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The algorithm and testing of the Multi-algorithm-collaborative Universal Structure-prediction
Environment (Muse) are detailed. Presently, in Muse I combined the evolutionary, the simulated
annealing, and the basin hopping algorithms to realize high-efficiency structure predictions of ma-
terials under certain conditions. Muse is kept open and other algorithms can be added in future.
I introduced two new operators, slip and twist, to increase the diversity of structures. In order to
realize the self-adaptive evolution of structures, I also introduced the competition scheme among the
ten variation operators, as is proved to further increase the diversity of structures. The symmetry
constraints in the first generation, the multi-algorithm collaboration, the ten variation operators,
and the self-adaptive scheme are all key to enhancing the performance of Muse. To study the search
ability of Muse, I performed extensive tests on different systems, including the metallic, covalent,
and ionic systems. All these present tests show Muse has very high efficiency and 100% success
rate.

I. INTRODUCTION

The structural data of materials are of fundamental im-
portance to our understanding their properties. Usually,
the structures are determined from experiments, such as
the X-ray powder diffraction experiment. However, when
materials are in very complex or extreme conditions, such
as high pressure and/or high temperature1, or their com-
positions are beyond our chemical intuition,2 experiment
is often difficult or even impossible to identify their struc-
tures. However, from the theoretical aspect, the crystal
structure prediction (CSP) methods are often efficient,
economic, and convenient to determine the structures of
materials.

Maddox claimed the “scandal in the physical sciences”
of the inability to predict the structure of a material
from its stoichiometry two decades ago.3 Nevertheless,
many groups have made great success in the CSP based
on different stochastic optimization algorithms. Cur-
rently, the mature CSP methods are the metadynam-
ics,4,5 the minima hopping,6–8 the evolutionary algorithm
(EA),1,2,9,10 the particle swarm optimization (PSO),11–13

and the random search technique.14 Using these meth-
ods, many groups have discovered plenty of novel mate-
rials under ambient and extreme conditions. The post-
perovskite phase of MgSiO3,15 the new structure of P,16

and so on, were found using the metadynamics technique.
Z-carbon,17 the Cmcm-disilane,18 the new structure of
LiAlH4,19 the new polyneric phases of alanates,20 etc,
were discovered with the minima hopping method. Novel
structures of B,21 Na,22 Ca,9 GeH4

23, NaHn (N>1),24

LiBeB,25 etc, were predicted using the EA. Based on
the PSO algorithm, Zhu et al. determined the long-
puzzled high pressure structures of Bi2Te3.26 The new
high-pressure structures of Li,27 H2O,28 CaH6,29 etc,
were also successfully predicted using the PSO algorithm.
High-pressure phases of silane SiH4,30 Al,31 and so on,
were predicted by the random search technique.14,30 All

these cases proved the success of the CSP algorithms in
the determination of crystal structures even when exper-
imental data are unavailable. Nowadays, the theoretical
predictions can guide the experimental syntheses. Mean-
while, the CSP technique can be a powerful tool of the
theoretical design of materials.

The ideas of some optimization algorithms come from
natural processes. For example, the EA was inspired by
biological evolution: the process of whole population’s
evolution is the process of the survival of the fittest. The
operators of EA mimic the mutation, reproduction, re-
combination, and selection of biological evolution. For
CSP, this algorithm is realized by introducing similar evo-
lutionary operators. Similar to the theory of biological
evolution, we often call a particular candidate structure
as an individual, and the set of all structures generated
in a single iteration of the algorithm as the generation.2

All generations form the crystal population.2 The mod-
ification of an individual is accomplished by the varia-
tion operators. The evolution direction and speed of the
crystal population are up to the evolutionary operators,
including the variation and the selection operators. The
variation operators control the diversity of the crystal
population, and the selection operator mainly determine
the direction of evolution. The idea of simulated an-
nealing (SA) algorithm was from the natural process of
annealing in metallurgy, which hastens a melted mate-
rial to be crystal by controlled cooling. The SA algo-
rithm improves its efficiency through the introduction of
two tricks: the so-called Metropolis selection rule32 and
lowering the “temperature”. The basin hopping (BH) al-
gorithm is just as its name that means trying to escape
from the local minima by hopping.

