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Abstract

We present exact methods for the numerical integration of the Wannier-Stark system in a many-body sce-
nario including two Bloch bands. Our ab initio approaches allow for the treatment of a few-body problem
with bosonic statistics and strong interparticle interaction. The numerical implementation is based on the
Lanczos algorithm for the diagonalization of large, but sparse symmetric Floquet matrices. We analyze the
scheme efficiency in terms of the computational time, which is shown to scale polynomially with the size
of the system. The numerically computed eigensystem is applied to the analysis of the Floquet Hamiltonian
describing our problem. We show that this allows, for instance, for the efficient detection and characteri-
zation of avoided crossings and their statistical analysis. We finally compare the efficiency of our Lanczos
diagonalization for computing the temporal evolution of our many-body system with an explicit fourth or-
der Runge-Kutta integration. Both implementations heavily exploit efficient matrix-vector multiplication
schemes. Our results should permit an extrapolation of the applicability of exact methods to increasing
sizes of generic many-body quantum problems with bosonic statistics.

Keywords: Floquet problem, Bose-Hubbard model, Wannier-Stark system, Lanczos algorithm, Quantum
chaos, Ultracold atoms, Optical lattices.
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1. Introduction

1.1. The Wannier-Stark problem
The problem of a particle in a periodic potential and subjected to a constant field has a long history in

quantum physics. Today known as Wannier-Stark problem [1, 2], it is the basic model for conductance.
An appropriate matching between the field and the periodic lattice can induce resonance phenomena, and
hence be used for the control of transport. This idea goes back to Esaki and Tsu who suggested to implement
diodes and other transport devices with the techniques of semiconductor physics [3, 4]. While of interest for
transport, it was actually shown quite early that the constant field, also called tilt, induces regular periodic
oscillations instead of an acceleration along macroscopic sizes. This phenomenon of Bloch oscillations and
the fact that the Wannier-Stark problem is strictly speaking an open system has evoked much interest over
decades [1].

Modern realizations of the Wannier-Stark system use either light [5] or ultracold atoms for which the
potentials can be controlled very well [6, 7], avoiding intrinsic effects of unwanted disorder and uncontrolled
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particle-particle interactions in solids. Implementations with cold atoms have turned the attention from
fermions also to bosonic transport particles [6, 7], from single-particle models [2] over mean-field effects
[8, 9, 10, 11] towards many-body correlation effects [12, 13, 14, 15, 16, 17, 18, 19, 20]. Needless to say
that the many-body scenario is much more complicated. One typically has to resort then to effective models
[16, 21], which themselves build on a good intuition of the underlying physical phenomena that take place
during the temporal evolution. The coupling between energy bands (Bloch bands in the periodic lattice)
induced by the tilt makes effective single-body descriptions already non-trivial [1, 2, 22, 23], not to speak
about the growing size of the system when including many particles in various dimensions. Here the Hilbert
space grows exponentially, both with the size of the system and the number of particles.

1.2. Our approach
In view of the complications due to many coupled energy bands, spatial dimensions and many-body

effects, we restrict here to a one-dimensional realization including fully two energy bands. Our system
is thus closed, but it represents a good approximation to a possible realization with ultracold atoms in a
double-periodic potential producing a miniband structure, see Fig. 1 below and the appendix in [17]. Here
we present a detailed study of our computational methods which allow for strong interactions between the
particles. We study finite systems, with a finite number of particles, bosons to be specific, in a finite number
of sufficiently deep lattice sites. All these assumptions make it possible to use a lattice model, whereby
the standard Bose Hubbard model [21, 24] is much extended here by including two coupled energy bands,
interband interactions terms, and field-induced couplings. The exponential growth of the size of the problem
with, e.g. the particle number, is especially related to the choice of bosons, which can, in principle, all sit
on the same lattice site. This makes our problem non-integrable and computationally hard even in one
spatial dimension [15, 17]. Applying periodic boundary conditions, the constant field is mapped onto a
periodically time-dependent quasi-momentum, making our system effectively driven by a periodic force.
This corresponds to an acceleration of the lattice as done also experimentally [6, 8]. We make the problem
numerically tractable by combining well-known methods, the Floquet theory for periodic time-dependent
systems [25], the Lanczos diagonalization algorithm [26, 27, 28, 29, 30], and standard propagation methods
based on the Runge-Kutta scheme. For both, the diagonalization and the propagation we heavily exploit
efficient matrix-vector multiplications, storing just the non-zero matrix elements.

Our results represent benchmarks for the exact numerical treatment of our Wannier-Stark problem and
similar many-body lattice systems with external drives. This allows for the extrapolation of the applicability
of our exact methods as a function of memory and computation time, and in view of the physical reality of
finite size many-body quantum systems. Moreover, our results could be interesting as well for interaction
effects in the quantum simulation of many particle interference effects with bosonic statistics [31], a problem
known as boson sampling [32]. As a paradigm application of the numerical methods for our Wannier-Stark
system, we analyse its quasi-energy (or Floquet) spectrum, which is characterized by a large number of
avoided level crossings in the presence of strong interactions. To do so, we present an efficient and reliable
way of detecting a large number of such avoided crossings and their distributions, based on the properties
of the eigenvectors. This allows us to characterize the non-integrability of our model, and, in principle, of
other many-body lattice systems in general [33, 34].

1.3. Structure of the paper
In Section 2 we introduce our many-body boson system and we briefly summarize its previously studied

properties (see refs. [17, 35, 36]). The main numerical tools for obtaining the eigenspectrum of our system
are presented in Section 3 along with a detailed analysis of their efficiency. Section 4 is devoted to the
quantum spectrum around resonance conditions, for which the two bands are strongly coupled. In particular,
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Figure 1: (Color online) Sketch of the experimental realization of the system described by (1) in a double periodic potential. The
considered processes of hopping and two-particle interactions are pictured by Ja, Jb and Wx,Wa,Wb, respectively, where a indexes
the lower and b the upper band. The Stark force F, introducing interband transitions, e.g. on-site with a coupling strength C0, acts
to the left in our sketch. ∆ is the band gap between the two energy ladders corresponding to the two considered energy bands.

we present an alternative method for detecting and characterizing avoided level crossings. In Section 5, we
extend the discussion of the spectral properties to the time domain. This turns out to be useful for the
understanding of the impact of the avoided crossings and their distributions on the system’s dynamics.
For this, we compare the numerical efficiency of computing the time evolution using either the Floquet
eigenstates and eigenspectra or a direct Runge-Kutta integration. Finally, Section 6 concludes the paper
with a brief discussion of the applicability of our methods to similar quantum lattice problems.

2. Bose-Hubbard model for the Wannier-Stark system

The Wannier-Stark system is an interesting quantum problem because of its non-intuitive phenomenol-
ogy, including Bloch oscillations (responsible for the effective Stark localization of wave packets). To
describe interband coupling effects, such as resonant tunneling between different Bloch bands, at least two
bands must be included into the model. Allowing also for many-body correlations, the problem immedi-
ately becomes very challenging [16, 17, 19, 20, 34]. We restrict here to a closed two-band model, which
(a) could be readily implemented in experiments in good approximation, see the appendix in [17], and
(b) includes strong interparticle interactions and interband couplings. Our many-body model for bosons is
based on the celebrated Bose-Hubbard Hamiltonians, usually studied just within a one-band approximation
[15, 19, 21, 24].

Our Hamiltonian

Ĥ =
∑
l,β

[
−

Jβ
2

(
β̂†l+1β̂l + h.c.

)
+

Wβ

2
β̂†2l β̂

2
l + ωBln̂(β)

l

]
+

∑
l,µ

ωBCµâ†l+µb̂l +
Wx

2
b̂†2l â2

l + h.c.

