69, and 0.70−0.89 represent small, medium,
large and very large correlations, respectively, while ζ = 0.90 − 0.99 and 1.00
represent nearly perfect and perfect correlations, respectively.

From a geometrical perspective, in spectral distribution theory every interac-
tion is associated with a vector (Fig. 1) of length σ (Eq. 6) and the correlation
coefficient ζ (Eq. 5) defines the angle (via a normalized scalar product) between
two vectors. Hence, ζH,H′ gives the normalized projection of H ′ onto the H in-
teraction (or H onto H ′). In addition, (ζH,H′)

2 gives the percentage of H ′ that
reflects the characteristic properties of the H interaction. As for σH , it is a nat-
ural measure of the H operator size and realizes the spread of the H eigenvalue
distribution. As is well-known, the smaller the σH (the weaker the interaction),
the more compressed the energy spectrum for H [2].

H 

H 
’	
  

θ H,H ’	
  

σ H 

σ H’	
  

HH 
’	
  

Figure 1: Geometrical interpretation of two
Hamiltonians in the framework of spectral dis-
tribution theory. Each Hamiltonian (H and
H ′) is represented by a vector of length given
by its respective norm σ; the angle between H
and H ′ is specified by the corresponding cor-
relation coefficient, θH,H′ = arccos ζH,H′ . H ′H
is the projection of H ′ onto H and reflects the
spectral characteristics of H.

As mentioned above, H and H ′ of Fig. 1 lie in a multi-dimensional space,
spanned by a complete set of unit tensors. This allows one to identify, within this
multi-dimensional space, a set of Hamiltonians {H} (multi-dimensional vector H
in Fig. 1) and then project any H ′ onto the space spanned by {H}, thereby
providing an expansion of H ′ in terms of other Hamiltonians, H ′ = ⊕H + Hres.
Here, Hres is the part of H ′ that lies outside the {H} space (multi-dimensional
dashed line in Fig. 1). In this study, we focus on the case of a two-dimensional
{H} space (Section 2.3).

The similarity between two interactions can be further tracked in many-
nucleon systems [4, 47] through propagation formulae. The latter determine
how the averages extracted from the two-nucleon matrix elements get carried
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forward into many-nucleon systems. This propagation of information is model-
independent. In order to calculate energy moments and their propagation in
many-particle systems, that is, for higher n (and T ) values, each Hamiltonian H,
which consists of one- (k = 1) and two-body (k = 2) interactions, is expressed as
a linear combination of terms of definite particle rank (irreducible tensors Hk(ν)
of rank ν = 0, 1, 2), that is as a collection of pure zero-, one- and two-body in-
teractions. For example, in the case of scalar distribution and for n particles [6],
the Hamiltonian can be rendered3,

H = nH1(0) +

(
n

2

)
H2(0) +H1(1) + (n− 1)H2(1) +H2(2). (7)

For then the inner product (Eq. 4) that defines the correlation coefficient (Eq. 5)
or the variance (Eq. 6) is easily computed for different particle numbers n using
the irreducible tensors and their expectation values in a many-particle basis,

ζ
(α)
H,H′σ

(α)
H σ

(α)
H′ = 〈[H†1(1) + (n− 1)H†2(1)][H′1(1) + (n− 1)H′2(1)]〉α

+ 〈H†2(2)H′2(2)〉α, (8)

(σ
(α)
H )2 = 〈[H1(1) + (n− 1)H2(1)]2〉α + 〈[H2(2)]2〉α. (9)

2.1. One-body interaction and single-particle energies SPE’s

For a set s of s.p. states (typically, referred to as orbits) of degeneracy Ns,
the average single-particle energy ε and the traceless single-particle energy, ε̃r, of
the rth orbit are given as,

ε =
1

N
∑
s

εsNs (10a)

ε̃r = εr − ε = εr −
1

N
∑
s

εsNs, (10b)

3 As explained by French [6], for a scalar distribution (α = n), a 2-body Hamiltonian can
be constructed in terms of simpler 0- and 1-body terms with the use of the one-body opera-
tor n. E.g., with (n − 1) being (0+1)-body, if one finds a pure 1-body H2(1) [that vanishes
in the zero-particle space, H2(1)|0〉 = 0], (n − 1)H2(1) can only be, in general, (1+2)-body
– and as it vanishes in the one-particle space, for n = 1, it is in fact 2-body; similarly for(
n
2

)
H2(0) (it vanishes for n = 0 and n = 1). Hence, the generalization for constructing a k-body

interaction in terms of pure particle-rank interactions is given as, H =
∑k
ν=0

(
n−ν
k−ν

)
Hk(ν) =∑k

ν=0
(n−ν)(n−ν−1)...(n−k+1)

(k−ν)!
Hk(ν) – clearly, it vanishes for n = ν, ν + 1, . . . , k − 1 due to

the n-dependent polynomial and for n < ν due to the ν-body Hk(ν). Note that for an
isospin-scalar distribution (α = n, T ), two operators are invoked, n and T2, such that, e.g.,
n(n+2)−4T2

8
HT=0

2 (0) together with 3n(n−2)+4T2

8
HT=1

2 (0) contribute to a 2-body Hamiltonian
(they vanish for n = 0, T = 0 and n = 1, T = 1/2).
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where N =
∑

sNs and for a jj-coupled HO s.p. basis, Ns = 2
∑

s(2js + 1). A
quick check for ε̃, Trε̃ =

∑
rNrε̃r =

∑
rNr(εr−ε) = N ε−ε

∑
rNr = 0, confirms

that it is traceless.
These quantities construct pure 0-body and 1-body terms (irreducible inter-

action tensors of particle ranks 0 and 1) for a one-body interaction, namely,

H1(0) = ε

H1(1) =
∑
r

√
[r]ε̃r{a†r ⊗ ãr}(00).