All the optimization algorithms are stochastic and have
their own advantages and disadvantages. The EA is pow-
erful in global optimization and multi-objective optimiza-
tion, but it is week in local optimization. While, the BH
algorithm that is based on atoms’ small random moves
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has better local optimization ability. It has no exchange
of information between different individuals. The SA has
the good global optimization ability and it can easily con-
trol the choice of high-energy structures to increase the
population diversity. But it strongly depends on the ini-
tial structures. If we combine some of these algorithms
to let them work collaboratively, we can manage to over-
come disadvantages and make full use of their advan-
tages. I refer to this idea as the multi-algorithm collab-
orative (MAC) crystal structure prediction. Presently,
I combined three algorithms: the EA, SA, and BH al-
gorithms, to construct a Multi-algorithm-collaborative
Universal Structure-prediction Environment (Muse). To
further strengthen the search ability of Muse in future, I
keep it open and other algorithms can be included. The
reasons why the three algorithms are chosen for combi-
nation are: firstly, some higher energy structures should
be kept for crystal population diversity using the SA al-
gorithm. Secondly, to prevent the solution from being
trapped in local minima we can help it to escape from the
local minima using the BH algorithm. Thirdly, the three
algorithms are conceptually simple and can be combined
easily.

In this paper, I focus on the implementation of MAC
technique and how it works. This paper is organized as
follows. Section II is the algorithm implementation. I will
show some results predicted by Muse in Section III. The
predicted systems include metallic, covalent, and ionic
systems. The conclusions are presented in Section IV.

II. ALGORITHM IMPLEMENTATION

Muse is written in Python and uses MAC algorithm
to search the stable structures of materials. The MAC
algorithm is expected to overcome the shortcomings of
an individual algorithm and improve the search effi-
ciency. Furthermore, the evolution of the crystal pop-
ulation and the choice of the operators are designed to
be self-adaptive (For details, see Section II C). In other
words, in the search, the crystal population will undergo
a self-adaptive evolution process. So, Muse seeks materi-
als’ stable structures effectively under certain conditions.

The implementation of MAC crystal structure predic-
tion is based on the manipulation of crystal structures in
real space, i.e., the operations on the crystal structures
made by the variation operators. A crystal structure is
described by the shape of the lattice cell and the atoms
positions therein. In the evolution process of crystal pop-
ulation, the fitness function can be free energy, hardness,
volume, band gap, and so on. At present, Muse can pre-
dict the stable structures according to energy criterion.
The fitness function is thus the free energy of each struc-
ture. The structure with lowest free energy has the best
fitness. The selection operator is to select the low free
energy structures for variation operators to generate new
structures.

Muse depends on external local optimization codes.
At present, Muse uses the Vienna Ab initio Sim-
ulation Package (VASP),33,34 SIESTA,35 Quantum
ESPRESSO,36 and LAMMPS37 as the local optimiza-
tion tools. It determines the space group number of each
optimized structure immediately after the optimization
is done. The duplicate structures are eliminated accord-
ing to the space group numbers and the nearest triangles
formed by the nearest three atoms (For details, see Sec-
tion II F). More importantly, Muse generates the ran-
dom structures of the first generation with symmetry
constraints, which largely shortens the local optimiza-
tion time of the first generation and increases the di-
versity of crystal structures. The random structures are
created according to the randomly chosen space group
numbers from 2 to 230, and Wyckoff positions must be
fit to the atom numbers ratio. Especially for large sys-
tems, the constraints on symmetry will avoid unphysical
disorder crystal structures, similar to glass state. Muse
can also pick up (restart) a previous interrupted search
from where it stopped.

A. Multi-algorithm collaboration

A single algorithm has more or less inherent disad-
vantages. Using the combination of multi algorithms,
or hybrid, we can overcome their disadvantages and
make full use of their advantages. The efficiency of
the MAC search also depends on the diversity of crys-
tal structures. To increase the diversity of crystal
structures, I created ten variation operators in Muse:
cross over, mutation, permutation, cross-over-mutation,
permutation-mutation, slip, twist, random move, ripple,
and mutation-ripple. The multi-algorithm collaboration
and coupling are shown in Fig. 1.

