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Achievable Hiiciency of Numerical Methods for Simulations of Solar Suegf&ponvection
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Abstract

We investigate the achievablfieiency of both the time and the space discretisation methsed in Antares for mixed parabolic—
hyperbolic problems. We show that the fifth order variant MO combined with a second order Runge—Kutta scheme is mpt on
more accurate than standard first and second order schamatsdmore fiicient taking the computation time into account. Then,
we calculate the error decay rates of WENO with several eixftiunge—Kutta schemes for advective anffiugive problems with
smooth and non-smooth initial conditions. With this data,estimate the computational costs of three-dimensiomailations of
stellar surface convection and show that SSP RK(3,2) is th& dficient scheme considered in this comparison.

EKeywords: Methods: numerical, Numerical astrophysics, Runge—Kagteemes, ficiency, WENO scheme, Hydrodynamics
N
O The simulation code Antares [1] was developed for the sim- _variable | meaning unit (CGS)
ulation of solar and stellar surface convection. Recenthas P gas density gent®
(O also been applied to many other astrophysical problems [e.g T temperature K
O 2,3]. p pressure dyncnt?
y . In this code, the Navier—Stokes equations (usually without U x velocity (vertical) cms?
¢ 'magnetic field) and with radiative transfer (radiation hyai- v y velocity (horizontal) cmst
(7) namics, RHD) are solved in the form w zvelocity (horizontal) cmst
S Qrad radiative heating rate ergstcm
c dp Vsnd sound speed cmst
o ot V- (pu) =0, (1a) E total energy ergcnt3
4 (ou) e internal energy ergcent®
N o0 +V-(ou®u)+Vp=pg+V-r, (1b) € specific_: int_ernal_ energy ergg?
S oE n dynamic viscosity genrtist
—i ot V-UWE+P)=p@-u)+V-(U-7)+ Qg e second (bulk) viscosity genrist
% (10) Table 1: Variable names, meaning and CGS units as used ipdpisr. Note
— . . . _ - that X denotes .the vertical 9irection. Vectors are written in bfalde. The
. * The meaning and units of all variables is shown in Téble 1velocity vector isu = (u,v,w)".
(O An equation of state must be specified to complete this set of
g equations. The viscous stress ten‘seur(ri,j)i:l’z’3 is given by with
o oy duj 2
2 Ti,,—=n(a—X;+a—x:—ééi,,—(V~u))+§6i,j(V~u). (2) P pu
X , | o , Q=| pu |.Faw=| pueu+pid |,
«_ . gisthe gravity vector an@@.q is the radiative heating rate E u(E + p)
(O describing the energy exchange between gas and radiaion. (3b)

is the Kronecker symbol and¢ are the first and second coef-

ficients of viscosity.
We can rewrite equationi](1) as

0
_Q"‘V'Fadv:V'Fvisc‘*‘S

i (3a)
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Q is the vector containing the conserved quantities and Id

is the identity matrix. We call the terms collectedfgg, the
advectiveor inertial part and inF;sc the viscouspart of the
Navier—Stokes equations. All first derivatives are corgdiim
V - Faav, all second order terms W - Fyisc. We note thaf% +
V - Fagv = 0 is of hyperbolic type, Where§§ —V-Fisc=0is
a parabolic system.
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1. Discretisation and Numerical Methods

Following themethod of linespproach of discretising space 9. (ou) = 9 ((5 + 2 ) du (5 _Z )a_v) 4 ( (6u av))
and time separately!|[4, 5], equatiof’ (3) are discretisegage Ot 9x 3" ay) " ay 5)2 A

only and converted to ] ]
by virtue of equationd{1) andl(2). The outer derivatives are

6Q replaced by a finite dierence, evaluating the inner function at
5 — L Q. ) the half-integer nodes. Therefore, we need the terms imls'fde
spatial derivatives iriL{8) at{z, j)andat{, J—l ati—s j)
and 5 ”" at(,j- —) can be calculated directly by formulﬂ?b)
Jhen the cofficient functions must be interpolated to the half-
integer grid. To fourth-order accuracy,

where L is the operator resultlng from the spatial disceetis
tion of -V - Faqv + V - Fiisc + S, In principle, the integration
of this equation can be performed with any numerical metho
for solving ordinary dfferential equations, in particular Runge—

Kutta methods, provided they are numerically stable, aigfo o+ T + T~ M

further properties (such as positivity, e.g., ofor E) may be M-1j= 12 ) 9
required (cf., for instance, Kupka et al. [6]). . ) o
The spatial discretisation is done separatelyfigi andFyse ~ 25SUMINg that the variable is given as a cell average. To cal-
as defined in equationgl(3). In optically thin regions théaad Culate % at the half integer indefi - 3, j), we calculate the
tive heating rateQaq is a source term and is calculated sepa-derivative at the cell centre by
rately by the radiative transfer solver as described in Igaith o ay .
etal. [1]. In optically thick regions, the fliision approximation 6V|,] = V-2 8v.,,_12+58v.,1+1 w2, (10)
ay y

Qrag =V - (kVT) (5)  and then interpolate the result fo- 1, j) according to for-

is valid such that we can includ@aq in the Fysc term. mula [3). The computation of! at (i,j - %) is done analo-

For Faqw, the WENO finite diference scheme is employed gously. The resulting procedure is fourth-order accurate.
[, 8,19]. The WENO scheme is a highlffieient shock- After the spatial discretisation step, the equatidds (&) ar
capturing scheme which we consider here in its fifth ordeir var transformed to the forni{4). SincEl(4) is an ordinarffedi
ant called WENOS. In the context of solar surface convectiorential equation, we can use Runge—Kutta schemes to inéegrat
simulations, its superiority in terms of accuracy compaied it.
other high-order schemes was shown in Muthsam et al. [10]. We follow Gottlieb et al.[[12] in defining some basic proper-
Its main part, the fifth order accurate reconstruction oppers  ties of Runge—Kutta schemes.
summarised in Algorithrial 3.

For Fyisc, the fourth-order accurate scheme from Happen-
hofer et al. [11] is used. First, we outline the procedure for

Definition 1. Let an initial value problem of the form

the one-dimensional fiusion equation ¢'(1) = L (¢(1), 4(0) = do. (11)
5 be given. An explicit s—stage Runge—Kutta scheme is an inte-
‘9¢ Da_¢ - ‘9_¢ _ ﬂ D6_¢ =0 (6) gration scheme of the form
ot X2 at  ax\ ox
with the constant cd&cient of difusionD. In one spatial di- © _ "

mension and on an equidistant Cartesian grid, the outeraderi

tive is approximated by W

¢(i) = Z (ai,k ¢(k) + ot Bix L(¢(k))) ,aik>20i=1,...,5

¢ ap k=0
Xii1)— 5.\ X_2
0 ( )( )_ ( i ) ﬁx( i 2) (7a) ¢n+l:¢(s)’
3X oX (12)
with constant grid spacingx. Then, the inner derivative is cal-

whereg¢" = ¢(t,) and the time stept is given by the CFL con-

culated by .
dition.

09 (XI——) Pi—o — 15¢i_1 + 154 — pis1

, (7b)  Definition 2. Assume thak results from the discretisation of
X 126x

a spatial operator and let a seminorjir| be given. Following

. o Wang and Spiteri [13], a Runge—Kutta method of the f¢I&h)
leading to a fourth-order accurate approximation. Heres is called strong stability preserving (SSP) if for all stagei =

¢ (%)- 1,2,...s
Similar procedures can be applied to any second-order term; """

in particular toFisc. Special care has to be taken for mixed ||¢(i)“ <l6" (13)

derivatives. In the two-dimensional case and considerinlg o -

theF,isc terms, we arrive at with a CFL restriction on the time steft.



Thetotal variation diminishing (TVDproperty [7] is a spe- scheme order stages a; Bi
C|al_ case of this def|n_|t|0n. It results from inserting ttodal Euler 1 1 1 1
variation norm of¢ at timet,,

TVD2 2 2 1 1
TV(¢") = Z,: |6%,1 — ¢} (14) 11 0 1
1
in (@3). SSP RK(3,2) 2 3 1 5 1

In this paper, we consider four explicit time integration 0 1 0 3
schemes: the first-order Euler forward method, the second- % 0 % 0 O %
order two-stage TVD2 and the third-order three-stage TVD3
scheme from Shu and Oshgr [7]. The fourth explicit scheme is VD3 3 3 1 1
the second-order three-stage scheme from Kraaijevandgr [1 % 711 0 711
further studied in Ketcheson et al. [15] and Kupka et |al. [6], % 0 % 0 O %

called SSP RK(3,2).