With these definitions and using that n =
∑

r

√
[r]{a†r ⊗ ãr}(00), one can verify

that a one-body H = nH1(0) +H1(1), as shown in (7).

2.2. Two-body interaction and two-body matrix elements TBME’s

Scalar distribution. – In this case, degeneracy dimensionalities are given as,

N =
∑
r

Nr ,whereNr = 2(2jr + 1). (11)

For a two-particle system, the monopole moment (centroid), which is the average
expectation value of the two-body interaction, is defined as

Vc =
1(N
2

) ∑
r≤s,Γ

[Γ]WΓ
rsrs, (12)

where the Γ-sum goes over all possible (J, T ) for given r and s, while
(N

2

)
=∑

r≤s,Γ[Γ]. The traceless induced single-particle energy is constructed as (that
is, by contraction of the two-body interaction into an effective one-body operator
under the particular group structure),

λrt =
1

Nr

∑
s,Γ

[Γ]WΓ
rsts

√
(1 + δrs)(1 + δts)δ̂rt −

δrt
N
∑
tu,Γ

[Γ]WΓ
tutu(1 + δtu), (13)

where δ̂rt is 1 if jr = jt and (−1)ηr = (−1)ηt . We thus take into account a
radial degeneracy [3, 2], that is, not every s.p. state is distinguishable by the j
angular momentum and parity, thereby leading to an effective 1-body interaction
that mixes different oscillator quantum numbers (equivalently, radial quantum
numbers). This, for example, introduces a nonzero λrt with r = {ηr = 0, jr =
1
2 , τr = 1

2} and t = {ηt = 2, jt = 1
2 , τt = 1

2}.
In turn, the traceless pure two-body interaction is defined through the anti-

symmetrized matrix elements,

WΓ
rstu(2) = WΓ

rstu−Vcδrtδsu−
λrtδsu + λsuδrt − (−1)r+s−Γ(λstδru + λruδst)

(N − 2)
√

(1 + δrs)(1 + δts)
. (14)
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The quantities defined above, Vc, λ, and W (2), specify the corresponding
tensors of particle ranks 0, 1, and 2 for a two-body interaction, namely,

H2(0) = Vc,

H2(1) =
∑
rs

√
[r]

λrs
N − 2

{a†r ⊗ ãs}(00), (15)

H2(2) =
∑∗ √

[Γ]√
(1+δrs)(1+δtu)

WΓ
rstu(2){{a†r ⊗ a†s}Γ ⊗ {ãt ⊗ ãu}Γ}(00),

where the sum
∑∗ goes over r ≤ s, t ≤ u and Γ = (J, T ).

Hence, the quantity that defines the correlation coefficient (Eq. 5) and the
norm for H = H ′ (Eq. 6) is easily computed for a larger number of particles, n,

ζ
(n)
H,H′σ

(n)
H σ

(n)
H′ = 〈H†H ′〉n − 〈H†〉n〈H ′〉n =

n(N − n)

(N − 1)

(
1

N
∑
r

Nrε̃rε̃′r

)
+ (16a)

n(N − n)(n− 1)

(N − 1)(N − 2)

(
1

N
∑
r

Nr(ε̃rλ′r + λrε̃
′
r)

)
+ (16b)

n(N − n)(n− 1)2

(N − 1)(N − 2)2

(
1

N
∑
rs

Nrλrsλ′rs

)
+ (16c)

n(n− 1)(N − n)(N − n− 1)

2(N − 2)(N − 3)

(
1(N
2

)∑∗[Γ]WΓ
rstu(2)W ′Γrstu(2)

)
. (16d)

Isospin-scalar distribution. – In this case, degeneracy dimensionalities are given
as,

N =
∑
r

Nr ,whereNr = 2jr + 1, (17)

and the centroid is,

V T
c =

2

N (N + (−1)T )

∑
r≤s,J

[J ]W JT
rsrs. (18)

The λTrt traceless induced single-particle energies, which specify H2(1), and the
W JT
rstu(2) two-body matrix elements [9] that specify the traceless pure 2-body

interaction H2(2) are defined as,

λTrt =
1

Nr

∑
s,J

[J ]W JT
rsts

√
(1 + δrs)(1 + δts)δ̂rt −

δrt
N
∑
tu,J

[J ]W JT
tutu(1 + δtu), (19)

9



W JT
rstu(2) = W JT

rstu − V T
c δrtδsu −

λTrtδsu + λTsuδrt − (−1)r+s−J−T (λTstδru + λTruδst)

(N + 2(−1)T )
√

(1 + δrs)(1 + δts)
. (20)

The quantities defined above are used to calculate the correlation coefficient ζ(n,T )

(Eq. 5) and the variance (σ(n,T ))2 for H = H ′ (Eq. 6) for higher values of n and
T , by employing

ζ
(n,T )
H,H′ σ

(n,T )
H σ

(n,T )
H′ = 〈H†H ′〉n,T − 〈H†〉n,T 〈H ′〉n,T =

P1(n, T )

(
1

N
∑
r

Nrε̃rε̃′r

)
+ (21a)

∑
τ

P1(n, T, τ)

(
1

N
∑
r

Nr(ε̃rλ′r + λrε̃
′
r)

)
+ (21b)

∑
{τ1,τ2}

P1(n, T, τ1, τ2)

(
1

N
∑
rs

Nr 1
2 [λτ1rsλ

′τ2
rs + λτ2rsλ

′τ1
rs]

