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Abstract

The pe physics engine is validated through the simulation of a liquid crystal model system consisting of hard spherocylinders. For
this purpose we evaluate several characteristic parameters of this system, namely the nematic order parameter, the pressure, and the
Frank elastic constants. We compare these to the values reported in literature and find a very good agreement, which demonstrates
that the pe physics engine can accurately treat such densely packed particle systems. Simultaneously we are able to examine the
influence of finite size effects, especially on the evaluation of the Frank elastic constants, as we are far less restricted in system size
than earlier simulations.
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1. Introduction

The pe physics engine [1, 2] is a software framework for
simulating large-scale multi-body systems in soft and hard con-
tact. The simulated bodies have spatial extension and their core
shapes are assumed to be rigid. The software supports various
numerical methods to resolve the multi-contact problems such
as discrete element methods (DEM) [3] for soft contacts and
the fast frictional dynamics (FFD) [4] and non-smooth contact
dynamics (NSCD) [5] methods for hard contacts. The physics
engine was successfully used to simulate large-scale granular
flows [6] on its own but also coupled to the waLBerla lat-
tice Boltzmann framework [7] for the simulation of particulate
flows [8] and self propelled swimmers [9]. The software frame-
work was designed from the ground up targeting distributed-
memory architectures and has been shown to scale well up to
the full size of today’s largest supercomputers [6, 10, 9]. In
particular, the FFD method qualifies well for the parallelization
since the contact problems are treated in a localized manner
keeping the communication amount to a minimum. The FFD
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method is originally based on Moreau’s midpoint rule, an estab-
lished time-stepping scheme for simulating mechanical systems
in frictional contact [11]. It uses a time-integrator equivalent to
a Leapfrog Verlet integration if no contacts are present. The
friction model is derived from the principle of maximal dissi-
pation and captures essential frictional properties [4]. However,
the contact problem simplification stemming from the localiza-
tion and the special type of friction model require a thorough
validation of the numerical method. This paper performs such
a validation on the basis of a hard-spherocylinder system as a
model for liquid crystals, where the implementation of the FFD
method within the pe framework replaces conventional molec-
ular dynamics techniques.

Studies of hard-spherocylinder systems date back to the ’70s
and the work of Few and Rigby [12] and Vieillard-Baron [13].
Spherocylinders consist of a cylinder of length L and diameter
D with hemispherical end caps. For L/D = 0 this model system
corresponds to the hard-sphere model whereas for L/D → ∞
the system consists of infinitely thin needles. Systems of rigid
straight rods have also been realized experimentally for exam-
ple in the form of tobacco mosaic viruses [14] and colloidal
silica rods [15].

All phase transitions of such a system are purely driven by
entropy as the hard particles interact exclusively via excluded
volume. Therefore, the temperature kBT acts only as an energy
scale. Two types of entropy compete here: The orientational en-
tropy drives the system towards an isotropic phase where both
center of masses and orientations are uniformly distributed (see
Fig. 1a, b). The second type of entropy, translational entropy,
favors a uniform orientation of the particles which minimizes
the excluded volume. An example of such an ordered phase
is the nematic phase which is characterized by alignment of the
particles with respect to each other, giving rise to an anisotropic
angular distribution profile while keeping a homogeneous dis-
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tribution of the center of masses (see Fig. 1c, d). This combi-
nation of liquid-like translational and crystal-like orientational
properties which extends to many observable physical proper-
ties is also the origin of the name liquid crystal.
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Figure 1: Snapshots of the L/D = 5 hard-spherocylinder sys-
tem in (a) an isotropic (ρ∗ = 0.4) and (c) a nematic (ρ∗ = 0.5)
state with the corresponding angular distribution profiles ((b)
isotropic, (d) nematic) normalized to the ideal isotropic distri-
bution profile. (For definition of dimensionless density ρ∗ see
Section 2.2.) The increased noise around ϑ = 0 and ϑ = π in
(b) is due to the reduced statistics in this regime as the size of
the solid angle bins behaves like sin(ϑ)dϑdϕ.