Whether the optimized structure is kept or not in the
main loop is controlled by the Metropolis algorithm.32

This couples the EA and SA algorithms. To avoid pre-
maturation, I coupled the main loop with BH algorithm
(Fig. 1). After the main loop is converged, Muse can
turn into the pure BH loop to help the solution to es-
cape from local minima if it is possibly trapped in local
minima in the main loop. While, the pure BH loop is
optional and we can run the main loop without the pure
BH loop. As we know, the smaller systems that have
smaller number of formula units often converge faster
than larger ones, because they have smaller configura-
tional space. For larger systems, Muse has the trick to
prepare seed structures from the converged smaller sys-
tems. To test this trick, I used the 12-atom LiBC system.
The number of structures in each generation is 20. Tests
show if we pick out the low-energy structures from the
smaller system (6 atoms) to prepare seeds, we can eas-
ily converge the larger system (12 atoms) with the help
of seeds (See Table I). So we are encouraged to go from
smaller systems to larger ones. This process is automatic
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Random Structures 
with/without symmetry constraints

Start 

If restart

Main evolutionary loop: 
Coupling with simulated annealing 

and basin hopping

Pick up structures
from the stopped point

No

Yes

Ten evolutionary operators competing
and self-adaptive evolution

If converged
No

Yes

End

Yes

Basin hopping to escape local minimum

No If all systems
converged

If converged
No

Yes

Larger system

with N formula units

with N+Nstep formula units

(Optional)

FIG. 1: The flowchart of multi algorithms collaboration and
coupling in Muse. Nstep means the increase number of for-
mula units to enlarge the supercell.

in Muse. If all the defined systems are converged, Muse
will terminate the search and exit.

B. The first generation

A unit cell in Muse is described with six parameters,
a, b, c, α, β, and γ, and the atoms positions, where a, b,
and c are the lattice vectors and α, β, and γ are the cor-
responding angles. The structures of the first generation
can be randomly created with the symmetry constraints
and the constraints of the minimum and maximum an-
gles (45◦ and 135◦) between lattice vectors. For unbiased
search, the space group number of the generated struc-

TABLE I: Tests of seeds on search efficiency. The test system
is LiBC at 0 GPa. Natom is the number of atoms in the system.
Psize is the population size. Nrun is the number of runs for
statistics. Mean Nbest is the averaged generation number to
find the lowest-energy structure. The seeds were prepared
from the 6-atom search.

If use seeds Natom Psize Nrun Mean Nbest Success %
No 12 20 3 4.50 100
Yes 12 20 3 1.00 100

ture can be randomly chosen from 2 to 230 with equal
possibility. Atoms are placed in the corresponding po-
sitions according to symmetry operations with Wyckoff
positions constraint. If we want to generate the first gen-
eration in the fully random manner, Muse will generate
the structures without symmetry constraints. Then its
volume is scaled to the coarsely guessed value specified
in the input file. If a space group number has been used,
Muse will not choose it for the rest of the random struc-
tures to avoid duplication and thus increase the diversity.

C. Self-adaptive evolution

In the evolution process of crystal structures, different
systems attempt to seek their optimal variation operators
to achieve the possible largest diversities. This scheme
is expected to increase the search efficiency and success
rate. So from the second generation, the ten variation op-
erators will compete in their success rates. Each operator
has the initial success rate of 100% . The operators are
chosen to generate new structures according to their suc-
cess rates. The more positive contributions to the pop-
ulation an operator has, the larger success rate it gets.
The positive contribution means that it produced lower
enthalpy structure or changed the symmetry/symmetries
of parent structure/structures. So, the success rate of
an operator is calculated via Nsuccess

Ncalled
, where Nsuccess and

Ncalled are the number of its success and the number
that it has been called in the last generation, respec-
tively. The larger success rate an operator has, the larger
possibility it has to breed offspring. This is called the
self-adaptation of variation operators. That is to say,
the survival of the fittest is also applied to the selection
of operators. This type of self-adaptive evolution turns
out to increase the diversity of structures and hasten the
convergence of global search (See Section III).

D. Variation operators

The individuals after the first generation are created
from the last generation using ten variation operators.
The ten operators fall into two categories: the single-
parent based operators and the two-parent based ones.
The mutation, permutation, random move, ripple, slip,
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twist, permutation-mutation, and mutation-ripple oper-
ators are all the single-parent based operators. The cross
over and cross-over-mutation operators are two-parent
based operators.