+
∑

l

2Wxn̂a
l n̂b

l +
∆

2
(n̂b

l − n̂a
l ) , (1)

represents a two-band tight-binding or discrete-lattice model. Its possible experimental realization in a
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double periodic optical lattice and the considered microscopic processes are sketched in Fig. 1. Our model
system has the following characteristics:

(i) it preserves the total number of particles (bosons) N living on L lattice sites or potential wells. Then
the full dimension of the state (or Fock) space is given by

dF =
(N + 2L − 1)!
N!(2L − 1)!

. (2)

(ii) The operators β̂l and β̂†l represent the annihilation and creation operators, respectively. n̂(β)
l = β̂†l β̂l is

the number operator, with band index β ∈ {a, b} for the lower and the upper band, respectively.

(iii) The parameter space, defined by the parameters {Jβ,Wβ,Wx,Cµ,∆}, is quite large. Jβ is the kinetic
energy scale, characterizing the nearest neighbor hopping matrix elements. The W’s represent the
on-site, intra- and inter-band interaction strengths. 2µ + 1 dipole coupling coefficients Cµ induced by
the constant field ωB ≡ 2πF, with µ ∈ Z. Hence, the Stark force (the tilt) is given by the third term
in the first line of Eq. (1). The average band distance, the energy band gap, is given by ∆. All these
parameters are expressed in the following in units of the recoil energy Erec = (~kL)2/2m, which a
photon with momentum ~kL exchanges when scattering from an atom of mass m. Since all potentials
are created optically in the experiment, this is the natural scale for realizations with ultracold atoms
[7, 24]. Furthermore, we set ~ = 1 throughout this paper.

(iv) The available state space F is spanned by the following Fock states

F = span{|na
1na

2 · · ·〉 ⊗ |n
b
1nb

2, · · ·〉, · · ·}, (3)

with
∑

l na
l + nb

l = N. This space can be split into sets of states with the same upper-band occupation
number M = 〈

∑
l nb

l 〉φ, with |φ〉 an arbitrary Fock state. We refer to these sets of states as M-Manifolds
in the following. In this way, after relabeling the states using the quantum number M, the Hamiltonian
matrix takes the following block form

H =



H0,0 H1,0 H2,0 0 · · · 0

H0,1 H1,1
. . .

...

H0,2
. . .

. . .
. . . 0

0
. . .

. . .
. . . HN,N−2

...
. . . HN−1,N−1 HN,N−1

0 · · · 0 HN−2,N HN−1,N HN,N


. (4)

The off-diagonal blocks represent the coupling of the different M-subsets via one- and two-particle
exchange processes induced by the Hamiltonian terms in the second line of Eq. (1).

In the non-interacting limit, i.e. Wβ,x = 0, the matrix H can be effectively reduced to a block-
tridiagonal matrix of size (N +1)×(N +1) with approximate eigenvalues EM ≈ M∆r, see ref. [35, 36].
Here

∆r = ∆

√
(1 − ωBr/∆)2 + 4(ωBC0/∆)2 (5)
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Figure 2: (Color online) Sketch of the structure of eigenvalues for a fixed Stark field F far from the resonance regime, for the
tilted Hamiltonian in Eq. (1) (lower/blue bars), and of the Floquet quasienergies, i.e. the folded spectrum within a Floquet zone of
width ωB (upper/red bars), see sections 2 and 3.1 for details. The values ε̃i are the Lanczos starting points used for improving the
performance of the diagonalization as presented in section 3.1. δε is the maximal splitting of single-particle states generated by the
interparticle interaction.

is the energy difference between neighboring manifolds exchanging one particle. The integer r labels
the order of the resonances [17] occurring for tilts Fr ≈ ∆/2πr. These resonances appear at certain
values of the force for which the single-particle levels in the upper band become degenerate with
the ones of the lower band [2, 16]. The region in parameter space as a function of F close to Fr

is denoted as resonant tunneling (RET) regime in the following. The interactions, together with
the strong interband coupling at RET, lead to a strong mixing of levels. In contrast, we can resort
to a perturbative argument far off the resonances. Off-resonance, the eigenvalues EM are corrected
by including the splitting of the single particle levels due to the interactions. The corresponding
eigenstates can be labeled by the integers θβ=1,2 = 〈 1

2
∑

l nβ(nβ−1)〉φ and θx = 2〈
∑

l na
l nb

l 〉φ. Therefore,
they can be approached by the formula [17, 35]:

EM,θ = M∆r + θ ·W, (6)

with WT = (Wa,Wb,Wx), and θ = (θa, θb, θx). The maximal intramanifold splitting generated by the
interaction can be estimated by δε = max{UM

a,b,x}, with

(UM
a )max =

Wa

2
(N − M)(N − M − 1),

(UM
b )max =

Wb

2
M(M − 1),

(UM
ab)max = 2Wx(N − M)M . (7)

The values of UM
a,b,x correspond to the largest energy cost for producing states with M particles in a

single lattice site, e.g., |φ〉 ∼ |N − M00, · · ·〉 ⊗ |M00, · · ·〉. In consequence, in most off-resonant cases
with F far from Fr, we have ∆r ∼ ∆ � Wa,b,x, and, therefore, the overlapping between contiguous
M-manifolds can be neglected. Then, the spectrum consists of bunches of levels within an energy
range δε around EM, as sketched in Fig. 2.

According to Eq. (6), the intramanifold energies EM,θ, far from the Fr, are proportional to the tilt, c.f.
also Fig. 3(a). Therefore, the parametric dependence of the levels on F, ε(F), is essentially given by
straight lines parallel to each other, with slopes ≈ −M∆/Fr. Conversely, the intermanifold energy
levels approach each other in the vicinity of the interband resonances at F = Fr (see Fig. 3). Here
avoided crossings take place involving all the levels arising from the lack of additional symmetries
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and from the strong interband couplings [17]. Within the resonant regime, Eq. (6) is clearly no longer
valid. The eigenenergies lose their manifold structure since typically we have ∆ � Wa,b,x ∼ ∆r.
Nevertheless, Eq. (6) is still useful for performance tests of the numerical routines presented in the
next sections.

(v) A helpful trick for the numerical solution of the Hamiltonian (1) is to transform it into the interaction
picture with respect to the tilting term

∑
l,β ωBln̂(β)

l . This procedure allows us to recover the transla-
tional invariance in the new Hamiltonian H′. We can, therefore, impose periodic boundary conditions
in space, i.e., β̂†L+1 = β̂†1. Thereby, we now work with the common eigenbasis of the translation op-
erator Ŝ and the transformed Hamiltonian Ĥ′ since [Ĥ′, Ŝ ] = 0. This new basis is the translationally
invariant Fock (TIF) basis indexed by α and introduced, e.g., in ref. [19]:

|sα, κ〉 = D−1/2
α

Dα∑
l=1

ei2πκlŜ l|na
1na

2 · · ·〉 ⊗ |n
b
1nb

2, · · ·〉α , (8)

where Ŝ m|sα, κ〉 = e−iωBκm|sα, κ〉. The action of the translational operator on a Fock state is

Ŝ m|n1 · · · nl · · ·〉 = |n1+m · · · nl+m · · ·〉 .

κ ≡ κ j = j/Dα ( j ∈ [0,Dα − 1]) is the lattice quasimomentum and Dα is the total number of cyclical
permutations of the Fock state. The dimension of the Hilbert space expanded by the TIF basis is
ds ≈ dF/L. It is easily seen that the block structure of the Hamiltonian matrix remains invariant and
the M-sets, now {|sα, κ,M〉}, have dimensions

dM =
1
L

(
M + L − 1

L − 1

)(
N − M + L − 1

L − 1

)
, (9)

where (· · ·) stands for the combinatorial function. The full dimension of the Hilbert space is then
given by ds =

∑
M dM.