)
+ (21c)

∑
τ

P2(n, T, τ)

(
2

N (N + (−1)τ )

∑∗[J ]W Jτ
rstu(2)W ′Jτrstu(2)

)
, (21d)

where τ is 0 or 1, and the set {τ1, τ2} is {0, 0}, {0, 1} or {1, 1}. The sum
∑∗ goes

over r ≤ s, t ≤ u and J . The propagator functions are derived in [48, 4] and
shown below for completeness:

P1(n, T ) =
n(N+2)(N−n

2
)−2NT (T+1)

(N−1)(N+1) , (22)

P1(n, T, τ) =
4NT (T+1)(1−n)(1−(−1)τ )+(N+2)(N−n

2
)[(2τ+1)n(n+2(−1)τ )−4T (T+1)(−1)τ ]

4(N−1)(N+1)(N+2(−1)τ ) ,

P1(n, T, τ1 = odd, τ2) =

8NT (T+1)(n−1)(N−2n+4)+[(2τ1+1)n(n−2)+4T (T+1)][
(2τ2+1)(n+2(−1)τ2 )

2
(N−n

2
)+T (T+1)(−1)τ2 ][N−2(−1)τ2 ]

8(N−1)(N+1)(N−2)2 ,

P1(n, T, τ1 = even, τ2) =

[(2τ1+1)n(n+2)−4T (T+1)][
(2τ2+1)(n+2(−1)τ2 )

2
(N−n

2
)+T (T+1)(−1)τ2 ][N−2(−1)τ2 ]

8(N−1)(N+1)(N−2)(N+2) ,

P2(n, T, τ = 0) =
[n(n+2)−4T (T+1)][(N−n

2
)(N−n

2
+1)−T (T+1)]

8N (N−1) ,

P2(n, T, τ = 1) =
T 2(T+1)2 3N2−7N+6

2
+

3n(n−2)
8

(N−n
2

)(N−n
2
−1)(N+1)(N+2)

N (N+1)(N−2)(N−3) +

T (T+1)
2

[(5N−3)(N+2)n(n
2
−N )+N (N−1)(N+1)(N+6)]

N (N+1)(N−2)(N−3) .
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2.3. Orthogonal Hamiltonians

Orthogonal Hamiltonians are important in SDT, as they provide an orthog-
onal “basis”, along which a Hamiltonian in consideration, K, can be projected.
Large overlaps of K with a “basis” Hamiltonian implies that features of the lat-
ter are also well realized in K, while the orthogonality ensures that other “basis”
Hamiltonians point to complementary features. For example, if K projects onto
a Q ·Q interaction and an L2 interaction on an equal footing, this does not nec-
essarily imply that both Q ·Q and L2 are required to describe related features of
K, as Q ·Q and L2 can indeed highly overlap.

In the SDT framework, as shown in Ref. [11], one can straightforwardly
extract the traceless 2-body H⊥ orthogonal part of a Hamiltonian H with respect
to a reference one, HRef , such that the condition 〈H†⊥HRef〉 = 0 is satisfied.
This is done in a way analogous to a Gram-Schmidt orthogonalization of two
vectors ~h (reference) and ~g, so that a new vector orthogonal to ~h is given as,

~g⊥ = ~g − ~g·~h
~h·~h
~h = ~g − ζg,hσg

σh
~h. Similarly, the traceless 2-body H⊥ is constructed

using,

W JT
rstu(2)H −

ζH,HRef
σH

σHRef

W JT
rstu(2)HRef

. (23)

Then, as illustrated in Fig. 2, any interaction K can be projected (KH) [49]
onto a plane defined by the two ‘orthogonal vectors’, KH = cHRef

HRef + cH⊥H⊥
(K = KH + Kres with a residual interaction Kres perpendicular to this plane),
where the projection coefficients are given by,

cH⊥ = ζK,H⊥σK/σH⊥ (24a)

cHRef
= ζK,HRef

σK/σHRef
, (24b)

and the cosine of the angle between K and the plane (or equally, and KH) is,

ζK,KH =
√
ζ2
K,HRef

+ ζ2
K,H⊥

. (24c)

The norm of KH can be then calculated as σKH = σKζK,KH . A more interesting
case is a normalized projection of K (which preserves the norm of HRef , see Fig.
2), KH(Ref) = KH

cHRef
= HRef +

cH⊥
cHRef

H⊥, with a norm,

σKH(Ref)
= σHRef

√(
1 + ζ2

K,H⊥
/ζ2
K,HRef

)
. (24d)

This allows for studies that utilize HRef that has been already deduced from
selected nuclear properties, such as a standard pairing Hamiltonian with a pairing
strength adjusted to reproduce pairing gaps in nuclei (also see [33]).
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Figure 2: Geometrical interpreta-
tion of expanding a Hamiltonian K in
terms of two Hamiltonians HRef and
H⊥, that is, projecting a vectorK onto
a plane defined by the two ‘orthog-
onal vectors’. KH is the projection
of K onto the plane, while KH(Ref) is
the portion that does not involve HRef

renormalization.

3. Program Performance

According to the current default (see <calculateMomentsDr.h>), the pro-
gram can handle up to 45 single-j orbits (that is, 9 major HO shells, η =
0, 1, . . . , 8), as well as up to 20 Hamiltonians that are simultaneously considered
in a given calculation. These limits can be increased if an application requires
more orbits and/or a larger set of Hamiltonians. In addition, a subset of orbits
can be selected.
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Figure 3: Run-time as a function of (a) the size of the s.p. basis using 3 Hamiltonians and (b)
the number of Hamiltonians that are simultaneously considered in a given calculation employing
15 single-j orbits.