1. Mutation

The mutation operator variates one selected parent to
produce a new individual by multiplying the unit cell row
vector with a symmetric Voigt strain matrix:1,2,38

a′ =

 1 + δ11 δ12/2 δ13/2
δ12/2 1 + δ22 δ23/2
δ13/2 δ23/2 1 + δ33

a, (1)

where δijs are the zero-centered Gaussian random vari-
ables with a specified standard deviation. a is the orig-
inal lattice vector, and a′ is the new lattice vector. The
atomic coordinates are fractional values and are then
scaled to the new vectors. Actually, the mutation op-
erator is to apply a shear strain on the cell to cause it to
undergo phase transition. So it is a very effective oper-
ation to diversify the crystal population. Because differ-
ent systems have different optimal standard deviations
δij , Muse can use trial and error scheme to obtain good
diversity from the initial value. The standard deviation
value can also be fixed. After applying the strains, the
crystal’s volume is then scaled to the volume of the lowest
enthalpy structure in the previous generation. Figure 2
shows an example of mutation.

(b)

(a)

FIG. 2: The example of mutation. (a) Randomly chosen par-
ent: P−1 (2), (b) Offspring: P21/m (11). The two structures
are locally optimized.

2. Permutation

The permutation operator changes the positions of two
kinds of atoms a random number of times.1,2,38 This ob-
viously increases the diversity of the crystal population
after operation. Only when the atom types are more than
one can this operator be used.

3. Permutation-mutation

The permutation-mutation operator is the hybrid of
the permutation and mutation operators. The unit cell
is mutated after permutation operation. This operator is
a single-parent one.

4. Random move

The random move operator moves all atoms positions
randomly, keeping the lattice vectors unchanged. It dis-
places the fractional coordinates of all atoms by random
amount between [-Dmax, Dmax], where Dmax is the max-
imum percentage of coordinates that atoms displaced. I
realized the BH algorithm in Muse by combining this op-
erator with the Metropolis rule.32,39 The periodic bound-
ary conditions are applied to the unit cell after operation.

5. Slip

To fully diversify crystal structures, I introduced a new
operator, slip, into Muse. This operator slips a group of
atoms by a random distance along a random direction
that is parallel to a specific plane (Fig. 3). This group
of atoms are chosen when their fractional coordinates of
the randomly selected axis are greater than 0.5. The
idea of slip operator comes from the real crystal phase
transition, in which some atom layers slip along special
directions. The structures of some crystals transit by
slipping specific atom layers, such as ZnS40 and MoSi2.41

So the slip operator is expected to increase the diversity
of crystal structures.

6. Twist

The twist operator is also a new one. It twists a crys-
tal cell by rotating atoms around a randomly chosen axis.
The rotation angles of atoms increase with the increas-
ing fractional coordinates of the chosen axis. If the first
atoms rotated by ∆θ, the second atom will rotate by
2∆θ, and the third 3∆θ, etc. ∆θ is π/8. During the
rotation, the cell is fixed and only the fractional coor-
dinates of the atoms are changed. Figure 4 shows the
general idea of the twist operator. In order to show the
twisted atoms clearly, I rotated several layers of atoms
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Slip

(a)

(b)

FIG. 3: The slip operator. The new structure is obtained
by slipping several layers of atoms of the older structure. (a)
before slip. (b) after slip.

together. For smaller primitive cells, the twist operator
is expected to slightly increase the diversity of the crystal
structures. However it greatly enhances the diversity of
crystal structures for larger supercells because of larger
configurational space. Twist also causes phase transi-
tion in real materials, such as molecular crystals.42,43 The
twisted bilayer graphenes are formed by twisting two ad-
jacent layers.44

FIG. 4: The twist operator. (a) before twist. (b) after twist.

7. Ripple

The ripple operator, first proposed by Lonie and
Zurek,2 is the periodic displacement operator which shifts
the coordinates of each atom along a randomly chosen
axis by certain amount. For example, if x-axis is chosen,
the x components of all atoms will be shifted to the new

values in fraction: xnew = x+ ∆x, where ∆x depends on
the atoms non-displaced (i.e., y and z) coordinates via:2

∆x = ρcos(2πµy + θy)cos(2πηz + θz), (2)

where ρ is the maximum possible displacement in x direc-
tion, and µ and η are integers, and θy and θz are random
numbers between [0, 2π).

The ripple operator is also a singe-parent operator, but
it can increase the crystal diversity substantially.2 Some
solids manifest the ripple motif at ambient or high pres-
sure, such as Cs-III,45 Rb-III,46 and Ga-II.47 Figure 5 is
an example of ripple.