A second important consequence of transforming Ĥ into Ĥ′ is that the new Hamiltonian is explicitly
time dependent. This originates in the transformed terms

β̂†l+1β̂l → β̂†l+1β̂l exp (−iωBt)

â†l+µb̂l → â†l+µb̂l exp (−iωBµt) . (10)

One can easily see that Ĥ′(t) is periodic in time with a fundamental period TB = 2π/ωB, the Bloch
period. The temporal periodicity allows one to obtain a stationary spectrum, not of the Hamiltonian,
but of the single-cycle Floquet operator [19, 25]

Û(TB) = T̂ exp
(
−i

∫ TB

0
dt Ĥ′(t)

)
, (11)

where T̂ implies time ordering. The eigenphases φ j

Û(TB)|φ j〉 = e−iφ j |φ j〉 , (12)

divided by the period TB define the quasienergies, in analogy to quasimomentum for the Bloch prob-
lem of a particle in a periodic potential. The set of quasienergies {ε j} inherits the periodicity ωB in
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Figure 3: (Color online) Wannier-Stark spectrum for the single-particle case (a,b) and typical system parameters. Panels (c) and
(d) show the resonant regime for N/L = 4/5 and weak (Wa = Wb = 1.3 × 10−3,Wx = 1.4 × 10−3) or strong (Wa = Wb =

1.3 × 10−2,Wx = 1.4 × 10−2) interparticle interactions, around the second order resonance at ωB/∆ = 2 for Ja = 0.059, Jb =

−0.071,C0 = −0.095,C1 = 0.043,C2 = −0.005,∆ = 0.56. The color code is as follows: eigenstates with Mi ' 0 (black lines),
eigenstates with Mi ' N (red/dark grey lines), and eigenstates with 0 < Mi < N (green/light grey lines). For better visibility of
the avoided crossings, we plot the panels (b-d) directly as a function of the Stark force F ∝ ωB, whilst the fan of single-particle
Wannier-Stark levels in (a) is best seen as a function of the inverse Stark force ∝ 1/ωB.

energy space. This is a direct consequence of the Floquet theorem for periodically time-dependent
systems [25, 29, 37]. Therefore, we can choose, without loss of generality, ε j ∈ (−ωB/2, ωB/2],
implying that the spectrum is folded within an energy range of size ωB, the fundamental Floquet zone
(FZ), as sketched by the red bars in Fig. 2.

The so-called extended spectrum is obtained by shifting the eigenenergies from FZ as ε j → ε j+n fωB,
with the integer n f labeling the FZ. To obtain numerically the spectrum directly from Û(TB) typically
demands long computation times since the often applied approach consists of two steps. First, one
computes the matrix Û(TB) by propagating the entire basis, for instance, the TIF basis, from t = 0
to t = TB. Subsequently, the obtained matrix must still be diagonalized, whereby it is not a sparse
but a full matrix in general [19, 20]. In this paper, we follow a different but equivalent approach: We
study and diagonalize the Floquet Hamiltonian to be introduced in the next section. This procedure
avoids the time integration for obtaining the one-cycle operator from Eq. (11), as done in previous
single-band studies of many-body Wannier-Stark problems [15, 19, 20]. Now we directly diagonalize
much larger, but sparse matrices instead. We shall use the properties of our Hamiltonian (1) described
above in order to improve the performance of the diagonalization scheme that will be presented in the
next section.

3. Floquet-Lanczos Diagonalization: Generalities and performance

In this section we discuss the implementation of two well-known techniques, Floquet theory and Lanc-
zos diagonalization. The combination of these two methods allows for a detailed numerical treatment of the

7



Hamiltonian Ĥ′ describing our many-body Wannier-Stark problem for reasonable system sizes.

3.1. Floquet theory

Let us start with the Floquet representation of transformed Ĥ′(t). The periodicity in time of Ĥ′(t), i.e.,
Ĥ′(t + TB) = Ĥ′(t), permits the application of the Floquet theorem [25, 29, 37]. The Floquet Hamiltonian,
defined as Ĥ f = Ĥ′(t) − i∂t, has instantaneous eigenvectors

Ĥ f |ε j(t)〉 = ε j|ε j(t)〉 , (13)

which have the same periodicity as Ĥ′(t), i.e. |εi(t + TB)〉 = |εi(t)〉. Any time-dependent solution can be
expressed now as

|ψt〉 =
∑

j

c0
j exp

(
−iε jt

)
|ε j(t)〉 , (14)

where the coefficients c0
j are the projections of the initial state onto the Floquet basis vectors.

In order to obtain a system of stationary equations, which we can solve by diagonalization, we expand
these vectors into their Fourier series (making perfect sense because of their periodicity). The corresponding
multi-mode Fourier decomposition reads

|ε j(t)〉 =
∑
~k

e−i~k·~ωt|φ
~k
ε j
〉 =

∑
k

e−ikωBt|φk
ε j
〉 . (15)

The expression on the very right is possible because of the existence of a fundamental frequency ωB since
also the remaining frequencies are multiples of ωB; so we can write: ~k · ~ω = (k1 + 2k2 + ...+ µkµ)ωB = kωB.
The eigensystem of equations is then given by the following coupled algebraic equations:

ε j1̂|φk
ε j
〉 =

(
Ĥ0 − ωBk1̂

)
|φk
εi
〉 + Ĵ|φk−1

ε j
〉 + Ĵ†|φk+1

ε j
〉

+
∑
µ

[
Ẑµ|φ

k−µ
ε j 〉 + Ẑ†µ |φ

k+µ
ε j 〉

]
. (16)

Here, Ĥ0 collects all the time-independent parts of Ĥ′(t). The operators Ĵ and Ẑµ define the hopping and
dipole-like transition operators

Ĵ = −
1
2

∑
l,β

Jββ̂
†

l+1β̂l

Ẑµ = ωBCµ

∑
l

â†l+µb̂l . (17)

Equation (16) can be rewritten in the matrix form

(M− ε jB) · x j = 0 , (18)

after expanding the states of the kth Fourier component |φk
εi
〉 in the TIF basis, |φk

ε j
〉 =

∑
α C j

kα|sα〉, and

defining the vector of components xT
j =

(
C j

kmax,α
, · · · ,C j

k,α, · · · ,C
j
kmin,α

)
. In our case, B = 1, giving a standard

eigenvalue problem. The resulting square matrix is banded and blocked and it has the total dimension

ntot = ds∆k , (19)
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where ∆k ≡ kmax + kmin + 1 is the total number of Fourier components considered, with −kmin ≤ k ≤ kmax.
The matrixM is thus given by

M =



H0 + kmaxωB1
. . .

...

· · · H0 + 2ωB1 J† + Z†1 Z†2 Z†3 . .
.

J + Z1 H0 + ωB1 J† + Z†1 Z†2 Z†3
Z2 J + Z1 H0 J† + Z†1 Z†2
Z3 Z2 J + Z1 H0 − ωB1 J† + Z†1
. .
.

Z3 Z2 J + Z1 H0 − 2ωB1 · · ·

...
. . .

H0 − kminωB1



.

(20)
The matrixM inherits the sparseness of H; the number of non-diagonal blocks depends on the number of
considered µ-dipole couplings. In the current case, we can restrict to |µ| ≤ 2, for which µ = {−2,−1, 0, 1, 2}
since the dipole coefficients go fast to zero with increasing |µ| [36]. As a consequence, the matrix M
is effectively a very sparse, five-diagonal block matrix. As for the operator Û(TB), the eigenvalues of
the Floquet matrix lie within the fundamental Floquet zone ε j ∈ (−ωB/2, ωB/2], with ε jmod(ωB). The
eigenvectors are obtained as the linear combination |ε j〉 =

∑
kα C j

kα|sα〉 =
∑
α C j

α|sα〉, with
∑

k C j
kα = C j

α.
The dimension of the energy basis of interest, {|ε j〉} j, is therefore ds.