For L/D → ∞ in the Onsager limit [16] the hard-
spherocylinder system exhibits a phase transition from isotropic
to nematic at vanishing volume packing fraction (order D/L).
For systems with a finite aspect ratio L/D and full translational
and rotational freedom Frenkel and co-workers were the first to
report such a phase transition with molecular dynamics (MD)
and Monte Carlo (MC) simulations [17, 18]. They also dis-
covered a crystalline solid phase and a smectic A phase where
the system exhibits layering of the particles, thus having a one-
dimensional positional ordering in addition to the orientational
ordering. In their later work [19, 20] they demonstrated that
the hard-spherocylinder system indeed exhibits a rich phase di-
agram which depends on the aspect ratio of the particles as well
as on the packing fraction, as confirmed by the studies of Mc-
Grother et al. [21].

This well understood system provides an ideal test case for
our simulation framework, the pe physics engine, in the con-
text of micro-scale multi-particle systems. The massive par-
allelism of the pe software framework enables us to study far
larger systems than those considered in the publications men-

tioned above. Those were restricted to a few hundred particles
with only a couple of exceptions which included up to a few
thousand particles. We can easily simulate systems of roughly
20 times that number of particles without straining the limits of
computational power. This gives us the possibility to improve
the confidence level of the results for the observables studied
in such a hard-spherocylinder system. We focus on the the
L/D = 5 system at a single packing fraction in the nematic
phase where the particles are rather densely packed. As it is
known that equilibration and numerical treatment become dif-
ficult in this regime, these are ideal conditions for testing the
power of our framework.

The paper is structured as follows: Section 2 describes the pe
rigid body physics engine in detail and depicts both, the sim-
ulation setup, and the specifics of the model system we em-
ploy. In Section 3, we elaborate on the variables we evaluate
in this work, which are the order parameter, the pressure, and
the Frank elastic constants. We further give a short overview
over their theoretical description. The results of this work are
presented in Section 4 and some conclusions are drawn in Sec-
tion 5.

2. Numerical methods and simulation setup

2.1. The rigid body physics engine pe
The pe physics engine is a powerful tool for large-scale rigid

body dynamics simulations [1, 2]. The algorithm we chose to
employ in this work is based on the FFD solver first proposed
by Kaufman et al. [4, 22], where we set all friction coefficients
to zero to make our results comparable to previous studies. It is
parallelized with MPI [23] following a domain decomposition
approach: Each process is responsible for the time-integration
of the bodies whose center of mass is located in its associated
computational subdomain. In addition to these local bodies pro-
cesses obtain shadow copies of bodies intersecting their subdo-
main. Algorithm 1 lists pseudo-code for the time step proce-
dure.

The time step starts by sending all forces and torques ap-
plied to shadow copies to the respective owner process of the
body. The owner process can then reduce them and proceed by
performing the time-integration up to the midpoint of the time
step neglecting contact constraints on purpose. Subsequently,
the shadow copies need to be updated to the new positions and
velocities and migrations of bodies to neighboring processes
have to be treated in a second message exchange communica-
tion step. Next, collisions are detected and filtered. Some of the
collisions can only be detected by processes holding shadow
copies. These contact constraints are gathered in the third mes-
sage exchange step at the processes responsible for the time-
integration of the bodies enabling them to compute the post-
collision velocities prescribed by the FFD’s contact model [4]
and performing the second half of the time-integration. Finally,
the positions and velocities have to be synchronized again in
the fourth and last message exchange communication step.

