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Abstract

The simulation of X-ray imaging experiments is often performed using deterministic codes,
which can be relatively fast and easy to use. However, such codes are generally not
suitable for the simulation of even slightly more complex experimental conditions,
involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions,
or more complex geometries, particularly for experiments that combine spatial resolution
with spectral information. In such cases, simulations are often performed using codes
based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction
position of an X-ray photon and the state of the photon after an interaction are obtained
simply according to the theoretical probability distributions. This approach may be quite
inefficient because the final channels of interest may include only a limited region of space
or photons produced by a rare interaction, e.g., fluorescent emission from elements with
very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has
been solved by combining the Monte Carlo method with variance reduction techniques,
which can reduce the computation time by several orders of magnitude. In this work, we
present a C++ code for the general simulation of X-ray imaging and spectroscopy
experiments, based on the application of the Monte Carlo method in combination with
variance reduction techniques, with a description of sample geometry based on quadric
surfaces. We describe the benefits of the object-oriented approach in terms of code
maintenance, the flexibility of the program for the simulation of different experimental
conditions and the possibility of easily adding new modules. Sample applications in the
fields of X-ray imaging and X-ray spectroscopy are discussed.
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Program Summary

Program title: XRMC version 6.3.3

Catalogue identifier:

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License version 3 <http://www.gnu.org/licenses/>
No. of lines in distributed program, including test data, etc.: 227028

No. of bytes in distributed program, including test data, etc.: 2.2 MB



Distribution format: tgz

Programming language: C++

Computer: Tested on several PCs and on Mac

Operating system: Linux, Mac OS X, Windows (native and cygwin)

RAM: It is dependent on the input data but usually between 1 and 10 MB.

Classification: PACS 87.10.Rt Monte Carlo simulations, 87.59.-e X-ray imaging, 87.64.-t Spectroscopic and
microscopic techniques in biophysics and medical physics, 87.64.Aa Computer simulation.

Nature of problem: Simulation of a wide range of X-ray imaging and spectroscopy experiments using different
types of sources and detectors.

Solution method: XRMC is a versatile program that is useful for the simulation of a wide range of X-ray imaging
and spectroscopy experiments. It enables the simulation of monochromatic and polychromatic X-ray sources,
with unpolarised or partially/completely polarised radiation. Single-element detectors as well as two-
dimensional pixel detectors can be used in the simulations, with several acquisition options. In the current
version of the program, the sample is modelled by combining convex three-dimensional objects demarcated by
quadric surfaces, such as planes, ellipsoids and cylinders. The Monte Carlo approach makes XRMC able to
accurately simulate X-ray photon transport and interactions with matter up to any order of interaction. The
differential cross-sections and all other quantities related to the interaction processes (photoelectric absorption,
fluorescence emission, elastic and inelastic scattering) are computed using the xraylib software library, which is
currently the most complete and up-to-date software library for X-ray parameters. The use of variance reduction
techniques makes XRMC able to reduce the simulation time by several orders of magnitude compared to other
general-purpose Monte Carlo simulation programs.

Running time: It is dependent on the complexity of the simulation. For the examples distributed with the code, it
ranges from less than 1 second to a few minutes.

Introduction

Variance reduction techniques for the simulation of X-ray photon transport allow for the
combination of the speed of deterministic methods and the ability of the Monte Carlo
approach to simulate photon histories up to the first or higher interaction order under
complex experimental conditions. Such techniques have been widely used in the field of X-
ray fluorescence spectroscopy [1-5].

Some general-purpose Monte Carlo simulation codes make limited use of variance
reduction techniques [6, 7], for instance by providing the option of forcing a particle to end
its trajectory in a specific region of space. However, most X-ray imaging and spectroscopy
applications require a greater computational effort. Expert users often incorporate other
types of variance reduction techniques by modifying specific parts of general-purpose
Monte Carlo codes. Therefore, the derivation and implementation of such techniques are
often considered an art by Monte Carlo software developers.