The TVD2 and TVD3 (total variation diminishing) schemes Table 3: The Shu-Osher arrays [7] of the explicit schemesidered in this
were also analysed with respect to their SSP (strong gtabili P2Pe"
preserving) properties by Kraaijevanger [14]. TheirfGocéents
were fir_st deriyed by Heun [16] and_F_etherg [17] from a dif- pendix A.6 in LeVequel[5], we assume that the emoof a
ferent viewpoint. They are the explicit Runge—Kutta scheme athod decays with the step sizas
of second order with two stages (TVD2) and of third order with
three stages (TVD3) which have the largest domain for which &(h) ~ ChP (15)
the SSP property holds among all schemes of such order and ’
such number of stages, i.e. they are the optimum SSP RK(2,)herep is the(empirical) order of convergenaar order of ac-
and SSP RK(3,3) schemes. The SSP RK(3,2) scheme is the oguracyandC is theerror constantof the method.g(h) is the
timum one among all three-stage explicit Runge—Kutta seé'sem numerical error at grid spacirty A higher order method may,
with SSP property, if the approximate order is required to befor a given grid, deliver worse results than a lower ordeesch
only two instead of three (see Kraaijevanger [14] for pramffs due to its high error consta@t[p. 35,21].
these results). It can be implemented with the same memory p andC can be estimated from a numerical solution if the ex-
consumption as TVD2[18, 19]. The Butcher arrays [€.d.. 14, Sact (or at least, very accurate) solution is known by conmgari
and the Shu-Osher arrays [7] of all metioned schemes are givehe error for several values &t If, for example, the resolu-
in Table[2 resp. Tabld 3. tion is increased by a factor 2, the convergence patan be

We note that all schemes are explicit schemes. Accordingstimated by
to Wang and Spiter[_[13], they are all linearly unstable ia-th
ory when coupled with the WENO5 scheme except TVD3. But p = log, (e(h)/&(h/2)). (16)
the Courant numbers we use are small enough in terms of Mo-
tamed et al. [20] to make the combination with WENO5 stable Then, the error constant of the method can be calculated by
in practical applications.

C = g(h)/h". 17)
0
0 1 1 The obtained values depend on the test problem and on the
1 1 2 i 1 norm chosen to measure the error size.
A ‘ 1 1 1 2 2 We compare theficiency and accuracy of several numerical
TVD2 3 3> . . .
22 A _ ‘ % % % schemes by solving the advection equation
0
9 09
—+u—=0 18
11 ot Yax (18)
1 1 1
2 4 13 for t € (0, 2] andx € [0, 1] with periodic boundary conditions.
ATvp3 ‘ 11 2 The advection velocity is set to 1. The analytical solution of
6 6 3

the advection equation{[L8) at tirhis ¢(x, t) = ¢(x—t, 0). With
Table 2: The Butcher arrays of the explicit schemes consier this paper.  the initial condition
From left to right: TVD2, SSP RK(3,2), TVD3.

¢ (x,0) =1+ 0.1sin(2rx), (29)

the analytical solution stays smooth for all times. Therefo

this is an appropriate test case for determining the engpiric
In practice, the order of accuracy is nofiszient to describe order of accuracy and the error constants of a method.

the dficiency of a Runge—Kutta method. As described in Ap- Given discontinuous initial data,
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2. Analytical Test Cases



that the Euler forward scheme is ndlieient unless the spatial
$(x.0) = {1, if 0.1 <x<0.3, (20) resolution is very coarse. Then, the maximum allowed Cduran
’ 0, else numbers are rather small.
For the other schemes, the error reaches much smaller magni-
the convergence order is restricted by the smoothness of thgqes down to approximately machine precision. In mosts;ase
solution. By comparing the numerical solution to the aneétt e mporal and spatial error are balanced or the spatial doror

one, we calculate the meai error att = 2s [cf. Appendix A5 jnates except for the regions where both resolutions aherit

ini2] for a set of spatial and temporal resolutions. very coarse or very fine. The TVD3 scheme shows the small-
_For the advection equation, the (advective) Courant numbeggt errors, but these are only reached with very high syl
o is defined by temporal resolution.
st For the discontinuous problem, the errors are much larger.
o=y X (21) For a large range of combinations &f and §x, the error is
) ) o ) nearly independent of the temporal scheme. It does decrease
Next, we solve the one-dimensionaffdsion equation with spatial resolution, but at a much slower rate deterghine
6 P by the smoothness of the solution. Nevertheless, the gyabil
—-D_—5=0 (22)  properties are dierent. The Euler forward scheme is always
ot 9x unstable for- > 1, except for very coarse resolution, and shows
for t € (0,50] andx € [0, 1] with periodic boundary conditions non-monotonic error convergence. All other schemes gixe st
and with initial data ble solutions witho- = 1, but often they are very inaccurate.
In Figured, we show the error convergence of the numerical
¢ (x,0) =11+ 0.1sin(27X). (23)  solution of the advection equation with smooth initial d&id)

(top panel) and with discontinuous initial dafa](20) (mildl
panel) for the four Runge—Kutta scheme considered in this pa
B IPSTAPE per. We also show fits of the forf {[15) to the error convergence
p(x=11+01 exp( D t) sin(2rx). (24) The parameter€ andp of the fits are given in Tablg 4 for the
D > 0 is the (constant) @fusion codicient which we choose smooth case and in Tatlé 5 for the discontinuous case. For a
as 103. For the difusion equation, we define the fiisive)  given set of pairsh, «;), the fitting parameter€ andp as de-

The analytical solution is

Courant numbes- by fined in equation(115) are obtained by solving the lineareayst
o= Dﬁ. (25) logjohy 1 log;g &1
6X2 |Oglo h2 1 ( p ) |Oglo &2 (26)
2.1. Errors of Runge—Kutta Schemes : 10g,0C 5
|Oglo hn 1 |Oglo En

For the following, we choose the fifth order WENO scheme
to discretise the advection equation in space, and compare In the smooth case, WENO5 with Euler forward time inte-
the dficiency of several Runge—Kutta schemes for the analytgration yields first order convergence, whereas the contibima
ical test problems from Sectidd 2. The results are given fowith TVD2 and SSP RK(3,2) converges with second order. On
the smooth initial condition(19) in Tablés_All4,_Al15, Al16 average, the error constant of SSP RK(3,2) is smaller than th
and[A_ 1T for the Euler forward, the TVD2, the TVD3, and the one of TVD2. Using TVD3 as time integrator results in third
SSP RK(3,2) scheme, respectively. For the discontinuaus inorder convergence.
tial condition [20), they can be found in Tables B[18, B[I2®B For the discontinuous initial conditiof {R0) the convergen
andB.21. In each row, the spatial resolution is fixed, wheiea order and the error constant for all integration schemeseme
the columns, the temporal resolution is constant. Siniseof  similar except for the Euler method. The accuracy of the nu-
magnitude 1, the absolute errors shown are also relatieeserr merical solution is limited by the smoothness of the anati

For advective problems, we see the error for a fixed Courargolution. Only the Euler forward method shows#féient con-
number on the diagonal of each of the error tables. If the sovergence rates with much strongly varying error constants,
lution was not stable for the particular choice of spatiadl an dicating very irregular error convergence. The additicafiairt
temporal resolution, we do not give a number for the errag.siz of using a three-stage scheme does not ghjnaerms of ac-

In most cases, the algorithm is stable only-ik 1. curacy compared to TVD2. In terms of stability, TVD2, TVD3