Particle overlaps are inherent in this algorithm and indeed
collisions are only recognized if the particles intersect. Split-
ting the time step into two half steps, one before and one after
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Algorithm 1 Rigid Body Time Step of Size dt [1, 2]

1: // 1. MPI message exchange: Reduce forces and torques
2:
3: // First half time step
4: for each local rigid body Bi do
5: advance position and orientation for dt

2
6: advance translational and angular velocity for dt

2
7: end for
8:
9: // 2. MPI message exchange: Synchronize rigid bodies

10:
11: // Collision detection
12: for each local rigid body and shadow copy Bi do
13: detect all contacts C(Bi)
14: for all contacts k ∈ C(Bi) do
15: determine acting constraints
16: end for
17: end for
18:
19: // 3. MPI message exchange: Gather contact constraints
20:
21: // Collision resolution and second half time step
22: for each local rigid body Bi do
23: if Bi has constraints then
24: find post-collision translational and angular velocity
25: else
26: advance translational and angular velocity for dt

2
27: end if
28: advance position and orientation for dt

2
29: end for
30:
31: // 4. MPI message exchange: Synchronize rigid bodies

the collision resolution, ensures that after the full time step the
detected overlaps have been eliminated. Still, the size of the
time steps has to be chosen carefully (see Sec. 2.2) to avoid a
strong deviation from the expected hard-particle behavior due
to the seemingly reduced volume packing fraction. The advan-
tage of a fixed time step lies in the fact that time integration
can be driven forward efficiently despite high collision frequen-
cies in contrast to event-driven methods [24]. Furthermore the
code can be very efficiently parallelized as collisions are always
treated locally.

2.2. Simulation setup

The model system used in this work consists of N = 18432
hard spherocylinders of unity mass with an aspect ratio L/D =

5. The unit of energy was set to kBT and the unit of length to
D. The particles were enclosed in a cubical box of side length
l = 57.0512 D with periodic boundary conditions. This results
in a dimensionless density of ρ∗ = 0.5 where the system is
expected to be in the nematic phase [17, 18, 19, 20, 21] with
ρ∗ = ρ/ρcp, ρcp being the density in the close packing limit
ρcp = (2D−3)/(

√
2 + L

D

√
3).

In the initial configuration the spherocylinders were arranged
on a 8×48×48 (tetragonal) lattice and had a uniform orientation
along the x-axis. Their initial velocity and angular velocity dis-
tributions were chosen randomly from Gaussian distributions
such that the condition kBT = 1 held in our units. For reason of
symmetry no angular momentum was applied around the sym-
metry axis of the particles, so the angular velocity is always per-
pendicular to this axis. The time step was set to dt = 2 × 10−6 τ
where the unit of time follows directly from our choice of unit
energy, unit length and unit mass: τ = D

√
mSC/kBT , with mSC

the mass of a spherocylinder.

To provide an upper bound on the amount of overlap between
particles in a collision, we consider the worst-case scenario in
which two particles already touch in a point ~p at the beginning
of the time step and define overlap as the surface to surface
distance measured along the surface normal at ~p after the first
half step. If we consider only translational motion, this over-
lap is less than 10−5D for all but a tiny fraction (< 2 × 10−12)
of all collisions at this step size. The contribution due to ro-
tation has the same order of magnitude. This clearly justifies
the assumption of a hard-particle system, considering that this
scenario poses the extreme case of collision.

A simple thermostat was used to correct for accumulation of
numerical errors in the resolution of collisions. The total kinetic
energy was rescaled to its initial value every 200 time steps by
rescaling angular velocity and velocity of each particle by the
same fraction. This rate of rescaling events suffices to suppress
fluctuations of the kinetic energy and thereby keeping the tem-
perature constant (the potential energy being always zero in the
hard-particle system).

To obtain uncorrelated results we performed six simulations
with independently generated initial velocity configurations.
The systems were allowed to relax for about 108 time steps after
which the nematic order parameter (see Sec. 3.1) indicated the
systems to be in equilibrium. A typical equilibration curve is
shown in Fig. 2, a snapshot of the system in the nematic phase
is presented in Fig. 1c). Subsequently, production runs of about
5 × 107 time steps were performed the results of which are pre-
sented in Sec. 4.
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Figure 2: Relaxation of the system from perfect orientational
order (S = 1). After 108 time steps the system is assumed to
have reached equilibrium. (For definition of the order parame-
ter S see Eq. 1.)
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3. Physical quantities of interest

