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a b s t r a c t

We investigate the applicability of quasi-Monte Carlo methods to Euclidean lattice systems for quantum
mechanics in order to improve the asymptotic error behavior of observables for such theories. In most
cases the error of an observable calculated by averaging over random observations generated from an
ordinaryMarkov chainMonte Carlo simulation behaves likeN−1/2, whereN is the number of observations.
By means of quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to
N−1, or even further if the problems are regular enough. We adapted and applied this approach to simple
systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

Program summary

Program title: qar-0.1
Catalogue identifier: AERJ_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERJ_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public Licence version 3
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Operating system: Tested on GNU/Linux, should be portable to other operating systems with minimal
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Has the code been vectorized or parallelized?: No
RAM: The memory usage directly scales with the number of samples and dimensions: Bytes used =

‘‘number of samples’’ × ‘‘number of dimensions’’ × 8 Bytes (double precision).
Classification: 4.13, 11.5, 23.
External routines: FFTW 3 library (http://www.fftw.org)
Nature of problem:
Certain physical models formulated as a quantum field theory through the Feynman path integral,
such as quantum chromodynamics, require a non-perturbative treatment of the path integral. The only
known approach that achieves this is the lattice regularization. In this formulation the path integral is
discretized to a finite, but very high dimensional integral. So far only Monte Carlo, and especially Markov
chain-Monte Carlo methods like the Metropolis or the hybrid Monte Carlo algorithm have been used to
calculate approximate solutions of the path integral. These algorithms often lead to the undesired effect
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of autocorrelation in the samples of observables and suffer in any case from the slow asymptotic error
behavior proportional to N−1/2, if N is the number of samples.
Solution method:
This program applies the quasi-Monte Carlo approach and the reweighting technique (respectively the
weighted uniform sampling method) to generate uncorrelated samples of observables of the anharmonic
oscillator with an improved asymptotic error behavior.
Unusual features:
The application of the quasi-Monte Carlo approach is quite revolutionary in the field of lattice field
theories.
Running time:
The running time depends directly on the number of samples N and dimensions d. Onmodern computers
a run with up to N = 216

= 65536 (including 9 replica runs) and d = 100 should not take much longer
than one minute.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Markov chain-Monte Carlo (Mc-MC) techniques are commonly
the method of choice for the numerical evaluation of partition
functions in statistical physics or path integrals in Euclidean time
for models in high energy physics. The reason is that they are
based on importance sampling and hence select the integration
points automatically according to the corresponding weight in
the integrand. Many algorithms have been developed to imple-
ment a Mc-MC, starting from the Metropolis algorithm, heat-
bath and over-relaxation to cluster and hybrid Monte Carlo
algorithms, see e.g. Refs. [1,2]. In this way, simulations of demand-
ing 4-dimensional quantum field theories became possible and, in
fact, were carried out very successfully to e.g. compute the low-
lying hadron spectrum [3] or deriving bounds for the Higgs boson
mass [4].

The drawback ofMc-MC is that it estimates the desired quantity
stochastically and hence the results are affected by a statistical er-
rorwhich sometimes needs very long and computer time extensive
samplings. Quantitatively, this sampling error behaves asN−1/2 for
a (thermalized) sample size of N . This error scaling behavior is
often a real stumbling block in such Mc-MC simulations. If we
consider lattice quantum chromodynamics as a typical system for
Mc-MC calculations in high energy physics, then due to this error
scaling and the very high computational demand of these simula-
tions, it is often impossible to significantly decrease the error to
the targeted precision. It would therefore be very desirable to have
Monte Carlo methods available that possibly show a better error
scaling.

Such methods in fact exist in the form of quasi-Monte Carlo
(QMC) techniques [5,6], where it is known that the error scal-
ing can be improved to an N−1, or even more if the problem ex-
hibits enough structure (smoothness, periodicity). QMC methods
have been analyzed theoretically very thoroughly and comprehen-
sively, and many successful applications in mathematical finance
based on high-dimensional Gaussian integrals have been studied
in the last two decades [7,8]. On the other hand, to the best of our
knowledge, QMC methods were never tested successfully in high-
dimensional models that are relevant for high energy physics.

In this paper we therefore want to perform a very first step
towards the very challenging goal of applying QMC methods to
generic field theories by looking at the non-trivial case of the
anharmonic quantum mechanical oscillator discretized on a finite
Euclidean time lattice and evaluated in the corresponding path
integral formulation [9]. For the case of the anharmonic oscillator
the system is no longer Gaussian and a successful application of
QMC methods would be a first non-trivial test. Of course, even if
such a test is successful, therewould remain a longway to gobefore

eventually addressing 4-dimensional quantum field theories, but a
proof of conceptwould certainly open the promising road to attack
field theories in the future.

We will start our discussion with a description of the harmonic
oscillator in its time-discretized path integral formulation. Here
the problem is fully Gaussian and the application of adequate QMC
methods should lead to an improved error scaling, an expectation
that we will see to be fulfilled. Nevertheless, the harmonic
oscillator example can serve well to explain how QMC methods
work and how an improved error scaling behavior is realized.

We will then proceed to look at the anharmonic oscillator
and we will demonstrate that also in this case QMC leads to an
improved error scaling, although the obtained rate of convergence
is still not optimal and leaves space for improvements.We consider
this, nevertheless, to be a very promising non-trivial result which
bears the potential that also other models in quantum mechanics,
e.g. the topological quantum mechanical action of Ref. [10] and
even field theories, can be evaluated by QMC methods. For a first
account of our studies, we refer to the proceedings contribution of
Ref. [11].

2. Quantummechanical harmonic and anharmonic oscillator

In this section we will discuss the basic steps for the quanti-
zation of the theory in the path integral approach and the dis-
cretization on a time lattice. The first step is the construction of the
Lagrangian (resp. the action) of the corresponding classical me-
chanical system for a given path x(t) of a particle with mass M0.
For a numerically stable evaluation of the path integral it is essen-
tial to pass on to Euclidean time. In this case the Lagrangian L and
the action S is given by

L(x, t) =
M0

2


dx
dt

2

+ V (x) (1)

S(x) =

 T

0
L(x, t) dt. (2)

Depending on the scenario (harmonic or anharmonic oscillator)
the potential V (x) consists of two parts,

V (x) =
µ2

2
x2  

harmonic part

+ λ x4
anharmonic part

, (3)

such that the parameter λ controls the anharmonic part of the the-
ory. It should also be mentioned that in the anharmonic case the
parameter µ2 can take on negative values, leading then to a dou-
ble well potential.
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The next step is to discretize time into equidistant time slices
with a spacing of a. The path is then only defined on the time slices:

t → ti = (i − 1) · a i = 1 . . . d (4)
x(t) → xi = x(ti). (5)

On the lattice the derivative with respect to the time appearing in
(1) (first term) will be replaced by the forward finite difference
∇xi =

1
a (xi+1 − xi). The choice of the lattice derivative is not

unique and requires special care, particularly if one considersmore
complicated models like lattice QCD. But in [9] it was shown
that the lattice derivative chosen here permits a well defined
continuum limit. Putting all the ingredients together, we can write
the lattice action for the (an)harmonic oscillator as