Since a maximal number ds (� ntot) of eigenenergies lie within one FZ, the computation of the full set of
eigenvalues ofM (ntot) is not necessary. Therefore, it is convenient to implement a sophisticated algorithm
that permits us to compute a controllable number of eigenvalues and eigenstates of M. We implemented
the symmetric Lanczos algorithm, which proved to be very efficient for obtaining either all or at least a
reasonable number of eigenvalues in the fundamental FZ. Without loss of generality, we work with the TIF
subspace defined by quasimomentum κ = 0 (see Sec. 2). This choice automatically guaranteesM to be a
real and symmetric matrix.

3.2. Lanczos diagonalization

The sparseness of the matrix M makes it very suitable for numerical diagonalization by means of
algorithms such as the symmetric Lanczos procedure [28]. This method allows us the computation of
eigenvalues and eigenstates of a given complex symmetric matrix. A nice feature of this method is that
it permits the computation of eigenvalues close to a given initial choice in energy space. Let us start by
shifting the diagonal elements asM→M+ ε̃01. The goal is to find the largest eigenvalues λ j = 1/(ε j− ε̃0)
of the matrixM−1, which correspond to the eigenvalues ε j close to the predefined shift parameter ε̃0.

The method is an adaptation of the power method [28] to find eigenvalues and eigenvectors of a square
matrix based on the construction of the Krylov subspace (Knp); that is, the space spanned by

Knp[M−1, η1] = span{η1, η2, · · · , ηnp}, (21)

with η j+1 ≡ (M−1) jη1. η1 is a suitable initial vector, which is normalized ‖η1‖ = 1. np (� ntot) is the
dimension of the Krylov subspace, here referred to as Lanczos iterations number. We define the matrix
P =

[
η1, η2, ..., ηnp−1

]
. The Krylov subspace representation ofM−1 is the matrix T = P−1M−1P, which is

9



tridiagonal and symmetric, with elements given by

α j = T j, j = ηT
jM

−1η j,

β j = T j, j+1 = ‖tT
j+1t j+1‖ , (22)

with

tT
j+1 = M−1η j − α jη j − β j−1η j−1

η j+1 = t j+1/β j+1. (23)

The construction of the Knp space is supported by an appropriate Gram-Schmidt orthogonalization proce-
dure for the ηi vectors. The matrix T can be diagonalized using standard diagonalization routines. Here we
use the QR algorithm [28] with an error of the order of the numerical (double) precision 10−14; that is, we
compute the decomposition T = QR and the subsequent iterations

T j+1 = R jQ j = QT
j T jQ j = Q−1

j T jQ j , (24)

with T0 = T . The matrix T j+1, by the equation above similar to T , converges to the Schur form of
symmetric matrix T , i.e., the eigendecomposition of T . In addition, the discrimination criterion introduced
by Parlett and Scott [27] is implemented in order to separate converged from non-converged eigenvalues.
Finally, since the matrices T andM−1 are similar, they have the same eigensystem.

The numerical implementation of the Lanczos algorithm requires the setting of several parameters. The
first of these is the shift ε̃0, which we set using Eq. (6), for instance, ε̃0 = EM. This allows us to find a
set of eigenvalues in the vicinity of manifold energy EM = M∆r of interest to us (see Fig. 2). Using the
approximately known dependence of ε̃0(F) on the Stark force F permits us to set the center of the Floquet
zone, for instance, in middle of the spectral range, ε̃0 ≈

1
2 N∆, for convenience. This choice helps in the

visualization of the spectrum in the vicinity of Fr, as shown for instance in Fig. 3.
The number of the found eigenvalues depends on the number of Fourier components ∆k and the number

of Lanczos iterations np. kmax can be estimated by the ratio of the eigenenergy bandwidth of H in Eq. (4)
and the size of the FZ ωB. In this way, kmax can be regarded as the number of Stark-induced ”fictitious”
photonic excitations ~ωB necessary to promote all atoms from the lowest (M = 0) to the largest (M = N)
manifold excitation (see the sketch in Fig. 2). This value is thus given by

kmax =
∆E
ωB
≈

N∆r + WbN2

2πF
, (25)

where WbN2 is the energetic cost of producing a state with N atoms in a single lattice site within the second
band [17], e.g., the state |ε j〉 ∼ |000 · · ·〉 ⊗ |N00 · · ·〉. For our purpose, it is very important to note that
according to the estimation of kmax, we have that kmin does just play a minor role. Therefore, the Fourier
expansion may not necessarily be symmetric with respect to the photon index k, i.e. kmin/kmax < 1 is
indeed a possible choice for us. To minimize the dimension of M, we may even choose kmin = 1 and
still obtain converged Floquet eigenspectra. The number of Lanczos iterations np is adapted such that we
obtain a minimum number ds of convergent eigenvalues within the FZ, for which we usually have that
ds < np � ntot.

The required memory storage for one diagonalization is given by the formula

MS[GB] =
(
ntotnlarg + n2

p

)
×

16
109 ∼ d2

s , (26)
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Figure 4: (Color online) Spectra computed at the first order resonance between the two energy bands for increasing sizes of
our system. i.e. for the filling factors shown in the legend in (b). Panel (a) shows the saturation of the number of convergent
eigenenergies (#CEvs), within one Floquet zone (FZ), with increasing size of the Krylov subspace. The y-axis is normalized to
the corresponding TIF basis dimension, ds and kmax, are estimated as in Eq. (25). Panel (b) shows the saturation of #CEvs with
the number of Fourier components ∆k. The realistic parameters [17, 36] for this computation are: r = 1, ∆ = 2.53, Ja = 0.08,
Jb = −0.24, Wa = 0.018, Wb = 0.025, Wx = 0.02, C0 = −0.09, C±1 = 0.035, and C±2 = 0.002.

where nlarg = (µ + 1)ds and np ≡ dim(Knp). The first term on the right hand side is the needed memory
storage for M, which for systems with fillings, i.e. particles per number of sites, N/L > 1 can be very
large. np is the dimension of the Krylov matrix P, which is proportional to the dimension of the TIF basis.
For storing a 64bit number we need 8 bytes. The factor 2 × 8 = 16 comes from the fact that we use an
implementation of the Lanczos algorithm which was developed for general complex symmetric matrices
[29, 30, 37]. For instance, for N/L = 7/6 (ds = 5304) we need kmax > N/r Fourier components at RET
conditions F = Fr, given ∆ � {Wβ,x,Cµ}. Therefore, we have in this case that MS[GB] ∼ 35. The computer
used for these calculations was a 24 core AMD Opteron(TM) Processor 6234 with 60-GB main memory.

In Fig. 4-(a), we show the dependence of the number of convergent eigenenergies of M, normalized
to ds, on the size of the Krylov subspace, for different filling factors N/L. Once kmax is set by Eq. (25),
we see that the saturation point (np/ds ≈ 1.3) is the same for all systems. In Fig. 4-(b), we scan instead
the number of Fourier components by varying kmax for fixed size of the Knp subspace np = 2ds. Figure 5
shows a polynomial growth of the computational time (CPU time) with increasing dimension of the TIF
basis. We observe a polynomial increase of the CPU consistent with ∼ d3

s . Indeed the only limitation in our
numerical scheme is the memory storage since kmax ∼ ω

−1
B = 1/2πF, which implies that the dimension of

theM increases considerably for smaller and smaller values of F. This fact makes it difficult to study, for
instance, high order resonances with large r, for which the tilt is small. A positive aspect of our system is,
however, that many of its properties are not really size-dependent, but they rather depend only on the ratio
N/L (see ref. [17]). The growth law for the computational time and, in consequence, the efficiency of our
numerical method are expected to hold for even large systems as may be extrapolated from Fig. 5.

