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Abstract

We provide algorithms for symbolic integration of hyperlogarithms multiplied by rational functions, which also include
multiple polylogarithms when their arguments are rational functions. These algorithms are implemented in Maple and
we discuss various applications. In particular, many Feynman integrals can be computed by this method.
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1. Introduction

An important class of special functions is given by mul-
tiple polylogarithms [1, 2]

Lin1,...,nr (z1, . . . , zr) :=
∑

0<k1<···<kr

zk1
1 · · · zkrr
kn1

1 · · · k
nr
r

(1.1)

of several complex variables ~z, which generalize the tradi-
tional polylogarithms Lin(z) of a single variable (the case

1MapleTM is a trademark of Waterloo Maple Inc.
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r = 1) studied for example in [3]. Many properties and
relations of these multivalued functions can be formulated
and studied conveniently in terms of combinatorial struc-
tures, which renders them suitable for symbolic algorithms
that can be implemented on a computer.

This is mainly a consequence of their representation as
a special class of iterated integrals [4] and our preferred
basis are the classic hyperlogarithms [5] of

Definition 1.1. Given a finite set Σ ⊂ C containing
0 ∈ Σ, each word w = ωσ1 . . . ωσn ∈ Σ× (ωσ denotes the
letter for σ ∈ Σ) defines the hyperlogarithm Lw by setting
Lωn0 (z) := logn z

n! and otherwise recursively applying

Lωσw′ :=
∫ z

0

dz′

z′ − σ
Lw′(z′). (1.2)

We also abbreviate Lσ1,...,σn := Lωσ1 ,...,ωσn
and write σ(n)

for a sequence σ, . . . , σ of n letters σ.

These functions are also referred to as generalized har-
monic polylogarithms (with linear weights) or Goncharov
polylogarithms, since they relate to (1.1) via

(−1)r Li~n (~z) = L0(nr−1),σr,...,0(n2−1),σ2,0(n1−1),σ1
(z) (1.3)

where ~n = (n1, . . . , nr) ∈ Nr and σ1, . . . , σr 6= 0 are such
that ~z =

(
σ2
σ1
, σ3
σ2
, . . . , zσr

)
, equivalently σi = z

∏r
k=i z

−1
k .

Particle physicists observed special classes of hyperloga-
rithms in results of Feynman integral calculations. The
most famous example is the case when Σ ⊆ {−1, 0, 1},
called harmonic polylogarithms in [6], and practical tools
to compute with these are available like [7, 8]. Some algo-
rithms for general hyperlogarithms are also implemented
in [9]. However, the full power of definition 1.1 can be used
not only to express the result of Feynman integrals, but
actually to compute them in the first place.

Namely, the study [10] of periods of moduli spaces of
curves of genus zero computed multiple integrals

fk :=
∫ ∞

0
fk−1(zk) dzk =

∫ ∞
0

dz1 · · ·
∫ ∞

0
dzk f0 (1.4)

of certain polylogarithms f0(~z) such that each of the par-
tial integrals fk is a hyperlogarithm in the next integra-
tion variable zk+1. This criterion on f0 is called linear
reducibility in [11], where the symbolic integration algo-
rithm of such functions is explained and applied theoret-
ically to some finite scalar single-scale Feynman integrals
(massless propagators). In [12] it was further shown that
linear reducibility is actually fulfilled for an infinite family
of non-trivial Feynman integrals, but still explicit results
were missing.

This technique has then practically been used in [13] to
compute off-shell three-point functions and in [14–16] to
calculate operator insertions into propagator graphs con-
taining a single non-zero mass scale. A further application
to phase-space integrals related to Higgs production can
be found in [17].

Unfortunately, none of these programs was made pub-
licly available so far. This might partly be due to the
fact that the exposition in [11] does not provide a sim-
ple method to obtain certain integration constants in a
crucial intermediate step of the algorithm. In fact, [17] re-
sorts to numeric evaluations to guess these constants and
a similar approach is common to many applications of the
symbol- and coproduct-calculus [18–20]. Also within the
method of differential equations [21], boundary conditions
occur that must be obtained separately, e.g through phys-
ical reasoning or separate computations of expansions in
certain limits.