S latt(x) = a
d

i=1


M0

2
(∇xi)2 + V (xi)


. (6)

For the path a cyclic boundary condition xd+1 = x1 can be assumed.
In the following the superscript ‘‘latt’’ will be dropped, as we will
only refer to the lattice action from now on. The expectation value
of an observable O of the quantized theory expressed in terms of
the path integral reads as follows:

⟨O(x)⟩ =


Rd O(x)e−S(x)dx1 . . . dxd

Rd e−S(x)dx1 . . . dxd
. (7)

This expression is suitable for a numerical evaluation of certain
quantities of the underlying theory. Up to now only Monte Carlo
methods are known to give reliable results for dimensions d ≫ 10.
One type of such methods, often used in physics, is the Markov
chain-Monte Carlo approach mostly applying the weight ∝ e−S(x)

for sampling paths {xi} (so-called ‘‘importance sampling’’). In the
next sections, we will provide a summary of the mathematical re-
sults for QMC methods (and their randomizations), and particu-
larly recapitulate in a rathermathematical language the strict error
scaling bounds for this methods. The reader more interested in the
results may move directly to Section 7.

3. Direct Monte Carlo and quasi-Monte Carlo methods

We provide in Sections 3–7 some mathematical background of
QMC methods. The reader who is more interested in our results,
may proceed directly to Section 8. In many practical applications
one is interested in calculating quotients of the form (7) where the
action S(.) and the observablesO(.) are usually smooth functions in
high dimensions. In some special situations where one would like
to deal with integrands of moderately high dimensions, one possi-
ble approach is to consider estimators Î1, Î2 for the integrals I1, I2 in
the numerator and in the denominator of (7) separately, and then
take Î1/Î2 as an estimation of ⟨O(x)⟩. Another possible approach
one can consider is given by the so-called weighted uniform sam-
pling (WUS) estimator, analyzed in [12]. In the latter case, one takes
a joint estimator for the total quantity ⟨O(x)⟩, using a single direct
sampling method. We will show some characteristics of the WUS
estimator in Section 7, and we will refer from now on to the latter
two approaches as direct sampling methods for estimating (7). In
many interesting examples, we encounter the casewere the action
S(.) and the observableO(.) lead to integrals I1, I2 of Gaussian type.
Then the integrals I1, I2 can be written in the form

Ii =
1

(2π)d/2
√
det(C)


Rd

gi(x)e−
1
2 x

⊤C−1xdx,

x = (x1, . . . , xd), i = 1, 2,

where C denotes the covariance matrix of the Gaussian density
function. A transformation to the unit cube in Rd can be applied

such that the corresponding integrals take the form

I =


[0,1]d

g(A8−1(z))dz =


[0,1]d

f (z)dz = I[0,1]d(f ),

z = (z1, . . . , zd). (8)
Here AA⊤

= C is some symmetric factorization of the covariance
matrix, and 8−1(z) := (Φ−1(z1), . . . , Φ−1(zd))⊤, where Φ−1(·)
represents the inverse of the normal cumulative distribution func-
tion Φ(·).

In the classical direct Monte-Carlo (MC) approach one tries to
estimate (8) by generating samples pseudo-randomly. One starts
with a finite sequence of independent identically distributed (i.i.d.)
samples PN = {z1, . . . , zN}, where the points zj, 1 ≤ j ≤ N ,
have been generated from the uniformdistribution in [0, 1]d. Then,
the quadrature rule is fixed by taking the average of the function
evaluations for f

QN :=
1
N

N
j=1

f (zj)

as an approximation of the desired integral

[0,1]d f (z) dz . The

resulting estimator Q̂N is unbiased. The integration error can be
approximated via the central limit theorem, given that f belongs
to L2([0, 1]d). The variance of the estimator Q̂N is given by

σ 2

N
=

1
N


[0,1]d

f 2(z) dz −


[0,1]d

f (z) dz
2


.

As measured by its standard deviation from zero the integration
error associated with the MC approach is then of order O(N−1/2).
The quality of the MC samples relies on the selected pseudo-
random number generators of uniform samples. Here we use
the Mersenne Twister generator from Matsumoto and Nishimura
(see [13]). MC is in general a very reliable tool in high-dimensional
integration, but the order of convergence is in fact rather poor.

In contrast, QMCmethods generate deterministically point sets
that aremore regularly distributed than the pseudo-randompoints
from MC (see [5,14,15,6]). Typical examples of QMC are shifted
lattice rules and low-discrepancy sequences. In order to give a
short introduction to the subject, we define now the classical
notion of discrepancy of a finite sequence of points PN in [0, 1)d.
Given PN = {z1, . . . , zN} a set of points in [0, 1)d, and a nonempty
family I of Lebesgue-measurable sets in [0, 1)d, we define the
classical discrepancy function by

D(I; PN) := sup
B∈I


N
i=1

cB(zi)

N
− λd(B)

 ,
where cB is the characteristic function of B, and λd is the
Lebesgue measure in Rd. This allows us to define the so-called star
discrepancy as follows.

Definition 3.1. We define the star discrepancy D⋆(PN) of the point
set PN by D⋆(PN) := D(I; PN), where I is the family of all sub-
intervals of the form

d
i=1[0, ui), with ui ≥ 0, 1 ≤ i ≤ d.

The star discrepancy can be considered as a measure of the worst
difference between the uniform distribution and the sampled
distribution in [0, 1)d attributed to the point set PN . The usual way
to analyze QMC as a deterministic method is by choosing a class of
integrand functions F , and a measure of discrepancy D(PN) for the
point sets PN . Then, the deterministic integration error is usually
given in the formQN −


[0,1]d

f (z) dz
 ≤ D(PN)V (f ),
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where V (f ) measures a particular variation of the function f ∈

F . A classical particular error bound in this form is the famous
Koksma–Hlawka inequality, where D(PN) is taken to be the star
discrepancy of the point set PN , andV (f ) is the variation in the sense
of Hardy and Krause of f .

In the context of QMC, a sequence of points z1, z2, . . . in [0, 1)d
is called a low-discrepancy sequence if

D⋆({z1, . . . , zN}) = O(N−1(log(N))d). (9)

An important part of QMC constructions satisfying this asymptotic
bound are known under the name of (t, d)-sequences and will
be discussed in more detail in Section 4. For moderate values of
N , the influence of the logarithmic term in (9) usually cannot be
ignored (see 5.7 and 5.8 in [16]), because the term N−1(log(N))d

grows until N > 2d. This normally prevents a straightforward
use of low-discrepancy sequences in practical situations with
very large dimensions. The latter situations are typically very
high-dimensional integration problems where all variables and
interactions between variables are equally important.

The practical success of QMC sequences in very high-dimen-
sional integration problems with enough smoothness usually re-
lies in an appropriate combination with an effective-dimension
reduction transformation.Wewill discuss the analysis of effective-
dimensions in more detail in Section 6. Well investigated settings
for the integration error analysis of functions exhibiting a con-
centration of importance in few variables or groups of few vari-
ables are the so-called weighted reproducing kernel Hilbert spaces
(see [14]), whichwill be considered briefly in the following section.