Bottigli et al. [8] presented a code for the simulation of X-ray imaging and spectroscopy
experiments performed on samples described in a three-dimensional regular grid, with
elemental composition and mass density specified for each grid node (voxel). In this work,
we present a program for the simulation of X-ray imaging and spectroscopy experiments
based on the Monte Carlo method by exploiting variance reduction techniques, with a
description of the sample geometry based on quadric surfaces. Past versions of this
program have been used in medical imaging [9-13], archaeometry [14-16] and beam
characterisation [17-19] with X-ray tubes as well as with less conventional X-ray sources
(e.g., inverse Compton scattering sources [9-13,17,18]) for planning experimental setups,
optimising experimental parameters and comparing theoretical models with experimental
results. The code is written entirely in the C++ programming language. A description of the
main variance reduction techniques used for the Monte Carlo simulation of X-ray photon
transport can be found in ref. [1-5,8]. The present work instead focusses on a description
of the advantages of an object-oriented approach for the general simulation of X-ray
imaging and spectroscopy experiments and on the use of quadric surfaces for the
geometrical modelling of experiments. The following sections describe the main classes
used in the code with their member variables and functions.



Method

The standard experimental setup simulated by XRMC consists of an X-ray source, a
sample and a detector.

The source can be a point-like source or it can have a three-dimensional Gaussian
distribution. The radiation emitted by the source can be unpolarised, partially polarised or
fully polarised. The energy spectrum can include a continuous component and a set of
discrete energy lines, which can either be monochromatic or follow Gaussian distributions
with specified standard deviations.

The sample is composed of a number of materials, called phases, which are characterised
by their mass density and by their elemental composition, i.e., the atomic numbers and
weight fractions of the atomic species that define them. Each phase is assumed to be
homogeneous. The sample geometry is specified using a set of three-dimensional objects
delimited by quadric surfaces.

The detector can be either a pixel array or a single-element detector. Each pixel/element
can have a rectangular or an elliptical shape. It can either record the number of X-ray
photons collected by each pixel over a specified exposure time, the total deposited energy
of these photons or the full spectrum of the radiation detected by each pixel. The source,
the sample and the detector can be placed at arbitrary positions in arbitrary orientations.
XRMC can simulate the history of individual X-ray photons, starting from the source and
ending at the detector. The trajectory of a photon is modelled as consisting of a sequence
of straight paths, each of which is terminated by an interaction of the photon with a sample
atom. The interaction processes that can be simulated by XRMC are the photoelectric
effect (eventually followed by fluorescence emission), Rayleigh (elastic) scattering and
Compton (inelastic) scattering. The (differential) cross-sections for these interactions and
the fluorescence line energies are computed using the xraylib software library [20,21]. The
code (currently) does not support the transport of electrons, which can be produced by the
photoelectric effect, Auger emission or Compton scattering; even though such electrons
may produce secondary photons by bremsstrahlung or impact ionisation, in most practical
experimental conditions their contribution is not significant.

At each step of the simulation, the state of a photon is defined by its position vector rpp, its
direction, its polarisation vector and its energy E. Because variance reduction techniques
are used, a weight w is also associated with the photon. The trajectory of the photon is
considered to be straight until it is absorbed, scattered or detected. With the variance
reduction techniques exploited by XRMC, the photon history never ends with absorption:
at each interaction point, the photon is either scattered by a coherent or incoherent
scattering process or re-emitted by fluorescence emission after photoelectric absorption,
with a different energy and direction and with a proper weight that takes into account the
fluorescent emission cross-section [5]. Furthermore, the photon is not allowed to exit from
the sample region without being detected: it is forced either to interact with the sample or
to be detected [5]. Therefore, the photon trajectory can be divided into straight paths,
starting from the source and ending at the detector. Let ro and ko be the position and the
direction of the photon at the beginning of a given step. The next interaction occurs at the

point 1= 0" Ska \where s is the distance from the starting point to the next interaction
position. The probability distribution for the step length s depends on the values of the

linear absorption coefficient“(r"”k“’EO) along the photon trajectory at the photon energy

Eo. The probability that the next interaction occurs between s and s+ds is



eXp{— iﬂ(f)df}ﬂ(s)ds (1)

where the exponential function represents the probability that the photon does not interact

before reaching the position s (survival probability) and #(s)ds s the probability that, if the
photon reaches the position s, it interacts between s and s+ds. The step length s can be
extracted using the inverse cumulative distribution function and a pseudo-random number
generator, as described in Ref. [5], which also describes how the photon can be forced to
have an interaction in the sample and how the weight associated with the event should be
updated.