3.1. Order parameter
The first parameter we use to characterize the system is the

order parameter S . It is a measure for the degree of nematic
ordering in the system, i.e., the alignment of the particles along
a common direction, the nematic director ~n. Microscopically it
is defined by the average of the second Legendre polynomial of
the cosine of the angle θ between the director ~n and the symme-
try axis of the individual spherocylinders ~ei:

S = 〈P2 (cos θ)〉 =
3
2

∫ π

0
cos2 θg(θ) sin θdθ −

1
2

(1)

with the equilibrium orientational distribution function g(θ).
〈...〉 indicates both the equilibrium ensemble average and the
average over all particles in the system.

In the simulation however, the nematic director is not known
a priori, thus the angular distribution with respect to this vector
can’t be measured directly. Instead of g(θ) we consider there-
fore the order tensor Q:

Qαβ =
1
N

∑
i

3
2

eiαeiβ

 − 1
2
δαβ , α, β = x, y, z . (2)

The sum goes over all particles in the system, N being their total
number, with δαβ the Kronecker delta. This tensor can be calcu-
lated directly from the single particle orientations ~ei and it can
be shown that its largest eigenvalue corresponds to the order pa-
rameter S as defined above [25, 26]. Furthermore the associated
eigenvector yields the nematic director ~n. The order parameter
can take values between 0 and 1, a value of S = 0 indicating
an isotropic distribution of particle orientations whereas S = 1
is reached only in the case of perfect alignment of all particles
towards each other and thus towards the director.

3.2. Pressure
A second property of the system we evaluate is the pressure.

According to the virial equation it can be calculated as

P =
1
β

N
V

+
1

3V

〈 N∑
i< j

~Fi j~ci j

〉
(3)

with the usual definition β−1 = kBT , N the total number of par-
ticles, V the considered volume and ~Fi j the force exerted by
particle j on particle i, 〈...〉 indicating the equilibrium ensem-
ble average [27]. The vector ~ci j connects the center of mass
positions of the two particles, i.e., ~ci j = ~ri − ~r j (see Fig. 3).

For hard bodies the forces ~Fi j are not continuous as the inter-
particle potential is either 0 in case of no overlap or ∞ if the
particles intersect. Here the forces are substituted by the trans-
ferred momentum per unit time [28]:

P =
1
β

N
V

+
1

3Vτ

∑
C

∆~pi j~ci j . (4)

The sum is taken over all collisions C within the observation
time τ and ∆~pi j is calculated from the difference between the
velocity of particle i before and after resolution of the contact
with particle j.

j
i

L

D

~e j

~ei

~ci j

Figure 3: Sketch of two colliding spherocylinders

3.3. Frank elastic constants
The Frank elastic constants Ki (i = 1, 2, 3) describe the free

energy penalty for elastic deformation. There are three types
of deformation to be considered, namely, splay, twist and bend.
For small deformations this additional free energy can be ex-
pressed in terms of the derivatives of the director field ~n(~r)
which represents the local orientation of the nematic direc-
tor [25, 29]:

∆F
[
~n(~r)

]
=

1
2

∫
d~r

(
K1(∇ · ~n)2 + K2(~n · (∇ × ~n))2 + K3(~n × (∇ × ~n))2

)
(5)

The Frank constants are the proportionality constants for the
contribution of the different types of deformation. K1 is at-
tributed to splay, K2 to twist and K3 to bend.

We employ a well established method to obtain the Frank
constants from simulation which utilizes the Fourier transform
of the order tensor Q defined in Section 3.1 [30, 31, 32, 33, 34].
Those Fourier components Q̃αβ(~k)

Q̃αβ(~k) =
V
N

∑
i

(
3
2

eiαeiβ −
1
2
δαβ

)
exp(i~k~ri) , α, β = 1, 2, 3

(6)
are measured in a basis in which the 3-direction is given by the
nematic director and ~k lies in the 1-3-plane. In this coordinate
system, the components of the Fourier transformed order tensor
are at low k related to the Frank elastic constants via

Eµ3 =

9
4 S 2VkBT〈∣∣∣∣Q̃µ3(~k)

∣∣∣∣2〉 → Kµk2
1 + K3k2

3 for k → 0 (7)

with µ = 1, 2, 〈...〉 again indicating the equilibrium ensemble
average [35].