From these data we can deduce the size of the temporahd SSP RK(3,2) are quite similar.
and spatial error for each scheme, and its dependence on theFrom Figure[ll, we investigate the influence of the Courant
Courant number. For the smooth initial conditiénl(19), we ob numberc on the accuracy of the numerical solution. On the
serve thatthe erra(6x, 6t) of the Euler scheme is never smaller left panelsg = 0.5, whereas on the right panets,= 0.25. In
than about 16*. It shows approximately first order convergencethe smooth case, halvingleads to a decrease in error size by
in time. For many combinations @t andéx, decreasingx  a factor 4 for the two second-order schemes and a factor 8 for
does not lead to a decrease in the error, since the error is donTVD3, whereas the changes are much smaller for the discontin
nated by the error of the time integration scheme. We corcluduous problem. We conclude that the accuracy of the numerical
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solution is in the smooth case limited by the time integratio  On a given (equidistant) grid, the one-dimensional coreserv
scheme for fine grid spacing and by the spatial discretisatiotion law
for coarse grid spacing, but in the discontinuous problem by
the spatial accuracy only (for those schemes which are lactua 9¢ n IF(¢) -0 (27)
stable). ot Ox

For the dffusion test casé (22) with the smooth initial con- with the analytical flux functiorF is discretised in space in a
dition (23), the errors of the numerical solutions caloathft  conservative fashion byl[9]
t = 50s are shown in Tablés Cl4Z, 0.23,C.24 [and1C.25. The
error plots for fixed Courant numbessare shown in Figurg]2 O Hi+E - Hi—%
together with fits of the forn .(15). The paramet€randp of ot * X

the fits are given in Tab6. . _ A numerical scheme defines how the numerical #jx: is
Keepingo fixed and decreasing the grid spacing means degg|cylated. The procedure for the Upwind, the Lax—Friduic

creasing the time step size quadratically. Therefore, thgie 5,4 WENO5 scheme is summarised in AlgoritihEl1, 2[@nd 3,
ical convergence rates and error constants shown in Table 6 €respectively.

hibit second to fourth order convergence since the convere
rate of the time integration is doubled. The overall conee®  ‘Ajgorithm 1 Calculation of the numerical flukl., ; with the
is then restricted by the fourth order spatial discretisatis de- 2
fined in equationg (7). The increase in error for very smadl gr
spacings is due to rounding errors, and is larger the mogesta 1 HH% = F (&)
the time integration scheme has.
From Table 10 in Kupka et al.|[6] we deduce that the max-
imum Courant numbes as defined in equatiof (P5) for dif-
fusive terms is B75 for TVD2, 0299 for TVD3 and 672
for SSP RK(3,2). This is confirmed by the stability behaviours€cond order Lax—Friedrichs method aSSU”%ﬁ@ 0.
of the numerical solution of the test problem](22) with ini- .. | = _ & , , X (h _ b
tial condition [2ZB). Only SSP RK(3,2) yields stable results b H=05 ((F(¢'+1)+ Flon)+5- @ ¢'+1))
with o = 0.5. We conclude that the high maximum Courant
number of SSP RK(3,2) makes it the mofit@ent scheme for It is obvious that the complexity of the WENO scheme is
diffusion—type equations even though its theoretical ordes-of a much larger than for the lower order schemes. For calcwatin
curacy intime is only 2. We note that even with non-smooth ini the numerical flux function in one grid point, only one evalu-
tial data, the solution of the filision equation [{22) is smooth ation of the analytical flux functiof is necessary for the up-
fort > 0 and the error sizes converge in the same manner [22)wind method. For the Lax—Friedrichs method, 2 evaluations
One could argue that formally, it is inconsistent to measuref F, 3 additions and 2 multiplications are necessary. But for
convergence orders by using the spatial resolufiormash in ~ the WENO method, at least 5 evaluationsrFgf25 additions,
formula [I5) since the number of degrees of freedom inceeas€8 multiplications, 4 divisions and 9 exponentiations age r
quadratically for the advection equation or even cubic far t quired (the latter can be expressed through 9 multiplicatio
diffusion equation due to the smaller time steps induced by thgince they are just of power 2). However, giveiffi®ient mem-
CFL condition. But from a practical point of view, modifying ory, i.e. if F(¢;) can be stored, the most expensive operation
the spatial resolution and choosing a Courant number isrtlye 0 in non-academic examples, the computatioirGf;) has to be
way to control the accuracy of an existing simulation. There done only once for each scheme which significantly reduces th
fore, measuring the order of error decay when decreasing thests of particularly WENOS5 in such applications.

=0. (28)

first order Upwind method assumir% > 0.

Algorithm 2 Calculation of the numerical quk—IH% with the

spatial resolution while keeping the Courant number fixedgi In Figure[3, the error convergence and fits of the fdrm (15)
the type of “convergence order” which is encountered iniappl of the numerical solution of the advection equatibn (18hwit
cations. smooth initial data[(19) and non-smooth initial ddfal(20) ob

We note that the feiciency of the time integration scheme tained with the Upwind, the Lax—Friedrichs, and the WENO5
depends on the expected smoothness and the required accuracheme combined with TVD2 time integration are shown. The
of the numerical solution. Therefore, in the next sectiorthye  parametersC and p of the fits are given in Tablgl 7 for the
to estimate the typical accuracy and smoothness of a siimmilat smooth case and Taljle 8 for the discontinuous case.
of solar surface convection. But first, we compare the WENO From Figuré B we deduce that the empirical order of accuracy
spatial discretisation with other standard schemes foctise of the WENOS5 algorithm together with a second order time
of the advection equation. integration such as TVDZ2[[7] is two which is also obtainedwit

the Lax—Friedrichs method (cf. Strikwerda[23]). Neveldss,
2.2. Errors of WENO Schemes compared to Standard Schemgs error constant is much smaller than with the Lax—Fritri

In this paragraph, we compare the computatiofiddciency = method. In the smooth case, we observe about a factor of 8
of the WENOS5 scheme and TVD2 time integration with two for o = 0.25, whereas forr = 0.125, it is about a factor of
standard schemes: the first order accurate Upwind and the set2. Similar is true for the discontinuous test case. We aafel
ond order accurate Lax—Friedrichs scheme [23]. that the numerical error obtained with WENOS and TVD2 can
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c=10 =05 o=025 o =0125 o =0.0625
scheme p C p C p C p C p C
Euler 0.98 3.10e-1 0.83 7.88e-2
TVD2 0.90 2.97e-1 1.95 1.08e0| 2.09 6.09e-1| 2.34 6.35e-1 2.66 9.69e-1
TVD3 3.05 1.24el1| 3.38 1.05el1| 3.86 2.57el| 4.35 9.82el| 4.68 2.76e2
SSPRK(3,2)| 1.11 1.62e-1] 2.00 7.42e-1 2.21 5.84e-1 2.49 7.53e-1 2.83 1.36e0
Table 4: Empirical order of accuragyand error constants for WENO with several time integration schemes and fixed @otunumbers- when solving[(IB) &
@9).
c=10 =05 o =025 o =0125 o =0.0625
scheme p C p C p C p C p C
Euler 0.60 1.31e0| 0.56 1.05e0
TVD2 0.30 8.63e-1 0.38 7.09e-1] 0.43 7.79e-1] 0.45 8.23e-1 0.45 8.23e-1
TVD3 0.27 6.41e-1] 0.44 8.12e-1] 0.45 8.35e-1 0.45 8.30e-1] 0.45 8.24e-1
SSP RK(3,2)| 0.37 7.51e-1] 0.40 7.18e-1 0.44 8.14e-1] 0.45 8.27e-1 0.45 8.24e-1

Table 5: Empirical order of accuragyand error constants for WENO with several time integration schemes and fixed @otunumbers- when solving[(IB) &

0).

be controlled by adapting, whereas with the Lax—Friedrichs =~ From the comparisons done in Muthsam et lall [10] and in
method, it is nearly independent of The error of any first Muthsam et al.[[1], it follows that WENQO5 without artificial
order method as, e.g., the upwind method (cf. again Stritever diffusivities yields also much more accurate results than other
[23]), is larger by several magnitudes. A very high amount ofhigh-order methods considered in their work which, howgver
grid points is required for them to reach an acceptable sizer  always require such stabilisations.

