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Abstract

We present a simple and fast algorithm to test the thermodynamic stability
and determine the necessary chemical environment for the production of a
multiternary material, relative to competing phases and compounds formed
from the consituent elements. If the material is found to be stable, the region
of stability, in terms of the constituent elemental chemical potentials, is deter-
mined from the intersection points of hypersurfaces in an (n−1)-dimensional
chemical potential space, where n is the number of atomic species in the ma-
terial. The input required is the free energy of formation of the material itself,
and that of all competing phases. Output consists of the result of the test
of stability, the intersection points in the chemical potential space and the
competing phase to which they relate, and, for two- and three-dimensional
spaces, a file which may be used for visualization of the stability region. We
specify the use of the program by applying it to a ternary and quaternary
system. The algorithm automates essential analysis of the thermodynamic
stability of a material. This analysis consists of a process which is lengthy
for ternary materials, and becomes much more complicated when studying
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materials of four or more consituent elements, which are of increased inter-
est in recent years for technological applications such as energy harvesting
and optoelectronics. The algorithm will therefore be of great benefit to the
theoretical and computational study of such materials.

Keywords: Thermodynamic stability, Chemical potential, Materials
design, Defect formation analysis
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The material growth environment is assumed to be in thermal and diffusive equi-33

librium.34

Additional comments:35

For two- and three-dimensional spaces spanned by the chemical potentials, files36

are produced for visualization of the stability region (if it exists).37

Running time: Less than one second.38
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1. Introduction40

Over the past few decades, there has been considerable growth in the41

development of advanced materials for energy harvesting and transparent42

electronics applications. [1, 2, 3, 4] At present, two of the greatest challenges43

facing the optoelectronics industry are the production of stable and economi-44

cally viable p-type materials, [5, 6] and the replacement of rare or inaccessible45

components such as indium with more earth-abundant elements. [7, 8, 9, 10]46

This has led to increased interest in more exotic materials, consisting of47

ternary, [11, 12, 13] quaternary, [14, 15, 16] and quinternary [17, 18, 19]48

systems. These materials are also of increased interest for applications in49

batteries [20] and solid state electrochemistry. [21] Having a large number of50

elements in a compound offers a greater degree in chemical freedom, where51

the tuning of properties of interest, such as band gaps, can be performed by52

varying the composition.53

Instrumental in this research is the theoretical prediction of material prop-54

erties, using various computational approaches, e.g. density functional theory55

(DFT) and methods based on interatomic potentials. [22] A key considera-56

tion when predicting materials appropriate for particular applications is the57

thermodynamical stability of the system, as stable materials present far fewer58

technological challenges when incorporated into devices. [23, 24] It is of great59

interest to predict the range of chemical potentials of the component elemen-60

tal species over which the target phase is stable, rather than the elemental61

species themselves or competing phases, as this gives an indication the chem-62

ical environment necessary for the synthesis of that phase. Indeed, in order63

to predict the stability of a material, one needs to compare its free energy64

with that of all competing phases, including those consisting of subsets of65

the elemental species in the material. [25] The standard procedure [25, 26]66

is to calculate all relevant free energies at the athermal limit, under the67

assumption of thermodynamic equilibrium. Assuming that the material is68
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thermodynamically stable, rather than the competing phases, leads to a set69

of conditions on the elemental chemical potentials, from which one can work70

out the stability range (if it exists). For binary systems, where the number71

of independent variables is one, the procedure is trivial. For ternary systems,72

though the calculation is still straightforward, if there are many competing73

phases, the exercise can become tedious. For quaternary or higher order sys-74

tems, the calculation of the stability region becomes quite involved, as there75

are typically a large number of competing phases to consider, and three or76

more independent variables. It is evident that an automated process to per-77

form these tasks would be of great benefit to theoriticians working on these78

problems.79

Consideration of the chemical potential landscape within which a mate-80

rial forms is also crucial when predicting the nature and concentration of81

defects. The synthesis of a material in different conditions can mean that82

the formation of different defects becomes favorable. Calculations of defect83

formation energies, which depend on the chemical potentials, provide use-84

ful information to experimentalists wishing to produce a material with a85

particular defect-related property. For example, to produce a material with86

significant concentrations of a p-type donor incorporated during the growth87

process, it is necessary to know which chemical environment favors the forma-88

tion of that particular donor defect. Knowledge of the full range of elemental89

chemical potentials within which the material is stable is required, in order90

to predict where in that range the formation of the p-type donor defect is91

favored. It is therefore necessary to work out accurately the stability region92

in the chemical potential space — not carrying out this procedure correctly93

can lead to unphysical predictions of defect formation energies. [27, 28] We94

stress that this type of analysis is limited to growth conditions where the95

assumption of thermodynamic equilibrium is reasonable.96

In this paper, we present a simple, fast and effective algorithm to deter-97

mine the range of the elemental chemical potentials within which the for-98

mation of a stoichiometric material will be favorable, in comparison to the99

formation of competing phases. If there is no range, then the material is not100

thermodynamically stable within the specified environment. The algorithm101

works by first reading in the free energy of formation of the material itself and102