After the extraction of the step length, the photon is moved to the interaction position r1,
and the code selects the atomic species with which the interaction will occur and the
interaction type (photoelectric+fluorescence emission, elastic scattering or inelastic
scattering). The probability that the interaction occurs with an atom of type a is

P(Uf) — pwao-tot(za’EO)
atom ﬂ(S,EO) (2)

where p is the mass density of the sample at the interaction position, w. is the weight
fraction of the element a, @« (Z..Ey) is the total cross-section for the interaction with an

atom of atomic number Z, at the incident energy Eo and ﬂ(S’ Eo) is the linear absorption
coefficient at the position s.

The probability that an interaction process of type / occurs (emission of a particular
fluorescence line, elastic scattering or inelastic scattering) is

(1) — O (Za’Eo)
inter O_mt (Za ) EO ) (3)

where Gl(Za’EO) is the cross-section for this interaction process. The atomic species that
is responsible for the interaction and the interaction type/fluorescence line is selected
using the procedure described in Ref. [8]. In the case of fluorescence emission, the
direction of the photon after the interaction is extracted from a random distribution uniform
over the entire solid angle of 4rn. Clearly, the new energy will be that of the fluorescence
line. In the case of elastic/inelastic scattering, the new direction is distributed according to
the differential cross-sections for these processes. The extraction of the new direction,
energy and polarisation is also based on the method described in Ref. [5].

The signal produced by photons that start from the source and reach the detector without
interacting with the sample is called the fransmitted signal, or zero-order signal.

The signal due to photons that reach the detector after a single scattering or fluorescence
emission process is called the first-order signal. Higher-order signals are defined similarly.
In our approach, the contribution of different scattering orders is evaluated separately.
After the last interaction, the photon is forced to reach a specific element of the detector.
The final photon position is extracted according to a random uniform distribution over the
element surface. The weight associated with the event is thus updated with the method
described in Ref. [8].

The following sections outline the different components of the XRMC program. For a full
description of the underlying C++ classes, including member variables and methods, the
reader is referred to the online manual, which is continually updated to reflect the latest
development status of XRMC.



Vector and matrix operations

Many of the calculations performed by the program involve operations on three-
dimensional vectors and on 3x3 or 4x4 real matrices. Therefore, three specialised classes,
vect3, matr3 and matr4, have been implemented. These classes exploit the operator-
overloading feature of the C++ programming language to represent vector and matrix
operations in a natural and readable manner. For instance, a change of coordinates from
the local coordinate system associated with a device to the absolute coordinate system of
XRMC can be expressed by the following vector operation:

r=ro+ux+u-y+uxz (4)

where r is the position vector of a point relative to the absolute coordinate system, ro is the
position vector of the local coordinate system origin, u;, u; and ux are the direction vectors
of the local coordinate system axis and x, y and z are the coordinates of the point relative
to the local coordinate system. This operation can be expressed using the vect3 class as
follows:

r=r0 + ui*x + uj*y +uk*z; (5)

where r, ui, uj and uk are objects of the class vect3, x, y and z belong to the C/C++ type
double and “+” and “*” are overloaded operators of the vect3 class.

An alternative approach is based on more general matrix and vector base classes and
derive classes for specific dimensions. However, the computation time overhead of this
approach is significantly high; therefore, the ultimately decided that specialised classes for
three and four dimensions be used.

Several member functions were written for vect3, matr3 and matr4, facilitating elementary
mathematical operations (addition, multiplication with a scalar, etc.) on instantiated
objects, as well as typical vector/matrix operations (dot and cross products, etc.).

The photon class

XRMC uses a specialised photon class to describe X-ray photon transport and interaction
with matter. A local coordinate system is associated with the photon, with the direction of
the three axes x, y, and z defined by three unit vectors ipn, jon, Kon, where kpn is the photon
direction, ipn is the polarisation vector, which is always perpendicular to the photon
direction, and jjn, is the unit vector perpendicular to both i,n and kpn. The other variables
that describe the photon state are the photon’s energy E and its weight w.

Member functions that manage the displacement of the photon, as well as the calculation
of the interaction cross-sections, are implemented.

