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1. Introduction

xAct [1] is a free collection of powerful Mathematica packages for tensor computer algebra. Thanks to its implementation [2,3] of
the Butler–Portugal algorithm [4–6], it can canonicalize tensor indices with respect to permutation symmetries extremely fast. On this
solid basis a great number of applications have been built [7–13] that range from tensor spherical harmonics to perturbations around
homogeneous cosmological backgrounds.

This paper describes the xTras package, one of these applications. xTras provides functions and methods that are frequently needed
when doing (classical) field theory: computing contractions, making Ansätze, and solving equations, just to name a few. The package grew
out of a need of the author for these particular functions, which were not present in any other xAct package.1

This paper is organized as follows. Section 2 describes how to install and run the package, Section 3 briefly reviews the basics usage of
xAct, Section 4 demonstrates of capabilities of xTraswith a couple of examples, and Section 5 contains function documentation. In addition
to this paper, a complete list of all functions and their options can be found in either the built-in documentation of the package, or the
online documentation at www.xact.es/xtras/documentation.

2. Installation

xTras can be installed by downloading the package from its website www.xact.es/xtras, unzipping it, and following the supplied in-
structions. Once installed, xTras can be loaded with the following command:

In := <<xAct‘xTras‘
------------------------------------------------------------
Package xAct‘xPerm‘ version 1.2.0, {2013,1,27}
CopyRight (C) 2003-2013, Jose M. Martin-Garcia, under the General Public License.
------------------------------------------------------------
Package xAct‘xTensor‘ version 1.0.5, {2013,1,30}
CopyRight (C) 2002-2013, Jose M. Martin-Garcia, under the General Public License.
------------------------------------------------------------
Package xAct‘xPert‘ version 1.0.3, {2013,1,27}
CopyRight (C) 2005-2013, David Brizuela, Jose M. Martin-Garcia and Guillermo A. Mena Marugan, under the
General Public License.
------------------------------------------------------------
Package xAct‘Invar‘ version 2.0.4, {2013,1,27}
CopyRight (C) 2006-2013, J. M. Martin-Garcia, D. Yllanes and R. Portugal, under the General Public License.
------------------------------------------------------------
Package xAct‘xCoba‘ version 0.8.0, {2013,1,30}
CopyRight (C) 2005-2013, David Yllanes and Jose M. Martin-Garcia, under the General Public License.
------------------------------------------------------------
Package xAct‘SymManipulator‘ version 0.8.5, {2013,4,13}
CopyRight (C) 2011-2013, Thomas Bäckdahl, under the General Public License.
------------------------------------------------------------
Package xAct‘xTras‘ version 1.2.1, {2013,8,16}
CopyRight (C) 2012-2013, Teake Nutma, under the General Public License.
------------------------------------------------------------

This loaded not only xTras, but also all other xAct packages that it depends on: xPerm [2], xTensor [3], xPert [7], Invar [9,10], xCoba [16],
and SymManipulator [12]. Note that we have suppressed some print messages in the Mathematica output above, and have only shown the
package info. In the rest of this paper, all print message will be suppressed.

Once xTras is loaded, the built-in documentation may be opened with the command

In := xTrasHelp[] 1

or alternatively by first opening Mathematica’s Documentation Center by pressing F1 and then searching for ‘‘xTras’’. Furthermore, infor-
mation about xTras functions can be displayed, like all regular Mathematica functions, by typing ? functionname. For example,

In := ? MakeTraceless 2

MakeTraceless[expr] returns the traceless version of expr. >>

gives a brief description of the function MakeTraceless. Pressing the >> link opens its help page where more detailed documentation can
be found.

3. xTensor basics

Before we discuss xTras, it is convenient to go over the basics of xTensor [3]. The xTensor package is more or less the cornerstone of xAct,
as it implements the basic structures of manifolds, tensors, and Riemannian geometry (Table 1).

1 Some of the functionality of xTras did however already exist in another computer algebra system, namely Cadabra [14,15].

http://www.xact.es/xtras/documentation/
http://www.xact.es/xtras/
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Table 1
Basic commands in xTensor.

DefManifold[M, d, {i1, i2, . . . , in}] Defines the d-dimensional manifoldM whose tensors will have indices
i1, i2, . . . , in .

DefMetric[sign, g[i1, i2], cd] Defines a metric g of signature sign on the manifold of which i1 and i2 are
indices, a covariant derivative cd, and all curvature tensor of g.

DefTensor[T[i1, . . . , im], M, sym] Defines a tensor T with indices i1 ,. . . ,im and symmetry sym on the
manifold M.

ContractMetric[expr] Contracts all metrics in expr.
ToCanonical[expr] Canonicalizes all tensors in expr.

The first step in any xAct calculation is always to define a manifold. This can be done with the aptly named command DefManifold:

In := DefManifold[M, 4, IndexRange[a,m]] 3

The first argument is the name of the manifold, in this case M. The second is its dimension. This either has to be an integer or a constant
symbol (which needs to be defined as such with the command DefConstantSymbol). The last argument of DefManifold specifies the
indices which will be used by tensors on themanifold; here IndexRange[a,m] is a convenient short-hand for {a,b,c,d,e,f,g,h,i,
j,k,l,m}.

After defining a manifold, it is possible to define a metric on that manifold with the command DefMetric:

In := DefMetric[-1, metric[-a,-b], CD, PrintAs -> "g"] 4

This defined a metric metric of signature −1 on the manifold M, because a and b are indices of M. Note that we could not use g for the
name of the metric, because g is already an index. The option PrintAs makes sure that every time the metric appears in any output, it
gets printed as g:

In := metric[-a, -b]

Out = gab
5

The minus signs in front of the indices indicate that they are covariant indices. Indices without a minus sign are contravariant:

In := metric[a, b]

Out = gab
6

Besides defining a metric, the command DefMetric also defined curvature tensors, like for instance the Riemann tensor,

In := RiemannCD[-a, -b, -c, -d]

Out = Rabcd
7

and the Ricci tensor:

In := RicciCD[-a, -b]

Out = Rab
8

Their name indicates that they are associated to the covariant derivative CD, which also has been defined:

In := CD[-a][RicciCD[-c, -d]]

Out = ▽aRcd
9

By default, DefMetric defines a torsionless and metric compatible connection, and uses the conventions [∇a, ∇b]Tc = Rabc
dTd and

Rab = Racb
c for the curvature tensors. Contractions of the Riemann tensor are automatically converted to Ricci tensors2:

In := RiemannCD[-c, -b, -a, b]

Out = Rca
10

But contractions with an explicit metric are not converted:

In := metric[b, d] RiemannCD[-c, -b, -a, -d]

Out = gbdRcbad
11

2 This behavior is actually controlled by the option CurvatureRelations of DefMetric (and DefCovD), which defaults to True. Torsion can be turned on by setting
the option Torsion to True, and the relative signs for the Riemann and Ricci tensors are set via the global variables $RiemannSign and $RicciSign.
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This is because xTensor does not automatically contract metrics. Contracting metrics can be done with the command ContractMetric,
which does as its name suggests:

In := metric[a, c] RicciCD[-c, -b] // ContractMetric

Out = Rab
12

And indeed, applying ContractMetric to the previous example gives the Ricci tensor:

In := metric[b, d] RiemannCD[-c, -b, -a, -d] // ContractMetric

Out = Rca
13

Note, however, that xTensor also does not automatically rewrite Rca to Rac , even though the Ricci tensor is symmetric. To achieve this, we
have to use the function ToCanonical:

In := RicciCD[-c, -a] // ToCanonical

Out = Rac
14

Very loosely speaking, ToCanonical tries to sort indices as much as possible based on the symmetries of the tensors in the expression
(see [2] for more details). Needless to say, it also works on more complicated expressions:

In := RicciCD[c, d] RiemannCD[-d, -b, -a, -c] // ToCanonical

Out = −RcdRacbd
15

At themoment, ToCanonical only simplifies so-calledmono-term symmetries, which are of the form Ti1···in = ±Tσ(i1···in), where σ ∈ Sn is
a permutation of the indices. It does not simplify so-calledmulti-term symmetries, which are of the form Ti1···in = ±Tσ1(i1···in) ± Tσ2(i1···in) +

· · · . One example of a multi-term symmetry is for instance the Bianchi identity R[abc]d = 0.
After having covered the very basics of xTensor, we are now ready to tacklemore advanced examples with the help of functions in xTras.

4. Examples

We will now demonstrate the features of xTras, or at least some of them, on the basis of two examples. The functions used here are
described in more detail in Section 5.

4.1. Spin 2 on a flat background

In this section we will construct a gauge invariant theory of a free spin 2 field on a flat background. In doing so, we will recover the
linearized Einstein equations (Table 2).

After loading the package, we have to define a manifold and a flat metric. This can be done as follows:

In := DefManifold[M, dim, IndexRange[a,m]]

In := DefMetric[
-1, metric[-a,-b], PD, PrintAs -> "η",
FlatMetric -> True, SymbolOfCovD -> {",","∂"}

]

16

This did not define a new covariant derivative, but instead set the pre-existing partial derivative PD to be metric compatible with metric.
Furthermore, we need to tell the function SymmetryOf that the metric is constant:

In := SetOptions[SymmetryOf, ConstantMetric -> True] 17

Besides defining a manifold and a metric, we also need to define a symmetric spin two field and a gauge vector:

In := DefTensor[H[-a, -b], M, Symmetric[{-a, -b}], PrintAs -> "h"]

In := DefTensor[xi[a], M, PrintAs -> "ξ"]
18

We are now ready to begin the actual computation. We will construct all possible terms for the action, and make an Ansatz out of them.
Because we are not interested in total derivatives, it suffices to consider terms of the form h · ∂ · ∂ · h. First, find all of these terms:

In := Sterms = AllContractions[ H[a, b] PD[c]@PD[d]@H[e, f] ]

Out = {hab∂b∂ahcc, hab∂c∂bhac, haa∂c∂bhbc, hab∂c∂chab, haa∂c∂chbb}
19

Now construct the action:

In := S = MakeAnsatz[Sterms]

Out = C1hab∂b∂ahcc + C2hab∂c∂bhac + C3haa∂c∂bhbc + C4hab∂c∂chab + C5haa∂c∂chbb
20
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Table 2
xTras functions used in Section 4.1. They are described in more detail in Section 5.

AllContractions[expr] Computes all possible contractions of expr.
MakeAnsatz[{e1, e2, . . .}] Makes an Ansatz out of the list entries e1, e2, . . ..
CollectTensors[expr] Groups all tensorial terms in expr together.
SolveConstants[expr] Attempts to solve the system expr of tensorial equations

for all constant symbols appearing in expr.

Table 3
New xTras functions used in Section 4.2. They are described in more detail in Section 5.

EulerDensity[cd] Gives the Euler density associated to the covariant derivative cd.
VarL[g[-a, −b]][L] Computes 1

√
|g|

δ
√

|g|L
δgab

.
FullSimplification[][expr] Tries to simplify expr as much as possible, taking

Bianchi identities into account and sorting covariant derivatives.
ConstructDDIs[expr] Constructs all scalar dimensional dependent

identities that can be build out of expr.
SolveTensors[expr] Attempts to solve the system expr of tensorial

equations for all tensors in expr.

The equations of motion are then:

In := eom = VarD[H[-a, -b], PD][S] // CollectTensors

Out = (C1 + C3)∂
b∂ahcc + C2∂c∂ahbc + C2∂c∂bhac + 2C4∂c∂chab + (C1 + C3)η

ab∂d∂chcd + 2C5ηab∂d∂
dhcc

21

Wewant to make the action and the equations of motion gauge invariant under the following gauge transformation of the spin two field:

In := δH = 2 Symmetrize[ PD[-a]@xi[-b] ]

Out = ∂aξb + ∂bξa
22

To that end, we compute the gauge variation of the action δS to be

In := δS = δH eom // CollectTensors

Out = 2(C1 + C3)∂b∂ah
c
c∂

bξa
+ 2C2∂bξa∂c∂ahbc + 2C2∂bξa∂c∂bhac

+2(C1 + C3)∂aξ
a∂c∂bhbc + 4C4∂bξa∂c∂

chab + 4C5∂aξa∂c∂
chbb

23

Up to total derivatives, this should be zero. We can eliminate total derivatives by removing all derivatives from the gauge parameter with
the help of VarD:

In := δS = xi[a] VarD[xi[a], PD][δS] // CollectTensors

Out = −2(C1 + C2 + C3)ξa∂c∂b∂ahbc − 2(C1 + C3 + 2C5)ξa∂c∂
c∂ahbb − 2(C2 + 2C4)ξa∂c∂

c∂bhab
24

Finally, we demand the above to be zero by solving for the unknown constants:

In := sols = SolveConstants[δS == 0]

Out = {{C3 → −C1 − C2, C4 → −
1
2C2, C5 →

1
2C2}}

25

Plugging this solution into the action, we find

In := S /. First[sols]

Out = C1hab∂b∂ahcc + C2hab∂c∂bhac + (−C1 − C2)haa∂c∂bhbc −
1
2C2h

ab∂c∂
chab +

1
2C2h

a
a∂c∂

chbb
26

The coefficient C2 parameterizes an overall normalization, and the coefficient C1 a total derivative. Indeed, C1 does not appear in the final
equations of motion:

In := eom /. First[sols] /. C2 -> 1

Out = −∂b∂ahcc + ∂c∂
ahbc + ∂c∂

bhac − ∂c∂
chab − ηab∂d∂chcd + ηab∂d∂

dhcc
27

These are precisely the linearized Einstein equations.