4. Results

4.1. Evaluation of the nematic order parameter
The order parameter values were obtained every 10000 time

steps by calculating the order tensor Q (see Eq. 2) and obtain-
ing its highest eigenvalue S . The corresponding eigenvector,
the nematic director ~n, was also evaluated as it is required for
the calculation of the Frank elastic constants (see Section 4.3).
A higher sampling frequency would not have contributed fur-
ther information as subsequent values in a molecular dynamics
simulation are highly correlated.
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The nematic order parameter was obtained independently for
the different initial configurations by averaging over about 5000
values each. Averaging again over these uncorrelated values
results in an average order parameter of 0.727 ± 0.002. This
is in very good agreement with results from earlier MD and
MC simulations [20, 21, 30] as well as from density functional
theory studies (DFT) [36, 37] (see Tab. 1).

4.2. Evaluation of pressure
In this section we present our results on the pressure in

terms of the rescaled pressure P∗ = βv0P, where v0 =

πD2 (D/6 + L/4) is the molecular volume of a spherocylinder.
For each of our individual initial setups we calculated the pres-
sure by evaluating

∑
∆~pi j~ci j over the collisions within a single

time step dt every 1000 time steps. These results were then
added up, making the observation time τ equal to dt times the
number of data points taken. For each of the initial configura-
tions the pressure was calculated separately according to Eq. 4.
We then took the average over the pressure values from the
independent simulations, obtaining an average rescaled pres-
sure of 6.015 ± 0.020 which agrees very well with the values
from [17, 20, 21] (see Tab. 1).

4.3. Evaluation of Frank elastic constants
For the calculation of the Frank elastic constants we have

to take into account the fact that our system is enclosed in a
box of side length l. This allows us to consider only ~k which
have components that are an integer multiple of the minimal
value commensurate with the box in the fixed xyz-system, i.e.,
~k = (κx, κy, κz)2π/l, κi ∈ Z. As relation 7 only holds for k →
0, it is vital to simulate a box of large enough dimension l to
get access to k values small enough to enter the regime where
E13(k2

1, k
2
3) and E23(k2

1, k
2
3) behave linearly; the box size chosen

in this simulation proved to be sufficiently large (see Fig. 4).
The Fourier transformed order tensor Q̃ (Eq. 6) was evaluated

in the xyz-system every 10000 time steps for all ~k with −10 <
κi < 10. This provides access to a range of k2 large enough to
successfully fit the Eµ3 data.

The tensor Q̃ was subsequently transformed to the 123-
system given by the nematic director, calculated as described
in Section 4.1, and the currently evaluated ~k. The values for
|Q̃13(~k)|2 and |Q̃23(~k)|2 were then averaged over bins of equal
size in k1 and k3. The results for Eµ3 were obtained separately
for the different initial configurations from

〈
|Q̃µ3(~k)|2

〉
follow-

ing Eq. 7. The averaged result of the different runs is shown in
Fig. 5.

To get a first evaluation of the elastic constants, i.e., the slope
of the functions Eµ3 at k2 = 0, the plane Kµk2

1 + K3k2
3 was fitted

to the respective Eµ3 data in the range of k2
i < 0.1. Cuts through

the data and the corresponding fits are presented in Fig. 4.
To gain a more accurate estimate of the Frank elastic con-

stants, we subsequently fitted the data with bivariate polynomi-
als in k2

1 and k2
3 of the form

∑3
i, j=0 ai jxiy j−a00 and evaluated their

leading coefficients. The K3 value gained that way is larger than
the one found in the linear fit (see Tab. 1). This indicates that
the assumption of a purely linear behavior is not justified even
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ρ∗ P∗ S K∗1 K∗2 K∗3