that of the competing phases, which must be provided by the user. Setting103

the condition that the material is, in principle, stable constrains the values104

of the elemental chemical potentials, effectively reducing the number of inde-105

pendent variables by one, meaning that the space spanned by the elemental106
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chemical potentials is (n − 1)-dimensional, where n is the total number of107

elements in the material. The condition that the competing phases do not108

form provides further conditional relations among the independent variables.109

A set of linear equations, corresponding to the set of all conditions on the110

independent variables, is constructed. All possible combinations of the linear111

equations in the set are solved in order to find their intersection points. The112

intersection points are then checked to determine which ones satisfy every113

condition (if none do the system is not thermodynamically stable). Those114

that do form the corner points of the region of stability in the chemical115

potential space. The algorithm is based on the fact that each competing116

phase and standard state effectively defines a hypersurface in the elemental117

chemical potential space, and the region bounded by these hypersurfaces cor-118

responds to the region of values of chemical potentials in which the material119

will be stable. The elemental chemical potentials are given with respect to120

their standard states, i.e. we set the energy that the element has (per atom)121

in its standard state as the zero of chemical potential for that element. The122

algorithm requires that the energy of formation of the material and each123

competing phase is calculated (or measured) prior to execution. For an in124

silico study, it is therefore of great importance that the user searches the125

chemical databases (such as the Inorganic Crystal Structure Database [29])126

extensively, and calculates the energy of all phases and limiting compounds127

using the same level of theory. [30, 31, 26, 25, 1] We have incorporated the128

algorithm in a FORTRAN program called ‘Chemical Potential Limits Analysis129

Program’ (CPLAP) which we have made available online. [32, 33] For con-130

venience, if the chemical potential space is two-dimensional (2D) or three-131

dimensional (3D), the program produces files that can be used as input to132

GNUPLOT [34] and MATHEMATICA, [35] to visualize the region of stability. An133

option to fix the value of a particular chemical potential is available, which134

effectively reduces the dimensionality by one.135

The rest of the paper is structured as follows: In Sec. 2 we discuss the136

relevant theory on which the algorithm is based; in Sec. 3 we present the137

algorithm; in Sec. 4 we demonstrate how the program works using a ternary138

and quaternary system as examples; and in Sec. 5 we summarize our work.139

All the figures in this work, apart from the flowcharts, have been produced140

using GNUPLOT, from the output from CPLAP.141
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2. Theory142

The fundamental assumption, upon which analysis of the chemical po-143

tential landscape in which a material forms is based, is that the combined144

system in the growth environment is in thermodynamic equilibrium. To illus-145

trate the necessary theory, we consider a binary system AmBn, which forms146

via the reaction:147

mA + nB ↔ AmBn, (1)

at constant pressure and temperature. The formation of AmBn competes148

with the phase ApBq. The procedure is then to assume that AmBn forms,149

rather than ApBq or the standard states of A and B, and see if this leads to150

a contradiction.151

We recall that the chemical potential µα of species or compound α is152

defined as153

µα =

(

∂G

∂Nα

)

p,T

, (2)

where G is the Gibbs free energy of the system (G = U − TS + pV , U is the154

internal energy, T is the temperature, S is the entropy, p is the pressure, and155

V is the volume) and Nα is the number of particles of species or compound156

α.157

We first consider the chemical potential of individual species in the com-158

pound AmBn (i.e. A and B). We denote the chemical potential of species α159

in its standard state as µS
α. We would now like to refer the elemental chemical160

potentials µα to their respective µS
α, i.e. we set161

µα = µT
α − µS

α, (3)

where µT
α is the chemical potential of species α that shares a common ref-162

erence with µS
α. We do this for convenience; by determining the µS

α in a163

consistent manner, we will automatically obtain a common reference for all164

elemental chemical potentials. We note that, when calculating formation en-165

ergies that depend on the chemical potentials, µT
α = µS

α +µα should be used.166

In order to avoid formation of the standard states of A and B, we must have167

µα ≤ 0, (4)

placing an upper bound on each elemental chemical potential.168

We now consider all species involved in the reaction given in Eqn. 1, so169

that α = A, B, AmBn, and follow the analysis given in Ref. [36]. Under the170
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assumption of constant p and T , the differential dG in the Gibbs free energy171

is given by:172

dG =
∑

α

µT
αdNα. (5)