4.2. Gauss–Bonnet term

In this section we will show that the Euler density in four dimensions, also known as the Gauss–Bonnet term, is topological. That is, we
will show that its equations of motion vanish identically (Table 3).
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We will begin from scratch, and define a manifold and metric:

In := DefManifold[M, 4, IndexRange[a,m]]

In := DefMetric[-1, metric[-a,-b], CD, PrintAs->"g"]
28

Next, we determine the Gauss–Bonnet term via the function EulerDensity:

In := GBterm = NoScalar @ EulerDensity[CD]

Out = 4RabRab − R2 − RabcdRabcd
29

The NoScalar call removed any Scalar heads in the expression (see also Section 5.4.3). Note that EulerDensity omits the overall factor
√

−g , so technically speaking GBterm is not a density. The equations of motion of the Gauss–Bonnet term can be determined with the
function VarL, and simplified with FullSimplification:

In := eom = FullSimplification[] @ VarL[metric[-a, -b]] @ GBterm

Out = −4RacRbc + 2gabRcdRcd + 2RabR −
1
2g

abR2 − 4RcdRacbd + 2RacdeRbcde −
1
2g

abRcdefRcdef
30

Because the Gauss–Bonnet term is topological, the above should identically be zero. There are no further simplifications coming from
Bianchi identities that we can use: FullSimplification took care of most of them, and if there were some remaining we still could not use
them to get rid of the Ricci tensors.

So the above equations of motion can only be zero due to dimensionally dependent identities. We can obtain the relevant identities
with a call to ConstructDDIs:

In := ddis = ConstructDDIs[
RiemannCD[a, b, c, d] RiemannCD[e, f, g, h],
{a, b}

]

Out = {RacRbc −
1
2g

abRcdRcd −
1
2R

abR +
1
8g

abR2 + RcdRacbd − RacdeRbcde + RacdeRbdce +
1
4g

abRcdefRcdef −
1
4g

abRcedfRcdef,

RacdeRbcde − 2RacdeRbdce −
1
4g

abRcdefRcdef +
1
2g

abRcedfRcdef,

RacRbc −
1
2g

abRcdRcd −
1
2R

abR +
1
8g

abR2 + RcdRacbd −
1
2R

acdeRbcde +
1
8g

abRcdefRcdef,

RacRbc −
1
2g

abRcdRcd −
1
2R

abR +
1
8g

abR2 + RcdRacbd − RacdeRbdce +
1
4g

abRcedfRcdef}

31

This constructed all dimensionally dependent identities that have two Riemann tensors (or contractions thereof) and free indices a and b.
All of these four expression are zero. Even though there are four identities, only two of them are independent (not taking Bianchi identities
into account). This can be verified with SolveTensors:

In := ddisols = SolveTensors[
ddis == 0,
UseSymmetries -> False, MetricOn -> None

]

32

Out = {{HoldPattern[RacdeRbcde] Module[{f, h, i, g, j, k, l, m},

2RafRbf − gabRhiRhi − RabR +
1
4g

abR2 + 2RfgRafbg +
1
4g

abRjklmRjklm],

HoldPattern[RacdeRbdce] Module[{f, h, i, g, j, k, l, m},

RafRbf −
1
2g

abRhiRhi −
1
2R

abR +
1
8g

abR2 + RfgRafbg +
1
4g

abRjlkmRjklm]}}

The two options are needed to prevent SolveTensors from making rules for every index combination on the left-hand-side related by
symmetries (UseSymmetries) and by raising and lowering of the indices (MetricOn). Because SolveTensors returns a solution for two
tensor structures in terms of others, only two of the four found DDIs are independent.3

The above output consists of rules that we can use to enforce the identities on the equations of motion:

In := eom /. ddisols // ToCanonical

Out = {0}
33

So, indeed, the equations of motion are zero.

3 Again, this is true up to Bianchi identities. If we take those into account, there is only one truly independent DDI because RacdeRbdce
=

1
2 RacdeRbcde . This identity is derived

in Section 5.3.2.
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Alternatively, we could have made an Ansatz with arbitrary coefficients from the identities,

In := ddiAnsatz = CollectTensors @ MakeAnsatz[ddis]

Out = (C1 + C2 + C3)RacRbc +
1
2 (−C1 − C2 − C3)gabRcdRcd +

1
2 (−C1 − C2 − C3)RabR

+
1
8 (C1 + C2 + C3)gabR2 + (C1 + C2 + C3)RcdRacbd + (− 1

2C1 − C2 + C4)RacdeRbcde

+(C2 − C3 − 2C4)RacdeRbdce +
1
8 (C1 + 2C2 − 2C4)gabRcdefRcdef

+
1
4 (−C2 + C3 + 2C4)gabRcedfRcdef

34

and tried to make this equal to the equations of motion by solving for the coefficients:

In := SolveConstants[eom == ddiAnsatz]

Out = {{C3 → −4 − C1 − C2, C4 → 2 +
1
2C1 + C2}}

35

So again, the equations of motion are equal to particular linear combination of the dimensionally dependent identities, and hence they are
zero.

5. xTras functions

This section documents the most important functions in xTras. The list of functions below is not exhaustive, nor are the functions
described in full detail (for example, most options are not described here). For a complete list of functions and all their options, please
refer to the built-in documentation or the online documentation at www.xact.es/xtras/documentation.

Throughout this section, we assume we have a manifold M, a metric metric, a covariant derivative CD and associate curvature tensors
(RiemannCD, RicciCD, etc.). These can be defined with the commands

In := DefManifold[M, dim, IndexRange[a,m]]

In := DefMetric[-1, metric[-a,-b], CD, PrintAs->"g"]
36

where dim is a predefined constant symbol.

5.1. Combinatorics

In this section we discuss some of the xTras functions that are of a combinatorial nature.

5.1.1. AllContractions

AllContractions[expr]
returns a sorted list of all possible full contractions of expr over its free indices.

AllContractions[expr, frees]
returns all possible contractions of expr that have frees as free indices.

AllContractions[expr, frees, sym]
returns all possible contractions of expr with the symmetry sym imposed on the free indices frees.

Details. A recurring problem in field theory is to make the most general Ansatz that contains a specific set of fields and derivatives. For
constructing for example the most general gauge-invariant action for a particular set of fields (like we did for the free spin-2 field on a
flat background in Section 4.1), one would need to know all possible vertices and all possible gauge transformations. While this problem
is still tractable at lowest orders, it becomes complicated very fast at higher orders. In fact, the naive number of possible contractions of a
tensorial expression that has n free indices is (n− 1)!!, which is the number of independent products of n

2 metrics. The problem of finding
all contractions when n is large is, if not error-prone, tedious at the very least. That is where the command AllContractions comes in.

The problem of finding all possible contractions of the input expression is equivalent to enumerating all double coset representatives
of K \ Sn/H , where n is the number of indices of the input expression, K its symmetry group, and H the symmetry group of n

2 metrics.
However, double coset enumeration is known the be an NP-hard problem in general [17], and to the author’s knowledge no satisfactory
algorithm has been found to date.