The device and bodydevice classes

In XRMC, the term device refers to a C++ object that is created with the intention of being
used by the simulation and whose parameters are loaded from the corresponding file.
However, the derived classes do not necessarily represent a physical device. For instance,
the phase (material) array and the sample are considered devices. The term device is also
the name of the abstract base class from which all concrete device classes are derived. Its



member functions are related to connecting the device objects to other devices, as well as
loading parameters from the input files, etc.

Another important abstract class used in XRMC, derived from the device class, is the
bodydevice class. This class extends the device class by adding member variables and
methods that handle the position and local coordinate system of a device.

The classes derived from the bodydevice class are the basesource and detectorarray
classes. The basesource class is an abstract class for X-ray sources. It is the base class
for all classes that can send X-ray photons to other devices, which in the current version of
the code are the source class (which can send photons to the sample or to detector
devices) and the sample class (which can send photons to another sample or to detector
devices). In future releases of the program, other classes derived from the basesource
class could be used to represent optical elements, such as X-ray mirrors, multilayers and
X-ray lenses. The methods that are associated with the basesource class handle the
(forced) sending of photons to the output device (detector).

On the other hand, the concrete classes that are directly derived from the abstract device
class are the composition, spectrum and geom3d classes.

Each device can be connected to one or more input devices. Figure 1 shows schematically
how the concrete devices used in a standard setup are interconnected. The classes of
those devices are described in the following paragraphs.

spectrum
\ source
composition sample detectorarray
geom3d /
quadricarray

Fig. 1: C++ classes associated with the main XRMC devices and connections used in a standard setup.

The source class

The current version of the code assumes that the X-ray beam is produced by a point
source or by an extended source with a three-dimensional Gaussian distribution. A local
coordinate system is attached to the source, which is determined by the vector position of
the origin rs and by the orthonormal unit vectors is, js and ks, which correspond to the
directions of the local x, y, and z axes, respectively. The local z axis represents the main
source direction, whereas the local x and y axes are used to define the beam polarisation
and angular aperture. Let 6; and ¢ be the polar and azimuthal angle, respectively, relative
to the source coordinate system. The user can specify the angular apertures 6, and 6y in
the x and y directions, respectively. In general, the angular aperture of the source is
elliptical and is defined by the following inequality:

02 < 0:2cos’ds + 0y%sin’ds (6)



The source intensity distribution is assumed to be uniform over the solid angle limited by
this angular aperture.

The member functions connected to this class are mainly charged with calculating the
initial direction and polarisation of the photon, as well as generating the local axes system.

The spectrum class

The energy spectrum is modelled as the sum of two components: a set of discrete lines
and a continuous component. The radiation can be unpolarised, partially polarised or
completely polarised. The lines can have a Gaussian or a Dirac & distribution (the latter
one being simply a particular case of Gaussian distribution, with ¢ = 0). Each line is
specified by its mean energy E,, by its intensity I and by o1 as follows:

Ni (integer): Number of lines in the spectrum
Ei o I (real values): energy, width (rms) and intensity of the 15t line

Eni on Ini (real values): energy, width (rms) and intensity of the N line

In the case of (partially or completely) polarised radiation, the intensities of the two
components polarised along the local x and y directions are specified separately for each
line as follows:

Ei o ILa Iy (real values):
energy, width (rms) and intensities of the two polarisation components of the
1t line

Ext ont Lan Iyt (real values):
energy, width (rms) and intensities of the two polarisation components of the

Nt line
The continuous component is defined by N samples at arbitrary energies Ei, ...., Ex, by
specifying for each sample the corresponding height of the spectral distribution I, ...., In :

N;i (integer): Number of sampling points in the continuous spectrum;
Ei I, (real values): energy and intensity of the 15t sampling point

Exi  Ini (real values): energy and intensity of the N'" sampling point;

The height of the distribution in the interval between two consecutive energies of the
sample Ei, Ei:1 is approximated by a linear function of E that ranges from I; to Iii;
therefore, the spectrum in each interval between two consecutive samples has a
trapezoidal shape. The area of the trapezium (Ei+1 — Ei)-(Ii + Li+1)/2 represents the intensity
of the interval.