3.1. Quasi-Monte Carlo errors and complexity

For error analysis of QMC methods, there are certain reproduc-
ing kernel Hilbert spaces Fd of functions f : [0, 1]d → R that are
particularly useful (see [17]). Let us denote nowwith ⟨·, ·⟩ and ∥ · ∥

the inner product and norm in Fd. A reproducing kernel is a func-
tion K : [0, 1]d × [0, 1]d → R satisfying the properties
1. K(·, y) ∈ Fd for each y ∈ [0, 1]d
2. ⟨f , K(·, y)⟩ = f (y) for each y ∈ [0, 1]d and f ∈ Fd.

If the integral

I(f ) =


[0,1]d

f (z)dz

is a continuous functional on the space Fd, then the worst case
quadrature error

eN(Fd) := sup
f∈Fd,∥f ∥≤1

|I(f ) − QN(f )|

for point sets PN = {z1, . . . , zN} and QMC algorithms for the space
Fd can be given by

eN(Fd) = sup
∥f ∥≤1

|⟨f , hN⟩| = ∥hN∥

for some hN ∈ Fd due to Riesz’ representation theorem. In this
case, the representer hN of the quadrature error is given explicitly
in terms of the kernel by

hN(z) =


[0,1]d

K(z, y)dy −
1
N

N
i=1

K(z, zi), ∀z ∈ [0, 1]d.

Tensor product reproducing kernel Hilbert spaces are of particular
interest, since the multivariate kernel results as the product of the
underlying univariate kernels. In QMC error analysis, the weighted
(anchored) tensor product Sobolev space introduced in [18] is often
considered:

Fd =

d
i=1

W 1
2 ([0, 1]),

also denoted as Fd = W (1,...,1)
2,mix ([0, 1]d), where W 1

2 ([0, 1]) is the
Sobolev space of absolutely continuous functions on [0, 1] with
first order derivatives in L2([0, 1]). The weighted norm ∥f ∥2

γ =

⟨f , f ⟩γ results from the inner product

⟨f , g⟩γ =


u⊆{1,...,d}


j∈u

γ −1
j


[0,1]|u|

∂ |u|

∂zu
f (zu, 1)

×
∂ |u|

∂zu
g(zu, 1)dzu, (10)

where for u ⊆ {1, . . . , d} we denote by |u| its cardinality, and
(zu, 1) denotes the vector containing the coordinates of z with
indices in u, and the other coordinates set equal to 1.

In this case the reproducing kernel is given by

Kd,γ (z, y) =

d
j=1

(1 + γj[1 − max(zj, yj)]) for z, y ∈ [0, 1]d.

Theweighted tensor product Sobolev space allows for explicit QMC
constructions deriving error estimates of the form

eN(Fd) ≤ C(δ)N−1+δ for δ ∈


0,

1
2


, (11)

where the constant C(δ) is independent on the dimension d, if the
sequence of weights (γj) satisfies the condition (see [19])
∞
j=1

γ
1

2(1−δ)

j < ∞.

Traditional unweighted function spaces considered for integration
suffer from the curse of dimensionality. Their weighted variants
describe a setting where the variables or group of variables may
vary in importance, corresponding to an anisotropic problem.
Many integration problems in practice start with an isotropic
setting but can be modified to an anisotropic one using a proper
transformation. The concentration of importance in few variables
or groups of few variables gives a partial explanation of why some
very high-dimensional spaces become tractable for QMC.

Explicit QMC constructions satisfying (11) are for example
shifted lattice rules for weighted spaces [19]. The rate (11) can be
also obtained for Niederreiter and Sobol’ sequences (see [20]). The
idea of ‘‘weighting’’ the norm of the spaces to obtain tractable re-
sults can be applied in fact to more general function spaces than
smooth function spaces of tensor product form, andmany integra-
tion examples can be found in [14]. In our numerical experiments,
we have so far used QMC algorithms based on a particular type
of low-discrepancy sequence. Numerical experiments with shifted
lattice rules will be carried out in the near future, following new
techniques for fixing adequate weights introduced in [21].

4. Low-discrepancy (t, d)-sequences

The most well known type of low-discrepancy sequences are
the so-called (t, d)-sequences. To introduce how (t,m, d)-nets and
(t, d)-sequences are defined, we consider first elementary intervals
in a integer base b ≥ 2. Let E be any sub-interval of [0, 1)d of the
form E =

d
i=1[aib

−ci , (ai + 1)b−ci) with ai, ci ∈ N, ci ≥ 0, 0 ≤

ai < b−ci for 1 ≤ i ≤ d. An interval of this form is called an
elementary interval in base b.

Definition 4.1. Let 0 ≤ t ≤ m be integers. A (t,m, d)-net in base
b is a point set PN of N = bm points in [0, 1)d such that every
elementary interval E in base b with λd(E) =

bt
bm contains exactly

bt points.
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Definition 4.2. Let t ≥ 0 be an integer. A sequence z1, z2, . . . of
points in [0, 1)d is a (t, d)-sequence in base b if for all integers
k ≥ 0 and m > t , the point set consisting of N = bm points zi
with kbm ≤ i < (k + 1)bm is a (t,m, d)-net in base b.

The parameter t is called the quality parameter of the (t, d)-
sequences. In [22, Theorem 4.17], it is shown that (t, d)-sequences
are in fact low-discrepancy sequences. We reproduce this result in
the following theorem.

Theorem 4.3. The star-discrepancy D⋆ of the first N terms PN of a
(t, d)-sequence in base b, satisfies

ND⋆(PN) ≤ C(d, b)bt(log(N))d + O(bt(log(N))d−1),

where the implied constants depend only on b and d. If either d = 2
or b = 2, d = 3, 4, we have

C(d, b) =
1
d


b − 1

2 log(b)

d

,

and otherwise

C(d, b) =
1
d!

b − 1
2⌊b/2⌋


⌊b/2⌋
log(b)

d

.

Explicit constructions of (t, d)-sequences are available. Exam-
ples are the generalized Faure, Sobol’, Niederreiter and Niederre-
iter–Xing sequences. All these examples fall into the category of
constructions called digital sequences, see [15]. To complete this
section, we will describe briefly Sobol’ sequences and give ref-
erences for their practical implementations. Sobol’ sequences are
among the most widely used and recommended QMC sequences
by simulation practitioners (see [7] for successful applications of
Sobol’ sequences in finance), and they are the QMC sequences se-
lected for our numerical experiments.