The computer program has been applied to various interactions including the
realistic interactions N3LO [40], JISP16 [50], CD-Bonn [42] and AV18 [41], as
well as their effective counterparts. Only the isospin-conserving part,

W
JT (IC)
rstu =

{
W

JT (pn)
rstu , T = 0

1
3(W

JT (pp)
rstu +W

JT (nn)
rstu +W

JT (pn)
rstu ) , T = 1

(25)
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has been considered for charge-dependent interactions, that is, with different pp

(T0 = 1), nn (T0 = −1), and pn (T0 = 0) T = 1 matrix elements, W
JT (T0)
rstu =

〈rsJTMT0|H|tuJTMT0〉. The much smaller isospin-mixing part of nuclear in-
teractions cannot be treated in the current program, but could be included, as
the associated formulae have been already derived in Ref. [4]. In addition, several
other interactions have been utilized, e.g., GXPF1 [37], as well as conventional
pn- plus like-particle pairing and Q ·Q interactions, and the Sp(4) pairing Hamil-
tonian [51]. Interactions may be specified for a large set of orbits and only a
subset of orbits can be selected in the program.

The program run-time is studied as a function of the number of s.p. states,
as well as the number of Hamiltonians considered (Fig. 3). While the run-
time increases exponentially, as expected, for larger model spaces (more orbits
considered), it remains reasonably small even when major shells up to the sdgik
shell are considered (45 single-j orbits). For a broad range of problems of interest
that explore up through the sdg shell (15 orbits), the program is indeed very
fast (Fig. 3a). Furthermore, the run-time is only linearly dependent on the
number of Hamiltonians considered, as shown in Fig. 3b for 15 orbits. This
makes the program easily applicable to a large set of Hamiltonians, which in turn
benefits calculations of projecting a given interaction K simultaneously along
many distinct interactions {H}, especially when symmetry-preserving terms are
involved. Such a project is currently being implemented as an extension of the
present computational code.

Finally, the program benefits from an efficient way for storing TBME’s, namely,
matrix elements are stored in linked lists that are grouped, while being read, ac-
cording to the role each W JT

rstu plays in various sums that are needed to construct
irreducible tensors. For example, one group consists of all W JT

rsrs and another
group consists of all W JT

rsts (r 6= t), thereby facilitating fast computations of sums
that enter in Vc and λ’s, respectively.

4. Program Description

In addition to the <main.c> file, the package consists of eight additional files
that are described below (omitting functions that are self-explanatory).

4.1. File <calculateMomentsDr.c>

This file includes drivers that read Hamiltonians, calculate centroids, λ’s, W (2)’s, norms,
and correlation coefficients, and write calculated quantities to output files.

InitModelOrb – Performs initialization of variables for handling the orbits, Hamiltonians, and
statistical measures.

Hamiltonian – Reads all Hamiltonians [their respective SPE’s (1-body) and TBME’s (2-
body)].

13



CalculateStatistics – Calculates statistical moments for all Hamiltonians (including or-
thogonalized interactions): first, the irreducible interaction tensors (pure 0-, 1-, and
2-body) are determined; next, second-order energy moments are calculated and stored
for the base case [n-independent averages]. Calculates correlation coefficients and norms
for n ≤ 4Ω − 1 [and T ≤ min(n

2
, 2Ω − n

2
) in the isospin-scalar case], according to user’s

choice.

NewModelTBMEOrthog – Introduces a new Hamiltonian that contains the orthogonal part of a
given Hamiltonian with respect to a reference one and for the new Hamiltonian, calculates
quantities needed for statistical moments.

AllStatsOfModel – Stores centroids and λ’s for all Hamiltonians.

StatsOfModel – Stores centroids and λ’s for a given Hamiltonian.

NullZeroLambdas – Handles computational errors and zeroes λ ≤ 10−5.

AllAssignNorm – Stores the norm for all 2-body interactions (for n = 2 particles).

AssignNorm – Stores the norm for a given 2-body interaction (for n = 2 particles).

ClearAll – Clears memory.

SetClock – Resets the clock.

RunTime – Calculates program run-time.

4.2. File <calculateMoments.c>

This file includes functions that calculate centroids, λ’s, W (2)’s, norms, and correlation
coefficients.

TracelessSPE – Calculates the average [Eq. (10a)] and traceless energies [Eq. (10b)] for
external SPE’s.

Int0b 1b – Calculates the centroids [Eqs. (12) & (18)] and λ’s [Eqs. (13) & (19)] for a given
2-body interaction.

SumV – Calculates sums linear in W JT
rstu’s [needed for computing Vc and λ].

AssnV2 – Calculates W (2) [Eqs. (14) & (20)] for the irreducible 2-body part of a given 2-body
interaction.

Avg2b – Calculates Eqs. (16d) & (21d) for 〈H†2(2)H′2(2)〉.
SumAvg2b – Calculates the n-independent sum in parenthesis of Eqs. (16d) & (21d) for

〈H†2(2)H′2(2)〉.
SumV2 – Calculates a sum quadratic in W JT

rstu’s [needed for computing second-order energy
moments].