As dNα is proportional to the coefficient iα in the reaction given by Eqn. 1173

(iα = m for α = A, iα = n for α = B, iα = −1 for α = AmBn), it can174

be written as dNα = iαdN , where dN is the number of occurences of the175

reaction in Eqn. 1. We can therefore write176

dG =

(

∑

α

iαµT
α

)

dN. (6)

At equilibrium,1 dG = 0, implying that177

∑

α

iαµT
α = 0, (7)

from which we obtain (remembering iAmBn
= −1):178

mµA + nµB = µAmBn
= ∆Gf [AmBn]; (8)

here ∆Gf [X] = ∆Hf [X] − T∆S is the Gibbs free energy of formation of179

compound X with respect to the standard states of its constituent elements,180

Hf [X] is the enthalpy of formation of X, and ∆S is the change in entropy.181

For crystalline systems with low levels of disorder, a good approximation is182

to set ∆S = 0, so that ∆Gf [X] = ∆Hf [X]. Under this approximation we183

can set the chemical potentials of A and B in their standard states equal184

to the total energy (per atom) of the standard states. Calculating all total185

energies, including those required to determine ∆Hf [X], in a consistent man-186

ner ensures all chemical potentials have a common reference. Although it is187

possible to include vibrational entropic effects using, for example, the quasi-188

harmonic approximation, and configurational entropic effects for disordered189

systems, in the remainder of this paper we assume that the approximation190

∆Gf [X] = ∆Hf [X] applies. Eqn. 8 now becomes:191

mµA + nµB = µAmBn
= ∆Hf [AmBn], (9)

1Once equilibrium is reached, the reaction will not proceed further; therefore there will
not be any further change in the thermal average values of the concentrations. This implies
that, given the volume at equilibrium, Eqn. 7 will be valid when V and T are specified
instead of p and T , as was our initial assumption. See Ref. [36]
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effectively constraining our mathematical problem, so that one chemical po-192

tential can be written in terms of the other, i.e. the number of independent193

variables is one. For a binary system, therefore, the chemical potential space194

is one-dimensional (1D), spanned by the one independent variable.195

Combining Eqns. 4 and 9 and taking µA to be the independent variable,196

we find that:197

∆Hf [AmBn]

m
≤ µA ≤ 0, (10)

with µB being determined for each value of µA from Eqn. 9. It follows198

then that the boundary µA = 0 corresponds to A-rich/B-poor growth condi-199

tions, and the boundary µA = ∆Hf [AmBn]/m corresponds to B-rich/A-poor200

growth conditions. Eqn. 10 defines the stability region (a line segment) in201

the 1D chemical potential space spanned by µA.202

We now include in our calculation the competing phase ApBq. The as-203

sumption that ApBq does not form leads to the following condition:204

pµA + qµB ≤ µApBq
= ∆Hf [ApBq]. (11)

Combining this with Eqn. 9 provides the following limits:205

(

p −
qm

n

)

µA ≤ ∆Hf [ApBq] −
q

n
∆Hf [AmBn];

(

q −
pn

m

)

µB ≤ ∆Hf [ApBq] −
p

m
∆Hf [AmBn]. (12)

If these limits are inconsistent with Eqn. 4 then AmBn is unstable with re-206

spect to the formation of ApBq. If they are consistent, then they effectively207

reduce the range given in Eqn. 10, i.e. they reduce the extent of the stabil-208

ity region. The addition of more competing phases will further restrict the209

stability region, which will (if it exists) consist of a line segment in the 1D210

space spanned by µA, with corresponding values of µB derived from Eqn. 9.211

This solves the case of a binary system.212

We now consider a ternary system, to demonstrate the generalization213

of the process as one increases the dimensionality of the chemical potential214

space. We consider the system AmBnCp, whose formation competes with the215

phases AqBr and AsBtCv.216

Corresponding to Eqn. 9, the assumption that AmBnCp forms in an equi-217

librium reaction with the constituent elements’ standard phases provides the218

constraint:219

mµA + nµB + pµC = µAmBnCp
= ∆Hf [AmBnCp], (13)
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allowing us to express one of the chemical potentials, say µC , in terms of220

the other two, leaving two independent variables µA and µB spanning a 2D221

chemical potential space. Allowing µC to adopt its maximum bounded value222

of zero (see Eqn. 4) gives the following condition on µA and µB:223

mµA + nµB ≥ ∆Hf [AmBnCp]. (14)