4.1. Sobol’ sequences and implementations

The pioneering work of Sobol’ [23] introduced the first known
construction of (t, d)-sequences, and they can be viewed now as a
special case of the so-called generalized Niederreiter sequences in
base b = 2 (see Chapter 8 in [15] and references therein). The basic
construction of Sobol’ sequences can be described as follows:

1. Let p1, . . . , pd be primitive polynomials of degree deg(pi) =: ei
over the field F2[x],

pi(x) = xei + a1,ixei−1
+ a2,ixei−2

+ · · · + aei−1x + 1
for 1 ≤ i ≤ d,

sorted according to their degree in increasing order.
2. Let 1 ≤ m1,i, . . . ,mei,i be odd natural numbers with mk,i < 2k

for 1 ≤ k ≤ ei, 1 ≤ i ≤ d. Then define for k > ei recursively

mk,i = 2a1,imk−1,i ⊕ · · · ⊕ 2ei−1aei−1mk−ei+1,i ⊕ 2eimk−ei,i

⊕mk−ei,i for 1 ≤ i ≤ d,

where the operator ⊕ is the bit-by-bit exclusive-or operator.
3. Define the direction numbers vk,i by

vk,i =
mk,i

2k
for k ≥ 1, 1 ≤ i ≤ d.

4. Consider a natural number n with binary expansion n = n0 +

n12 + · · · + nr−12r−1, and define

zn,i = n0v1,i ⊕ n1v2,i ⊕ · · · ⊕ nr−1vr,i for 1 ≤ i ≤ d.

5. Finally consider the sequence of points z0, z1, . . . in [0, 1)d
defined by

zn = (zn,1, . . . , zn,d).

A sequence of points z0, z1, . . . in [0, 1)d as defined above is called a
Sobol’ sequence. The quality parameter of Sobol’ sequences is given
by

t =

d
i=1

(ei − 1).

The direction numbers v defined above determine the quality of
low dimensional projections of the points in the Sobol’ sequences.
Sobol’ [23] introduced an additional uniformity condition called
Property A in order to give a criterion for selection of initial m
numbers in the recurrence stated above. Efficient implementa-
tions of Sobol’ sequences are based on Gray code. A classical ref-
erence for practical implementation is [24]. Joe and Kuo [25,26]
give an alternative for selection of direction numbers based in
a weighted approach, focused in a setting where the importance
of variables decay as their dimension number increase. More-
over, one can find a three-pages-note with a short and simple
description on implementation of Sobol’ sequences at the web-
site http://web.maths.unsw.edu.au/~fkuo/sobol/index.html. New
developments of Sobol’ sequences and comparison between avail-
able implementations can be found in [27].

5. Randomized QMC

There are some advantages in retaining the probabilistic
properties of the sampling. There are practical hybridmethods per-
mitting us to combine the good features of MC and QMC. Ran-
domization is an important tool for QMC if we are interested in a
practical error estimate of our sample quadrature QN to the de-
sired integral. One goal is to randomize the deterministic point set
PN generated by QMC in such a way that the estimator Q̂N pre-
serves unbiasedness. Another important goal is to preserve the bet-
ter equidistribution properties of the deterministic construction.

The simplest form of randomization applied to digital sequences
seems to be the technique called digital b-ary shifting. In this case,
we add a random shift ∆ ∈ [0, 1)d to each point of the determin-
istic set PN = {z1, . . . , zN} using operations over the selected ring
Fb. The application of this randomization preserves in particular
the t value of any projection of the point set (see [5] and references
therein). The resulting estimator is unbiased.

The second randomization method we consider is the one
introduced by Owen [28] in 1995. He considered (t,m, d)-nets and
(t, d)-sequences in base b and applied a randomization procedure
based on permutations of the digits of the values of the coordinates
of points in these nets and sequences. This can be interpreted
as a random scrambling of the points of the given sequence in
such a way that the net structure remains unaffected. We do not
discuss Owen’s randomization procedure in detail here, from now
on calledOwen’s scrambling. Themain results of this randomization
procedure can be stated in the following proposition.

Proposition 5.1 (Equidistribution). A randomized (t,m, d)-net in
base b using Owen’s scrambling is again a (t,m, d)-net in base b with
probability 1. A randomized (t, d)-sequence in base b using Owen’s
scrambling is again a (t, d)-sequence in base b with probability 1.

Proposition 5.2 (Uniformity). Let z̃i be the randomized version of a
point zi originally belonging to a (t,m, d)-net in base b or a (t, d)-
sequence in base b, using Owen’s scrambling. Then z̃i has the uniform
distribution in [0, 1)d, that is, for any Lebesgue measurable set G ⊆

[0, 1)d, P(z̃i ∈ G) = λd(G), with λd the d-dimensional Lebesgue
measure.

The last two propositions state that after Owen’s scrambling
of digital sequences we retain unaffected the low-discrepancy

http://web.maths.unsw.edu.au/~fkuo/sobol/index.html
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properties of the constructions, and that after this randomization
procedure we obtain random samples uniformly distributed in
[0, 1)s.

The basic results about the variance of the randomized QMC
estimator Q̂N after applying Owen’s scrambling to (t,m, d)-nets in
base b (or of (t, d)-sequences in base b) can be found in [29]. We
summarize these results in the following theorem.

Theorem 5.3. Let z̃i, 1 ≤ i ≤ N, be the points of a scrambled
(t,m, d)-net in base b, and let f be a function on [0, 1)d with integral
I and variance σ 2

=

(f − I)2dz < ∞. Let Q̂N = N−1N

i=1 f (z̃i),
where N = bm. Then for the variance V (Q̂N) of the randomized QMC
estimator it holds that

V (Q̂N) = o(N−1), as N → ∞, and

V (Q̂N) ≤
bt

N


b + 1
b − 1

d

σ 2.

For t = 0 we have

V (Q̂N) ≤
1
N


b

b − 1

d−1

σ 2.

The above theorem says that the variance of the randomized QMC
estimator Q̂N using scrambled (0,m, d)-nets is always smaller than
a smallmultiple of the variance of the correspondingMCestimator.
If the integrand at hand is smooth enough, usingOwen’s scrambling
it can be shown that one can obtain an improved asymptotic error
estimate of order O(N−

3
2 −

1
d +δ), for any δ > 0, see [30]. Improved

scrambling techniques have been developed in [31,32].

6. Effective dimensions and sensitivity indices

In many practical applications, one encounters functions for
which the total variance is concentrated in a small part of its
ANOVA terms. The notion of effective dimension of a function was
first introduced in [33] to describe the contribution of a group of
variables to the total variance.

6.1. ANOVA decomposition

Using the ANOVA (Analysis of Variance) decomposition we
decompose a function into a sum of simpler functions, see [34]. Let
D = {1, . . . , d}. For any subset i ⊆ D, let |i| denote its cardinality
and (D − i) be its complementary set in D. Let zi = (zj : j ∈ i)
be the |i|-dimensional vector containing the coordinates of z with
indices in i. Nowassume that f is a square integrable function. Then
we can write f as the sum of 2d ANOVA terms:

f (z) =


i⊆D

f i(z),

where the ANOVA terms f i(x) are defined recursively by

f i(z) =


[0,1]d−|i|

f (zi, zD−i)dzD−i −

j(i

f j(z),

and f ∅
= I(f ). The sum of the right-hand side is over strict subsets

j ≠ i, and we use the convention

[0,1]0 f (z)dz∅ = f (z). The

ANOVA terms enjoy the following interesting properties:

1.
 1
0 f i(z)dzj = 0 for j ∈ i.