One way to overcome the memory storage limit, e.g. for small values of F, is to simply compute only
parts of the spectrum in single runs. As we can see from Eqs. (5) and (25), and also from the manifold
structure of the eigenspectrum folded within the FZ (see sketch in Fig. 2), we can improve the performance
by setting various starting parameters ε̃ j for the Lanczos algorithm, while defining kmax = kmin ≈ ∆r/2ωB.
We now can proceed by implementing N + 1 independent Lanczos diagonalizations, each with its own
sufficient number of Fourier components to promote one atom to an energy difference ∆r/2 starting from
every ε̃ j. This only involves excitations until half way between two neighboring manifolds M and M ± 1.
Thereby, we expect to obtain approximately a number ∼ dM of eigenenergies around every ε̃ j. In this
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Fit

Figure 5: (Color online) Log-log plot of the computational time (CPU time) vs. the TIF basis dimension for the quasimomentum
block with κ = 0. We extract the following relation for the CPU time ∼ dn

s with n = 3.2 ± 0.2. The exponent n is estimated by the
slope of the fitting function for the data corresponding to N = 5 (black ◦), given by the black straight line. Note that for N = {6, 7}
no relevant changes occur as one can see even by eye. ds is increased by fixing the total particle number N and varying the number
of lattice sites over one order of magnitude L = {3, · · · , 12}. The dimensions of the corresponding Floquet matrices M are then
ntot ∼ 102 · · · 105. The system parameters are the same as applied in Fig. 4.

scheme, the dimension of the Krylov subspace (np < ds) is much reduced along with the dimension of
theM. Consequently also the memory storage and the computational times are reduced for the individual
runs. In order to obtain the full spectrum around any chosen shift, e.g., ε̃0 ≈ 0 as in Fig. 2, we wrap all
eigenvalues (obtained around the others shifts ε̃ j,0 ≈ 0) into the FZ defined by ε̃0 as

ε′j → ε j − k0ωB , with k0 =

[
ε̃ j,0 + δ − ε0

ωB

]
∈ Z . (27)

Here [· · ·] stands for the integer part function and k0 is the number of Floquet zones needed to map ε′js onto
their corresponding Floquet eigenstates within the fundamental FZ centered at ε̃0 ≈ 0. We defined δ ≡ δε/2.
The folded eigenvalues thus satisfy ε j = ε jmod(ωB). As the final step we discriminate and eliminate copies
of eigenstates using the fact that the overlap of physically different eigenvectors ideally vanishes. Our
numerical orthogonalization criterion is that if |〈εi|ε j〉| < 10−7 we assume that the two vectors |εi〉 and |ε j〉

(i , j) represent different eigenstates.

Table 1: Comparison of the eigenenergies of the full spectrum (*) around ε̃0 ≈ 0 (upper table) and ε̃2 ≈ 2∆r (lower table) with
folded eigenenergies with starting Lanczos parameters ε̃ j = j∆r (+δ) (?,�), with δ as defined after Eq. (27). The Stark force is
F = ∆ × 10−3/π, while the other parameters are the same as used in Fig. 4.

ε̃0 0.001349897362263* 0.000531659341077* -0.023753576110081* -0.011655535562532*
ε̃1
?, ε̃1 + δ� ε̃2

?, ε̃2 + δ� ε̃3
?, ε̃3 + δ� ε̃4

?, ε̃4 + δ�

0.001349897362262? 0.000531659341080? -0.023753576110153? -0.011655535570281?

0.001349897362263� 0.000531659341075� -0.023753576110091� -0.011655535561856�

ε̃2 5.040989227022449* 5.083166308393272* 5.071405551272533* 5.056877702765119*
ε̃0
?, ε̃0 + δ� ε̃1

?, ε̃1 + δ� ε̃3
?, ε̃3 + δ� ε̃4

?, ε̃4 + δ�

5.040989227022449? 5.083166308393297? 5.071405551272531? 5.056877702765120?

5.040989227022451� 5.083166308392099� 5.071405551272880� 5.056877702764962�
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In Table 1, we present an example of results based on the implementation with varying Lanczos shift
parameters. We computed the full spectrum around ε̃0 ≈ 0 for N/L = 5/5 with ds = 402, see the given
eigenvalues marked by (∗). For this calculation, we used the parameters ∆r ≈ ∆ = 2.53, 2πF = 2∆ × 10−3,
and Wb = 0.025. Therefore, the full diagonalization requires kmax ≈ (N/2 + 0.125) × 101 ≈ 262 (with
fixed kmin = 1) Fourier components to obtain ds converged eigenvalues. The computation time for this
computation was CPU time ≈ 20 minutes. In comparison, we computed the subsets of eigenvalues around
the shift parameters ε̃ j>0 = {∆r, · · · ,N∆r}, with kmax = kmin ≈ ∆/2ωB = 101/4 ≈ 25 Fourier components.
Then, by using Eq. (27), we folded them into the FZ centered at ε̃0 ≈ 0. For a single diagonalization process,
the CPU time ≈ 95 seconds, that is, the total CPU time is ≈ 95 × (N + 1) seconds ≈ 10 minutes. This is
at least by a factor of two faster than the time needed for one full diagonalization of the same problem.
Hence, by using different shift parameters, a clear reduction of the computational time is expected for large
system sizes. Then even computations for small tilts F become possible. The resulting folded eigenvalues
are shown in the remaining rows of Table 1 (eigenvalues (?,�)) in comparison with the ones from the full
spectrum around ε̃0 ≈ 0 (∗). Note that the agreement is excellent up to 12 digits, at least for the first three
eigenvalues belonging to the shift parameters {ε̃ j=1,2,3 = j∆r (+δ)}. There is a growing lack of accuracy as
the energy distance increases between the FZ of interest (ε̃0) and the one used for calculation of the spectrum
increases (ε̃ j,0). This problem can be partially corrected by choosing a different starting Lanczos parameter
for the FZ of interest. That is, we redefine ε̃0 → ε̃2 = 2∆r, and again compute the eigenvalues around
{ε̃ j,2}, and fold them using Eq. (27). The result is shown in the lower part of the table. Here the agreement
even with the largest eigenvalues, corresponding to those of the high lying manifolds, is much improved.
For our specific Wannier-Stark system, the trick of using different shift parameters is well supported by the
quasi symmetry related to the occupation number M. This symmetry is based on the fact that, for F = 0
and small Wx compared to the manifold band gap ∆r, the Hamiltonian can be approximated by the block
form Ĥ = ⊕M=N

M=0 ĤM. As explained in Sec. 2, this quasi symmetry remains approximately valid for F , 0,
but only far from the resonance conditions F = Fr.

So far we have presented an efficient scheme for the numerical diagonalization of the Floquet Hamilto-
nian represented by the matrixM. With both eigenvalues and eigenvectors at hand we shall now study the
structure of the spectra with respect to changes of a control parameter, which is naturally the Stark force F
in our case. The extension and connection of these static properties of the spectra to the temporal evolution
will then be discussed in section 5.

4. Detecting avoided crossings by eigenstate projection

After solving the Floquet eigensystem with the methods exposed in section 3, we now analyse the spec-
trum of our non-integrable many-body system. The complexity in the spectra arises from the level-level
repulsion of eigenstates as a function of, e.g., the control parameter F. Strong couplings in the resonant
regime, in the vicinity of Fr ≈ ∆/2πr, typically lead to avoided crossings (ACs) in the parametric depen-
dence of the levels. The occurrence of ACs with a wide distribution of crossing widths is associated with
the onset of chaos in quantum systems (see e.g. the refs. [17, 19, 35, 38] in this context). The chaoticity of
our system can be probed by means of statistical distributions, for instance, the nearest neighboring spac-
ing distribution [38, 39] at fixed values of F. Another way to do this is by studying the distribution of ACs
widths within a small range ∆F [40, 41]. In the following, we focus on the latter approach as it characterizes
a paradigm phenomenon which is directly connected to the eigenstates of our system.