Avg1b lmlm – Calculates Eqs. (16c) & (21c) for 〈H†2(1)H′2(1)〉.
SumAvg1b lmlm – Calculates the n-independent sum in parenthesis of Eqs. (16c) & (21c) for

〈H†2(1)H′2(1)〉.
Avg1b spelm – Calculates Eqs. (16b) & (21b) for 〈H†1(1)H′2(1)〉.
SumAvg1b spelm – Calculates the n-independent sum in parenthesis of Eqs. (16b) & (21b) for

〈H†1(1)H′2(1)〉.
Avg1b lmspe – Calculates Eqs. (16b) & (21b) for 〈H†2(1)H′1(1)〉.
SumAvg1b lmspe – Calculates the n-independent sum in parenthesis of Eqs. (16b) & (21b) for

〈H†2(1)H′1(1)〉.
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Avg1b spe – Calculates Eqs. (16a) & (21a) for 〈H†1(1)H′1(1)〉.
SumAvg1b spe – Calculates the n-independent sum in parenthesis of Eqs. (16a) & (21a) for

〈H†1(1)H′1(1)〉.
AvgTot – Calculates total averages [Eqs. (16) & (21)] used to compute second-order energy

moments for any n and T (calculates the variance [norm squared] in the case when
H = H ′).

AssignAvgBaseCase – Allocates memory and stores all n-independent sums in parenthesis of
Eqs. (16) & (21) for all Hamiltonians (‘base case’).

SetSumAvg – Stores all n-independent sum in parenthesis of Eqs. (16) & (21) for two given
Hamiltonians (‘base case’).

CorrelCoeff – Calculates correlation coefficients for given two Hamiltonians, space partition-
ing (scalar or isospin-scalar distribution) and number of particles.

CreateModelTBMEOrthogonal – Creates a new traceless 2-body Hamiltonian (with zero SPE’s,
Vc and λ’s, by construction) that contains only the orthogonal part of a given Hamiltonian
with respect to a reference Hamiltonian according to Eq.(23).

DestroyNewModel – Clears the last Hamiltonian that has been added during run-time to the
user’s list of Hamiltonians.

StatsRefPlusOrthog – Calculates correlation coefficients (24c), norms (24d), and projection
coefficients (24a) & (24b) for interactions projected onto a reference and orthogonalized
interactions.

NameNewMode – Provides an index for an orthogonalized Hamiltonian based on the indices of the
Hamiltonian to be orthogonalized (id) and the reference one (idRef). E.g. the orthogonal
of id = 23 with respect to idRef = 22 is indexed as 2223.

STmodel – Introduces three new labels for a given Hamiltonian that correspond to a scalar
distribution (all T ), an isospin-scalar distribution for T = 0, and an isospin-scalar distri-
bution for T = 1.

4.3. File <tools.c>
This file contains a number of auxiliary functions, which are designed to handle s.p. basis

states and TBME’s. The s.p. basis states are indexed by positive integer numbers. All SPE’s
and TBME’s are given in terms of these indices as an input. For nuclear Hamiltonians in a HO
jj-coupled basis, indices k (k = 1, 2, 3, . . . ) are related to the η (referred to as n in the program)

and j quantum numbers of a s.p. state by k = η(η+1)
2

+ j + 1
2
. For example, k = 1 (0s1/2),

k = 2 (1p1/2), k = 3 (1p3/2), and so on. Two-body matrix elements W JT
ijkl are supplied only for

indices,

i ≤ j, i ≤ k, and

{
j ≤ l, if i = k
k ≤ l, if i < k

,

as all the TBME’s can be then obtained using relations (2). The TBME’s are sorted, while
being read, in ascending order in the i− j− k− l− J quantum numbers and grouped according
to T .

GroupME – Groups TBME’s according to their indices (e.g., ijij and ijkj) to reduce compu-
tational time for calculating various sums.

allConfigurationsList – Creates a model (called “modelAllConfig”) with all possible con-
figurations, {ijkl, JT}, that enter Vc and λ’s, as well as provides checks for dimensional-
ities.
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FactorME – Provides the ability to rescale TBME’s by an n-dependent factor for a given
Hamiltonian in calculating second-order energy moments. Current default: returns 1.
Example given in comments is for GXPF1 [37] with TBME’s decreasing as [42/(40+n)]0.3.

ScalingME – Provides the ability to rescale TBME’s by a factor. Current default: a scaling
example, W JT

rstu →W JT
rstu/

√
(ηr + ηs)(ηt + ηu), for nonzero ηr, ηs, ηt, ηu and for Hamilto-

nians with indices between 80-89 (the rescaling is done while reading the TBME’s from
a file).

4.4. File <propagators.c>
This file contains propagation functions, n-dependent functions in Eqs. (16a-16d) for the

scalar case and Eq. (22) for the isospin-scalar case, used to calculate second-order energy
moments for a many-particle system (for any number of particles n and isospin T ).

4.5. I/O Files <readFile.c> and <writeFile.c>
The functionalities in <readFile.c> include reading the user input menu as well as reading

and storing (in arrays or linked lists) SPE’s and TBME’s of a set of Hamiltonians specified by
the user.

The <writeFile.c> consists of functions for writing the output. In the output files, the
number of particles is denoted as m and the isospin values are given as twice the value, 2T .

PrintListModel – Prints TBME’s to a file for all T for a given Hamiltonian.

PrintListModelT – Prints TBME’s to a file for a specific T for a given Hamiltonian.

PrintLambda – Prints λ’s for a given Hamiltonian and space partitioning (and isospin).

PrintLambdaH – Prints λ’s for all Hamiltonians and a given space partitioning.

PrintStatsOfModel – Prints centroids, λ’s, and norms of a Hamiltonian.

PrintStatsOfAllModel – Prints centroids, λ’s, and norms for all Hamiltonians.

PrintNorm – Prints norms for all Hamiltonians given a space partitioning for all n (and T ).

PrintNormPairsModel – Prints norms for all Hamiltonians for a given n (and T ).