We measure the wall clock time of the simulations performed When applying the WENO method to systems of conserva-

on an Intel Core2 Duo CPU with@GHz clock rate. By multi- tion laws, the state variables must be transformed intoitiemne
plying the error with the wall clock time of the simulationew state which increases the computation time. On the othet,han

can compare theficiency of the schemes considered in thismethods where no transformation is needed are less accurate

section. For both the smooth and non-smooth case, we show tﬁ‘é‘d artificial difusivities are necessary to stabilise the solution,

cost-weighted errors of the Upwind, the Lax—Friedrichs thred e.g. a'round shock fronts, which at the bottom line is Ids e

WENOS scheme with TVD2 time integration in Figufe 4. We Cient [10/1].

chooser = 0.0625 since otherwise the wall clock times are too N this section, we compared our methods to the most ba-

short to be reliable. In the smooth case, WENOS is much moré&iC first and second order accurate schemes. For more rigor-

efficient over the whole range of resolutions considered in thi@US comparisons concerning the spatial discretisatiomefee,

test. The higher computational complexity of the schemedea ©-9-» t0 Shul[8]. In contrast, the purpose of these tests is to

to a more than proportional increase in accuracy. For the diJive orientation concerning the magnitude and behaviothef

continuous problem, the computational costs are sligfigyér spat_lal error Wh_ereas we f(_)cus_ on the error from the time inte

since the accuracy of the numerical solution is determined b9ration and the interplay with flusion terms.

the analytical smoothness of the solution. Neverthelbsgjif-

fergnce_ IS small,_gnd the higher compIeX|_ty of WENOS PAYS3  Error Size in Simulations of Solar Surface Convection

off in higher stability of the scheme (thefidirence is a factor

of 3 to 4 for large grid spacing whereas it ranges from 8 10 30 14 measure the typical error in simulations of solar sur-

comparing the WENOS.scheme with Lax—Frledr_lchs and evellsce convection with ANTARES, we performed two three-

up to 1¢ when comparing WENOS5 to the Upwind scheme). gimensional simulations which onlyfeér in the numerical res-

A much higher Courant number can be used for WENOS ang,tion. Their specifications are summarised in Table 9. The

TVD2 without considerably increasing the error size, mgkin ,;rose of this section is to give an estimate of the typical e

the scheme much mordieient. For coarse grid spacing Lax— (o size of our numerical simulations in a realistic settifigis

F_nednc_hs and the _Upwmd scheme are even unstable for thestimate will be used in Secti@h 4 to compare thigiency of

discontinuous solution or at best equalfji@ent as WENOS.  geyera| time integration schemes for this particular tyfmen-
Another point which we did not mention so far are memoryputational problem.

requirements: much more grid points are needed with lower or We remark that these simulations are Large Eddy Simula-

der schemes to reach the accuracy of WENOS5 which leads tiions (LES), i.e., they do not resolve all scales of motiodl. A

a tremendous increase in memory consumption in particalar imotions with length scales smaller than the grid resolugian

higher dimensions. We conclude that WENOS5 schemes are natodelled by the Smagorinsky subgrid model and by the numer-

only more accurate than standard schemes, but also compuieal viscosity of the numerical scheme. Therefore, the meas

tionally more dficient. ment of “the error” is not trivial. Changing the resolutiorillw
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Figure 3: Comparison of error convergence fits and actuat data foro- = 0.25 (left) ando- = 0.125 (right) with the Upwind, the Lax—Friedrichs and the WENO
scheme with TVD2 time integration. Top panel: advectionatigm with smooth initial datd{19); bottom panel: advestiquation with discontinuous initial

data [20).
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Figure 4. Cost-weighted error of the numerical solutionhef advection equatiof {IL8) with smooth initial conditib@)and discontinuous initial conditiof {20)
obtained with the Upwind, the Lax—Friedrichs and the WEN®©Besne combined with TVD2 time integartion. Here,= 0.0625. The execution time of each
simulation is measured with theime command and multiplied with the absolute error size. Fordiseontinuous problem, the cost-weighted error of WENO5
with TVD2 is slighly higher since the increase in computattone is not compensated by the decrease in error. For thetBroase, however, the cost-weighted
error is much smaller. Furthermore, WENOS with TVD2 giveswaate results even at much higher Courant numbers.



oc=05 o =025 o =0.125 o =0.0625
scheme p C p C p C p C
Euler 2.00 9.49e-2| 1.99 4.53e-2/ 1.98 2.08e-2
TVD2 3.95 5.00e-1] 3.91 2.73e-1] 3.91 2.31le-1
TVD3 3.48 4.95e-2| 3.38 3.5le-2 3.25 2.3le-2
SSPRK(3,2)| 3.72 3.34e-1] 3.54 9.12e-2| 3.39 4.08e-2| 3.24 2.29e-2

Table 6: Empirical order of accuragyand error constants for WENO with several time integration schemes and fixed @otunumbersr when solving[(2P) &

.

Algorithm 3 Calculation of the numerical ﬂubdn% with WENO5 assumin@% > 0 [8].
1:

Bo = i—:; -(F(¢) = 2- F(i1) + F($i:2)) + % ~(3- F(¢) —4- F(gin) + F(gi:2)),
Br= o (Fo)— 2 F(9) + F@La)) + 5 - (F(011) ~ Fon)?.

Bo= 1o (F(00) ~2- F(61) + F@)F + 5 - (F(612) — 4 F(or0) + 3-F(8))

~ 0.3 - 0.6 - 0.1

0:727 (1)1272, (1)2:72

(€ + Bo) (e +p1) (e +52)

3: N . .
wo w1 w2

W= == =, W1=% ~ =, W2 = % ~ ~
wo + w1 + W2 wo + w1 + W2 wo + w1 + W2
4.

Hiy = wo- (% -F(#) + g F(gis1) - % : F(¢i+2))

o)+ g F) + 3 Flo)

ol =

+(,4)]_-(—

ron: (3R - £ Flo)+ o))

change the results and convergence of the solution with grithtion are large compared to the rest of the simulation, asd,
spacing cannot be expected due to the chaotic nature of-turbindicated by the huge numbers, can have completely diverged
lence. in the course of the simulation.

As an approximate estimate of the error size, we calculate Therefore, we refrain from measuring the error pointwisely
the diference between the solutions on the finer and the coarsérstead, we suggest to use the mean temperature profile-for er
grid by point-wise comparison of the values on coincidiniglgr ror measurement. In Figulé 5 we observe that the mean temper-
points, as described in Appendix A.6 in LeVeque [5]. The re-ature is much more stable, but still sensitive enough to gasin
sulting error estimates in several variables and sevenaghsio in the resolution. The standard deviation of the tempeeatur
are shown in Table10. profile is even more sensitive, but since it approaches niviis

We show the error right after the interpolation, aftef60's suited for calculating relfitive errors. Furthermore, géhéviour
and after 950 s of simulation time. After the interpolatitime nhear _the top _boundary IS strongly influenced by the boundary
error is very small, but already after 160 s is has grown abnsi gont:!|t|ons [25]. The typlca_l mear11 error Of. the temperatute p
erably. After 950, the two models have completely divergedf'le’ i.e. the relative error in th&* norm, is around @ % to
and we observe that the® error is much larger than thie* 0.5%.
andL? error. This stems from the fact that near the optical sur- Of course, these numbers are only rough estimates. The in-
face, the motion of the fluid is turbulent, and changes in the n fluence of uncertainties in the solution of the radiativesfar
merical parameters as grid resolution produces arbigriiije  equation, the equation of state, and the boundary conditton
differences. Here, the pointwise changes due to increased res@ame only few factors, is huge andtttiult to number. Never-
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oc=05 o =025 o =0.125 o =0.0625
scheme p C p C p C p C
Upwind 0.83 4.95e-1] 0.76 5.01e-1] 0.74 4.92e-1] 0.72 4.86e-1
Lax—Friedrichs| 1.97 3.69e0| 1.97 4.62e0| 1.97 4.97e0| 1.98 5.07e0

Table 7: Empirical order of accuragyand error constants for the U

pwind and the Lax—Friedrichs scheme with fixed Cotirumbers when solvin§ (1.8) &(1.9).

oc=05 o =025 o =0.125 o =0.0625
scheme p C p C p C p C
Upwind 0.24 6.81e-1] 0.25 7.90e-1| 0.24 7.91e-1] 0.24 7.86e-1
Lax—Friedrichs| 0.33 7.79e-1 0.35 9.18e-1 0.36 1.02e0| 0.37 1.11e0

Table 8: Empirical order of accuragyand error constants for the Upwind and the Lax—Friedrichs scheme with fixed Cotirmambers when solving(1L8) &(0).

box size

grid points

binning

24000

~— 3000

resolution
‘ [km] [Mm] v’
195x400° 195x 15¢° 3.8x6.0° non-grey L
9.74x 200> 389x300° 3.8x6.0> non-grey 20000 ¢ g

Model 1
Model 2

. . . ) 2000
Table 9: Basic parameters of the two three-dimensional tadoen Sectiof B.