Combining Eqns. 4 and 13 gives the following conditions on the chemical224

potentials:225

µi ≥ ∆Hf [AmBnCp]/iα, (15)

where iα stands for either m, n, or p, whichever is appropriate.226

Assuming the competing phases do not form leads to the conditions:227

qµA + rµB ≤ µAqBr
= ∆Hf [AqBr]; (16)

sµA + tµB + vµC ≤ µAsBtCv
= ∆Hf [AsBtCv]. (17)

Using Eqn. 13 to eliminate µC from Eqn. 17, we see that Eqns. 4, 14, 15,228

16, and 17 define conditional relations on a 2D plane formed by µA and229

µB. If there does not exist a region in the 2D plane that conforms to every230

condition, then the system is not thermodynamically stable. Otherwise, we231

have a region of stability. One method of determining if this is the case is to232

set the inequality signs in Eqns. 4, 14, 15, 16, and 17 to equality signs,233

giving a series of linear equations with two unknowns. These linear equations234

define lines on the 2D plane formed by µA and µB. Their intersection points235

can be determined by solving the appropriate combinations of the linear236

equations. Those that then simultaneously satisfy the conditions given by237

Eqns. 4, 14, 15, 16 and 17 (if any) will bound the region of stability. The238

result will be a 2D stability region in the plane defined by µA and µB, with239

the corresponding value of µC at each point in the stability region determined240

from Eqn. 13. Graphically, one can display this solution as a 2D plot in the241

space spanned by µA and µB, with the corresponding values of µC given at242

points of interest.243

The generalization of this procedure to systems with larger number of244

constituent elements is as follows. For a system with n constituent elements,245

we will have n− 1 independent variables. The higher dimensional analogues246

of Eqns. 4, 14, and 15 provide 2n−1 linear equations (which correspond to247

hypersurfaces in the (n − 1)-dimensional space), and each competing phase248

provides an additional linear equation. We therefore have a minimum of249
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2n−1 linear equations with n−1 unknowns. Mathematically, the solution is250

trivial, as it only involves solving different combinations of the linear equa-251

tions and checking which solutions are compatible with a series of conditional252

statements. In practice, however, if we have m competing phases there are253

2n+m−1Cn−1 combinations to consider, and carrying out the procedure can be254

quite time consuming and error-prone. This is the reason we have developed255

a program to automate it.256

3. Algorithm257

Input to the program consists of the number of species in the compound258

of interest, the names and stoichiometry of the species, and the free energy of259

formation of the compound. One must also input the total number (if any)260

of competing phases, and, for each one, the number of species, the names261

and stoichiometry of each species, and the free energy of formation of that262

competing phase. The input can be provided via a file, or interactively while263

running the program.264

The user must specify which elemental chemical potential is to be set as265

the dependent variable. We note here that the procedure carried out by the266

program can, in principle, be performed without any dependent variable set.267

If this is done, however, only the intersection points with the hypersurface268

corresponding to the compound of interest are viable solutions, since, by269

not setting a dependent variable, the constraint given by Eqns. 9 or 13 (or270

the higher-dimensional analogue) is assumed no longer to apply, and instead271

effectively the equality sign is replaced by a ‘greater than or equals to’ sign272

(i.e. the assumption that the reaction in Eqn. 1 is in equilibrium no longer273

holds). Only those results that are consistent with the constraint are actual274

solutions of the problem at hand. So, though more intersection points may275

be found when no dependent variable is set, only those that intersect the276

hypersurface corresponding to the compound of interest are actual solutions.277

If no dependent variable is set, the program warns the user of this fact,278

and how to interpret the results. It is always preferable to set a dependent279

variable.280

After reading in the input, the main algorithm begins (see Fig. 1). If the281

system is binary, the solution is relatively trivial. The program carries out282

the procedure as described in Sec. 2 for binary systems, which is to check283

that the limits imposed by the competing phases (Eqns. 12) are consistent284

with Eqn. 4 and the constraint (Eqn. 9), and, if they are, to return the line285
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segment that defines the region of stability. The constraint is also returned286

as output. Note that this is a separate procedure from that used when the287

number of species is greater than two.288

For ternary and higher-order systems a more complex algorithm is used.289

From the input, the program constructs a matrix of linear equations with n−1290

unknowns, where n is the number of species in the system. The compound of291

interest itself provides one linear equation (Eqn. 14, or its higher-dimensional292