We close this gap and provide a complete implementa-
tion of the method [11] of symbolic integration using hy-
perlogarithms in the computer algebra system Maple [22].
This program was used in [23, 24] to compute several non-
trivial Feynman integrals (including divergences and com-
plicated kinematics) and we hope that it will prove helpful
in further applications by physicists and mathematicians
alike.

Since our foremost goal was to supply a tool for the
computation of Feynman integrals, we did not aim for a
most general computer algebra framework to handle hy-
perlogarithms but instead focussed on this particular ap-
plication. Still, the algorithms were implemented for very
general situations and may be used for different problems
as well.

For completeness let us mention that while we focus
on polylogarithms as iterated integrals, the representation
(1.1) as nested sums opens the door to completely different
strategies like [25] with implementations readily available
[26, 27]. A lot of progress is being made on symbolic ma-
nipulation of sums and we like to point out [9] and the
numerous references therein. However, we will not pursue
this approach in our work.

1.1. Plan of the paper
In section 2 we present our algorithms to symbolically

manipulate hyperlogarithms in sufficient detail so as to
make an implementation straightforward. We follow the
ideas of [11] where the reader might find illuminating ex-
amples and details. Our main original contribution is sec-
tion 2.5 where we solve the problem of determination of
integration constants mentioned above.

The Maple implementation HyperInt is presented in
section 3 and includes examples of its application to inte-
gration problems and for transformations of arguments of
polylogarithms.

To apply these methods to multiple integrals (1.4), we
review the property of linear reducibility in section 4 and
explain how to exploit the polynomial reduction algorithm
contained in HyperInt.

Section 5 is devoted to our original motivation and
main application: the calculation of Feynman integrals.
In HyperInt we supply a couple of commands to facili-
tate the work with Feynman graphs. Detailed examples
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and demonstrations are contained in the attached Maple
worksheet Manual.mw.

To ensure correctness of our program, we performed
plenty of tests. Some of them are summarized in Ap-
pendix A and provided in the file HyperTests.mpl.

Some combinatorial proofs were delegated to Appendix B
and we supply a short reference of functions and options
provided by HyperInt in Appendix C.

2. Algorithms for hyperlogarithms

We already mentioned references on hyperlogarithms,
multiple polylogarithms and iterated integrals. In sec-
tion 2.1 we collect some standard results and fix our nota-
tions.

Afterwards we follow the ideas of [11] for the integra-
tion of hyperlogarithms and explain in detail how each step
can be implemented combinatorially. In short, to com-
pute fk =

∫∞
0 dzkfk−1(zk) for some polylogarithm fk−1,

we proceed in three steps:
1. Express fk−1 as a hyperlogarithm in zk.
2. Find a primitive Fk−1(zk) such that ∂zkFk−1 = fk−1.
3. Evaluate the limits fk = limzk→∞ Fk − limzk→0 Fk.

Many of these operations are straightforward or explained
with examples in [11]. All the work actually lies in step
1. above, which is the subject of the reviewing section 2.4
and our additional algorithm of section 2.5 to symbolically
compute constants of integration.

The original work [10] in the setting of moduli spaces
contains a lot of details, worked examples and geometric
interpretations of the ideas employed. In particular we
recommend sections 5 and 6 therein which develop the
theory of hyperlogarithms tailored to our setup, including
logarithmic regularization in detail.

Let us remark that instead of tracking a sequence (1.4)
of one-dimensional iterated integrals, the natural approach
would be to consider every fk as an iterated integral in
several variables zk+1, zk+2, . . . simultaneously. This idea
is pursued in [28] and their authors are currently finalizing
an implementation of this method as well.

2.1. The tensor algebra and iterated integrals
The algebraic avatar of iterated integrals is the shuffle

algebra

T (Σ) :=
⊕
w∈Σ×

Qw =
∞⊕
n=0

Tn(Σ), Tn(Σ) := (QΣ)⊗n (2.1)

spanned by all words over the alphabet Σ; some references
for this Hopf algebra are [29, 30]. It is graded by the
weight n = |w| counting the number of letters in a word
(w = ωσ1 . . . ωσn ∈ Σn). Apart from the non-commutative
concatenation product, it is equipped with the commuta-
tive shuffle product defined recursively by

(ωσw)� (ωτw′) := ωσ(w� ωτw
′) + ωτ (ωσw� w′) (2.2)

until 1�w = w� 1 = w where 1 denotes the empty word
which is the identity of T (Σ). The coproduct ∆ : T (Σ) −→
T (Σ)⊗ T (Σ) of interest is the deconcatenation