PrintCorrelCoef – Prints correlation coefficients for all Hamiltonians given a space parti-
tioning for all n (and T ).

PrintCCPairsModel – Prints correlation coefficients for all pairs of Hamiltonians for a given
n (and T ), e.g., (H1, H2) (H1, H3) (H2, H3).

PrintCCPairsOneModel – Prints correlation coefficients for a given Hamiltonian for a given n
(and T ), e.g., for H1, (H1, H2) (H1, H3).

PrintRefOrthogQnty – Prints correlation coefficients (24c), norms (24d), and projection co-
efficients (24a) & (24b) for interactions projected onto a reference and orthogonalized
interactions.

PrintCorrelCoefEachUnitaryRk – Prints correlation coefficients for irreducible 1-body and
2-body interaction tensors.

PrintList2mdls – (additional) Prints TBME’s of two models for the same set of quantum
numbers [zero TBME’s are included if missing in one model, but existing in the other;
also, every TBME of J and T is printed (2J + 1)(2T + 1) times].

TestOrthogMdls – Provides a test if an orthogonalized Hamiltonian is orthogonal to its ref-
erence Hamiltonian.

PrintInitNorm, PrintInitCCheader, PrintInitCC(OneModel), PrintInitRefOrthogQnty –
Write various headers that provide labels for each type of calculations in the output file.

16



4.6. Files <arrayFns.c> and <linkList.c>

These files contain conventional array and linked-list manipulations.

4.7. Data-type definitions and variables

caseST – Data type for distributions: kScalar (or 0) if scalar distribution; kTScalar (or 1)
if isospin-scalar distribution.

orbType – Data type for indices: jqnOrb refers to the 2j angular momentum of a s.p. state;
indexOrb refers to the index k = 1, 2, 3, ... of a s.p. state.

intPart – Data type for irreducible tensors: hAll specifies the entire 1-body+2-body Hamil-
tonian (all irreducible tensors), hLm2b refers to H2(1) +H2(2), h2b refers to H2(2), and
hLm refers to H2(1).

meType – Data type for TBME’s W JT
ijkl: kiOrb, kjOrb, kkOrb, klOrb [s.p. indices i, j,

k, l]; kJ and kT [2J and 2T ]; dimJ and dimJT [2J + 1 and (2J + 1)(2T + 1)]; vInt
and vInt2 [W JT

ijkl and W JT
ijkl(2)]; numericME and numericME2 [true if W JT

ijkl and W JT
ijkl(2)

assigned].

statType – Data type for key characteristics of a Hamiltonian, namely, Vc, λ’s and norms.

avgBCType – Data type for base-case averages.

arrayModels, arrayOrbits, arrayDimOrb, arrayRadDeg, numRadDeg, arraySPE – Arrays to
store Hamiltonian id’s, orbits, dimensionalities, radial-degenerate orbits, number of radial-
degenerate orbits for a given orbit, and SPE’s, respectively.

arrayStat, arrayAvgBaseCase – Arrays to store Vc, λ’s, and norms of Hamiltonians (arrayStat),
as well as base-case averages (arrayAvgBaseCase).

head – Array of linked-list heads for TBME’s of all Hamiltonians.

kModels, kOrbits, kShells, kOrthogMdls – Provides the total number of Hamiltonians,
orbits, major HO shells, and orthogonalized Hamiltonians, respectively.

numModels, numOrbits, orthogInModels – Provides the maximum allowed number of Hamil-
tonians [including orthogonalized Hamiltonians and modelAllConfig that is automati-
cally created], orbits, and orthogonalized Hamiltonians, respectively.
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Appendix

Sample input files for Hamiltonians

Part of a sample input file for SPE’s (εk is specified as < k ε(MeV ) >, with indices k = 1, 2, 3, . . . ):

1 1.0532

2 1.8217

3 2.0244

...

Part of a sample input file for TBME’s (WJT
ijkl is specified as < i j k l 2J 2T W (MeV ) >, with indices i, j, k, l =

1, 2, 3, . . . ):
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1 1 1 1 2 0 0.803376

1 1 1 4 2 0 -7.684559

1 1 2 2 2 0 -1.161099

1 1 2 7 2 0 -1.377213

1 2 1 2 2 0 5.997909

2 9 7 8 4 2 -5.486247

...

For further details, see Sec. 4.3.

Program input file
Test input (file) for the output shown below:

sp4_6int21_22_23

3 /* NO. of orbits

4 5 6 /* orbits

3 /* NO. of interactions

21 22 23 /* interactions (TBME)

1 /* 0 sets all external s.p.energies=0 for all interactions; 1 reads from files

2 /* output: (1) CC; (2) CC+norms; (3) 2 + additional CC/norms, (4) 1+test

2 /* NO. of interactions to be orthogonalized

22 23 /* Href & Interaction to be orthogonalized to Href

23 21

Sample input (file) for TBME rescaling:

sp4_10int81_22_23

7 /* NO. of orbits

4 5 6 7 8 9 10 /* orbits

3 /* NO. of interactions MESCALED

81 22 23 /* interactions (TBME)

0 /* 0 sets all external s.p.energies=0 for all interactions; 1 reads from files

3 /* output: (1) CC; (2) CC+norms; (3) 2 + additional CC/norms, (4) 1+test

1 /* NO. of interactions to be orthogonalized

22 23 /* Href & Interaction to be orthogonalized to Href

User input menu:

Enter the name to label output files

USER INPUT MENU

---------------

********************** ORBITS **************************

MAXIMUM ALLOWED ORBITS: 45

Enter -1 to terminate program

Sample Input :-

NO. OF ORBITS => 3

ORBITS => 1 2 3

********************************************************

Enter number of orbits:

Enter orbits in ASCENDING order:

ORBITS READ: 4 5 6

******************* INTERACTIONS ***********************

Interactions are represented by numerical indices corresponding

to their respective input files of two-body matrix elements, TBMEs

(e.g. ’8’ --> TBME8.dat, ’13’ --> TBME13.dat)

Interactions with indices between 80-89 can be rescaled

(refer to ScalingME in tools.c).