analogue). Each independent variable then contributes two linear equations;293

one given by Eqn. 4, the other given by Eqn. 15, which means that there294

are, at a minimum, 2n − 1 linear equations in the matrix. Additional equa-295

tions are provided by the competing phases: one per phase. If there are m296

competing phases, we therefore have, in total, 2n + m − 1 linear equations.297

Once the matrix has been constructed, it is passed to a sorting routine which298

extracts every possible combination of n − 1 equations from the 2n + m − 1299

total. This sorting routine is described in Appendix A. For each combi-300

nation, the n − 1 equations are solved using a standard LU decomposition301

and back-substitution method, [37] if a solution exists. In this way a series302

of intersection points are found (redundencies are checked for, and removed).303

Each intersection point is tested to see if it obeys simultaneously all the con-304

ditions on the elemental chemical potentials (Eqns. 4, 14, 15, 16, and 17305

or higher-dimensional analogues). If none do, the system is not thermody-306

namically stable. Otherwise, those that do correspond to corner points in307

the stability region. The output is then sent to file, consisting of the limit-308

ing conditions applied, the resulting intersection points (with, for each one,309

the corresponding value of the dependent variable), and a list composed of310

each competing phase, with its corresponding linear equation and intersec-311

tion points (if any).312

An option is provided to print to file a grid of points within the stability313

region, with the grid density provided by the user. Such a grid of values314

may be useful for demonstrating the variation of the formation energy of315

a particular defect as the elemental chemical potentials are varied; for this316

the user would be required to calculate the formation energy at each grid317

point. If the chemical potential space is 2D or 3D, the program outputs a file318

which may be loaded directly into GNUPLOT, and text which may be pasted319

into a notebook in MATHEMATICA, to produce a plot of the stability region,320

which will be useful for visualization of results. In addition, for 2D chemical321

potential spaces, a text file is produced which contains the necessary data to322

plot the lines in the chemical potential space corresponding to the material323
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of interest and its competing phases.324

It is possible to restart a run from a previous calculation. Options are325

then available to set a different chemical potential as the dependent variable,326

to provide additional competing phases not considered in the original run,327

or to set a chemical potential to a particular value (effectively reducing the328

dimensionality of the chemical potential space by one). The latter option is329

not available for binary systems, as the solution is trivial.330

We note that, in principle, the procedure could be extended to arbitrary331

pressure and temperature ranges by including thermodynamic potentials ei-332

ther from computations (using phonon frequency calculations and/or statis-333

tical mechanics) or thermochemical data. Such an extension is beyond the334

immediate scope of the present work.335

Our approach should be compared with that of the CALPHAD code, [38, 39,336

40] which is widely used in modelling phase diagrams of alloys over a range337

of temperature, pressure and composition. CALPHAD uses a model with ad-338

justable parameters to describe the thermodynamic properties of each phase339

of a material, fitting the parameters to results from thermochemical and ther-340

mophysical studies stored in databases, and determines a consistent phase341

diagram using a wide range of data. The aim of our approach is different;342

it identifies the range of elemental chemical potentials over which a specified343

phase is stable.344

4. Examples345

4.1. Ternary system346

As our first example of the application of our program, we consider the347

system BaSnO3, [41] an indium-free transparent conducting oxide (TCO).348

The formation of BaSnO3 (in the cubic perovskite structure) occurs in com-349

petition with the phases BaO, SnO, SnO2, and Ba2SnO4, as determined by350

searching the Inorganic Crystal Structure Database [29] for systems con-351

sisting of combinations of the elements Ba, Sn, and O. Our aim here is to352

determine the ranges of chemical potentials in which stoichiometric BaSnO3353

will form, using our program. The enthalpies of formation of the compet-354

ing phases and the material itself have been calculated previously, [41] using355

DFT with the PBE0 [42, 43] hybrid functional (at the athermal limit). The356

values are presented in Table 1. These, and the stoichiometries of the rel-357

evant compounds, form the input to our program. The constraint on the358
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elemental chemical potentials is (see Eqn. 13):359

µBa + µSn + 3µO = µBaSnO3
= −11.46 eV. (18)

We set the chemical potential of O, µO, as the dependent variable.360

Table 1: Enthalpies of formation (∆Hf ) of BaSnO3 and its relevant competing phases.
The values, which are taken from Ref. [41], were determined using DFT with the PBE0
hybrid functional.