So instead of doing a proper double coset enumeration, AllContractions uses a brute-force-method to find all contractions. The
algorithm it uses is as follows:

http://www.xact.es/xtras/documentation/
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1. Take all single contractions of the input expression.
2. Canonicalize the single contractions, and throw away duplicates.
3. Take all second contractions of the canonicalized single contractions.
4. Canonicalize the second contractions, and throw away duplicates.
5. . . .

. . . and so on and so forth until all indices are contracted. This algorithm is reasonably fast if the input expression has a large degree of
symmetry, but in general it is exponential in the number of indices to be contracted.

Examples. In its most basic form, AllContractions takes a single argument and computes all of its possible independent full contrac-
tions. Take for instance the Riemann tensor:

In := AllContractions[RiemannCD[-a, -b, -c, -d]]

Out = {R}
37

As we could have expected, its only possible full contraction is the Ricci scalar. If we take two Riemann tensors, things get a bit more
interesting:

In := AllContractions[
RiemannCD[-a, -b, -c, -d] RiemannCD[-e, -f, -g, -h]

]

Out = {RabRab, R2, RabcdRabcd, RacbdRabcd}

38

The last two contractions are actually not independent, but are related via the Bianchi identity. The Bianchi identity is a multi-term sym-
metry, and AllContractions does not take these symmetries into account. Hence AllContractions does not necessarily return an
irreducible basis of contractions, but it does always return a complete basis.

It is also possible to ask for contractions of expressions with derivatives:

In := AllContractions[ RicciCD[a, b] CD[c]@CD[d]@RicciCD[e, f] ]

Out = {R▽a▽
aR, R▽b▽aRab, Rab▽b▽aR, Rab▽b▽cRac, Rab▽c▽bRac, Rab▽c▽

cRab}
39

Note that besides not taking Bianchi identities into account, AllContractions also does not automatically sort covariant derivatives.
AllContractions takes an optional second argument, which specifies what free indices the final contractions should have. This

effectively adds an auxiliary tensor in the first argument with the specified indices, and varies the contractions afterwards with respect to
this auxiliary tensor. Here’s an example with two free indices:

In := AllContractions[
RiemannCD[-a, -b, -c, -d] RiemannCD[-e, -f, -g, -h],
{-a, -b}

]

Out = {RacRbc, gabRcdRcd, RabR, gabR2, RcdRacbd, RacdeRbcde, RacdeRbdce, gabRcdefRcdef, gabRcedfRcdef}

40

We can also specify an optional third argument to AllContractions. This third argument specifies the symmetry of the indices in the
second argument. For instance, we can try to see if there are any antisymmetric contractions in the above example:

In := AllContractions[
RiemannCD[-a,-b,-c,-d] RiemannCD[-e,-f,-g,-h],
{-a, -b},
Antisymmetric[{-a,-b}]

]

Out = {}

41

As is obvious from the previous example, there are none.

5.1.2. MakeTraceless

MakeTraceless[expr]
returns the traceless version of expr.

Any tensor can be projected onto its irreducible traceless components. The way to do this by hand is to write down all possible traces of
the tensor, make an Ansatz for a linear combination of them, and then demand that single traces of this Ansatz are zero. Needless to say,
for tensors of large rank this task is perfectly suited for the computer.
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The function MakeTraceless does exactly this: it takes its argument and makes it traceless. For the Ricci tensor, it gives the traceless
Ricci tensor:

In := MakeTraceless[RicciCD[-a, -b]]

Out = Rab −
gabR
d

42

And if we enter the Riemann tensor, it returns the Weyl tensor:

In := MakeTraceless[RiemannCD[-a, -b, -c, -d]]

Out = Rabcd +
2

(d − 2)(d − 1)
R Sym

1234
(gacgbd) −

4
−2 + d

Sym
1234

(gbdRac)
43

MakeTraceless uses the power of the SymManipulator package [12] to implicitly impose symmetry of the Riemann tensor without
expanding all required terms. This is what the Sym objects in the above output do. We can remove them and expand all terms with the
command ExpandSym, thereby recovering the usual expression for the Weyl tensor:

In := MakeTraceless[RiemannCD[-a,-b,-c,-d]] // ExpandSym // ToCanonical

Out = −
gbdRac
−2 + d

+
gbcRad
−2 + d

+
gadRbc
−2 + d

−
gacRbd
−2 + d

−
gadgbcR

2 − 3d + d2
+

gacgbdR
2 − 3d + d2

+ Rabcd
44

We can convert this to the actual Weyl tensor with the xTensor command RiemannToWeyl:

In := RiemannToWeyl[%] // ToCanonical // Simplify

Out = W[▽]abcd

45

MakeTracelessworks on any expression without dummy indices. For example, here is the traceless version of a generic rank-3 tensor:

In := DefTensor[T[a,b,c], M]

In := MakeTraceless[T[a, b, c]]

Out = Tabc −
(1 + d)gbcTadd
−2 + d + d2

+
gacTbdd

−2 + d + d2
+

gabTcdd
−2 + d + d2

+
gbcTdad

−2 + d + d2

−
(1 + d)gacTdbd
−2 + d + d2

+
gabTdcd

−2 + d + d2
+

gbcTdda

−2 + d + d2
+

gacTddb

−2 + d + d2
−

(1 + d)gabTddc

−2 + d + d2

46

We can extract the traceless projector on any rank-3 tensor by varying the above with respect to T :

In := VarD[T[d, e, f]] @ MakeTraceless[T[a, b, c]]

Out = δadδ
b
eδ

c
f −

(1 + d)δcfgabgde
−2 + d + d2

+
δbfgacgde

−2 + d + d2
+

δafgbcgde
−2 + d + d2

+
δcegabgdf

−2 + d + d2
−

(1 + d)δbegacgdf
−2 + d + d2

+
δaegbcgdf

−2 + d + d2
+

δcdgabgef
−2 + d + d2

+
δbdgacgef

−2 + d + d2
−

(1 + d)δadgbcgef
−2 + d + d2

47

This projector can then subsequently be used to make other rank-3 tensors traceless without having to call MakeTraceless again.

5.1.3. ConstructDDIs

ConstructDDIs[expr]
constructs all scalar dimensional dependent identities that can be build out of expr.

ConstructDDIs[expr, frees]
constructs all dimensional dependent identities that can be build out of expr and that have free indices frees.