In the case of (partially or completely) polarised radiation, the heights of the x and y
components are specified separately for each sample of the continuous component as
follows:

Ei  La Iy (real values):
energy and intensities of the two polarisation components of the 15t sampling point;

Enxt  Leni Iyni (real values):
energy and intensities of the two polarisation components of the N sampling
point;

There are two possible ways of extracting the initial energy of X-ray photons produced by
the source:

1) extract random energies from the whole spectrum: the initial photon energy is
extracted using the whole spectrum itself as a probability distribution;

2) loop over all lines and all intervals of the spectrum: a loop is made over all lines and
all intervals of the spectrum; the initial energy of the photon is extracted according
to the probability distribution limited to a single line or to a single interval; an event
is assigned a weight proportional to the line/interval intensity.

The first method is the traditional Monte Carlo approach. Lines or regions of the spectrum
with lower intensity are less represented in the generated distribution, no matter how
important their contribution to the detected signal is. There may be some drawbacks to this
approach. For instance, if the spectrum has a relatively low intensity at higher energies
and if the sample is a strongly absorbing object, the frequency of events with higher
energies will be low even though they provide the most important contribution to the
detected signal.

The second approach is more similar to deterministic integration methods and should often
be preferred to the first approach. All lines and all interval are equally represented in the
generated statistics, and their relative probability is corrected for by using the method of
event weighting.

If the second method is chosen, then for each interval of the continuous component, the
software offers two possible ways of extracting the photon energy:

1) extract the energy randomly according to the probability distribution inside the
interval itself (which is modelled by a linear function, as discussed previously);

2) force the photon energy to be equal to the central energy of the interval.

The second method is the pure deterministic approach, which should not be used under
normal circumstances.

The program offers the opportunity to resample the continuous component after it is
defined. In this case, the user must specify the starting energy, the energy step and the
number of points used for the resampling. The intensities /; are then recalculated for the
new values of E;. Typically, this option will not be used; however, it could be useful for
variance reduction if the space between the sampling energies in the continuous
component definition is too large and a finer separation is desired or, in the opposite case,
if the energy step in the initial definition of the spectrum is unnecessarily small.

All member functions of this class are associated with the extraction of energies and the
corresponding intensities from the discrete and/or continuous parts of the excitation
spectrum.



The phase and composition classes

The sample is composed of a number of materials called phases. Each phase is assumed
to be homogeneous. Each phase is characterised by the number of atomic species that
define it, through a list of the atomic numbers and weight fractions of these species, and
by its mass density.

The member functions are therefore mostly concerned with the selection of the atomic
type with which the next interaction will occur, as well as the computation of absorption
coefficients.

The composition class contains an array of the phases used by the simulation. Its only
member function serves to calculate the absorption coefficients of each phase.

The quadric, quadricarray and qvolume classes

Sample geometry is described through a set of quadric surfaces, which are used to define
the surfaces of solid objects. A quadric is a surface in three-dimensional space defined as
the locus of zeros of a quadratic polynomial. A quadric is generally defined by the following
algebraic equation:

3 3
2, %y, * 2 Fx + R=0. ()

ij=1

If we define o =!, then the quadric may be compactly written in vector and matrix
notation as follows:

xAxT =0 (8)

where * = (xo,xl,xz,xz) is a row vector, x is the transpose of * (a column vector) and A
is a 4x4 matrix with 45 =@y Vi j= 1. 3 4y,=4,=F gnd 4o =R
The matrix A must be symmetric; thus, 45y = 4; Vi, j = 0., 3
A quadric divides the space into two regions: one with xAx" >0 and the other with
xAx" <0,
We will call these two regions the space outside the quadric (or external space) and the
space inside the quadric (or internal space), respectively.
Whenever a unit vector normal to the quadric surface has to be defined, by default we will
assume that it is oriented toward the external space. Certain types of standard quadrics
can be easily defined:
— an infinite plane, defined by the coordinates of an arbitrary point of the plane xo, yo,
2o and by the unit vector perpendicular to the plane ux, uy, uz;
— an ellipsoid with semi-principal axes parallel to the x, y and z axes, defined by the
centre coordinates xo, yo, Zo and by the length of the semi-principal axes a, b, c;
— a cylinder with its axis parallel to the x axis and an elliptical section, defined by the
y, z coordinates of its axis yo, zo and by the semiaxes of the ellipse ry, r3;
— a cylinder with its axis parallel to the y axis and an elliptical section, defined by the