System ∆Hf (eV) System ∆Hf (eV)
BaSnO3 -11.46 Ba2SnO4 -17.13
BaO -5.14 SnO -2.54
SnO2 -5.29

After running the program, we find that the system is thermodynamically361

stable. Given that BaSnO3 forms, the limiting conditions that apply to the362

two independent variables µBa and µSn are (energies in eV):363

µBa + µSn ≥ −11.46,

2µBa − µSn ≤ −5.52,

2µBa − µSn ≤ −3.95,

−µBa + 2µSn ≤ 3.85,

µBa ≤ 0,

µSn ≤ 0,

µBa ≥ −11.46,

µSn ≥ −11.46.

(19)

We present the resulting intersection points bounding the stability region in364

Table 2, where we give the corresponding value of the dependent variable365

µO, and the competing phases to which the intersection points correspond.366

The stability region is plotted in Fig. 2. We note that, if we change which367

chemical potential is set as the dependent variable, we obtain the same results368

(as we must). The only difference will be in the appearance of the figure, as369

one of the axes will be changed to that of the new independent variable.370

It is worth noting that if one of the competing phases, say Ba2SnO4371

(which could easily be overlooked), is not included in the calculation, the372
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Table 2: Intersection points bounding the stability region in the 2D chemical potential
space spanned by the independent variables µBa and µSn. The corresponding values of the
dependent variable µO, and the relevant competing phases, are also given. All energies
are in eV.

µBa µSn µO Competing phases
A -5.66 -5.80 0.00 Ba2SnO4, BaSnO3

B -6.18 -5.29 0.00 SnO2, BaSnO3

C -2.76 0.00 -2.90 Ba2SnO4

D -3.53 0.00 -2.64 SnO2

resulting stability region (see Fig. 3) is approximately twice as extensive373

as that shown in Fig. 2, indicating the importance of taking into account374

all relevant competing phases. If one or more is left out, the analysis may375

be incorrect. Similarly, when calculating the total energies of the standard376

phases of the constituent elements, the correct ground-state of O2 (triplet377

spin configuration) must be used, as well as sufficient k-point sampling for378

the metallic standard phases.379

As is discussed in Ref. [41], the most stable n-type intrinsic defect in380

BaSnO3 is the O vacancy (VO). The formation enthalpy ∆Hf [VO] of the381

(neutral) defect is determined from the reaction382

OO → VO +
1

2
O2 (20)

according to:383

∆Hf [VO] = (ED
− EH) + EO2

+ µO, (21)

where EH is the energy of the stoichiometric host supercell, ED is the energy384

of a supercell containing the defect, and EO2
is the energy per atom of O in385

its elemental (O2 gas) form, which we have set as the chemical potential of386

O in its standard state, µS
O (see Sec. 2). As can be seen, ∆Hf [VO] depends387

on µO. By printing a grid of points contained within the stability region,388

one obtains a list of points at which ∆Hf [VO] can be determined, which389

in turn can be used to demonstrate how the defect formation energy varies390

at the different possible growth conditions. We show the results of such a391

calculation in Fig. 4, where the variation in ∆Hf [VO] is shown within the392

stability region in the chemical potential space. We see that, unsurprisingly,393

Ba- and Sn-rich conditions favor its formation. It should be remembered394

that the defect concentration depends exponentially on this quantity.395
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4.2. Quaternary system396

We now discuss the application of CPLAP to the quaternary system LaCu-397

OSe. This layered oxyselenide is a promising degenerate p-type wide band-398

gap semiconductor. [44, 45, 46, 15] With four species in the compound, we399

have a 3D chemical potential space. There are a large number of compet-400

ing phases (22) to be taken into consideration, as determined by searching401

the Inorganic Crystal Structure Database [29] for systems consisting of com-402

binations of the elements La, Cu, O, and Se. We therefore have a much403

more complicated problem than for the ternary system BaSnO3, discussed404

in Sec. 4.1. This example demonstrates well the power of our program in405

analyzing the chemical potential ranges.406

We have calculated the enthalpy of formation of the compound and its407

competing phases using DFT with the HSE06 [47] hybrid functional. Our408

purpose here is to discuss the ranges of chemical potentials consistent with409

the growth of the material, which can support future studies of its defect and410

materials physics. The calculated enthalpies of formation are shown in Table411

3. These, along with the stoichiometries of the compounds, form the input412

to CPLAP.413

Table 3: Enthalpies of formation (∆Hf ) of LaCuOSe and its relevant competing phases.
The values were determined using DFT with the HSE06 hybrid functional.