ConstructDDIs[expr, frees, sym]
constructs all dimensional dependent identities that can be build out of expr and that have the symmetry sym imposed on
their free indices frees.
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Details. Dimensional dependent identities (DDIs) are identities that only hold in specific dimensions. Typically, they can be derived from
over-antisymmetrizations: that is, antisymmetrization over more indices than the number of dimensions. In d dimensions, one such
identity is for example the generalized Kronecker delta with 2(d + 1) indices:

δ
b1···bd+1
a1···ad+1 = (d + 1)! δb1

[a1
δb2
a2 · · · δbd

ad δ
bd+1
ad+1]

= 0. (48)

By contracting this identity with other tensors, it is possible to construct derived identities. For instance, in three dimensions we can
contract it with a traceless {2, 2} tensor, such as the Weyl tensor, and find

δe
[aδ

f
bδ

g
c δ

h
d]W

ij
gh = δe

[aδ
f
bW

ij
cd] = 0. (49)

Contracting over d and j gives

δ
[e
[aW

f ]i
bc] = 0, (50)

and a further contraction over i and c gives the well-known fact that they Weyl tensor identically vanishes in three dimensions:

W ef
ab = 0. (51)

All DDIs that stem from over-antisymmetrizations can in fact be derived from the ‘basic’ identity (48) because it is always possible to
pull out deltas on the over-antisymmetrized indices. Over-antisymmetrization overmore than d+1 indiceswill give not give independent
DDIs, because they can be written as linear combinations of antisymmetrizations over d + 1 indices.

A systematic way of enumerating all DDIs is to consider all possible contractions of the fundamental identity (48) with the relevant
tensors. This is exactly what ConstructDDIs does: it computes via AllContractions all contractions between the input expression and
the basic identity (48) in the relevant dimension. In performing these contractions, two observations make life computationally easier:
the independent index configurations of the basic identity are given by its standard Young tableaux, and the basic identity is completely
traceless.

The latter is important for the following reason. While we can still write down meaningful derived identities with the uncontracted
basic identity, this is not possible with any of its contractions — attempting to do so results in the trivial statement 0 = 0. The difference
between the vanishing of the uncontracted and the contracted basic identity is that the former is identically zero only when explicitly
writing the indices out as a, b, . . . ∈ {0, . . . , d − 1}, whereas the latter is identically zero without doing so.

To see why the basic identity is traceless, consider for example the basic identity in one dimension:

ga[bgc]d = 0. (52)

Writing out the antisymmetrization and contracting a pair of indices gives

1
2g

ab (gabgcd − gacgbd) =
d − 1
2

gcd = 0, (53)

where d is the number of dimensions. Doing the same exercise for the basic identity in two dimensions gives

gabg
[ab gcd ge]f =

d − 2
3

g
[cd ge]f = 0, (54)

while three dimensions gives

gabg
[ab gcd gef gg]h =

d − 3
4

g
[cd gef gg]h = 0. (55)

The same holds true for other contractions. Thus the fact that the basic identity is traceless is a dimensionally dependent statement.
The tracelessness of the basic identity allows us to only consider contractions of the form

δa1···a2(d+1)⟨x⟩a1···a2(d+1) , (56)

where δa1···a2(d+1) is the basic identity (48), and by ⟨x⟩a1···a2(d+1) wemean all contractions of xwith 2(d+ 1) free indices. Taking all possible
combinations of these contractions with the standard Young tableaux of the basic identity then yields all (scalar) DDIs.

Examples. In two dimensions, the Einstein tensor vanishes. This can be reproduced by asking for all DDIswith two free indices constructed
out of the Riemann tensor:

In := dim = 2

In := ConstructDDIs[RiemannCD[a, b, c, d], {a, b}]

Out = {Rab −
1
2g

abR}

57

Note that ConstructDDIs returns a list of expressions that are zero, and not equations.
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In three dimensions, the Weyl tensor is zero. This time, we need four free indices that have the symmetry of the Riemann tensor:

In := dim = 3

In := ConstructDDIs[
RiemannCD[a, b, c, d],
{a, b, c, d},
RiemannSymmetric[{a, b, c, d}]

]

Out = {gbdRac − gbcRad − gadRbc + gacRbd +
1
2g

adgbcR −
1
2g

acgbdR − Rabcd,

gbdRac − gbcRad − gadRbc + gacRbd +
1
2g

adgbcR −
1
2g

acgbdR − 2Rabcd + Racbd − Radbc,

gbdRac − gbcRad − gadRbc + gacRbd +
1
2g

adgbcR −
1
2g

acgbdR − Racbd + Radbc,

Rabcd − Racbd + Radbc}

58

Converting the above to Weyl tensors, we find:

In := % // RiemannToWeyl // CollectTensors

Out = { − W[▽]
abcd, − 2W[▽]

abcd
+ W[▽]

acbd
− W[▽]

adbc, − W[▽]
acbd

+ W[▽]
adbc,

W[▽]
abcd

− W[▽]
acbd

+ W[▽]
adbc}

59

As is obvious from this example, ConstructDDIs, like AllContractions, does not take multi-term symmetries like the Bianchi identity
into account.

5.1.4. IndexConfigurations

IndexConfigurations[expr]

gives a list of all independent index configurations of expr.

Details. The commandIndexConfigurations gives all possible independent permutations of the free indices of the input expression. A
permutation of the free indices (or index configuration) is independentwhen it cannot be related to another index configuration by canon-
icalizing. The heavy lifting in IndexConfigurations is actually done by the SymManipulator package [12], which can compute the right
transversal ofH in Sn, whereH is the symmetry group of the input expression, and n the number of free indices. A right transversal is the set
of representatives of the right cosets H\Sn, which in turn is in one-to-one correspondence to the set of independent index configurations.

Examples. Here’s one simple example of how to use IndexConfigurations:

In := IndexConfigurations[metric[a, b]]

Out = {gab}
60

Because the metric is symmetric, there is only one index configuration. For two metrics we get:

In := IndexConfigurations[metric[a, b] metric[c, d]]

Out = {gadgbc, gacgbd, gabgcd}
61

And for three metrics:

In := IndexConfigurations[metric[a, b] metric[c, d] metric[e, f]]

Out = {gafgbegcd, gaegbfgcd, gafgbdgce, gadgbfgce, gaegbdgcf,

gadgbegcf, gafgbcgde, gacgbfgde, gabgcfgde, gaegbcgdf,

gacgbegdf, gabgcegdf, gadgbcgef, gacgbdgef, gabgcdgef}

62

Lastly, for the Riemann tensor we obtain:

In := IndexConfigurations[RiemannCD[-a, -b, -c, -d]]

Out = {Rabcd, Racbd, Radbc}
63

Note that IndexConfigurations does not take multi-term symmetries like the Bianchi identity into account, and hence it does not see
that the last term can actually be written in terms of the first two.
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5.1.5. MakeAnsatz

MakeAnsatz[{e1, e2, · · · }]
returns C1e1 + C2e2 + . . ., where the Ci’s are newly defined constant symbols.

MakeAnsatz is a convenience function that, out of a list of terms, constructs an Ansatz with constant Symbols. Here’s an example of
how it works:

In := MakeAnsatz[{metric[-a, -b], RicciCD[-a, -b]}]

Out = C1gab + C2Rab
64

Even though the constant symbols print as Ci, their Mathematica symbol name is Ci:

In := {C1, C2}

Out = {C1, C2}
65

In combination with other functions such as IndexConfigurations or AllContractions, MakeAnsatz becomes very handy:

In := MakeAnsatz @ IndexConfigurations[metric[a, b] metric[c, d]]

Out = C1gadgbc + C2gacgbd + C3gabgcd
66

In := MakeAnsatz @ AllContractions[
RiemannCD[a, b, c, d] RiemannCD[e, f, g, h]

]

Out = C1RabRab + C2R2 + C3RabcdRabcd + C4RacbdRabcd

67

5.2. Tensor algebra

This section describes the functions in xTras that can be used for doing basic algebra with tensors. There are two functions for rewriting
expressions (CollectTensors and CollectConstants), and two functions for solving equations (SolveTensors and SolveConstants).