X, z coordinates of its axis xo, zo and by the semiaxes of the ellipse ry, r3;
— a cylinder with its axis parallel to the z axis and an elliptical section, defined by the
X, y coordinates of its axis xo, yo and by the semiaxes of the ellipse ry, ry;
In the most general case, the quadric can be defined by the coefficients Aj.
Several member functions were designed for this class, in most cases to handle the
construction of the geometrical shapes.

The quadricarray class contains an array of the quadrics used by the simulation.

A solid object is defined as a solid shape demarcated by a set of quadric surfaces that
separates the space inside the object from the space outside it. The quadrics limiting an
object must be properly oriented such that their normal vectors are directed outward with
respect to the object itself.

In the current version of the implementation, objects must be convex: the user is expected
to handle the splitting of non-convex objects into convex ones when using them in the
simulation.

An object may contain other objects, or it may be contained in another object, as long as
their delimiting surfaces are not in contact.

The class used in XRMC to represent three-dimensional objects is called qvolume. It
contains only one member function, which is responsible for the calculation of the
intersections of the photon trajectory with the defined objects.

The geom3d class

The geom3d class contains an array of the three-dimensional objects used in the
simulation. As shown in Fig. 1, the class essentially represents the synthesis of the
quadrics (through the gvolumes) and the compositions.

The path class

When a photon exits from the source or when it is produced by a scattering/fluorescence
emission process, it follows a straight trajectory defined by its position vector rph and by its
direction vector uph. The program evaluates the intersection of this trajectory with the
quadric surfaces demarcating the objects and divides it into Ns steps with uniform phases.
Each step is a segment of the trajectory delimited by its intersection with different objects.
The path class holds information about the intersection of a trajectory with the quadrics
and about the segments between consecutive intersections. Its member functions are
responsible for the calculation of the next interaction position.

The sample class
The sample class is a container used to combine information about the sample’s



composition, the sample’s geometry and the type of interactions that can occur in the
sample. It therefore contains references to the source, the three-dimensional model, the
compositions, as well as information about the possible intersections of the photon
trajectories with the objects.

The detectorarray class

In general, the program can simulate two-dimensional array detectors with energy binning
for each pixel. A single-element detector can be simulated as a special case of an array
detector with only one pixel. The pixel shape can be defined as rectangular or elliptical.
The latter is particularly useful when a round, single-element detector must be simulated.
A local coordinate system is associated with the detector, specified by the vector position
of its geometric centre ry and by the orthonormal unit vectors ig, jo and kg (see Fig. 2),
which are the directions of the local x, y and z axes, respectively. The local z axis is
perpendicular to the detector surface, whereas the local x and y axes are parallel to the
detector rows and columns, respectively.

vl;i

Source

Sample i

Detector

Fig. 2: The standard experimental setup simulated by XRMC consists of an X-ray source, a sample and a
detector (two-dimensional array or single element). A local coordinate system is attached to the source and
to the detector. rs and ry are the position vectors of the source and of the detector geometric centre,
respectively. is, js and ks are the directions of the source local x, y and z axes, respectively. iy, jo and kg are
the directions of the detector local x, y and z axes, respectively. The detector local z axis is perpendicular to
the detector surface, whereas the local x and y axes are parallel to the detector rows and columns,
respectively.

Two acquisition modalities are possible:

1) fluence: each channel simply counts the number of photons that it detects;

2) energy fluence: each channel sums up the energy of the photons that it detects.
The energy response of the detector can eventually be taken into account by using the first
modality with a sufficient number of energy bins and by a proper post-processing of the
acquisition. The member functions of the detectorarray class are responsible for initiating
the acquisition (and therefore the actual simulation) and for clearing the contents of the
virtual detector channels.



Results

The code was verified by experimental measurements and, whenever possible, against
theoretical predictions for a wide range of experimental conditions for imaging and for
spectroscopy.

An example is schematically depicted in Fig. 3, which represents a setup used to test the
simulation of second-order scattering against theoretical predictions.