Model 2 was started from Model 1. The data were mapped to tlee §rd
by interpolation, and both models were run for 950s. Both ei®dse the
Smagorinsky subgrid model [24] to represent motions witllescsmaller than
the grid resolution, and a Gauss-Radau rule with 18 rayshirangular inte-
gration in the radiative transfer solver. They use the opembary conditions |
BC 3b from Grimm-Strele et all [25] at the bottom, the LLNL equatiof state , !
[2€], the non-grey opacities from Kurudz_[47) 28], the opadata from Igle- 8000 - !
sias and Rogers [29] for the deep interior, and the compositom Grevesse ol
and Noels|[30]. The WENOS5 scheme was used for spatial disatien, and ]
SSP RK(3,2) for time integration.

16000 [ {\ s <T>, Model 1 — ——
i\ <T>, Model 2 = = = -
i \ PR o, Model 1

i o, Model 2 — - —
i

o [K]

<T> [K]

12000
1000

4000 L . e ]

box depth [Mm]

theless, our tests indicate the magnitude of the error wikifzr Fi ) ) -

. . } igure 5: Mean temperature profile and standard deviatiddaxfels 1 and 2
from the asymptotic regime where we can profit from the fastg gescribed in Tabl 9. Horizontal averages are calcutted~ 950's of
error convergence of higher order time integration schemes  simulation time.

In hydrodynamical simulations of similar grid size, buthwvit
out the extra uncertainties introduced by radiative tranahd
where all scales of motion are resolved on the grid scale (i.eVertical (x) direction for one snapshot of Model 1. In Figiie 6,
DNS), the magnitude of the error is typically of the siz¢@  We show NI together with the entropy at a fixed geometrical
when the simulation is about to become turbulent (cf. Fig. 12depth near the optical surface. Actually, NI is located & th
to 15 in Kupka et al. [6] and Fig. 7 in Happenhofer et lal! [11]). half-integer node, but we ignore this small visualisatioroe

Finally, we want to determine the area ratio of smooth toln Figurel7, the mean value, the standard deviation, the-mini
non-smooth regions. For this purpose, we calculate thaémonl mum and the maximum error in each vertical layer is plotted.
earity index NI as defined in equation (8) of Taylor etal! [31] We conclude that NI captures the dynamics of surface con-
Therein, the nonlinear weights; of the interpolating polyno- vection very well. In regions where the flow is turbulent —
mials in the WENO reconstruction scheme as described in Almainly the intergranular lanes near the optical surfacaedqiis
gorithm[3 are compared to the optimal linear weigtits In located at a geometrical depth of around 800 km) —, its value
smooth regions, they should be of the same size, whereas is large whereas it is reasonably small in smooth regionkef t
non-smooth regions the weight of one of the parabolae shoulfiow. We remark that the size of the minimum value of NI de-
be much higher. Then, the nonlinearity index NI defined by  pends on the design of the nonlinear weights in the WENO re-

construction|[31]. In our testg, as defined in Algorithrid3 is

1 k (K + L)w;/d; 2\ fixed to 10°%C.
= k(k + 1) ZO (1 - S wi/di ) ’ (29) We conclude that even though NI is a purely numerical pa-
J: =

rameter, it also has a physical meaning and is a good indicato
will be close to 1. Herek is the width of the stencil of each of whether a solution is smooth or not. Counting the number of
interpolation polynomial such that the order of the recarst  points where Nk 0.25 and where Nb 0.5, we get a good esti-
tion process is— 1. For the fifth order variant summarised in mate of the area ratio of smooth to non-smooth regions. & thi
Algorithm[3,k = 3. particular simulation, the fraction of non-smooth regioeser

We plot NI as calculated in the WENO reconstruction proce-exceeds 8 % except for the uppermost layers which are sgrong|
dure in the first characteristic variable for reconstrutiimthe  influenced by the boundary conditions. Over the whole simula
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t=0s t=160s t=950s

variable unit type Lt L2 L Lt L2 L Lt L2 L

o gent®  absolute| 1.40e-12 3.74e-11 5.13e{81.39e-8 2.77e-8 9.56e-73.64e-8 6.14e-8 9.81e-7
T K absolute| 0.0 0.0 16.3 60.8 179.3 4067.6| 242.5 624.3 4971.6
0 relative | 0.0% 01% 46% | 25% 56 % 803% | 6.6% 181% 6414%
T relative | 0.0% 00% 01% | 0.7% 20% 60Q1% | 2.7% 7.6 % 862 %
(T) K absolute| 0.0 0.0 0.0 14.9 31.2 127.8 | 22.8 47.3 228.9
(T) relative | 0.0% 00% 00% | 02% 04% 17% | 0.3% 08% 50%

Table 10: The error sizes in densjtyand temperaturd calculated by point-wisely comparing the simulations désd in Tabl€_® according to the procedure
from LeVequel[5] right after the interpolation and for twaapshots taken after 160 s an®50 s of simulation time. Both models originally coincidettbe grid
points of Model 1. The norms are calculated as describedeirited reference. The relative errors are calculated higidiy the absolute dierence by the value

of Model 1.(-) stands for horizontal averaging.

tion box, we can estimate the ratio to be

volume where the flow is non-smooth
- ~ 0.05.
volume where the flow is smooth
Therefore, even though the fraction of non-smooth regisns i
not negligible, the flow in the simulation box is mostly smuot

(30)

175

x10°

Figure 6: Left: snapshot of the nonlinearity index NI; rigtite entropy of the
three-dimensional model, both at a geometrical depth afratdl Mm. The
optical surface is at a geometrical depth of around 800 km.oWéerve that
NI is largest in the intergranular lanes where the fluid motgomost turbulent
[32,133]. On top of each granule, the flow is rather smooth siabNI is small.

4. Calculation of Computational Costs

0.75 mean value — ——

standard variation = = - -
minimum value
maximum value — - —

0.5

box depth [Mm]

Figure 7: Mean value, standard deviation, minimum and marinof the non-
linearity index NI at a specific vertical depth. We obsent il reaches both
its maximum values and its maximum average just below thieapsurface.
Deeper in the convection zone, the flow is smoother but NI mialis below a
value of around @7.

step size is determined via the conditions (21)af (25) ohee t
grid spacing is set, the grid spacih@nd the Courant number
o are the only degrees of freedom to control the accuracy of the
numerical solution. We formulate

Problem 1. Given a relative accuracye and a Courant num-

In this section, we want to estimate and compare the compuser - which grid spacing is necessary for a computational

tational costs of simulations of solar surface convectidh the

cube of side length L, and how many time steps are needed for

WENOS scheme for spatial discretisation and the four Rungeg time interval of length T2

Kutta schemes described in Sectidn 1 for time integratiod, a

under the conditions described in Sec{idn 3. We leave the spa Given a relative accuracyte and a Courant number, we

tial discretisation and the problem setup unchanged aresinv
tigate the influence of the time integration scheme only @n th
accuracy and computational costs of such a simulation.

The reason to use higher-order time integration schemes
that we expect more accurate results with less computaiien t
than with the first-order Euler method. Clearly, all of thgtrer
order schemes from Sectibh 1 fulfil this for all grid resabuts
and for both the advection and thefdsion equation.

It is more dfficult to say which one of the three higher order

can calculate the required relative grid spadnig reach this
accuracy by interpolating in the tables giver{ in Appendix A,
[Appendix B of Appendix C, depending on whether the prob-
Ilem is advective or diusive and whether the solution is smooth
or non-smooth. The grid spacirx of the simulation can be
calculated vieh = 6x/L, whereh is the (relative) grid spacing
obtained using the table interpolation. Note thiat dimension-
less.