2. The decomposition is orthogonal, in that

[0,1]d f

i(z)f j(z)dz = 0
whenever i ≠ j.

3. Let σ 2(f ) =

[0,1]d f (z)

2 dz − (I(f ))2 be the variance of f , then
we have:

σ 2(f ) =


i⊆D

σ 2
i (f ), where σ 2

i (f ) =


[0,1]d

f i(z)2 dz

for |i| > 0 is the variance of f i and σ 2
∅(f ) = 0.

Definition 6.1.
1. f is said to have effective dimension in the superposition sense

ds with proportion p, for 0 < p < 1, if ds is the smallest integer
that satisfies
|i|≤ds

σ 2
i (f ) ≥ pσ 2(f ).

2. f is said to have effective dimension in the truncation sense dt
with proportion p, for 0 < p < 1, if dt is the smallest integer
that satisfies
i⊆{1,...,dt }

σ 2
i (f ) ≥ pσ 2(f ).

One can estimate the effective dimension in truncation sense
based on the algorithm proposed by Wang and Fang [35]. They
show that the following equality holds:

[0,1]2d−|u|
f (z)f (zu, yD−u)dzdyD−u =


i⊆u

σ 2
i (f ) + f ∅.

Thus, for estimating the effective dimension in truncation sense,
we need to estimate the following tree type of integrals

[0,1]d
f (z)dz,


[0,1]d

f 2(z)dz,
[0,1]2d−|u|

f (z)f (zu, yD−u)dzdyD−u,

(12)

for u = {1, . . . , l}, l = 1, 2, . . . , using MC or QMC, until the
proportion of variance defining the effective dimension is reached.
In many applications, the proportion value is usually taken as p =

0.99.
Given any nonempty family T of subsets of D, we can consider

the function defined by the corresponding ANOVA terms fT (z) :=
i∈T f

i(z). For example, given a fixed proportion value p we can
consider the sets T = {i : i ⊆ {1, . . . , dt}} or T = {i : |i| ≤ ds}
to define the effective part fT of the function f in truncation or
superposition sense respectively. The integration error for f of a
QMC algorithm QN can be bounded then by

|I(f ) − QN(f )| ≤ |I(fT ) − QN(fT )|
+ |I(f − fT ) − QN(f − fT )|. (13)

If fT is the effective part of a function exhibiting low-effective
dimension in superposition or truncation sense, then the second
error term in the right-hand side of (13) represents the integration
error over the rest function f − fT having a relatively small variance.
For many practical applications, the second error term in (13) is
believed to be so small that it can be neglected (see [36]).

If the truncation effective dimension is small, then few vari-
ables are important for sampling. If the superposition effective di-
mension is small, say ds equals 2, 3 or maybe 4, then some QMC
sequences and their randomizations are also expected to outper-
form MC, because they can exhibit much better equidistributed
low-dimensional projections than MC (see [36,27]).
The ordering of the variables of the integrand is important for
achieving a reduction of the effective dimension in the truncation
sense dt , and usually affects the performance of QMC and their
randomizations in practice. Sensitivity indices usually help to order
the variables in a convenient way for integration with QMC.
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6.2. Derivative based sensitivities

As pointed out by Sobol’ and Kucherenko in [37], very often
derivative-basedmeasures of sensitivities can successfully be used
for detecting non-essential variables. Small values of first-order
derivatives of a function implies small values of one-dimensional
total Sobol’ sensitivity indices. Letσ 2

i (f )denote the partial variance
corresponding to the ANOVA term f i. Define

σ 2
{j}(f )

tot
=


i⊂D:j∈i

σ 2
i (f ),

then it is shown in [34,37] that

σ 2
{j}(f )

tot
=

1
2


[0,1]d

 1

0
[f (z) − f (z1, . . . , zj−1,

z ′

j , zj+1, . . . , zn)]2dzdz ′

j ,

from which one obtain the following two results:

1. if c < |
∂ f
∂zj

| < C , then

c2

12
≤ σ 2

{j}(f )
tot

≤
C2

12
,

2. and if ∂ f
∂zj

∈ L2([0, 1]d), then

σ 2
{j}(f )

tot
≤

1
π2


[0,1]d


∂ f
∂zj

(x)
2

dz. (14)

As a consequence of the bounds stated above, the total variance
corresponding to non-essential variables of a function can be
bounded using first-order derivatives information. In a wide
variety of problems in practice, the gradient of a scalar function
can be efficiently computed through algorithmic differentiation
(see [38]), at a cost atmost 4 times of that for evaluating the original
function. Thus, a cheap method for estimating derivative-based
sensitivities, and an upper bound on the effective dimension in the
truncation sense (as stated in the following simple proposition),
may be available using algorithmic differentiation. The variance is,
clearly, invariant to a permutation of the variables. This allowed us
to consider the following definition and proposition.

Definition 6.2. Given anbijection (permutation)π : {1, . . . , d} →

{1, . . . , d}, f is said to have π-effective dimension in the trunca-
tion sense dt with proportion p, for 0 < p < 1, if dt is the smallest
integer that satisfies
i⊂{π−1(1),...,π−1(dt )}

σ 2
i (f ) ≥ pσ 2(f ).

Proposition 6.3. Let f ∈ L2([0, 1]d) such that
∂ f
∂zj

∈ L2([0, 1]d)∀1 ≤

j ≤ n. Consider the derivative-based sensitivities

vi :=
1
π2


[0,1]d


∂ f
∂zj

(z)
2

dz,

and consider any permutation π∗
: {1, . . . , d} → {1, . . . , d} such

that

v(π∗)−1(k) ≥ v(π∗)−1(k+1), ∀ 1 ≤ k ≤ d − 1,

(a non-increasing ordering of the sensitivities vi, resulting in what is
called by the authors a Diff-decay-ordering π∗).
Let 0 < p < 1 be a fixed proportion parameter. If there exists an
integer m such that

d
j=m+1

v(π∗)−1(j) ≤ (1 − p)σ 2(f ) (15)

then it follows that the π∗-effective dimension in the truncation sense
with proportion p is at most m.

Proof. Let dt denote the π∗-effective dimension in the trunca-
tion sense with proportion p. Consider m satisfying (15) and
define Tm = {i : i ⊂ {(π∗)−1(1), . . . , (π∗)−1(m)}} and fTm =

i∈Tm f i(z). It follows from the L2 orthogonality of ANOVA decom-
position and (14) that

σ 2(f ) − σ 2(fTm) = σ 2(f − fTm) =


{i:i⊂D∧i∉Tm}

σ 2
i (f )

≤

d
j=m+1


{i⊂D:(π∗)−1(j)∈i}

σ 2
i (f )

=

d
j=m+1

σ 2
{(π∗)−1(j)}(f )

tot

≤

d
j=m+1

v(π∗)−1(j) ≤ (1 − p)σ 2(f ).