Detector

Scatterer 1 I Scatterer 2
1

lﬁ N/éz/@;gﬁ\bsorber 2
&1 Absorber 1 I

Collimator 1 Collimator 2

Source

Fig. 3: Schematic representation of the setup used to test the simulation of second-order scattering against
theoretical predictions.

All objects are cylinders (or cylindrical shells), with the main axis lying on the figure plane.
This setup was designed such that the only relevant contribution to the second-order
scattering signal on the detector is due to a first scattering process on the object scatterer
1 and a second scattering process on the object scatterer 2. The two absorbers are also
used to test the simulation results against theoretical predictions; although they contribute
to the scattering signal on the detector, this contribution is relevant only for scattering
orders higher than the second order. The radiation produced by the source is completely
polarised in the direction perpendicular to the figure plane. The two scattering objects and
the detector are not shown to scale in the figure. The relevant input parameters of the
simulation are as follows:

e monochromatic source with Eo=50 keV;

scatterer 1 thickness: ss=0.1 mm, diameter: d1=2 cm, material: aluminium (density
p= 2.7 g/cm3);

scatterer 2 thickness: ss=0.1 mm, diameter: d2=4 mm, material: aluminium;
absorber 1 and 2 thickness: s;=2 cm, material: polymethyl methacrylate (PMMA);
collimator 1 and 2 thickness: 2 cm, hole diameter: 4 mm, material: lead;

detector diameter: d¢=4 mm

scatterer 1 — scatterer 2 distance: /=20 cm;

scatterer 2 — detector distance: =10 cm.



The probability that a photon produced by the source is scattered from the object scatterer
1 and reaches the object scatterer 2 is

do
R = ps. 2 —rexp(= ps,) (9)

where A denotes the first scattering process type (elastic or inelastic), & =, /4] is the

solid angle from the first interaction point to the surface of scatterer 2, 40../dQ s the
differential cross-section for the first scattering interaction at incident energy Eo and
scattering polar angle 6: and i is the PMMA absorption coefficient at energy E1 after the
scattering interaction. Clearly, for elastic scattering E1=Eo, whereas for inelastic scattering,
the energy can be calculated by the well-known Compton formula.

The probability that a photon incident on scatterer 2 is scattered and reaches the detector
is

do
P=ps 0= exp(- u,s,) (10)

where B denotes the second scattering process type (elastic or inelastic), €2, = md; 141 g

the solid angle from the second interaction point to the detector surface, 405/dQ s the
differential cross-section for the second scattering interaction at incident energy E; and
scattering polar angle 6, and 1 is the PMMA absorption coefficient at the energy E> after
the second scattering interaction.
The total probability P is the product PP, evaluated and summed for all combinations of
the two scattering types A-B, i.e., elastic-elastic, elastic-inelastic, inelastic-elastic and
inelastic-inelastic. P is on the order of 10'*. A simulation based on the conventional
Monte Carlo approach would not be able to produce sufficient statistics regarding detected
photons within an acceptable time frame. Through the variance reduction techniques
implemented in XRMC, the fraction of the (weighted) events that yield a useful signal on
the detector is on the order of 5-107, i.e., it is more than nine orders of magnitude greater
than that of the conventional Monte Carlo approach; therefore, it is possible to collect a
good precision for given values of 6; and 62 within a few hours of simulation. The photon
count on the detector is calculated as follows:
C=1IP,t (11)
where [ is the source intensity and t is the exposure time. Figure 4 shows a comparison
between the theoretical curve of C as a function of 6. and values obtained from
simulations, for 0:=45°, I=10!° ph/s and t=1 s. The point 8:=0 is excluded from the
simulation because for that point the scattering from both collimators' hole surfaces
contribute significantly to the second-order scattering signal. The drop close to 90 degrees
in the simulation data is related to the self-absorption of the scatterer 2, which becomes
relevant at such angles; this effect was not taken into account in the theoretical model
because it depends not only on the angle 62 but also on the second interaction position,
which is randomly distributed throughout the object volume.
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Fig. 4. Comparison between the theoretical curve for the second-order scattering process shown in Fig. 3
and the signal obtained by XRMC simulations.
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Fig. 5: Example of simulated radiographic images of different samples: a star shape (a), a thin spherical shell
containing objects delimited by different type of quadrics (b), a wheel shape (c) and a cylindrical shell (d).