5.2.1. CollectTensors

CollectTensors[expr]
collects all tensorial terms in expr.

CollectTensors works like the Mathematica function Collect, with the difference that you do not have to specify a second
argument: it collects all tensorial terms it can find in the input expression. A ‘tensorial term’ is a single tensor, or a product of tensors
that cannot be expanded into a sum.

For example, assuming the scalars X[], Y[], and Z[] are defined, we can make the following expression:

In := expr = MakeAnsatz[
{X[], X[], Y[], Y[], Z[], Z[], X[] Y[], X[] Y[]}

]

Out = C1X + C2X + C3Y + C4Y + C7XY + C8XY + C5Z + C6Z

68

By calling CollectTensors, the tensors in this expression will be collected together:

In := CollectTensors[expr]

Out = (C1 + C2)X + (C3 + C4)Y + (C7 + C8)XY + (C5 + C6)Z
69

CollectTensors also handles non-scalar tensors, which by default will be canonicalized before being collected:

In := CollectTensors[
C1 RicciCD[-b, -a] + C2 metric[-a, -c] RicciCD[c, -b]

]

Out = (C1 + C2)Rab

70
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5.2.2. CollectConstants

CollectConstants[expr]
collects all constant symbols in expr.

CollectConstants is the sibling of CollectTensors. Instead of collecting all tensorial terms in the input expression, it collects all
constant symbols it can find. For example:

In := CollectConstants[
C1 X[] + C1 Y[] + C2 Z[] + C2 X[] + C3 Z[] + C3 X[] Y[]

]

Out = C1(X + Y) + C2(X + Z) + C3(X Y + Z)

71

5.2.3. SolveConstants

SolveConstants[expr]
attempts to solve the system expr of tensorial equations for all constant symbols appearing in expr.

The function SolveConstants solves equations with respect to constant symbols. Not only does it do that, it also makes sure no tensors
appear on the right-hand-side of the solutions. To achieve this, it uses the following three-step procedure:
1. Use CollectTensors on the equation to group tensorial terms.
2. Read of equations for the prefactors from each of the tensorial terms.
3. Solve the prefactor equations simultaneously with built-in Mathematica function Solve.

To illustrate this procedure, take for example the same expression we had in Section 5.2.1, namely

In := expr = MakeAnsatz[
{X[], X[], Y[], Y[], Z[], Z[], X[] Y[], X[] Y[]}

]

Out = C1X + C2X + C3Y + C4Y + C7XY + C8XY + C5Z + C6Z

72

The first step towards solving the equation expr == 0 for the constant symbols Ci is to collect the tensorial terms:

In := CollectTensors[expr]

Out = (C1 + C2)X + (C3 + C4)Y + (C7 + C8)XY + (C5 + C6)Z
73

The second step is to read off equations for the constant symbols from each tensorial term. The xTras function ToConstantSymbolEqua-
tions does exactly this:

In := ToConstantSymbolEquations[% == 0]

Out = C1 + C2 == 0 && C3 + C4 == 0 && C5 + C6 == 0 && C7 + C8 == 0
74

The result is then fed into Solve:

In := Solve[%, {C2, C4, C6, C8}]

Out = {{C2 → −C1, C4 → −C3, C6 → −C5, C8 → −C7}}
75

Indeed, this is the same answer we would have gotten if we had directly asked SolveConstants:

In := SolveConstants[expr == 0]

Out = {{C2 → −C1, C4 → −C3, C6 → −C5, C8 → −C7}}
76

5.2.4. SolveTensors

SolveTensors[expr]
attempts to solve the system expr of tensorial equations for all tensors in expr.

SolveTensors[expr, tens]
attempts to solve the system expr of tensorial equations for the tensors tens.
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Solving equations for tensors in an automated fashion is a tricky proposition. Not only does one have to deal with dummy indices and
different forms of tensors, but also with the fact the equations may be solved only after taking one or more contractions. SolveTensors
does not address these issues; instead, it rather solves tensorial equations for any (product of) tensor(s) that is not contractedwith another
tensor. This does not always return the most general space of solutions, but a subset of it.

For example, it solves the Einstein equation as

In := SolveTensors[
RicciCD[-a, -b] - 1/2 metric[-a, -b] RicciScalarCD[] == 0

]

Out = {{HoldPattern[Rab] Module[{}, 1
2g

baR]}}

77

The double line underneath the indices on the left-hand-side ensures that all Ricci tensors get replaced when using this rule, regardless
whether their indices are up or down:

In := RicciCD[c, -d] /. %

Out = { 1
2δd

cR}
78

In some simple cases, SolveTensors does return the general solution,

In := SolveTensors[Z[] X[] == Z[] Y[]]

Out = {{HoldPattern[Y] Module[{}, X]},

{HoldPattern[Z] Module[{}, 0]}}

79

but, as said, in general it does not. Hence SolveTensors should more be used as a way to easily obtain proper xAct tensor replacement
rules than as a method to solve generic tensorial equations.

It is worth mentioning that the second argument of SolveTensors, which specifies what tensors to solve for, also takes patterns:

In := SolveTensors[
RicciCD[-a, -b] - 1/2 metric[-a, -b] RicciScalarCD[] == 0,
metric[__]

]

Out = {{HoldPattern[gab] Module[{},
2Rab

R
]}}

80

Because the pattern metric[__]matches the explicit form metric[-a, -b], this solved for the metric. For higher rank tensors using
patterns is particularly convenients, as this avoids having to type all indices.

5.3. Young tableaux

Conspicuously absent in xAct are functions that deal with Young tableaux and multi-term symmetries. xTras provides a few functions
in an attempt to partly fill this void, but it is by no means a complete treatment of the subject.

5.3.1. YoungProject

YoungProject[expr, tab]

projects the tensorial expression expr onto the Young tableau tab.

Details. If you try to antisymmetrize the Riemann tensor over three indices in xAct, you will find that the result is non-zero:

In := ToCanonical @ Antisymmetrize[RiemannCD[-a,-b,-c,-d], {-a,-b,-c}]

Out = 1
3Rabcd −

1
3Racbd +

1
3Radbc

81

This is because ToCanonical does not take multi-term symmetries, like the Bianchi identity R[abc]d = 0, into account. However, these
symmetries can bemade explicit by projecting tensors onto their respective Young tableaux [18]. The projection can be donewith so-called
Young projectors [19], which are sequential row-by-row symmetrizations and column-by-column antisymmetrizations of the Young
tableau. To be precise, if we have a Young diagram λ (i.e. a partition of the integer n) and one of its Young tableaux λa, then the Young
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projector reads

Pλa
A =

f λ

n!


k∈col(λa)

Ak


l∈row(λa)

S l (82)

where f λ is the dimension of the Young diagram, and Sn (An) the (anti-)symmetrization of the nnth row (column). Here, both S and A are
without any weight, i.e. S({x, y}) = {x, y} + {y, x} and not 1

2 ({x, y} + {y, x}).
The above Young projector is manifestly antisymmetric, because the columns are antisymmetrized after the rows are symmetrized.