System ∆Hf (eV) System ∆Hf (eV)
LaCuOSe -9.55 CuSe2 -1.16
La2CuO4 -19.94 CuSe2O5 -6.54
CuLaO2 -10.60 La2SeO2 -16.27
La2O3 -17.70 La2(SeO3)3 -27.94
La3Se4 -15.77 La4Se3O4 -33.16
LaCuSe2 -6.96 LaCu2 -2.13
LaSe2 -5.64 LaCu5 -4.52
LaSe -4.41 La(CuO2)2 -13.07
Ce2Se -1.95 LaCuO3 -10.61
CuSe -1.17 Se2O5 -3.37
Cu3Se2 -3.55 SeO2 -1.95
La2Cu(SeO3)4 -32.78

The constraint on the chemical potentials is:414

µLa + µCu + µO + µSe = µLaCuOSe = −9.55 eV. (22)
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We choose µSe as the dependent variable. Running the program, we find that415

the system is thermodynamically stable. As there are 29 limiting conditions416

on the independent variables, we do not list them here. We find 20 inter-417

section points in the 3D chemical potential space spanned by µLa, µCu, and418

µO. They are presented, along with the corresponding values of µSe and the419

relevant competing phases, in Table 4. The 3D stability region is shown in420

Fig. 5. The relevant competing phases describe 2D surfaces in the 3D space,421

which are shown using colors in Fig. 5 (we note that, because GNUPLOT can-422

not plot surfaces parallel to the z-axis, we must represent such surfaces by423

placing a cross at their mid-point, as we do for the competing phase LaCu5).424

Table 4: Intersection points bounding the stability region in the 3D chemical potential
space spanned by the independent variables µLa, µCu and µO. The corresponding values
of the dependent variable µSe, and the relevant competing phases, are also given. All
energies are in eV.

µLa µCu µO µSe Competing phases
A -5.78 -1.18 -2.59 0.00 LaCuSe2, Cu3Se2, LaCuOSe
B -5.70 -1.26 -2.59 0.00 LaCuSe2, La4Se3O4, LaCuOSe
C -6.77 -1.18 -1.60 0.00 Cu3Se2, La2(SeO3)3, LaCuOSe
D -6.67 -1.26 -1.62 0.00 La2(SeO3)3, La4Se3O4, LaCuOSe
E -6.62 -1.00 -1.49 -0.44 CuLaO2, La2O3, La2(SeO3)3

F -3.95 -0.11 -3.27 -2.22 CuLaO2, La2O3, LaCu5

G -5.67 -0.36 -2.28 -1.24 CuLaO2, Cu2Se, Cu3Se2

H -4.60 0.00 -3.00 -1.95 CuLaO2, Cu2Se
I -6.77 -0.91 -1.46 -0.42 CuLaO2, Cu3Se2, La2(SeO3)3

J -4.52 0.00 -3.04 -1.99 CuLaO2, LaCu5

K -5.77 -1.11 -2.05 -0.62 La2O3, La2SeO2, La4Se3O4

L -3.23 -0.26 -3.75 -2.32 La2O3, La2SeO2, LaCu5

M -6.51 -1.19 -1.56 -0.29 La2O3, La2(SeO3)3, La4Se3O4

N -2.96 -0.56 -4.31 -1.72 La3Se4, LaCuSe2, La2SeO2

O -2.61 -0.38 -4.57 -1.98 La3Se4, LaCuSe2, LaCu5

P -2.54 -0.40 -4.58 -2.04 La3Se4, La2SeO2, LaCu5

Q -4.12 -0.36 -3.83 -1.24 LaCuSe2, Cu2Se, Cu3Se2

R -3.60 -0.18 -4.18 -1.59 LaCuSe2, Cu2Se, LaCu5

S -4.61 -1.11 -3.21 -0.62 LaCuSe2, La2SeO2, La4Se3O4

T -4.52 0.00 -3.08 -1.95 Cu2Se, LaCu5

If we are interested in, e.g., O-poor conditions, we can set µO to a low425
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value, say -4 eV (which is close to, but a little above its minimum value426