For rescaling: add a comment containing MESCALED after entering number of interactions.

MAX. ALLOWED INTERACTIONS: 20

Enter -1 to terminate program

Sample Input :-

NO. OF INTERACTIONS => 2

INTERACTIONS => 21 23

********************************************************

Enter number of interactions (followed by MESCALED for rescaling):

Enter interactions:
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INTERACTIONS READ: 21 22 23

********** SINGLE PARTICLE ENERGIES (SPE’s) ************

Single particle energies will be read from files corresponding to

the interaction numerical indices

(e.g. ’21’---> SPE21.dat, ’22’ ---> SPE22.dat)

0. No external SPE’s (for all interactions)

1. Reads SPE’s from files (for all interactions)

Enter -1 to terminate program

********************************************************

Enter (1/0/-1):

SPE’s INCLUDED

******************** OUTPUT MENU ***********************

1. Correlation Coefficients (CC’s)

2. Correlation Coefficients (CC’s) and Norms

3. 2 + CC’s for Irreducible (1-body and 2-body) Parts of Interactions

4. 1 + Tests for orthogonality

********************************************************

Enter (1/2/3/4):

CHOICE FOR OUTPUT: 2

********** INTERACTIONS TO BE ORTHOGONALIZED ***********

Interactions must be chosen from Interactions specified above.

MAX. ALLOWED PAIRS: 3

Enter -1 to terminate program

Sample Input :-

NO. OF INTERACTIONS TO BE ORTHOGONALIZED => 2

REF. AND ORTHOG. MODELS #1 => 22 23

REF. AND ORTHOG. MODELS #2 => 23 21

********************************************************

Enter number of interactions to be orthogonalized:

Enter pairs: Reference Interaction Href and Interaction to be orthogonalized to Href

Enter pair #1:

Enter pair #2:

INTERACTIONS TO BE ORTHOGONALIZED: 23 (to 22) 21 (to 23)

---------------

::InitModelOrb:: Finish reading input ...

::Hamiltonian:: Reading SPE/TBME...

::CalculateStatistics:: Calculating moments...

::CalculateStatistics:: Scalar distribution...Finish calculating...

::CalculateStatistics:: Isospin-scalar distribution...Finish calculating...

::ClearAll:: End.

Test output
File <out sp4 6int21 22 23.dat>, shown only for Scalar distribution (format: semicolon-delimited):

***************************************************************************

*Scalar distribution*

***************************************************************************

Hamiltonian; 21; 22; 23; 2223; 2321;

Vc; -2.81556; 0.11436; -1.66531; -0.00000; -0.00000;

norm; 9.82673; 9.43303; 10.35063; 10.18719; 9.81476;

lambda:

4 4; 14.51213; -0.91548; 12.97585; 0.00000; 0.00000;

5 5; 5.99441; -24.58659; -4.52222; 0.00000; 0.00000;

6 6; -8.83365; 16.69622; -1.31047; 0.00000; 0.00000;

Correlation Coefficients (H1,H2), Projection Norm |Hproj=Href+c*Hperp| and Projection Coefficients cH_H1 of H along H1:

m; (21,22); (21,2223);(21,22+2223); |21proj|; c21_22;c21_2223; (21,23); (21,2321);(21,23+2321); |21proj|; c21_23;c21_2321;

2; 0.07529; -0.0278; 0.08026; 1.006e+01; 0.07843; -0.0268; -0.0160; 0.99878; 0.99891; 6.464e+02; -0.0152; 1.00000;

3; 0.06932; -0.0278; 0.07469; 1.693e+01; 0.07154; -0.0268; -0.0149; 0.99977; 0.99988; 1.147e+03; -0.0141; 1.00000;

4; 0.06269; -0.0278; 0.06858; 2.332e+01; 0.06419; -0.0268; -0.0137; 0.99882; 0.99892; 1.680e+03; -0.0130; 1.00000;

5; 0.05546; -0.0278; 0.06202; 2.949e+01; 0.05632; -0.0268; -0.0123; 0.99725; 0.99733; 2.282e+03; -0.0117; 1.00000;

6; 0.04755; -0.0277; 0.05504; 3.573e+01; 0.04787; -0.0268; -0.0108; 0.99528; 0.99533; 3.010e+03; -0.0103; 1.00000;
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7; 0.03890; -0.0276; 0.04772; 4.275e+01; 0.03879; -0.0268; -0.0091; 0.99295; 0.99299; 3.974e+03; -0.0087; 1.00000;

8; 0.02938; -0.0276; 0.04028; 5.252e+01; 0.02900; -0.0268; -0.0072; 0.99026; 0.99029; 5.437e+03; -0.0069; 1.00000;

9; 0.01886; -0.0275; 0.03333; 7.284e+01; 0.01840; -0.0268; -0.0051; 0.98717; 0.98718; 8.203e+03; -0.0048; 1.00000;

10; 0.00717; -0.0274; 0.02830; 1.722e+02; 0.00691; -0.0268; -0.0026; 0.98360; 0.98361; 1.656e+04; -0.0025; 1.00000;

11; -0.0059; -0.0273; 0.02790; 2.146e+02; -0.0056; -0.0268; 0.00023; 0.97946; 0.97946; 1.903e+05; 0.00022; 1.00000;