Possible applications of XRMC in X-ray imaging are described in the tutorial, which is
distributed with the program. The corresponding input files can be found in the example
directory. These examples explain, through comments in the input files, how to build the
experimental setup, how to define the elemental compositions and how to define the object
geometry using different types of quadrics and also the rotation/translation functionality. A
selection of images resulting from those examples are shown in Fig. 5.

XRMC can also be applied to simulate realistic X-ray fluorescence spectroscopy
measurements, as demonstrated in the tutorial. Fig. 6 presents a schematic of the
experimental setup.

Detector Source

Fig. 6: Schematic representation of the setup used for fluorescence spectroscopy measurements and
simulations.

The source is a Ag-anode X-ray tube operated at 40 kV and 10 pyA. The source spectrum
is polychromatic and was determined experimentally. The beam was collimated through a
1-mm-wide cylindrical collimator. The detector is a silicon drift detector (X-123SDD by
Amptek) measuring 25 mm? in diameter and 500 ym in thickness. The sample is a
parallelepiped composed of the following three layers (in order of increasing distance to
the source):

e a simulated 200-um-thick surface mixture layer;

e a 300-um-thick copper layer;

e a 2.5-mm-thick mixture layer similar to the first one.

Similar samples are often encountered in cultural heritage research, such as in studies
of excavated ancient metals, in which case the surface layers are due to interactions with
sediment. The mixture is a seven-element phase, whose composition can be found in the
composition.dat file in the example/fluor_layers directory.

The current version of XRMC does not include the simulation of the response of real
detectors. The users are expected to perform any post-processing of the simulation output.
With respect to our example, a separate program that allows for the simulation of the



response of the silicon drift detector is included. This program can be found in the directory
example/fluor_layers/src, where a README file explains how to compile and run the utility.
Figure 7 shows a comparison between the measured signal and the simulated one. In the
experimental spectrum, there are peaks due to pile-up effects and X-ray tube emission
that are not present in the simulations.
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Fig. 7: Comparison between the simulated and measured spectra for a fluorescence spectroscopy
experiment.

Conclusion

XRMC is a versatile program that is useful for the simulation of a wide range of X-ray
imaging and spectroscopy experiments. The program allows for the simulation of
monochromatic and polychromatic X-ray sources with unpolarised or partially/completely
polarised radiation. Single-element detectors as well as two-dimensional pixel detectors
can be used in the simulations, with several acquisition options available. In the current
version of the program, the sample is modelled by combining convex three-dimensional
objects demarcated by quadric surfaces, such as planes, ellipsoids and cylinders. The
Monte Carlo approach enables XRMC to accurately simulate X-ray photon transport and
interactions with matter up to any order of interaction. The differential cross-sections and
all other quantities related to the interaction processes (photoelectric absorption, elastic
and inelastic scattering) and to fluorescence emission are computed using the xraylib
software library [20,21], which is currently the most complete and up-to-date software
library for X-ray parameters. The use of variance reduction techniques enables XRMC to
reduce the simulation time by several orders of magnitude compared to other general-
purpose Monte Carlo simulation programs. It should be noted that the program XMI-MSIM
[1-5] is currently superior to XRMC in simulating X-ray fluorescence (XRF) experiments.
However, XMI-MSIM can only simulate samples composed of parallel layers. For X-ray
imaging experiments, for experiments that combine imaging and spectroscopy or for more
complex sample geometries, XRMC is currently one of the most valuable programs
available.

The use of an object-oriented approach, incorporating the concept of devices as
independent computational modules that can be connected to each other to construct an
experimental setup, make XRMC a flexible framework into which new modules can be



easily integrated. Current work is focussed on the implementation of the response of
realistic detectors for imaging (e.g., CMOS detectors) and for spectroscopy (e.g., Silicon
Drift detectors) as devices that can be used within the program. New modules will soon be
included in the program for a voxel-based description of sample geometry and for phase
contrast imaging simulations [19].

XRMC is released under the GNU general public license and can be downloaded freely
from http://github.com/golosio/xrmc. Participation in the development is possible and
encouraged through the Github website.
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