The locations of ACs and their widths are difficult to detect numerically in large systems. Most methods
are based on following the parametric changes of the curvature of the energy levels [34], or on solving
non-linear equations for the discriminant of the eigenvalue equation for a given Hamiltonian matrix [42].
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The implementation of these methods affords the ordering of the energies and, for instance, the implemen-
tation of the discriminant method which is computationally expensive for large system sizes. Here, we
introduce an alternative method for detecting and characterizing ACs based on the statistical properties of
the eigenvectors. The method is suitable for our Floquet system with periodic quasienergies since it avoids
the implementation of routines for sorting and following the quasienergies. Our procedure may be applied
to any kind of discrete quantum spectra making it an interesting method for the spectral analysis of generic
quantum systems.

Relevant information on a complex quantum system can be extracted from the properties of the eigen-
vectors of the Hamiltonian under consideration [43, 44]. Let us illustrate the idea with a simple example
in our case. The eigenstates |ε j〉 are connected to the TIF basis through a unitary transformation matrix
as e = Us, with eT = (· · · , |ε j〉, · · ·) and sT = (· · · , |sα〉, · · ·). The transformation matrix elements are
(U)α, j = 〈sα|ε j〉. In this way, since s = U†e, any TIF vector can be written as |sα〉 =

∑
j〈ε j|sα〉|εi〉.

Since the occurrence of ACs is typically local in the spectrum, there are only a few eigenstates involved,
two in the simplest case. Therefore, we may approximate |sα〉 ≈ 〈ε j|sα〉|ε j〉 + 〈ε j+1|sα〉|ε j+1〉, where
|〈ε j|sα〉|2 ≈ |〈ε j+1|sα〉|2. If now |〈ε j|sα〉|2 + |〈ε j+1|sα〉|2 ≈ 1 is satisfied, the state |sα〉 approaches the hy-
bridized state

|s(±)
α 〉 ≈

1
√

2

(
|ε j〉 ± |ε j+1〉

)
. (28)

Such a hybridization in the diabatic basis is typical of an AC. It effectively means that the effective number
of participating states in the representation of the local eigenstate is larger than one. Quantitatively, we can
express this using the inverse participation ratio [43]

iprα(F) =
∑

j

|〈ε j|sα〉|4 , (29)

which is then also larger than one. Note that, for the state in Eq. (28), we have 1/iprα = 2. Sufficiently far
from an AC, ipr−1

α < 2, which implies that 1/iprα has a local maximum at the exact position of the AC. The
width of the AC is the energy separation c ≡ εi+1 − εi. Note that this simple example does not involve the
eigenenergies at all, but it does need the projections pαj = |〈ε j|sα〉|2.

The method can be generalized as follows. Let pT
α be the vector of projections pT

α (F) =
(
· · · , pαj (F), · · ·

)
.

It represents the TIF state |sα〉 in the energy basis. Given two of these vectors, p and q, they are never
collinear unless they are the same, i.e., p ≡ q. Therefore, any change in the structure of pα, as a function
of the control parameter F, corresponds to the coupling to additional states. This is exactly what happens
at ACs. To quantify the structural transformation of pα, a well suited measure is the fidelity function
introduced in [34] as

Gα(F, δF) = pT
α (F)pα(F + δF)

≈ pT
α (F)

(
1 + δF

∂

∂F

)
pα(F) . (30)

Here we have used a Taylor expansion up to the first order in δF:

pα(F + δF) = pα(F) + δF
∂

∂F
pα(F) + · · · . (31)

The differential operator TδF ≡ 1 + δF∂/∂F acts as a translation operator in the F-coordinate. It obeys
the composition property, i.e., TδF1TδF2 = TδF1+δF2 , with T0 = 1. Using the orthonormality condition,
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Figure 6: (Color online) Single-particle spectrum (a) and the strong coupling at the ACs visible in the effective number of partic-
ipating states 1/ipr (b). The color discrimination is as follows: eigenstates with Mi ' 0 (black lines) and eigenstates with Mi ' 1
(red/grey lines). The band gap is ∆ = 2.53.

∑ds
j=1 pαj = 1, it is straightforwardly shown that

‖pα‖ :=
√

pT
αpα =

√
dsσ2 + 1/ds , (32)

with σ2 being the variance of pα. Rewriting the fidelity function from Eq.(31), we obtain

Gα(F, δF) = TδF/2

ds∑
j=1

(pαj )2 . (33)

Here the last term, on the right-hand side is nothing but the inverse participation ratio iprα(F) =∑
j |〈sα|ε j(F)〉|4. Its inverse defines the effective number of participating states, just as in the example above

for two states. Finally, we arrive at the relation

lim
δF→0

Gα(F, δF) = iprα(F) = dsσ
2 + d−1

s . (34)

The latter implies that we have to find the maxima of the 1/ipr in order to locate the position of the
AC. The upper and lower bounds are 1/ipr = 1 and 1/iprα = ds corresponding to the vectors pT

α =

(0, 0, · · · , 1, · · · , 0, 0) and pT
α = d−1

s (1, 1, · · · , 1, · · · , 1, 1), respectively. This can be seen in Fig. 6, where
the lower panel shows values between 1 and 2 for ACs with two coupled states, c.f. also the description
after Eq. (29).

To estimate the width, c, of the detected AC, we appeal to the fact that the occurrence of an AC is
typically local in energy space. Thereby, it is expected that at least two neighboring components of pα are
maximal whenever the hybridization process happens. We can then study the functional behavior of the
local energy difference ω ≡ c j = ε j+1 − ε j by means of the following projection vector distribution for two
levels

P(2)
α (ω) =

∑
j

pαj pαj+1 · δ(ω − (ε j+1 − ε j))

=
∑

j

pαj pαj+1 · lim
Γ→0

1
π

Γ

(ω − (ε j+1 − ε j))2 + Γ2 . (35)
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Figure 7: (Color online) (a) Many-body spectrum around the first-order resonance, r = 1, for N/L = 4/5 and the κ = 0 TIF
subspace. The zoomed region on the right highlights the clustering of avoided crossings in the center of the spectrum. The
density of ACs is shown in (b). Panel (c) presents the normalized distribution of the effective number of participating states, 1/ipr,
computed at all detected ACs within ∆F = 0.5 × ∆/2π, i.e. in the full range of F shown in (a). All panels (a-c) visualize the strong
coupling, most prominent at the center of the spectrum.

The system parameters motivated in [36] are: ∆ = 0.56, Ja = 0.06, Jb = −0.071, Wa = 0.025, Wb = 0.027,
Wx = 0.024, C0 = −0.095, C±1 = 0.04, C±2 = 0.004.

Here we expressed Dirac’s delta in terms of a Lorentzian function with vanishing width Γ. P(2)
α (ω) as a

single function efficiently detects the widths ω = ε j+1 − ε j at which P(2)
α (ω) has a maximum. In a more

general case, an AC can consist of more than just two participating states. In this case, for a better estimation
of the AC positions, we also use the following three level distribution P(3)

α (ω) =
∑

j pαj−1 pαj pαj+1δ(ω−c), with
c = min{ε j+1 − ε j, ε j − ε j−1}. Because of the typically local feature of ACs in a discrete quantum spectrum
(see the zoom in Fig. 7 as an example), it is practically sufficient to rely on the information content of
both functions P(2)

α and P(3)
α for a reliable detection of ACs. We used this approach to find numerically the

ACs, their positions, and their distributions within the resonant (RET) regime in an efficient and easy to
automatize manner.