In three dimensions, we ned&il = h3 grid points for a cube

methods is the best for our specific purposes. Since the timaith side lengthL. For an advection equation with advection
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velocity u, We deduce from Table12, that again, Euler forward is very
inefficient, whereas for all higher-order schemes, the required
L o 6X , L . - ,
N; = Nstages— With 6t = —— (31)  grid spacing is of similar orders of magnitude. Since the er-
ot Iul ror is dominated by the spatial one and the smoothness of the
integration steps are needed to cover a time interval otfehg  solution, increasing the Courant number does not conditiera
The number of stages of the Runge—Kutta methodiges and  decrease the accuracy. Once more, SSP RK(3,2)avi¢h0.5
o is the Courant number. The quantity:= |u|T/L is a di-  turns out to be morefgcient than TVD2 witho- = 0.25.

mensionless quantity depending on the problem. Therefae, In contrast to the advection equation where stability kmit
define for o must be found by experiment, there are analytical meth-
Nstages ods to _dete_rmine the maximum admissible Courant number for
NS = Ni/a = o (32) each time integration scheme. From Table 10 in Kupka et al.
. 7 . [6] we deduce that the maximum Courant numésexs defined
Then, the computational costeorresponding to the number " o4 ation[(Z5) for diusive terms is (187 for Euler forward,
of evaluations of the dlierential operator are given by 0.375 for TVD2, 0299 for TVD3 and (672 for SSP RK(3,2).
N For testing the ficiency of the dffusion equation, we use
Y =No-Ne=No- N -, (33)  the maximum allowed Courant numbers from Kupka et al. [6]
or scaled by the problem-dependent factor for each scheme multiplied by/8 due to the stability con-
straint given in equation (48) in Happenhofer et al/ [11].r Fo
Y =vl/a. (34) the difusion equation, we expect much smaller errors due to

the smoothing properties of thefilision equation. Therefore,

For a difusion equation, we calculate the computational costs for a relative acquoic

6
T 5X2 1.0-10°.
Nt = Nstages— With 6t = gox . (35)
ot scheme| Euler TVD2 TVD3 SSPRK(3,2)
Similarly, 3 := DT/L? is dimensionless and problem- o 0.187 0.375 0.299 0.672
dependent, and we define the scaled number of time $tgps 5
by Erel 1.0-10
N h 4.19e-3 3.24e-2 3.65e-2 3.15e-2
t
NG = Ny = —2 (36) Ni 1.36e7 2.95e4  2.06e4 3.19e4
and the scaled computational cogtsby N 4.06e5 6.79e3  1.00ed 5.98e3
v* 5.52e12 2.00e8 2.07e8 1.91e8
Y =vIB. (37)

Table 13: Computational costs forfidisive problem with smooth initial condi-

In Tabld11, the scaled computational costs with each schentien-
are calculated for an advective problem with smooth ingtai-
dition, corresponding to the data frgm Appendix A. Accoglin  The computational costs of the Euler forward scheme exceed
to the data from TablE_10, we choose a relative accuracy dhe costs of the higher order schemes by several magnitudes.
5.1073. The Euler forward scheme is by far the most expensive he costs with SSP RK(3,2) are significantly smaller thainwit
one. It needs a relative grid spacing smaller th&yi@ reach TVD2 and TVD3, even though the advantage is smaller than
this error size. For the higher-order schemes, much langer g one would expect from the fierence in maximum allowed
spacings can be chosen. Courant numbers.

We observe that for TVD3 and SSP RK(3,2), increasing In conclusion, for both advection andfidision equations
from 0.25 to Q5 leads to only a slightly smaller required rel- the WENOS5 and the fourth order conservative finitfetence
ative grid spacingh. The computational costs are consider-scheme described in Happenhofer et all [11], applied to the
ably decreased. Therefore, the Courant number should be satvection and diusion operator, respectively, combined with
as large as the stability of the method allows it. Consedyent SSP RK(3,2) time integration are mor@eient and more accu-
SSP RK(3,2) and TVD3 are the modfieient schemes since rate than combinations with any other time integration suée
they allow Courant numbers off) as indicated by the data in tested, both for smooth and non-smooth flows. We benefit from
Tables’A. 1V anf’A.16 and confirmed by numerical experimentthe high stability of SSP RK(3,2) and from the fact tbatgrid
with solar surface convection simulations. TVD2 is ma$te sizes gordable in practicethe spatial error usually is much
cient when comparing all schemes with fixed Courant numbelarger than the temporal one. This justifies the additioffalts
of 0.25, but it is not stable with higher Courant numbers. Therequired for the implementation of SSP RK(3,2), even though
differences in ficiency of TVD3 and SSP RK(3,2) are negligi- its theoretical order of accuracy is lower than TVD3 and & ha
ble. more stages than TVD2.

With discontinuous initial datd (20), the error size is much Changes of the time-integration scheme do n¢c the
larger. Using a relative error size of&2 107! results in scaled number of grid cell updates per CPU second performed by the
computational costs as summarised in Table 12. code, but they do change the overall number of updates needed
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scheme| Euler TVD2 TVD3 SSP RK(3,2)
o 0.25 0.25 0.25 0.5 0.25 0.5
Erel 5.10°3
h 8.84e-3 8.32e-2 8.24e-2 7.97e-2 8.37e-2 7.75e-2
Nh 1.45e6 1.74e3 1.79e3 1.98e3 1.70e3 2.15e3
N 453e2 9.62el 1.46e2 7.53el 1.43e2 7.74el
v* 6.56e8 1.67e5 2.61e5 1.49e5 2.44e5 1.66e5

Table 11: Computational costs for advective problem witlosth initial condition.

scheme| Euler TVD2 TVD3 SSP RK(3,2)
o 0.25 0.25 0.25 0.5 0.25 0.5
Erel 25.101
h 1l.41e-2 6.94e-2 6.68e-2 6.44e-2 6.83e-2 7.17e-2
Nh 3.58e5 2.99e3 3.35e3 3.75e3 3.14e3 2.71e3
N> 2.84e2 1.15e2 1.80e2 9.32e1 1.76e2 8.37el
v* 1.02e8 3.45e5 6.02e5 3.49e5 5.52e5 2.27e5

Table 12: Computational costs for advective problem with-smooth initial condition.

for the simulation of a fixed time span. From Takiles 11[add 13(2]
we conclude that the achievable change of required grid cell
updates is of the order of several tens of percent. This num-{j]
ber directly translates into a speedup in terms of computati
time, if the spatial discretisation is not changed. [5]
We emphasize that these results do not tell that lower or-
der schemes arin generalmore dficient than higher order (6]
schemes. In fact, our analysis only applied to simulatidis®e
lar surface convection with the specific numerical schemes w [7]
used. In particular, there might be other Runge—Kutta seisem [€!
(as, e.g., the ones presented in Ketcheson [18]) which & ev 9]
more dficient. Nevertheless, our analysis provides a valuableio]
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[12]
[13]
[14]

We acknowledge financial support from the Austrian Sciencét®]
fund (FWF), projects P25229 and P21742. HGS wants to thanhG]
the MPA Garching for a grant for a research stay in Garching17]
Calculations have been performed at the VSC clusters of thi8]
Vienna universities. [19

Acknowledgements

[20]
Appendix A. Error Sizes for the Advection Equation with

- 21
Smooth Initial Data [21]

(22]
(23]

Appendix B. Error Sizes for the Advection Equation with
Discontinuous Initial Data

Appendix C. Error Sizes for the Diffusion Equation with
Smooth Initial Data

[24]
(25]

[26]
[27]

References

[1] H.J. Muthsam, F. Kupka, B. Léw-Baselli, C. ObertsctezidV. Langer,

P. Lenz, NewA 15 (2010) 460 — 475. [28]

13

E. Mundprecht, H. J. Muthsam, F. Kupka, MNRAS 435 (2013938 —
3205.

] F. Zaussinger, H. Spruit, A&A 554 (2013) A119.

E. F. Toro, Riemann solvers and numerical methods fod ftlyinamics: a
practical introduction, Springer Berlin New—York Heideil, 2009.

R. J. LeVeque, Finite Dference Methods for Ordinary and Partial Dif-
ferential Equations. Steady State and Time Dependent &hrahISociety
for Industrial and Applied Mathematics (SIAM), 2007.

F. Kupka, N. Happenhofer, |. Higueras, O. Koch, JCP 231 @) 3561 —
3586.

C.-W. Shu, S. Osher, JCP 77 (1988) 439 — 471.

C.-W. Shu, International Journal of Computational Blldynamics 17
(2003) 107 — 118.