Changing this order gives the manifestly symmetric Young projector PS :

Pλa
S =

f λ

n!


l∈row(λa)

S l


k∈col(λa)

Ak (83)

which is also a perfectly fine projector. By default, YoungProject uses the manifestly antisymmetric projector PA, but by setting the
option ManifestSymmetry to Symmetric it is possible to use the manifestly symmetric projector PS .

Examples. Projecting a tensor Sab onto the Young tableau a b can be done as follows:

In := YoungProject[S[a, b], {{a, b}}]

Out = 1
2S

ab
+

1
2S

ba
84

And projecting it onto the tableau a
b gives:

In := YoungProject[S[a, b], {{a}, {b}}]

Out = 1
2S

ab
−

1
2S

ba
85

Projecting the Riemann tensor onto the tableau a c
b d goes as follows:

In := YoungProject[RiemannCD[-a, -b, -c, -d], {{-a, -c}, {-b, -d}}]

Out = 2
3Rabcd +

1
3Racbd −

1
3Radbc

86

And indeed, the Bianchi identity is manifest after projection:

In := ToCanonical @ Antisymmetrize[%, {-a, -b, -c}]

Out = 0
87

By default, YoungProject uses a manifestly antisymmetric projection. It projects for example a rank-3 tensor T abc onto the Young
tableau a b

c as

In := YoungProject[T[a, b, c], {{a, b}, {c}}]

Out = 1
3T

abc
+

1
3T

bac
−

1
3T

bca
−

1
3T

cba
88

which is indeed antisymmetric in a and c. We can switch to a manifestly symmetric projection with the option ManifestSymmetry:

In := YoungProject[
T[a, b, c],
{{a, b}, {c}},
ManifestSymmetry -> Symmetric

]

Out = 1
3T

abc
+

1
3T

bac
−

1
3T

cab
−

1
3T

cba

89

The result is now no longer antisymmetric in a and c , but symmetric in a and b.

5.3.2. RiemannYoungProject

RiemannYoungProject[expr]

projects all Riemann tensors and their first derivatives in expr onto their Young tableaux.
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The function RiemannYoungProject automatizes the projection of Riemann tensors onto their Young tableaux; it replaces every
occurrence of a Riemann tensor or a first derivative of it with their Young projected versions. That is, it does the replacements

Rabcd → P
a c
b d
A (Rabcd) , (90a)

∇eRabcd → P
a c e
b d
A (∇eRabcd) . (90b)

For example, a single Riemann tensor is replaced as follows:

In := RiemannYoungProject @ RiemannCD[-a, -b, -c, -d]

Out = 2
3Rabcd +

1
3Racbd −

1
3Radbc

91

A first derivative of the Riemann tensor gets replaced as:

In := RiemannYoungProject[CD[-e] @ RiemannCD[-a, -b, -c, -d]]

Out = 1
12▽aRbcde −

1
12▽aRbdce −

1
6▽aRbecd −

1
12▽bRacde +

1
12▽bRadce +

1
6▽bRaecd

−
1
6▽cRabde −

1
12▽cRadbe +

1
12▽cRaebd +

1
6▽dRabce +

1
12▽dRacbe −

1
12▽dRaebc

+
1
3▽eRabcd +

1
6▽eRacbd −

1
6▽eRadbc

92

This enables us to easily prove e.g. the second Bianchi identity ∇[aRbc]de = 0:

In := ToCanonical @ RiemannYoungProject @ Antisymmetrize[
CD[-a] @ RiemannCD[-b, -c, -d, -e],
{-a, -b, -c}

]

Out = 0

93

Another nice example is the identity RacdeRbdce
=

1
2RacdeRbcde, which can be proven as follows:

In := ToCanonical @ RiemannYoungProject[
RiemannCD[-a,-c,-d,-e](RiemannCD[b,d,c,e]-1/2RiemannCD[b,c,d,e])

]

Out = 0

94

5.3.3. TableauSymmetric

TableauSymmetric[tab]

gives the symmetry of the tableau tab.

TableauSymmetric generalizes the xAct functions Symmetric, Antisymmetric, and RiemannSymmetric to arbitrary Young
tableaux. This comes in particularly handy when defining tensors that have more complicated symmetry structures than just complete

(anti-)symmetry. Say, for instance, we have a tensor T abcdef that lives in the Young diagram . If we define it without any symmetry,

In := DefTensor[T[a,b,c,d,e,f], M] 95

and subsequently project it onto its Young tableau, we get no less than 144 terms:

In := Length @ YoungProject[
T[a, b, c, d, e, f],
{{a, b, c}, {d, e}, {f}}

]

Out = 144

96

However, if we had instead defined it with the appropriate symmetry,

In := DefTensor[
T[a,b,c,d,e,f], M,
TableauSymmetric[{{a,b,c}, {d,e}, {f}}

]

97
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we would have gotten just 57 terms:

In := Length @ YoungProject[
T[a, b, c, d, e, f],
{{a, b, c}, {d, e}, {f}}

]

Out = 57

98

This is because the tensor T abcdef now has all the mono-term symmetries that come from its Young diagram. For example,

In := ToCanonical[T[f, e, c, a, b, d]]

Out = −Tabcdef
99

It are these mono-term symmetries that reduce the number of terms in the Young projection.

5.4. Miscellaneous

Lastly, this section describes some xTras functions that do not fall in any of the other categories.

5.4.1. VarL

VarD[g[-a,-b], cd][S]

returns δS
δgab

while integrating by parts with respect to the covariant derivative cd.

VarL[g[-a,-b], cd][L]

returns 1
√

|g|
δ
√

|g|L
δgab

while integrating by parts with respect to the covariant derivative cd.

Details. Because of the non-linearmetric dependence of curvature tensors, computing their equations ofmotionwith respect to themetric
can be a rather involved affair. While the variation of the Einstein–Hilbert term is relatively easy, things like

δ

δgab


Rcd

ghRcdef
∇f ∇lRh

l
ik∇j∇gRe

ijk (100)

can be quite cumbersome. By using the power of the xPert package [7], xTras can compute variations like the above with relative ease. It
does this by first computing the total variation, and then integrating by parts. Schematically, this reads

δF = f1δg + f2∇δg + f3∇∇δg + · · · =
δF
δg

δg + total derivative (101)

where F and fi are a functionals that depend on the metric g , and δF
δg is the quantity we are after.