It follows σ 2(fTm) ≥ pσ 2(f ) and thus dt ≤ m, which is what was
required to be proved. �

7. Weighted uniform sampling

In this section we discuss the method we used to approximate
observables as they are defined in equation (7). Before the WUS
method can be applied to this expression, it is necessary to perform
a transformation of the variables xi to the d-dimensional unit
cube, [0, 1]d. In the cases we will consider in Section 8, this
transformation will always be of the form

xi =


j

AijΦ
−1(zj), (16)

with A being a positive definite matrix and Φ−1 the inverse of the
PDF of the standard normal distribution. After the transformation,
equation (7) reads as

⟨O⟩ =


[0,1]d O(AΦ−1(z))W (z)dz1 . . . dzd

[0,1]d W (z)dz1 . . . dzd
(17)

W (z) = exp


−S(AΦ−1(z)) +

1
2


i

(Φ−1(zi))2


.

Now, in theWUSmethod points zj, 1 ≤ j ≤ N , are generated from
a uniform distribution in [0, 1]d. Using these points, a quotient of
integrals of the form

Q (f1, f2) :=


[0,1]d f1(z)dz
[0,1]d f2(z)dz

can then be approximated by taking the rule

QN(f1, f2) :=

N
j=1

f1(zj)

N
j=1

f2(zj)
, (18)

where the functions fi could be of very general, in particular non-
Gaussian, nature. For our example these functions can be read off
from Eq. (17): f1 = O(AΦ−1(z))W (z) and f2 = W (z). For the
case that W (z) is really a function of z (and not just a constant),
this way of evaluating integrals over certain weight functions W
is known as the reweighting technique in field theory or statistical
physics. A crucial element of theWUS (reweighting)method is that
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the sampling points have a large enough overlap with the weight
functions fi considered. The resulting WUS estimator Q̂N(f1, f2)
from (18) has been analyzed in [12] and applications have been
investigated for example in [39,40]. The bias and the root mean
square error (RMSE) of this estimator satisfy

Bias(Q̂N(f1, f2)) =
Q (f1, f2) var(f2)

N
−

cov(f1, f2)
N

+ O

N−

3
2


RMSE(Q̂N(f1, f2))

=


var(f1) + (Q (f1, f2))2var(f2) − 2Q (f1, f2) cov(f1, f2)

√
N

+O

N−

3
4


.

The bias of the estimator in this case is asymptotically negligible
compared with the RMSE.

A deterministic version of the WUS estimator has been
considered in [39]. In particular, it follows fromTheorem4.2 in [39]
that if the integrands f1, f2 in (17) are of bounded variation in the
sense of Hardy and Krause, then by the use of a low-discrepancy
sequence z1, z2, . . . instead of i.i.d. uniform random samples we
obtain the integration error asymptotic

|QN(f1, f2) − Q (f1, f2)| = O(N−1(log(N))d).

Similar results for the bias and RMSE of Q̂N(f1, f2) considering
randomized QMC sequences instead of i.i.d. random samples are
not known to the authors. Nevertheless, the numerical results in
Section 8 (e.g. estimated ground state energy vs. theoretical values
given in [41]) seem to indicate that in our examples the bias under
scrambled Sobol’ sequences is very small and has no practical
relevance.

One clear disadvantage of WUS against Mc-MC or Importance
Sampling for problems with large regions of relative low values
of the integrands is that with WUS we sample over the entire
unit cube [0, 1]d uniformly, thus the method is dependent on how
we transformed the problem to the unit cube. In contrast, Mc-
MC Importance Sampling based techniques for models in high-
energy or statistical physics usually focus on characteristic or
important regions of the integrands aiming to sample directly from
the underlying distribution of the problem, using in this way only
the most relevant sample points.

8. Numerical experiments

We consider for our numerical tests the quantum mechanical
harmonic and anharmonic oscillator in the path integral approach
as described in Section 2. For definiteness we repeat here the
expression for the action of the system:

S(x) =
a
2

d
i=1


M0

a2
(xi+1 − xi)2 + µ2x2i + 2λx4i


. (19)

We investigate the two observable functions

O1(x) =
1
d

d
i=1

x2i , O2(x) =
1
d

d
i=1

x4i ,

using the notation

X2

,

X4

for ⟨O1(x)⟩ , ⟨O2(x)⟩ in our tests. In

addition, we will look at the ground state energy E0 which, by
virtue of the virial theorem, is related to O1 and O2 by E0 = µ2O1 +

3λO2 +
µ4

16 .
Furthermore, we provide a program (obtainable from the CPC
Program Library) for the QMC simulation of the (an)harmonic
oscillator together with this article, and give a description of the
usage of the program in the Appendix.

8.1. Harmonic oscillator

For the harmonic oscillatorwe can apply immediately the direct
sampling approach described in Sections 3 and 7 for calculating
estimates of observables O(.) by setting

f1 = O(AΦ−1(z)), f2 = 1

in (18). The matrix A is a square root of C , the covariance matrix
of the variables xi, appearing in the action if it is expressed as a
bi-linear form: S(x) =

1
2x

TC−1x, written explicitly as

C−1
ij =

2M0

a


uδij −

1
2


δi+1 j + δi j+1


, u = 1 +

a2µ2

2M0
. (20)

Different factorizations, namely Cholesky and PCA (principal com-
ponent analysis) have been tried out. The PCA based factorization
turned out to perform better in our tests, which is the reason why
wewill only showresults for thismethod.Note that, independently
of which factorization we have chosen for C , for the case of the
harmonic oscillator we sample directly from a Gaussian distribu-
tion and the considered observables functions O(.) are just multi-
variate polynomials of low degree. Thus, the effective dimension
in the superposition sense of the resulting non-constant integrand
f1 = O(AΦ−1(z)) is upper bounded by the highest degree of the
polynomials defining the observables O(.) (this is true because the
ANOVA decomposition is known to retain a minimal represen-
tation [42]). Therefore the problem has intrinsic low-effective
dimension in the superposition sense, and it is expected that
(randomized) QMC outperforms MC in this case. The PCA factor-
ization seems to achieve further improvements since it can reduce,
in addition, the effective dimension in the truncation sense. This
is usually the case for Gaussian integrands considered in math-
ematical finance, involving a covariance matrix with rapid de-
caying eigenvalues (see [7,36]). The PCA factorization can be
explicitly obtained for circulant Toeplitz matrices and the ma-
trix–vector products can be efficiently computed by means of the
fast Fourier transform. Given that the covariance matrix C is circu-
lant Toeplitz, we have that C = GΛGT , with G := Re(F) + Im(F),

(F)kl =
1

√
d
e−

2π i
d kl (21)

being the Fourier matrix and Λ the diagonal matrix of positive
eigenvalues (Lemma 4 in [43]). Thus A = GΛ

1
2 is a factorization of

C , and in this case one can follow a recipe for generating normals
with randomized QMC based on the discrete Fourier transform and
using fast Fourier transform (FFT) techniques as described in [43]:

1. Generate a randomized QMC point z̃ .
2. Compute ỹ = Φ−1(z̃).
3. Compute w̃ = (

√
β1ỹπ−1(1), . . . ,

√
βdỹπ−1(d)), where

βj =


2M0

a
(u − cos(2π j/d))

−1

, 1 ≤ j ≤ d (22)

are the eigenvalues in the diagonal matrix Λ, and π(.) is a fixed
permutation of the variables.