B. Merriman, Journal Of Scientific Computing 19 (2003P30322.

H. J. Muthsam, B. Ldéw-Baselli, C. Obertscheider, Mngar, P. Lenz,
F. Kupka, MNRAS 380 (2007) 1335 — 1340.

N. Happenhofer, H. Grimm-Strele, F. Kupka, B. Low-Bbis H. J. Muth-
sam, JCP 236 (2013) 96 — 118.

S. Gottlieb, C.-W. Shu, E. Tadmor, SIAM Review 43 (2089)— 112.
R. Wang, R. J. Spiteri, SIAM J. Numer. Anal. 45 (2007) 1871901.

J. F. B. M. Kraaijevanger, BIT 31 (1991) 482 — 528.

D. I. Ketcheson, C. B. Macdonald, S. Gottlieb, AppliedrNerical Math-
ematics 59 (2009) 373 — 392.

K. Heun, Z. Math. Phys 45 (1900) 23 — 38.

E. Fehlberg, Computing 6 (1970) 61 — 71.

D. I. Ketcheson, SIAM J. Sci. Comput. 30 (2008) 2113-&13

] N. Happenhofer, O. Koch, F. Kupka, ASC Report 27, Institfor Analy-

sis and Scientific Computing, Vienna UT, 2011.

M. Motamed, C. B. Macdonald, S. J. Ruuth, Journal Of Stifie Com-
puting 47 (2011) 127 — 149.

J. H. Ferziger, M. Peri¢, Computational Methods fari#lDynamics, 3rd
ed., Springer, Berlin, 2002.

L. C. Evans, Partial Oferential Equations, volume 19 Gfraduate Stud-
ies in Mathematics2nd ed., American Mathematical Society, 2002.
J. C. Strikwerda, Finite Dierence Schemes and PartiafiBiential Equa-
tions, Wadsworth & Brook€ole, 1989.

J. Smagorinsky, MWR 91 (1963) 99 — 164.

H. Grimm-Strele, F. Kupka, B. Lodw-Basell, E. Mundgtg,
F. Zaussinger, P. Schiansky, NewA 34 (2015) 278 — 293.

F. J. Rogers, F. J. Swenson, C. A. Iglesias, ApJ 456 (1908.

R. Kurucz, Kurucz CD-ROM No. 13. Cambridge, Mass.: $mdnian
Astrophysical Observatory (1993).

R. Kurucz, Kurucz CD-ROM No. 2. Cambridge, Mass.: Srithian



ox\ 6t | 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010008.0 0.0002 0.0001
0.1250 4.26e-1 1.07e-1 3.39e-2 9.93e-3 7.07e-3 1.00e-2 1.18e-27e 1.32e-2 1.34e-2
0.0625 1.33e-1 5.66e-2 2.37e-2 1.06e-2 4.74e-3 2.0le-3 7.66e-82e4l 5.96e-4
0.0312 4.14e-2 2.48e-2 1.15e-2 5.55e-3 2.71e-3 1.33e-3 6.46e-@%3
0.0156 1.57e-2 1.00e-2 5.62e-3 2.76e-3 1.36e-3 6.79e-4 3.38e-4
0.0078 7.87e-3 4.24e-3 2.77e-3 1.37e-3 6.82e-4 3.40e-4
0.0039 4.01e-3 1.95e-3 1.39e-3 6.84e-4 3.4le-4
0.0020 3.87e-3 1.60e-3 5.94e-4 3.4le-4
0.0010 1.36e-2 1.41e-3 3.87e-4
Table A.14:£(6x, 6t) for the combination of WENOS with Euler forward when solyi{@8) & (19).
ox\é6t | 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010008.0 0.0002 0.0001
0.1250| 7.68e-2 1.53e-2 1.21e-2 1.33e-2 1.36e-2 1.36e-2 1.37e-27e 1.37e-2 1.37e-2 1.37e-2
0.0625 2.21e-2 5.39e-3 1.47e-3 8.55e-4 8.35e-4 8.40e-4 8.43e-43edl 8.43e-4 8.43e-4
0.0312 6.10e-3 1.41e-3 3.50e-4 9.03e-5 3.64e-5 3.10e-5 3.09e-B0ed 3.10e-5
0.0156 6.78e-3 3.55e-4 8.86e-5 2.21e-5 5.58e-6 1.65e-6 1.0le-65e9.
0.0078 4.28e-3 8.90e-5 2.22e-5 b5.56e-6 1.39e-6 3.48e-7 9.12e-8
0.0039 2.26e-3 2.23e-5 5.57e-6 1.39e-6 3.48e-7 8.69e-8
0.0020 1.09e-3 5.57e-6 1.39e-6 3.48e-7 8.70e-8
0.0010 5.86e-4 1.39e-6 3.48e-7 8.71e-8

Table A.15:&(5x, ot) for the combination of WENOS5 with TVD2 when solving (18) BI)L

Astrophysical Observatory (1993).

[29] C. A.lglesias, F. J. Rogers, ApJ 464 (1996) 943.

[30] N. Grevesse, A. Noels, in: N. Prantzos, E. VangionirklaV. Casse
(Eds.), Origin and Evolution of the Elements, 1993, pp. 1%~ 2

[31] E. M. Taylor, M. Wu, M. P. Martin, JCP 223 (2007) 384 — 397.

[32] R.F. Stein, A. Nordlund, Solar Physics 192 (2000) 91 8.10

[33] F. Kupka, Turbulent Convection and Simulations in Astysics,
Springer Lecture Notes in Physics 756, 2009, pp. 49-105.

14



ox\ét | 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010008.0 0.0002 0.0001
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0.0020 6.85e-8 8.58e-9 1.10e-9 1.62e-10 4.56e-11
0.0010 8.55e-9 1.07e-9 1.34e-10 1.76e-11
Table A.16:£(5x, ot) for the combination of WENOS with TVD3 when solving (18) BI)L
ox\é6t | 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010008.0 0.0002 0.0001
0.1250| 3.55e-2 1.23e-2 1.28e-2 1.36e-2 1.37e-2 1.37e-2 1.37e-27e 1.37e-2 1.37e-2 1.37e-2
0.0625| 1.58e-1 1.14e-2 2.71e-3 9.91e-4 8.34e-4 8.39e-4 8.42e-43e8. 8.43e-4 8.43e-4 8.43e-4
0.0312 9.20e-2 2.86e-3 7.05e-4 1.76e-4 5.14e-5 3.20e-5 3.09e-89ed 3.10e-5 3.10e-5
0.0156 7.14e-4 1.78e-4 4.43e-5 1.11e-5 2.89e-6 1.16e-6 9.73e-G4eq.
0.0078 8.09e-2 1.79e-4 4.45e-5 1.1le-5 2.78e-6 6.94e-7 1.76e-22eB
0.0039 4.06e-4 1.11e-5 2.78e-6 6.96e-7 1.74e-7 4.35e-8
0.0020 2.49e-4 2.79e-6 6.96e-7 1.74e-7 4.35e-8
0.0010 1.55e-4 6.97e-7 1.74e-7 4.35e-8
Table A.17:&(5x, ot) for the combination of WENOS5 with SSP RK(3,2) when solvii@) & (19).
ox\ 6t | 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010008.0 0.0002 0.0001
0.1250 2.52e-1 3.75e-1 3.38e-1 3.45e-1 3.53e-1 3.53e-1 3.55e-36ed. 3.56e-1 3.56e-1
0.0625 2.05e-3 2.67e-1 3.46e-1 2.32e-1 2.27e-1 2.38e-1 2.42e-46ed 2.47e-1 2.48e-1
0.0312 1.24e-1 3.41e-1 2.25e-1 1.54e-1 1.40e-1 1.44e-1 1.48e-30edl
0.0156 8.94e-2 1.02e-1 1.13e-1 9.45e-2 1.05e-1 1.12e-1 1.17e-1
0.0078 6.43e-2 5.04e-2 5.79e-2 6.6le-2 7.39e-2 8.05e-2
0.0039 5.28e-2 3.63e-2 4.09e-2 4.68e-2 5.23e-2
0.0020 1.6le-1 1.85e-1 2.89e-2 3.30e-2
0.0010 9.86e-1 2.26e-2
Table B.18:e(6x, 6t) for the combination of WENO5 with Euler forward when solyiff8) & (20).
ox\é6t | 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010008.0 0.0002 0.0001
0.1250| 4.64e-1 3.22e-1 3.49e-1 3.47e-1 3.52e-1 3.56e-1 3.55e-86ed. 3.56e-1 3.56e-1 3.56e-1
0.0625 3.67e-1 2.52e-1 2.38e-1 2.43e-1 2.46e-1 2.49e-1 2.48e-49eAd 2.49e-1 2.49e-1
0.0312 3.13e-1 1.99e-1 1.58e-1 1.52e-1 1.52e-1 1.52e-1 1.52e-32edl 1.52e-1
0.0156 2.48e-1 1.38e-1 1.29e-1 1.32e-1 1.21e-1 1.2le-1 1.2le-2ledl
0.0078 1.93e-1 1.06e-1 9.20e-2 9.02e-2 9.00e-2 9.00e-2 9.00e-2
0.0039 1.58e-1 7.92e-2 6.98e-2 6.77e-2 6.76e-2 6.76e-2
0.0020 1.30e-1 6.75e-2 5.36e-2 5.08e-2 5.07e-2
0.0010 1.09e-1 5.27e-2 4.17e-2 3.80e-2