Computing the total variation is the first step towards reading off δF
δg , and is carried out by the xPert commands Perturbation and

ExpandPerturbation:

In := ExpandPerturbation @ Perturbation[RicciScalarCD[]]
// ContractMetric // ToCanonical

Out = −△g1abRab + ▽b▽a△g1ab − ▽b▽
b
△g1aa

102

Here △g1ab is the same as δgab above, namely the perturbation of the metric. The second step, integrating by parts and peeling off δgab, is
done with the xTensor command VarD:

In := VarD[△g1ab, CD][%]

Out = −δ1
1gacgbdRcd

103

The spurious δ1
1 comes from the way xAct handles the variation δ△g1ab

δ△g1cd
and is equal to one, even though it is not automatically simplified.

xTras overwrites the VarD command such that the above two-step procedure is carried out whenever the variation is with respect to
a metric. When the variation is with respect to another tensor, xTensor ’s VarD is used.



1736 T. Nutma / Computer Physics Communications 185 (2014) 1719–1738

Examples. The variation of the Ricci scalar with respect to the metric can be computed with the following command:

In := VarD[metric[-a, -b], CD][RicciScalarCD[]]

Out = −gacgbdRcd
104

Using VarL instead of VarD automatically takes care of overall factors of
√

|g|:

In := VarL[metric[-a, -b], CD][RicciScalarCD[]]

Out = −gacgbdRcd +
1
2g

abR
105

Note that VarD and VarL do not contract metrics and canonicalize on their own. If we want, we have to do this ourselves afterwards.
Varying the Einstein–Hilbert term coupled to a scalar field φ with respect to the metric gives:

In := VarL[metric[-a, -b], CD][phi[] RicciScalarCD[]]
// ContractMetric // ToCanonical

Out = −φRab +
1
2g

abφR +
1
2▽a▽bφ +

1
2▽b▽aφ − gab▽c▽

cφ

106

Higher powers of R can also be varied easily:

In := VarL[metric[-a, -b], CD][RicciScalarCD[]^2]
// ContractMetric // ToCanonical

Out = −2RabR +
1
2g

abR2 + ▽a▽bR + ▽b▽aR − 2gab▽c▽
cR

107

And higher still:

In := VarL[metric[-a, -b], CD][RicciScalarCD[]^4]
// ContractMetric // ToCanonical

Out = −4RabR3 +
1
2g

abR4 + 6R2▽a▽bR + 24R▽aR▽bR + 6R2▽b▽aR − 12gabR2▽c▽
cR

−24gabR▽cR▽cR

108

5.4.2. FullSimplification

FullSimplification[][expr]

tries to simplify expr as much as possible, taking Bianchi identities into account and sorting covariant derivatives.

When dealing with curvature tensors, it is often desirable to use the Bianchi identities to rewrite expression in the simplest form possible.
ToCanonical cannot be used for this, since it only simplifies mono-term symmetries, and Bianchi identities are multi-term symmetries.
The Bianchi identities are however implemented in the simplification methods of the Invar package [9,10]. But unfortunately, Invar can
only simplify scalar monomials of Riemann tensors.

The function FullSimplification extends the capabilities of Invar slightly by also simplifying the contracted second Bianchi iden-
tities in any expression, not just scalar monomials. When given an input expression, FullSimplification does the following:
1. Simplify scalar monomials with the help of the Invar package.
2. Apply the contracted second Bianchi identities ∇aRbcd

a
= ∇cRbd − ∇bRcd and ∇aRb

a
=

1
2∇bR.

3. Sort covariant derivatives.
For example, when given the expression ∇

a
∇bRca, FullSimplification commutes covariant derivatives to divergences such that it

can use the contracted Bianchi identities, and then afterwards sorts covariant derivatives:

In := FullSimplification[][CD[a] @ CD[-b] @ RicciCD[-c, -a]]

Out = RbaRca − RadRbacd +
1
2▽c▽bR

109

Note that covariant derivatives are sorted with the xAct command SortCovDs, which sorts them in alphabetical order in postfix notation.
Thus ∇c∇bR = R;b;c is sorted.

As said, FullSimplification also simplifies scalar monomials by using all Bianchi identities, not just the contracted Bianchi
identities:

In := FullSimplification[][RiemannCD[a,b,c,d] RiemannCD[-a,-c,-b,-d]]

Out = 1
2RabcdR

abcd
110

This is a contraction of the identity we found in Section 5.3.2.
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5.4.3. EulerDensity

EulerDensity[cd]

gives the Euler density associated to the covariant derivative cd.

EulerDensity[cd, dim]

gives the Euler density associated to the covariant derivative cd in the dimension dim if the underlying manifold has a generic
dimension.

Details. The Euler density E2n in dimension d = 2n is given by

E2n =
1
2n

Ri1 i2j1j2 · · · Rin−1 injn−1jnϵ
i1···inϵ j1···jn (111)

where ϵ is the Levi-Civita tensor, not the Levi-Civita symbol. Note that this technically is not a density because it has zero weight. In order
to obtain a density, we would need to multiply it with

√
|g|.

In order to prevent dummy index collisions, the results of EulerDensity are wrapped in a special head Scalar, which is indicated
by a bracket. The Scalar heads can be removed with the xTensor command NoScalar.

Examples. Because we have a manifold with generic dimension, we need to specify the second argument of EulerDensity. For two
dimensions, the Euler density reads:

In := EulerDensity[CD, 2]

Out = −R
112

And for four dimensions it is:

In := EulerDensity[CD, 4]

Out = −R2 + 4

RabRab


−


RabcdRabcd

 113

In six dimensions the Euler density becomes:

In := EulerDensity[CD, 6]

Out = −R3 + 12R

RabRab


− 16


RacRabRbc


− 24


RabRcdRacbd


− 3R


RabcdRabcd


+24


RabRacdeRbcde


+ 8


RaecfRabcdRbfde


− 2


RabefRabcdRcdef

 114

And lastly, in eight dimensions, it is:

In := EulerDensity[CD, 8]

Out = −R4 + 24R2

RabRab


− 64R


RacRabRbc


+ 96


RacRabRbdRcd


− 48


RabRab


RcdRcd


−96R


RabRcdRacbd


− 6R2


RabcdRabcd


+ 96R


RabRacdeRbcde


+ 384


RacRabRdeRbdce


−96


RabRcdRacefRbdef


− 192


RabRcdRaecfRbedf


+ 32R


RaecfRabcdRbfde


−8R


RabefRabcdRcdef


− 192


RacRabRbdefRcdef


+ 192


RabRcdRaebfRcedf


−384


RabRacdeRbfdgRcgef


+ 24


RabRab


RcdefRcdef


+ 96


RabRacdeRbcfgRdefg


−192


RabRacbdRcefgRdefg


+ 96


RaecfRabcdRbgehRdgfh


+ 96


RabefRabcdRcgehRdhfg


−6


RabefRabcdRcdghRefgh


+ 48


RabceRabcdRdfghRefgh


− 48


RaecfRabcdRbgdhRegfh


−3


RabcdRabcd


RefghRefgh


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