In figure 7 we present the results for the detection ACs in our many-body Wannier-Stark system. In
the zoomed region one can recognize the strong level repulsion between the energy levels as a function of
the force ε j(F). The ACs cluster in the region around Fr, as highlighted by the density of ACs ρAC(F) =

#ACs/ds∆F in Fig. 7(b). Furthermore, we show the normalized distribution of the effective number of
participating states in the entire resonance region ∆F in Fig. 7(c). We see the large number of effectively
participating states in the resonant regime, arising from the strong level mixing, in particular for the states
with manifold number 0 < M < N (see section 2).

As shown in ref. [17] for our system, the number of ACs can be increased in our model by increasing the
filling factor (N/L > 1) and the interparticle interactions. This manifests itself in a compression of levels
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Figure 8: (Color online) The inset shows the comparison between the theoretical predictions based on random matrices for P(c)
(red/dark grey dashed line) and the numerically obtained distribution (black line). The main panel shows the respective cumulative
distribution functions. Good agreement between the data and the random matrix theory for quantum chaos, expressed in the
spectral statistics, clearly highlights the strong coupling and, consequently, the complex dynamics in the temporal evolution of
the system. Here N/L = 5/3 (ds = 84) and N/L = 7/4 (ds = 858) with a bandgap ∆ = 0.155 guaranteeing a large number of
ACs (#ACs = 4751 for N/L = 5/3 and #ACs = 152145 for N/L = 7/4). ∆F is chosen as for the previous figure and a step size
δF = 10−4 was used for the computations.

within the Floquet zone [17]. Due to the lack of additional symmetries in the system, this leads to a crossover
between regular and quantum chaotic spectra and dynamics, where the chaotic regime occurs for N/L ∼ 1
and ∆ ≤ 1 in the vicinity of the resonances at F = Fr. To characterize the quantum chaoticity, we need not
only the pure relative occurrence frequencies of ACs, but also the statistics of their width distribution. We
recall that our Hamiltonian in the κ = 0 TIF subspace is represented by a real and symmetric Floquet matrix,
which, within the context of random matrix theory (RMT), belongs to the so called circular orthogonal
ensemble (COE) [38]. Random matrix theory predicts for this case the following distribution of AC widths
form [41]

P(c) = (1 − γ)δ(c − c0) +
2γ2

π
exp

(
−
γ2c2

π

)
, (36)

with normalized average distance 〈c〉 = 1. γ is a fitting parameter. For γ = 0, the formula characterizes
a fully regular spectrum, with a relevant energy scale c0. Conversely, γ = 1 implies the randomization of
the set of widths c, marking the completely chaotic regime (see Ref. [41] for details). Here we confirm the
expected chaoticity of our system by comparing our numerical distribution with the theoretical prediction
for N/L = 5/3 (green/light grey) and N/L = 7/4 (red/dark grey) in Fig. 8. Interestingly, we see that even
for a small system N/L = 5/3 (ds = 84), the agreement between the chaotic distribution with γ = 1 and
the numerical one is still good. The agreement is excellent for the larger fillings N/L = 7/4 (ds = 858),
which guarantee better statistics. The number of detected ACs is 4751 for N/L = 5/3 and is 152145 for
N/L = 7/4. The quality of the matching of the results of our numerical experiments with the theoretical
predictions is best corroborated by computing the cumulative distributions I(c) =

∫ c
0 P(c′)dc′, which are

shown in the main panel of Fig. 8.
To summarize, we have shown that the detection and characterization of ACs is possible using the
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projection vectors pα and their transformation as a function of a control parameter. The presented numerical
method is well suited for any class of discrete eigenspectra, that is, not only for our Floquet spectra. Since
the ACs occurrence is mostly local in the spectrum, the use of the two and three-neighbor level distributions
turned out to be sufficient for well estimating the width of the ACs, such as shown in Fig. 8. The parametric
evolution of the projection vectors studied here is inherently connected with the dynamical evolution of the
system. This will be seen in the next section after we will have discussed numerical techniques to evolve
arbitrary initial states in time.

5. Temporal evolution: algorithms and results

Having at hand the solution of the eigenvalue problem for our Floquet Hamiltonian in Eq. (18), we can
easily propagate any given initial state |ψ0〉 in time. To do this, we best remind the reader on the representa-
tion of the time-evolution operator in the eigenbasis. With help of the closure relation

∑
j |ε j(t)〉〈ε j(t)| = 1̂,

the evolution from time t1 to time t2 is obtained by applying the following operator onto the initial vector

Û(t2, t1) =

ds∑
j=1

e−iε j∆t|ε j(t2)〉〈ε j(t1)|

=

ds∑
j=1

kmax∑
kk′=−kmin

e−iε j∆teiωBkt1e−iωBk′t2 |φk′
ε j
〉〈φk

ε j
| , (37)

where ∆t = t2 − t1 [29]. We can then compute any relevant physical quantity using this operator and the
coefficients c0

j =
∑

k〈φ
k
ε j
|ψ0〉 defining the initial condition. Note that, in the case of |ψ0〉 = |sα〉, we have

cαj =
∑
kα′
〈sα′ |(C

j
kα′)
∗|ψ0〉 =

∑
k

(C j
kα)∗ = 〈εi|sα〉 . (38)

This straightforwardly shows us the direct connection between the initial condition for the time evolution
and the projection vectors defined in the previous section. Starting the evolution at t = 0, we can compute
any observable described by a hermitian operator Ô using Û(t, 0) as follows

O(t) = 〈ψt|Ô|ψt〉 =
∑
αβ

(Λ0
α(t))∗Λ0

β(t)〈sα|Ô|sβ〉 , (39)

with

Λ0
α(t) =

∑
jk

c0
je
−i(ε j+ωBk)tC j

kα . (40)

Since for large systems, with increasing N and L, the size of the Floquet matrices scales very unfavor-
ably, i.e. exponentially with these parameters, we must ask ourselves whether it would not be better to use
a direct propagation method for the given initial state. We use an explicit propagator, e.g. the Runge-Kutta
(RK) algorithm [45]. More precisely, we resort to a fourth-order RK method with adaptive step-size based
on a step-to-step error estimation. We applied an error threshold of 10−12 for the results shown here, while
no relevant changes are observed when comparing to thresholds between 10−9 · · · 10−12. Very importantly,
we replace the matrix-vector multiplication for the time integration by very efficient vector-vector multipli-
cation. To do this, we store matrices in one-dimensional arrays and just cycle through the upper triangle of
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Figure 9: (Color online) Polynomial growth of the CPU time with the size of the system ds, for different atom numbers N at fixed
system sizes L = 5, 6, . . . , 12, respectively. For both, the time evolution base on Eq. (37) and RK method the CPU times grow as
∼ dn

s with exponents n = 3.1 ± 0.1 (red line for red/grey symbols) and n = 1.1 ± 0.1 (black line for black symbols), respectively.
The parameters are the same as in Fig. 4.

the matrix Ĥ′(t) in their order of appearance. The corresponding indexes are stored in vectors of integers as-
sociated with the non-zero matrix elements. The number of non-zero elements scales like (∼ (8L + 1) × ds)
in our case, which saves a lot of allocation memory and considerably reduces the number of operations
for the time integration. Since the RK algorithm does not intrinsically preserve the norm, we monitor the
accuracy of the method via the preservation of the norm of the wave function along the time evolution.