(a)

(b)

FIG. 5: The example of ripple. (a) Randomly chosen parent:
P1 (1), (b) Offspring: Cmcm (63). The two structures are
locally optimized.

8. Mutation-ripple

This operator is the hybrid of the mutation and ripple
operators. The unit cell is manipulated by the ripple
operator after it is mutated.

9. Cross over

The cross over operator is a two-parent based opera-
tor. It cuts and splices the randomly picked two parents
to make a new individual.1,2,38,48–53 It mainly consists of
two steps: cut and splice. In the first step, the cut plane
is parallel to the randomly not picked two vectors (e.g., b
and c) of one parent. The cut position is in the randomly
picked vector (i.e., a) and the cut fractional coordinate is
the 0.5-centered Gaussian random number between [0.25,
0.75]. If the atoms coordinates of the picked vector (i.e.,
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a) is smaller than the Gaussian random number, they are
taken as the part of the new individual (the left part of
Fig. 6 a). The other part of the new individual is from
the other parent in the same way but the atoms coordi-
nates are larger than the same Gaussian random number
(the right part of Fig. 6 b). In the second step, the picked
atoms from the two parents are placed together to make
the new individual (Fig. 6 c). Its lattice vectors are the
vector summation of the lattice vectors of two parents.
To increase the success rate, the atoms are centered be-
fore the cross over operation.

FIG. 6: The example of cross over. (a) Randomly chosen
parent 1: Ccmm (63), (b) Randomly chosen parent 2: P63/m
(176), (c) Offspring: Pm (6). The three structures are all
locally optimized.

10. Cross-over-mutation

The cross-over-mutation operator is the hybrid of the
cross over and mutation operator.

E. Evaluation and selection

As other stochastic structure search algorithms for sta-
ble structures,1,2,9,11–14 Muse also uses ab initio Gibbs
free energy as the fitness function, which evaluates if an
individual is suited to be parent to breed offspring. At
0 K, Gibbs free energy equals to enthalpy. The enthalpy
(H = E + PV ) of an individual is determined from the
local optimization code. The absolute probability pi of
an individual being selected for breeding offspring is de-
termined by

pi =
Hmax −Hi

Hmax −Hmin
, (3)

where Hi is the enthalpy of this individual, and Hmax

and Hmin are the enthalpies of the worst and the best
individuals in the last generation, respectively.

After an offspring is generated and locally optimized,
whether it is kept or not is controlled by the Metropolis
rule:32

• An individual is kept if its enthalpy is lower than
that/those of its parent(s).
• But if its enthalpy is greater than that/those of its

parent(s), it is kept only if

exp[(Hparents −Hindividual)/kT ] (4)

is greater than a randomly picked number from [0, 1]. k
is Boltzmann constant. The initial temperature T0 for
annealing is specified in the input file. The temperature
in generation n + 1 is reduced to Tn+1 = 0.9Tn.

F. Elimination of duplicates

The duplicate structures prohibit the diversity of crys-
tal population and then decrease the search efficiency
and success rate. In Muse, I developed a new method
to delete duplicates. This method is based on the deter-
mination of space group numbers and nearest triangles
formed by the nearest atoms. In detail, in the first step
Muse judges if two structures have the same space group
number within the specified tolerance of distance, usually
0.1 Å. If they do not have, they are treated as different
structures. Otherwise, the two structures are initially re-
duced to primitive cells. Then Muse judges whether the
numbers of atoms in the two primitive cells are equal.
If not equal, they are different structures. If equal, it
will further compare the nearest distances and the co-
ordination numbers of every inequivalent atom. The in-
equivalent atoms are determined according to symmetry
operations. If the nearest distances and the coordination
numbers of the two primitive cells are equal for every
inequivalent atom correspondingly, Muse compares the
nearest triangles formed by three atoms, i.e., the refer-
ence atom and the first/second nearest neighbors (see
Fig. 7). If all the triangles of every inequivalent atom
in the two primitive cells are congruent correspondingly
within the specified tolerances of distance and angle, they
are treated as the same structure. Then the duplicated
one with higher enthalpy is then deleted. If the shape
formed by the three atoms is not a triangle but a line,
we can note its angles as 0◦, 0◦, 180◦.