of -4.58 eV — see Table 4). Doing this reduces the dimensionality of the427

problem by one. The resulting stability region is a 2D ‘slice’ taken from the428

3D stability region shown in Fig. 5. We present this 2D stability region in429

Fig. 6, along with the relevant competing phases, which describe lines in the430

2D chemical potential space.431

Other sections of the stability region that may be of interest can be ex-432

tracted easily by setting chemical potentials to particular values. The vi-433

sualization of the resulting regions can be further modified by changing the434

dependent variable. This demonstrates the versatility of CPLAP in explor-435

ing the region of stability in the chemical potential space. To carry out436

these types of manipulations, in particular for a quaternary system such as437

LaCuOSe, ‘by hand’ can be quite time-consuming and error-prone. Once438

the calculation is set up, the region of stability can be explored easily and439

accurately, with visualization possible when the system is 2D or 3D. For440

quinternary (or higher order) systems, one has to set a chemical potential441

to a particular value before the stability region can be visualized (in 3D).442

The ease with which one can systematically explore the stability region us-443

ing CPLAP will be of great benefit to the theoretical and computational study444

of systems consisting of 4 or more species.445

5. Conclusion446

In summary, we have described a simple and effective algorithm to de-447

termine the thermodynamical stability and range of chemical potentials con-448

sistent with the formation of a particular compound of interest, in compar-449

ison with the formation of competing phases and elemental forms of the450

constituent species. By assuming that the compound of interest forms in451

equilibrium, rather than competing phases and standard states, a set of con-452

ditions on the chemical potentials can be derived. These conditions can be453

interpreted as defining a region bounded by hyper-surfaces in an (n − 1)-454

dimensional chemical potential space, where n is the number of species in455

the system. Determining this region of stability gives the chemical potential456

landscape consistent with the production of the compound of interest. The457

algorithm works by reading in the energies of formation of the compound458

itself, and all competing phases, then constructing a matrix of linear equa-459

tions, solving all possible combinations of the equations, and finding which460

solutions (if any) obey the conditions on the chemical potentials. We have461
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incorporated the algorithm in a FORTRAN program (CPLAP). Options are avail-462

able to set a chemical potential to a particular value, and to print a grid of463

points within the stability region. For 2D and 3D systems, files are produced464

to allow visualization of the results. We have demonstrated the effective-465

ness of the program using a ternary and quaternary system. We have also466

demonstrated the flexibility with which the program may be used to explore467

a region of stability in the chemical potential space.468

This program will be of benefit to the theoretical and computational469

study of materials with 3 or more constituent species, particularly for the470

design of novel functional materials that are thermodynamically stable, and471

the generality of the present approach has clear advantages.472
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Appendix A. Sorting routine483

In this appendix we describe the sorting algorithm used to extract all484

appropriate combinations from the set of linear equations derived from the485

conditions on the chemical potentials (see Sec. 3). We assume that there486

are n unknowns, and m linear equations, where m ≥ n. The aim of the487

sorting algorithm is to extract all combinations of n equations from the total488

m (there will be mCn combinations).489

The input to the routine is the matrix Mij , which is m × (n + 1) dimen-490

sional. Each row corresponds to a linear equation; the first n columns are491

the coefficients of the n unknowns, and the n + 1-column is the right-hand-492

side of the linear equation. The output from the routine will be the mCn493

matrices Sij , which are the n × n dimensional matrices of coefficients, and494

the vectors vi, which are the n-dimensional corresponding vectors consisting495
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of the right-hand-sides of the appropriate equations. S and v can then be496

used in a standard LU decomposition and back-substitution approach [37]497

to determine the unknowns (i.e. to find the intersection points of the linear498

equations, if they exist).499

The routine works by creating an array ival, which is n-dimensional. The500

elements in the array are initially set as the integers 1, 2, . . . , n. The array is501

then used to construct S and v. By sequentially changing the arrangement502

of the elements of the array (and allowing the array elements to adopt values503

up to m), all mCn combinations are extracted from the matrix M . The504

algorithm is shown in detail in Fig. A.7.505
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Figure 1: Flowchart of main algorithm.
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Figure 2: (Color online) Region of stability (shaded) for BaSnO3 in the 2D space spanned
by µBa and µSn. The (colored) lines indicate the limits imposed by the competing phases
and the compound of interest.
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Figure 3: (Color online) Region of stability (shaded) for BaSnO3 in the 2D space spanned
by µBa and µSn when the competing phase Ba2SnO4 is not taken into account.
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Figure 4: (Color online) Variation in VO formation enthalpy as a function of chemical
potential, shown within the stability region for the formation of BaSnO3. The (colored)
lines indicate the limits imposed by competing phases.
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Figure 5: (Color online) Region of stability for LaCuOSe in the 3D space spanned by µLa,
µCu and µO. The thick (blue) lines indicate the boundary provided by the compound of
interest (LaCuOSe). The (colored) surfaces indicate the limits imposed by the competing
phases and the compound of interest. Surfaces parallel to the z-axis are represented by a
cross at their mid-point.
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Figure 6: (Color online) Region of stability for LaCuOSe in O-poor growth conditions
(µO = −4 eV). The chemical potential space is 2D, spanned by µLa and µCu. The region
is effectively a ‘slice’ taken from the 3D stability region shown in Fig. 5. The (colored)
lines indicate the limits imposed by the relevant competing phases and the compound of
interest.
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Figure A.7: Flowchart of sorting routine.
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