Present work
· planar fit for K∗i 0.5 6.015 ± 0.020 0.727 ± 0.002 0.763 ± 0.045 0.348 ± 0.024 1.226 ± 0.045
· polynomial fit for K∗i 0.812 ± 0.019 0.352 ± 0.016 1.583 ± 0.027

Frenkel [17] (MC&MD) 0.5 5.942

Bolhuis [20] (MC&MD) 0.5 5.995 ± 0.059a

0.513 6.4 0.74

McGrother [21] (MC) 0.497 ± 0.02 5.94 0.728 ± 0.017
0.507 ± 0.02 6.20 0.754 ± 0.020

Allen [30]b (MD) 0.5 0.73 0.83 ± 0.25 0.59 ± 0.07 1.10 ± 0.11

Poniewierski [36] (DFT) 0.5 0.728 0.513 0.239 1.526

Somoza [38] (DFT) 0.5 0.791 0.630 0.297 2.403

Lee [37] (DFT) 0.482 0.729 1.322 0.441 6.447

a Data for P∗ estimated from Fig.4 Ref. [20].
b All values and errors of K∗i have been multiplied by 9/4 after Ref. [31].

Table 1: Pressure P∗ in units of kBT/v0, Frank elastic constants K∗i in units of kBT/D and nematic order parameter S of the hard-
spherocylinder system with aspect ratio L/D = 5 at rescaled densities ρ∗. Our results are compared to previous data from Monte
Carlo (MC) and molecular dynamics (MD) simulations as well as from density functional theory (DFT).

in the range of k2
i ≤ 0.1. As the functions are concave in the low

k regime, a linear fit will underestimate the derivative at k2 = 0.
From Fig. 4 it is clear that the curvature along the k2

3-axis sets
in at far lower k2 values than along the k2

1-axis. This explains
why the values we found for K1 and K2 agree with those de-
rived from the linear fit within the error bars while K3 exceeds
the one from the linear fit by nearly 30%.
The values found in literature for the Frank elastic constants of
this system are few and differ considerably. A summary of both
MD [30, 31] and DFT [36, 38, 37] results as well as a compar-
ison to our findings is given in Tab. 1. As we have chosen the
temperature and the length scale of the simulation accordingly,
the rescaled results for the Frank elastic constants K∗i = βDKi

correspond directly to the ones measured in the simulation.

It is clear that our results are well within the range spanned
by the data from previous works, showing the expected relation
K3 > K1 > K2 found in experiments [39, 40] and predicted
theoretically [41]. We reason the difference between our results
and the simulations by Allen and Frenkel [30, 31] to be mainly
due to their smaller system size. The minimum ki they could
evaluate were considerably larger than those we had access to.
Also they could only take the two smallest of their k3 values
into account during the fitting procedure as for higher values
a peak in the structure factor developed. Therefore they used a
fitting function that was a product of a second-order polynomial
in k1 and a linear function in k3. If we try to fit this function to
our larger data set, we find that the fit converges very poorly,
no matter the ~k range we restrict it to. An additional factor that

might contribute to the discrepancy between the results is the
fact that Allen and Frenkel did not correct for fluctuations of
the director, although they judged those to be negligible.

5. Conclusions

We have shown that the pe physics engine is able to accu-
rately treat the liquid crystal model system comprised of hard
spherocylinders with aspect ration L/D = 5. Our results ver-
ify the value for the nematic order parameter at a density of
ρ∗ = 0.5 found in earlier simulations as well as in a number
of density functional theory calculations. In addition we have
calculated the pressure in the system which confirms the val-
ues published for other simulation techniques. This clearly in-
dicates that already systems with a small number of particles
compared to the one studied in this work have negligible finite
size effects on these two parameters.

Finally we have derived the Frank elastic constants at our
chosen system parameters. Here the comparison to existing
work is more difficult since there is only one set of simulation
results available and the density functional theory values scatter
in a broad range. However, our values certainly provide a better
estimate for the elastic constants than the listed simulation data
by Allen and Frenkel as their comparatively limited system size
restricted their access to the low k-value regime considerably.
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