G. Termination

The termination of the main evolutionary loop is con-
trolled by the terminator operator. The main loop is
terminated:
• if the number of continuous generations with the

same symmetry structures whose best enthalpy differ-
ences are less than 1 meV/atom reaches the number spec-
ified in the input file;



7

O

BA

C D

dis
ta

nce

nearest triangle

FIG. 7: The nearest triangles formed by the reference atom
and its first/second nearest neighbors.

TABLE II: The stable structures of different systems pre-
dicted by Muse under different pressures, P (in GPa). Some
parameters are the same as those in Table I. NEA is the num-
ber of structures generated by the evolutionary algorithm.
Nopt is the total number of optimized structures in each case.
Nopt−NEA is the number of structures generated by the basin
hopping algorithm. The standard deviation in the mutation
operator is 0.5.

System Natom P Psize Nrun NEA/Nopt Symmetry Mean NG

GaN 20 0 30 3 183/193 P63mc54 2.14
TiO2 12 0 20 3 223/243 I41/amd55 4.05
ReO3 16 0 20 3 186/192 Pm3̄m56 2.13

Al2O3 10 0 20 20 712/788 R3̄c57 1.97
LiBC 12 0 20 3 241/270 P63/mmc58 4.50

MgSiO3 20 130 30 3 550/632 Cmcm59 7.02

• if the specified maximum number of generations has
been done;

• if the diversity of the crystal population is too low.

The pure BH loop is optional. When it is used, it
is terminated when the lowest-enthalpy structure and its
enthalpy do not change any more in the specified number
of generations. It helps the search to escape from local
minima by moving atoms randomly . But usually we can
only run the main loop without the pure BH loop.

H. K-point adaptation

The K-point adaptation is similar to Ref. 1. The K-
grid in reciprocal space of a lattice vector i is calculated
via:

ki =
1

ai · kresol
, (5)

where ai is the length of the lattice vector i, and kresol is
the reciprocal-space resolution set in the input file. ki is
then rounded to an integer.

III. RESULTS

The efficiency of MAC search in Muse bas been
fully tested for many cases including metallic, covalent,
and ionic systems. Table II shows the searched sta-
ble structures of some systems under different condi-
tions. The statistical data were obtained by counting
not less than three searches. The random structures
in the first generation were constructed with symmetry
constraints. The systems converged in the first genera-
tion only through symmetry constraints are not listed.
The ab initio optimizations and the free energy cal-
culations for every structure generated by Muse were
performed with VASP.33,34 The generalized gradient ap-
proximation (GGA) parametrized by the Perdew-Burke-
Ernzerhof (PBE)60 was applied and the electron-ion in-
teractions was described by the projector augmented
wave (PAW) scheme.61,62 The kinetic energy cutoff and
the k -point grids spacing were chosen to be 1.3 times the

default values and 0.02 Å
−1

, respectively. As one can
see, the systems with not more than two kinds of atoms
are easily converged. Muse generally finds their stable
structures in less than four generations. However, the
systems with more than two kinds of atoms need at least
four generations. All the searched stable structures of
these systems are in agreement with their known struc-
tures.

(a)

(b)

FIG. 8: The predicted structures for 12 C atoms at 50 GPa.
(a) graphite, (b) diamond.
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A. Metallic systems

Tests have been performed on metallic systems, includ-
ing Pd, Ta, Au, Y, and Nb. The known stable structures
of these metals were found in the first generation with
symmetry constraints (not listed in Table II). For Ta
metal, Muse found an alternative metastable structure,
Pnma-Ta,63 which is potentially to be the structure to
which bcc Ta transits before melting under high pressure.
Y is a metal at ambient conditions. Under compression,
it will exhibit superconducting properties according to
recent report.64 At 140 GPa, Muse also found the su-
perconducting Fddd phase recently reported by Chen et
al.64 Apart from the Fddd phase, Muse also found other
energetically competitive structures, such as the C2/c
and P21/c structures which have not been reported be-
fore.

B. Covalent systems

The covalent systems including C, SiC, and LiBC were
also fully tested. For 12 C atoms, Muse successfully re-
produced the diamond-C and graphite-C at 50 GPa in the
same search (see Fig. 8). The diamond phase is the most
stable one. Other metastable structures were also found,
such as Cmmm, Fmmm, R3̄m, C2/m, and P 6̄2m. The
Fm3̄m structure of 20-atom SiC was easily reproduced in
the first generation with symmetry constraints (not listed
in Table II). Muse also searched many other metastable
structures, including P63mc, Ccm21, C2/m, Cm, and
P3m1. The enthalpy of P63mc structure is only 3.1
meV/atom higher than that of Fm3̄m at 10 GPa. LiBC
is an intermetallic compound which also shows strong in-
plane covalent bonding. Muse only used 4.5 generations
to find the known P63/mmc structure for the 12-atom
system.