12; -0.0206; -0.0271; 0.03408; 7.724e+01; -0.0193; -0.0268; 0.00355; 0.97462; 0.97463; 1.251e+04; 0.00341; 1.00000;

13; -0.0374; -0.0270; 0.04607; 5.861e+01; -0.0343; -0.0268; 0.00746; 0.96889; 0.96892; 5.883e+03; 0.00719; 1.00000;

14; -0.0565; -0.0268; 0.06255; 5.282e+01; -0.0509; -0.0268; 0.01216; 0.96200; 0.96208; 3.514e+03; 0.01176; 1.00000;

15; -0.0788; -0.0265; 0.08312; 4.999e+01; -0.0692; -0.0268; 0.01789; 0.95359; 0.95375; 2.284e+03; 0.01739; 1.00000;

16; -0.1049; -0.0263; 0.10815; 4.787e+01; -0.0897; -0.0268; 0.02506; 0.94307; 0.94341; 1.529e+03; 0.02449; 1.00000;

17; -0.1362; -0.0259; 0.13863; 4.571e+01; -0.1126; -0.0268; 0.03426; 0.92957; 0.93020; 1.023e+03; 0.03374; 1.00000;

18; -0.1744; -0.0254; 0.17624; 4.319e+01; -0.1385; -0.0268; 0.04651; 0.91160; 0.91279; 6.693e+02; 0.04628; 1.00000;

19; -0.2224; -0.0247; 0.22377; 4.014e+01; -0.1679; -0.0268; 0.06365; 0.88649; 0.88877; 4.168e+02; 0.06423; 1.00000;

20; -0.2851; -0.0236; 0.28605; 3.642e+01; -0.2017; -0.0268; 0.08933; 0.84888; 0.85357; 2.381e+02; 0.09209; 1.00000;

21; -0.3716; -0.0219; 0.37225; 3.185e+01; -0.2410; -0.0268; 0.13215; 0.78609; 0.79712; 1.164e+02; 0.14115; 1.00000;

22; -0.5025; -0.0183; 0.50287; 2.613e+01; -0.2870; -0.0268; 0.21849; 0.65796; 0.69328; 4.129e+01; 0.25049; 1.00000;

23; -0.7390; 0.00000; 0.73901; 1.847e+01; -0.3419; 0.00000; 0.49577; 0.00000; 0.49577; 5.978e+00; 0.70846; 0.00000;

Norms |H|:

m; | 21|; | 22|; | 23|; |2223|; |2321|;

2; 9.827e+00; 9.433e+00; 1.035e+01; 1.019e+01; 9.815e+00;

3; 1.621e+01; 1.571e+01; 1.711e+01; 1.682e+01; 1.621e+01;

4; 2.183e+01; 2.132e+01; 2.303e+01; 2.263e+01; 2.180e+01;

5; 2.678e+01; 2.637e+01; 2.823e+01; 2.772e+01; 2.670e+01;

6; 3.108e+01; 3.088e+01; 3.274e+01; 3.211e+01; 3.094e+01;

7; 3.476e+01; 3.485e+01; 3.656e+01; 3.582e+01; 3.451e+01;

8; 3.780e+01; 3.830e+01; 3.970e+01; 3.885e+01; 3.743e+01;

9; 4.022e+01; 4.122e+01; 4.217e+01; 4.121e+01; 3.970e+01;

10; 4.201e+01; 4.360e+01; 4.397e+01; 4.289e+01; 4.132e+01;

11; 4.318e+01; 4.545e+01; 4.509e+01; 4.390e+01; 4.230e+01;

12; 4.373e+01; 4.676e+01; 4.554e+01; 4.424e+01; 4.262e+01;

13; 4.365e+01; 4.752e+01; 4.531e+01; 4.390e+01; 4.230e+01;

14; 4.296e+01; 4.773e+01; 4.441e+01; 4.289e+01; 4.132e+01;

15; 4.164e+01; 4.738e+01; 4.285e+01; 4.121e+01; 3.970e+01;

16; 3.969e+01; 4.644e+01; 4.060e+01; 3.885e+01; 3.743e+01;

17; 3.713e+01; 4.491e+01; 3.769e+01; 3.582e+01; 3.451e+01;

18; 3.394e+01; 4.274e+01; 3.411e+01; 3.211e+01; 3.094e+01;

19; 3.012e+01; 3.990e+01; 2.985e+01; 2.772e+01; 2.670e+01;

20; 2.568e+01; 3.629e+01; 2.491e+01; 2.263e+01; 2.180e+01;

21; 2.062e+01; 3.180e+01; 1.931e+01; 1.682e+01; 1.621e+01;

22; 1.492e+01; 2.612e+01; 1.301e+01; 1.019e+01; 9.815e+00;

23; 8.543e+00; 1.847e+01; 5.978e+00; 0.000e+00; 0.000e+00;

This output file provides the centroid (listed as “Vc”), the norm, as well as the density-
dependent 1-body part (listed as “lambda”) for each Hamiltonian, together with various second-
order moments listed for increasing number of particles (shown as “m”) for the scalar distribu-
tion, and also for twice the isospin value (shown as “2T”) for the isospin-scalar distribution. In
a complete space (e.g., 24 particles for the output shown above, m= 4Ω), moments are zero by
definition, Eqs. (16) and (22), and the corresponding output is omitted.

Additional information, including dimensionality checks, set of input parameters, run-time,
and messages on rescaling and orthogonalization, are written into a corresponding log-file
<o sp4 6int21 22 23.log>.
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