We now compare the efficiency of both propagation methods by evolving in time the upper-band occu-
pation number

M(t) = 〈ψ0|Û†(t, 0)
L∑

l=1

n̂b
l Û(t, 0)|ψ0〉 =

L∑
l=1

〈ψ0|Û†(t, 0)n̂b
l Û(t, 0)|ψ0〉 , (41)

from t = 0 to t = 1000 TB for a fixed Stark force F. The initial condition is given by the lowest energy state
of the TIF basis for the chosen filling factor N/L, for instance, states of the type |ψ0〉 = |111 · · ·〉 ⊗ |000 · · ·〉
at filling one. Figure 9 shows that the computation times scale algebraically with ds, as defined around Eq.
(9), for both methods, the Lanczos-based diagonalization with Eq. (37) and the RK propagation. The global
scaling is much better for the RK method for large system sizes, here with exponent n ' 1, in contrast to
the diagonalization with n ' 3. As expected, for not too large integration times, the RK method needs less
CPU time, since here the number of operations is much less than the ones needed for solving the eigenvalue
problem. Moreover, the storage memory for the RK method is much less than the memory required in the
Lanczos algorithm, which is already highly optimized with respect to memory requirements. But there is
a crossover in efficiency measured by the CPU time. The absolute running times scale favorably for the
Lanczos method only up to system sizes of ds ' 105/2, while the RK integration is faster for large sizes
ds > 105/2, for the fixed overall integration time t = 1000 TB chosen in Fig. 9. Only for evolutions up to
very long times, the diagonalization will be favorable again. This is of relevance for small tilts F, since the
characteristic time scale given by the Bloch period TB = 1/F, see also the discussion in section 3 around
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Figure 10: (Color online) We show good agreement of the two methods detailed in the main text, the spectral (SPA) and long-
time average (LTA) for (a) the upper-band occupation number and (b) the projector operator associated with the state |sα〉 =

|111 · · ·〉 ⊗ |000 · · ·〉. The chosen filling is N/L = 5/5, and we focus on the vicinity of the second order resonance with r = 2. The
evolution at every value of F is done up to t = 10000 TB. The other parameters are the same as applied in Fig. 4.

table 1. Of course, the implementation of highly efficient matrix-vector multiplications, as stated above, is
crucial for the given comparison. We finally note that the observed algebraic scalings of the CPU times are
stable for a large range of system parameters, which is exemplified as a function of N in Fig. 9.

Coming back to our discussion in the previous section, we will see that the projection vectors defined
there are intimately related with the temporal evolution of our system. For our study, we now use the
Lanczos method which turned out to be more efficient for large evolution times, for which the chaoticity
is best observed in dynamical signals. The occurrence of avoided crossing is correlated with the strong,
resonant coupling of at least two quantum states. The evolution of the vector pα can also be studied by
means of the projector P̂α = |sα〉〈sα|. Based on Eq. (37), we compute the time evolution of the projector
P̂α, which reads

Pα(t) = 〈ψ0|Û†(t, 0)P̂αÛ(t, 0)|ψ0〉 = |Λ0
α(t)|2 . (42)

Here we set the initial condition to be |ψ0〉 = |sα〉. The system is now let to evolve up to some time t, and
we compute the long-time average (LTA)

Pα(t) = lim
τ→∞

1
τ

∫ τ

0
〈ψt|P̂α|ψt〉dt

=
∑

jk

|cαj |
2|C j

kα|
2

+
∑

j, j′k,k′
cαj (cαj′)

∗C j
k′α(C j′

k′α)∗ lim
τ→∞

1
τ

∫ τ

0
e−i(ω j j′−ωB∆k′k)tdt , (43)

with ω j j′ = ε j − ε j′ and ∆k′k = k′ − k. The integration over the entire time interval basically gives a Dirac
delta function with argument ω j j′ − ωB∆k′k. The delta function will contribute only if ω j j′ = ∆k′kωB. Note
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that ∆k′k is an integer, which implies that ε j = ε j′ + ∆k′kωB maps the eigenenergy ε j from the fundamental
Floquet zone onto a zone at a distance ∆k′k. The Floquet zones are equivalent, then without loss of generality
ε j → ε j′ . Since degenerancies are excluded in our spectra due to just ACs in the chaotic regime, the second
right-hand term in Eq. (43) vanishes in the LTA, and we obtain

Pα(t) ≈
∑

jk

|cαj |
2|C j

kα|
2 →

∑
j

pαj 〈ε j|P̂α|ε j〉 = iprα(F) . (44)

This means that the system becomes ergodic during the evolution [46]. The effective number of participating
states is hence large, and, in the extreme case, the vector pT

α =
(
· · · , pαj , · · ·

)
approaches the equipartition

condition pT
α = d−1

s (1, 1, · · · , 1, · · · , 1, 1). We conclude that both, the appearance of ACs in the spectrum
and the spectral averages (SPA) of P̂α = |sα〉〈sα| reflect themselves directly in the long-time behavior of the
projection vectors.

The LTA analysis can be straightforwardly extended to any other quantity, for instance the occupation
number M̂ of the upper energy band, whose long-time average reduces to M(t) ≈

∑
j pαj 〈ε j|M̂|ε j〉. Figure

10 shows the comparison of the actual values and the ergodic limits of the observables mentioned above
for N/L = 5/5 (ds = 402), around a second order resonance for initial state |ψ0〉 = |111 · · ·〉 ⊗ |000 · · ·〉.
In order to numerically compute M(t) and Pα(t) we evolve the initial state up to time t = 10000TB. Note
that for both, M(t) and Pα(t) their LTA and SPA correspond best close to ACs, that is whenever 1/iprα is
maximal. Finally, by evolving a given initial state |ψ0〉 it is possible to detect the signatures of avoided
crossings within the interesting spectral regions (here close to RET conditions). This gives an alternative
and most likely easier route to the experimental measurements of signature of ACs and hence of quantum
chaos in complex quantum systems, in the same spirit as the behavior of Bloch oscillation does in simpler
single-band systems [14, 15].

6. Conclusions

In this paper we have presented exact numerical methods for the treatment of a one-dimensional
Wannier-Stark system including strong interactions and two Bloch bands. This system has been of great ex-
perimental interest over the last decade [7, 9, 11, 12, 13, 47], and experiments studying the strong coupling
in the chaotic regime are just on their way [14]. For this implicitly time-dependent quantum system (since
driven system by the Stark force F), we implemented two independent numerical approaches, one based
on the combination of the Floquet theory and the Lanczos algorithm for symmetric matrices, and a second
one based on a Runge-Kutta integration of a given initial state. In both cases, we ensured efficient matrix-
vector multiplications and the memory storage of only non-zero elements in the corresponding Hamiltonian
matrices. The computational times scale polynomially with the system size in both cases. Depending on
the dimension of the system one or the other algorithm is more efficient for the temporal evolution over
reasonable integration times. For large system sizes and not extremely long integration times, the direct and
explicit Runge-Kutta integration proved to be more efficient, scaling with an exponent of approximately
one with the system size. Nevertheless, the spectral analysis of the Floquet Hamiltonian is very useful for
characterizing the dynamical properties. Interestingly, signatures of the chaoticity of the system can also be
found in the temporal evolution of appropriate observables. The avoided crossing scenarios in the spectrum
as a function of the control parameter F are directly related to the dynamical spreading across a given basis.
This spreading even leads to complete ergodicity in the quantum chaotic regime of our model occurring at
resonant tunneling conditions between the two energy bands.

The numerical methods presented here are suitable for a larger variety of problems similar to the multi-
band version of the Wannier-Stark system. For instance, periodic driving of bosonic many-body systems

21



could be used to create highly entangled states [48]. Moreover, artificial gauge fields can be created by Stark
forces or by time-periodic potentials [49] in one or more spatial dimensions, possibly also in the strongly
interacting regime with comparable resonant forces in the near future.Generally, as we showed for our
case, the numerical performance may be improved exploiting the characteristic energy scales of the given
system for an optimal choice of the numerical parameters. Our work shows that generic quantum lattice
systems with strong many-body interactions should be tractable by exact methods up to Hilbert space sites
of about 105 on standard scientific workstations. Using sophisticated parallelization techniques and larger
computing clusters with access to much more memory, one might gain at least another order of magnitude
for the maximally treatable Hilbert space sizes [30].
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[40] H-J. Stöckmann, Quantum Chaos: An Introduction, Cambridge University Press, Cambridge, 1999.
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