C. Ionic systems

NaCl is a typical ionic system. With the help of sym-
metry constraints on the first generation, Muse found
its stable Fm3̄m structure in the first generation using
20 atoms (not listed in Table II). For the tested MgSiO3

system, there were 20 atoms in the unit cell. With so
many atoms in the cell, Muse found the well-known post-
perovskite structure only in seven generations (Table II).
Fig. 9 shows the evolution of MgSiO3 structures at 130
GPa. Muse also produced many metastable ones.
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FIG. 9: The self-adaptive evolution of MgSiO3 structures at
130 GPa. The cell contains 20 atoms. The well-known post-
perovskite structure (Cmcm) of MgSiO3 was found in the
fifth generation. The inset shows all the structures searched.

TABLE III: The efficiency and success rate comparison of
each individual algorithm with their combination (MAC). The
test system is Al2O3 with 10 atoms. The meanings of the
parameters are same as Table II. EA means evolutionary al-
gorithm with mutation and crossover operators. EA2 means
EA plus the slip and twist operators.

Algorithm Natom Psize Nrun Nopt Mean Nbest % Success
SA 10 20 20 734 1.84 95.0
BH 10 20 20 726 1.82 85.0
EA 10 20 20 1588 3.97 100.0
EA2 10 20 20 774 1.94 100.0
MAC 10 20 20 788 1.97 100.0

D. Efficiency of MAC search

To further study the efficiency and success rate of MAC
search, I performed intensive tests on the Al2O3 system
containing 10 atoms at 0 GPa. In detail, twenty searches
were performed for each individual algorithm and their
combination. The random structures in the first gener-
ation were generated with symmetry constraints. The
statistical data were achieved by averaging all the test
data (see Table III). Mean Nbest is the averaged gener-
ation number to find the lowest-energy structure. It is

calculated from
Nopt

Nrun·Psize
, where Nopt is the total num-

ber of optimized structures, Psize is the population size,

TABLE IV: The influence of the self-adaptive scheme on the
efficiency of MAC search. The test system is LiBC with 12
atoms. The meanings of the parameters are the same as Ta-
ble II.

If self-adaptive Natom Psize Nrun Nopt Mean Nbest % Success
No 12 20 3 320 5.33 100.0
Yes 12 20 3 270 4.50 100.0
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and Nrun is the number of searches. We note the SA
and BH algorithms have lower success rates. The EA
has 100% success rate but slightly lower efficiency. As
we expected, the MAC search has 100% success rate and
higher efficiency. For the newly introduced operators slip
and twist, from the comparison with EA we note they en-
hance the search ability of Muse reasonably (EA2 data in
Table III). In the MAC search, the selection of operators
is up to the success rates of operators in the last genera-
tion. In other words, the evolution of crystal population
is self-adaptive in the manner of breeding offspring. To
test such a scheme, I also performed tests on LiBC sys-
tem with 12 atoms. Tests show the self-adaptive scheme
abviously improves the MAC search efficiency (Table IV).
From these tests, we see that the efficiency of Muse is
greatly improved with the help of the MAC algorithm,
the two newly introduced operators, and the self-adaptive
scheme.

IV. CONCLUSION

In conclusion, I detailed the implementation of MAC
crystal structure prediction technique and the testing of

the MAC performance, the two new operators, and the
self-adaptive scheme. Tests show the multi-algorithm col-
laborative method is more efficient than individual one.
With the help of two new variation operators, slip and
twist, the search ability of Muse are enhanced. In order
to further increase the search efficiency of Muse, I in-
creased the number of variation operators to ten. More
importantly, I also introduced the competition scheme
among the ten variation operators to realize the self-
adaptive evolution of crystal population. The symmetry
constraints in the first generation, the MAC algorithm,
ten variation operators, and the self-adaptive evolution
are all key to improving the efficiency of CSP in Muse.
Present tests show that Muse has very high efficiency
and 100% success rate.
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