4. Compute ṽ = FFT(w̃).
5. Take x̃ = Re(ṽ) + Im(ṽ) as the resulting point sample.

It is (strongly) recommended to fix first the permutation π(.) such
that (βπ(j))

d
j=1 are in non-increasing order, and this permutation

was taken in our experiments. If this permutation of variables does
not lead to satisfactory results, the analysis described in Section 6.2
can be carried out to investigate if a possible different permutation
leads to more effective dimension reduction and better results.

In the ordinary Mc-MC approximation, we used the Mersenne
Twister [13] pseudo-random number generator. We note in
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Fig. 1. The error of ⟨X2
⟩ in dependence on the number of samples N . The param-

eters here were chosen as λ = 0 (harmonic oscillator), d = 51,M0 = 0.5 and
µ2

= 2.0. The error of the error was obtained by repeating the numerical experi-
ment 30 times, see also the text.

passing that the Mc-MC samples were generated in exactly the
same way as described above for randomized QMC with the
only difference that in step one Mc-MC points were generated
according to the Gaussian measure of the harmonic oscillator.
This corresponds to a heatbath algorithm, where all variables xi
are updated at the same time and with a reweighting procedure
in the anharmonic case. For the QMC tests, we use the Sobol’
sequences described in Section 4.1 from [25], with the random
scrambling technique proposed by Matousěk [31]. The error of
⟨X2

⟩ was obtained by scrambling 10 times the QMC sequence and
making 10 runs of anMc-MC simulation (with different seeds). This
procedure is repeated 30 times in both cases to obtain the error of
the error. From the results shown in Fig. 1, we can see a scaling
of the errors N−1/2 for Mc-MC and N−1 for randomized QMC, for
large N . Although this example is trivial, it was our first successful
application of the QMC approach in a physical lattice model and
motivated us to pass on to more complicated models.

8.2. Anharmonic oscillator

TheWUS (reweighting) approachwas also used for the problem
of the anharmonic oscillator to estimate ⟨X4

⟩, ⟨X2
⟩ and the ground

state energy of the system (E0). With the anharmonic term in
action, the probability distribution function (PDF) of the variables
xi is of non-Gaussian nature and hence becomes very complicated.
This makes it very hard to generate the samples directly from the
PDF of the anharmonic oscillator. Instead of this, we consider the
WUSmethodwith samples originated from an importance density
(see (4.6) in [39]) of Gaussian form, leaving the anharmonic term
and a fraction of the harmonic term as part of the functions f1
and f2 in (18). This change is in part necessary because now we
choose µ2 < 0 in our test cases, and this choice breaks down the
positive definiteness of the matrix C from the harmonic oscillator.
Thus, we select a new covariance matrix C⋆ for the Gaussian
samples, but we keep the sampling strategy for the xi essentially
unchanged as compared to the harmonic oscillator. The resulting
weight functions in (18) are given by

f1(z) = O(A⋆Φ−1(z))f2(z),

f2(z) = e
−


i


a


µ2

−µ2
sim

2


(A⋆

i Φ
−1(z))2+aλ(A⋆

i Φ
−1(z))4


,

(23)

where A⋆
i stands for the i-row of the factorization matrix A⋆ of C⋆,

andµ2
sim ≥ 0. As can be seen from the resulting weight function f2,

we have chosen the simple strategy of calibrating the diagonal of
the new covariance matrix C⋆ by the use of a parameter µ2

sim ≥ 0.
Besides the requirement of positivity on C⋆, one is free in the choice
of the parameterµsim.We choose to follow the spirit of importance
sampling by tuning µsim to a value that reduces the fluctuations
of the weights f1 and f2 as much as possible. The samples based
on the tuned parameter µsim lead us to observable averages with
less variances and therefore smaller errors. Nevertheless, it seems
quite difficult to find an optimal criterion for the selection of the
functions f1, f2 and the parameter µsim which leads to the best
possible error behavior. At themomentwehave to determine these
quantities empirically and leave systematic investigations to the
future.

Further, it is important to note that the PCA factorization during
the generation of the Gaussian samples plays a mayor role for
an efficient reduction of the effective dimension (see [33]) of
the problem. For the parameters listed below, we estimated the
effective dimensions in truncation sense dt of the functions (23)
to be close to 20 (for a 99% variance concentration), for estimating
the integrals described in (12) with the dimension of the original
system up to d = 1000. Thus, we observe a drastic reduction of
dimensionality.

On the other hand, we found that the effective dimensions in
the truncation sense of the functions (23) depend very strongly
on the parameter T = da, i.e. the physical time extent of the
system, and seems not sensible to the real dimension d. We found
that for small T -values, say T < 0.2, the selected parameters µsim
and PCA lead to an effective dimension reduction, with dt close to
4. In this case randomized QMC exhibited an N−1 error scaling.
The situation changed by increasing the T -values. For T = 1.5
the effective dimensions dt significantly increased to be close to
20. The exhibited error scaling was N−α with α ≈ 0.75 for this
case. Tests with values of T ≥ 5 indicate that the simulations
become more and more difficult in the sense that one needs more
and more samples to achieve the same accuracy of an observable
as compared to estimates at T = 1.5. Thus, in such situations
the overlap of the sampling points with the functions fi in (18)
seem to be too small to reduce the fluctuations sufficiently. It
seems that for this problem there exists some kind of transition
range for the observed error scaling using randomized QMC in
dependence of the time extent T , starting with a convergence
rate N−1 for T -values less than 0.2 and decreasing to the poor
convergence rate N−1/2 for T -values higher than 5. However, we
are presently exploring a more general approach for selecting a
good T -dependent matrix C⋆ (resp. A⋆ in (23)) in the sampling
procedure to improve the situation for larger values of T . This
question and the relation to the corresponding effective dimension
deserves a detailed study, in particular whenmore realisticmodels
are considered. However, such an investigation, although being
very interesting, goes beyond the scope of the present paper.

Nevertheless, for our numerical experiments, the parameters
were set to M0 = 0.5, λ = 1.0, µ2

= −16. In the two tests
the lattice spacing a was adjusted such that T was kept fixed. The
tuned value of µ2

sim generally depends on all physical parameters
of the system and in particular on a. Thus, we have to adjust
also µsim when the lattice spacing a is changed. In particular, we
set a = 0.015 and µ2

sim = 0.176 for d = 100, whereas for
d = 1000 a = 0.0015 and µ2

sim = 0.2 was chosen. The error
analysis of ⟨X2

⟩ and ⟨X4
⟩ was carried through in the same way as

described for the harmonic oscillator test case discussed in the last
Section 8.1. We show in Fig. 2 the error of ⟨X2

⟩ and E0 as a function
of the number of samples. In addition, we represent by the dashed
line in Fig. 2 a fit to the data for the computed errors using the
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Fig. 2. The error of the observables ⟨X2
⟩ and E0 as a function of the number of samples in a double logarithmic graph. The error of the error was obtained by performing

30 repetitions of the experiment with parameters chosen as λ = 1.0, µ2
= −16, a = 0.0015 and d = 1000. For the sample generation randomly scrambled Sobol’ (Rand.