Table B.19:¢(6x, 6t) for the combination of WENO5 with TVD2 when solving{(18) B
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ox\é6t | 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010008.0 0.0002 0.0001
0.1250| 3.66e-1 3.38e-1 3.56e-1 3.49e-1 3.53e-1 3.56e-1 3.55e-86ed. 3.56e-1 3.56e-1 3.56e-1
0.0625 3.28e-1 2.47e-1 2.42e-1 2.45e-1 2.47e-1 2.49e-1 2.48e-49eAd 2.49e-1 2.49e-1
0.0312 2.47e-1 1.65e-1 1.55e-1 1.52e-1 1.52e-1 1.52e-1 1.52e-32edl 1.52e-1
0.0156 1.92e-1 1.30e-1 1.30e-1 1.32e-1 1.2le-1 1.2le-1 1.21e-21edl
0.0078 1.74e-1 9.46e-2 9.11e-2 9.03e-2 9.00e-2 9.00e-2 9.00e-2
0.0039 1.48e-1 7.06e-2 6.83e-2 6.78e-2 6.76e-2 6.76e-2
0.0020 1.20e-1 5.29e-2 5.11le-2 5.08e-2 5.07e-2
0.0010 1.0le-1 3.96e-2 3.82e-2 3.80e-2
Table B.20:e(6x, 6t) for the combination of WENO5 with TVD3 when solving{(18) B
ox\é6t | 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010008.0 0.0002 0.0001
0.1250| 3.49e-1 3.31e-1 3.53e-1 3.48e-1 3.52e-1 3.56e-1 3.55e-86ed. 3.56e-1 3.56e-1 3.56e-1
0.0625| 4.48e-1 3.0le-1 2.36e-1 2.40e-1 2.44e-1 2.46e-1 2.49e-48eAd 2.49e-1 2.49e-1 2.49e-1
0.0312 1.99e-1 1.77e-1 1.56e-1 1.52e-1 1.52e-1 1.52e-1 1.52e-82edl 1.52e-1
0.0156 1.54e-1 1.29e-1 1.29e-1 1.32e-1 1.2l1e-1 1.21e-1 1.21e-2ledl
0.0078 1.18e-1 9.58e-2 9.13e-2 9.02e-2 9.00e-2 9.00e-2 9.00e-2
0.0039 9.33e-2 6.99e-2 6.86e-2 6.77e-2 6.76e-2 6.76e-2
0.0020 7.42e-2 6.08e-2 5.17e-2 5.08e-2 5.07e-2
0.0010 6.28e-2 4.75e-2 3.93e-2 3.79e-2
Table B.21:g(6x, 6t) for the combination of WENO5 with SSP RK(3,2) when solvilig@) & (20).
ox\ ot 1.95312 0.48828 0.24414 0.12207 0.06104 0.03052 0.015260763 0.00191 0.00048 0.00012
0.12500| 6.92e-4 1.25e-4 3.14e-5 1.54e-5 3.88e-5 5.06e-5 5.64e-B3ekmh 6.15e-5 6.21le-5 6.22e-5
0.06250| 7.56e-4 1.85e-4 9.03e-5 4.28e-5 191e-5 7.29e-6 1.37e-G8ei 3.80e-6 4.36e-6 4.50e-6
0.03125 9.42e-5 4.69e-5 2.33e-5 1.15e-5 5.60e-6 2.65e-6 4.34e-19edl. 2.57e-7
0.01562 2.35e-5 1.17e-5 5.86e-6 2.92e-6 7.15e-7 1.64e-7 2.64e-8
0.00781 5.86e-6 2.93e-6 7.3le-7 1.82e-7 4.45e-8
0.00391 7.31le-7 1.83e-7 4.56e-8
0.00195 1.83e-7 4.57e-8
0.00098 4.56e-8
Table C.22:5(5x, t) for the combination of WENO5 with Euler forward when solyif2) & (23).
ox\ ot 1.95312 0.48828 0.24414 0.12207 0.06104 0.03052 0.015260763 0.00191 0.00048 0.00012
0.12500| 7.74e-5 6.30e-5 6.25e-5 6.23e-5 6.22e-5 6.23e-5 6.23e-23ed 6.23e-5 6.23e-5 6.23e-5
0.06250| 2.24e-5 5.6le-6 4.8le-6 4.6le-6 4.56e-6 4.55e-6 4.54e-Gdeh 4.54e-6 4.54e-6 4.54e-6
0.03125 5.90e-7 3.74e-7 3.21e-7 3.08e-7 3.04e-7 3.03e-7 3.03e-703ed.  3.03e-7
0.01562 3.78e-8 2.41e-8 2.06e-8 1.98e-8 1.95e-8 1.95e-8 1.95e-8
0.00781 2.39e-9 1.52e-9 1.25e-9 1.24e-9 1.24e-9
0.00391 9.59e-11 8.0le-11 7.78e-11
0.00195 6.80e-12 4.81le-12
0.00098 5.06e-13

Table C.23:(6x, 6t) for the combination of WENO5 with TVD2 when solving(22) B3R
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ox\ ot 1.95312 0.48828 0.24414 0.12207 0.06104 0.03052 0.015260763 0.00191 0.00048 0.00012
0.12500| 6.15e-5 6.21e-5 6.22e-5 6.22e-5 6.22e-5 6.22e-5 6.23e-23ed 6.23e-5 6.23e-5 6.23e-5
0.06250| 4.18e-6 4.52e-6 4.54e-6 4.54e-6 4.54e-6 4.54e-6 4.54e-Gdeh 4.54e-6 4.54e-6 4.54e-6
0.03125 9.61e-7 3.02e-7 3.03e-7 3.03e-7 3.03e-7 3.03e-7 3.03e-D3edF.  3.03e-7 3.03e-7
0.01562 1.95e-8 1.95e-8 1.95e-8 1.95e-8 1.95e-8 1.95e-8 1.95e-8
0.00781 1.23e-9 1.24e-9 1.24e-9 1.24e-9 1.24e-9
0.00391 7.77e-11 7.79e-11 8.17e-11
0.00195 8.04e-12 2.58e-11
0.00098 2.56e-11
Table C.24:(5x, 6t) for the combination of WENO5 with TVD3 when solving(22) B3R
ox\ ot 1.95312 0.48828 0.24414 0.12207 0.06104 0.03052 0.015260763 0.00191 0.00048 0.00012
0.12500| 6.95e-5 6.25e-5 6.23e-5 6.23e-5 6.22e-5 6.23e-5 6.23e-23e& 6.23e-5 6.23e-5 6.23e-5
0.06250| 1.33e-5 5.06e-6 4.68e-6 4.57e-6 4.55e-6 4.54e-6 4.54e-G4ed 4.54e-6 4.54e-6 4.54e-6
0.03125 8.74e-7 4.46e-7 3.39e-7 3.12e-7 3.05e-7 3.04e-7 3.03e-703ed  3.03e-7  3.03e-7
0.01562 5.61e-8 2.86e-8 2.18e-8 2.0le-8 1.96e-8 1.95e-8 1.95e-85e-B
0.00781 3.55e-9 1.81e-9 1.38e-9 1.24e-9 1.24e-9 1.24e-9
0.00391 2.23e-10 8.68e-11 7.86e-11 8.26e-11
0.00195 1.41e-11 8.65e-12 2.84e-11
0.00098 6.55e-12 2.73e-11

Table C.25:(6x, 6t) for the combination of WENO5 with SSP RK(3,2) when solvigg) & (23).
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