QMC) was used with 213, 215, 216, 217, 218 and 219 points. The dashed line shows the fit to the data points using a fit function log (∆⟨O⟩) ∼ log(C) + α log(N). The fitted
exponents are α = −0.758(14) for ⟨X2

⟩ and α = −0.737(13) for E0 , see also Table 1.

Table 1
The results for fit parameters of the error scaling for the observables considered,
i.e. X2, X4 and E0 , where the used fit function takes the form error = CNα , see
Eq. (24). We also provide the χ2 values as well as the number of degrees of freedom
in the fit (dof).

O α log C χ2/dof

d = 100 X2
−0.763(8) 2.0(1) 7.9/6

X4
−0.758(8) 4.0(1) 13.2/6

E0 −0.737(9) 4.0(1) 8.3/6

d = 1000 X2
−0.758(14) 2.0(2) 5.0/4

X4
−0.755(14) 4.0(2) 5.7/4

E0 −0.737(13) 4.0(2) 4.0/4

formula

log (Error(⟨O⟩)) = log C + α logN; O = {x2, x4, E0}, (24)

with C and α left as free parameters. From this analysis we can
obtain a quantitative determination of the exponent of the error
scaling. The results for the fit parameters are listed in Table 1.

As can be inferred from Table 1, in the case of the anharmonic
oscillator the error scaling exponent is only α ≈ 0.76. However,
this still constitutes a much improved error scaling compared to a
Mc-MC simulation with a corresponding large gain in the number
of required samples to reach a desired accuracy. Moreover, the
value of α is consistent for all observables considered here and
independent of the dimension of the problem d, a finding which
is clearly encouraging.

We finally mention that the resulting estimates of the ground
state energy for T = 1.5 match, to at least two significant digits,
the theoretical value E0 = 3.863 calculated in [41], namely Ê0 =

3.857 ± 0.004 for d = 100 and Ê0 = 3.862 ± 0.004 for d = 1000.

9. Concluding remarks

In this article we have performed a first application of QMC
methods to Euclidean lattice models. The goal was to see, whether
QMC algorithms provide also in the case of non-Gaussian systems
an improved error scaling behavior with respect to Markov-chain
Monte Carlo methods. As a prototype system, we have considered
the quantummechanical oscillator discretized on a Euclidean time
lattice, both in its harmonic (Gaussian) form as well as adding a
non-Gaussian quartic term (anharmonic oscillator). For the har-
monic oscillatorwe found a large-N (N being the number of sample
points) improved error behavior, i.e. ∼N−1 for (randomized) QMC
and ∼N−1/2 for Mc-MC.

The main result of our investigation is that also for the anhar-
monic oscillator, which is a non-Gaussian problem, the QMC ap-
proach leads to a significant improvement of the error scaling Nα

with α ≈ −0.76, see Table 1 for the exact values of α for different
observables and different physical situations.

Further, we found that the accessible range of T = 1.5 values
gives already estimates of the ground state energy, compatible
(within errors) with the theoretical prediction (valid in the limit
T → ∞ and a → 0). For the case that the improved error scaling
and the mild dependence on the lattice spacing a found here will
also be present in more elaborate models, QMC methods have
the potential to become very valuable in the future. On the other
hand we observed that the applicability of the WUS (reweighting)
approach seems to be limited by the physical time extent T = da of
the system. For values of T ≤ 1.5 the error falls below the percent
level within the investigated number of samples. For increasing
values of T the error is continuously growing and at T = 5
we can only obtain a relative error of ≈15% for 219 samples. For
larger T values we expect the error to become even larger leading
eventually for very large T to a situation where a meaningful
evaluation of the considered quantities is no longer possible. This
behavior and the relation to the effective dimension of the problem
clearly needs anunderstanding and adedicated investigation in the
future—in particular, when more realistic models are considered.

It is clear that the quantum mechanical systems considered
here are rather simple models and that there is still a long way
to go if generic quantum field theories, especially gauge theories,
are to be studied. Nevertheless, it is very reassuring that we
find an improved error scaling behavior in the case of a quartic
potential and hence a non-Gaussian system. This promising result
is certainly a strong motivation for studying further QMCmethods
in lattice field theories and statistical mechanics.
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Appendix. C++ program for the QMC simulation of the (an)har-
monic oscillator

We provide a C++ program for the QMC simulation of the
(an)harmonic oscillator at the following URL (needs to be provided
by CCP). In the following we give a short description for the
usage of the program. The program implements the suggested
algorithm for the evaluation of the path integral of the harmonic
and anharmonic oscillator in the QMC approach, except that
the present implementation applies random digital shifts instead
of random scramblings to generate different sobol sequences.
Eventually, both methods should lead to very similar results.

Copyright informationmay be obtained from the file ‘‘README’’
in the package. The package is equippedwith a standard ‘‘Makefile’’
and a cmake input file ‘‘CMakeList.txt’’.

A.1. Prerequisites

The only external dependency is the FFTW library version 3
which canbe obtained fromhttp://www.fftw.org. The FFTW library
offers an efficient implementation of the Hartley transform.
If the library is installed in a non-standard path of your PC, you
can adjust the variable ‘‘FFTWDIR’’ in the very beginning of the
make file or via the environment variable ‘‘FFTWDIR’’ when using
‘‘CMakeLists.txt’’.

A.2. Building

Simply run ’make’ when using ‘‘Makefile’’ or use ’ccmake
<path to package source>’ in an empty directory followed
by a ’make’.

A.3. Parameters

Having built the executable ’qmc_quartic_reweight’ you
can run the program, preferably in a new empty directory, andmay
pass the following parameters:

Parameter Meaning
-N <Integer> Number of dimensions
-k <Integer> Number of samples per

estimation
-c <Integer> Number of configurations written

out to a file
-S <Integer> Max. time separation for

correlator
-a <Float> Lattice spacing a
-M <Float> Particle mass M0

-m <Float> µ2
sim

-u <Float> µ2

-l <Float> λ

-Q <Path to
file>

File containing directions
numbers

Files with direction numbers can be obtained from Frances
Kuo’s page
http://web.maths.unsw.edu.au/~fkuo/sobol/index.html. The pro-
gram produces 10 estimations, each with the given number of
samples. Output is written to files of the form <prefix>_s1_N
<# dimensions>_a<a>_M0<M0>_musq <muˆ2_sim>_l

<lambda>_J0.000000.csv. The result of each estimation is
stored in the filewith the prefix ‘‘obs_macro’’. The first column con-
tains the estimated value of ⟨x2⟩ and the second column contains
⟨x4⟩. Successive runs of the programwith the same parameterswill
append10more estimates. Correspondingly, 30 runs should suffice
to produce the statistics we used in this work.
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