∆ (ωσ1 . . . ωσn) :=
n∑
k=0

ωσ1 . . . ωσk ⊗ ωσk+1 . . . ωσn . (2.3)

These combinatorial structures precisely capture the ana-
lytic properties of the iterated integrals [4, 31]∫

γ

ωσ1 . . . ωσn :=
∫ 1

0

dγ(z)
γ(z)− σ1

∫
γ|[0,z]

ωσ2 . . . ωσn (2.4)

of differential one-forms ωσ = dz
z−σ ∈ Ω1(C \Σ) of a single

variable z. With
∫
γ

1 := 1, (2.4) defines homotopy invari-
ant functions of a path γ : [0, 1] → C \ Σ of integration
which are often identified with the resulting multivalued
analytic functions of the endpoint z = γ(1) ∈ C \ Σ.

Observe that in (1.2) we chose the singular base point
γ(0) = 0 ∈ Σ which is the reason why we had to define
Lω0(z) := log z specially and not by the divergent integral∫ z

0
dz
z .
We extend the maps w 7→

∫
γ
w and w 7→ Lw linearly

to the whole shuffle algebra T (Σ). Then the fundamental
properties of iterated integrals become

1.
∫
γ
w ·
∫
γ
w′ =

∫
γ
(w� w′), i.e.

∫
γ
is multiplicative,

2. By Chen’s lemma, concatenation γ ? η of two paths
with η(1) = γ(0) gives for every word w = ωσ1 . . . ωσn∫

γ?η

w =
n∑
i=0

∫
γ

ωσ1 . . . ωσi ·
∫
η

ωσi+1 . . . ωσn . (2.5)

3. Q(z) ⊗Q T (Σ) 3 f ⊗ w 7→
[
γ 7→ f(γ(1)) ·

∫
γ
w
]
is

injective, so iterated integrals associated to different
words are linearly independent with respect to ratio-
nal (actually even for algebraic) prefactors f .

The analogous properties hold for the hyperlogarithms
w 7→ Lw of (1.2). These functions Lw : C \ Σ −→
C are single-valued once we restrict to the simply con-
nected domain where 0 < |z| < min {|σ| : 0 6= σ ∈ Σ} and
z /∈ (−∞, 0], after fixing log to the principal branch with
log 1 = 0. In the sequel we will only consider such hy-
perlogarithms f(z) = Lw(z) that allow for an analytic
continuation to all of (0,∞). This is necessary to give the
integrals

∫∞
0 f(z) dz we want to compute a well-defined

value.

2.2. Integration and differentiation
We consider the algebra L(Σ) := OΣ [Lw(z) : w ∈ Σ×]

spanned by hyperlogarithms with rational prefactors whose
denominators factor linearly with zeros in Σ only:

OΣ := Q
[
z,

1
z − σ

: σ ∈ Σ
]
. (2.6)

3



By construction we have ∂zLωσ1 ...ωσn
(z) = 1

z−σ1
Lωσ2 ...ωσn

(z)
such that L(Σ) is closed under ∂z, while for any f ∈ L(Σ)
we can find primitives F ∈ L+(Σ), ∂zF (z) = f(z), in the
enlarged algebra L+(Σ) := O+

Σ [{Lw : w ∈ Σ×}] where

O+
Σ := OΣ

[
Σ ∪

{
1

σ − τ
: σ, τ ∈ Σ and σ 6= τ

}]
. (2.7)

Namely, a primitive for g(z)Lw(z) can be constructed by
partial fractioning the rational prefactor

g(z) =
∑
σ∈Σ

∑
n∈N

Aσ,n
(z − σ)n +

∑
n∈N0

Anz
n ∈ OΣ, (2.8)

setting F = Lωσw(z) as a primitive of Lw(z)
z−σ and repeated

use of the partial integration formulae∫ dz Lw(z)
(z − σ)n+1 = − Lw(z)

n(z − σ)n +
∫ dz ∂zLw(z)

n(z − σ)n , (2.9)∫
dz znLw(z) = zn+1 · Lw(z)

n+ 1 −
∫ dz zn

n+ 1 ∂zLw(z)

(2.10)

to reduce the problem of finding a primitive to the case
where the hyperlogarithm ∂zLωσ1 ...ωσn

(z) = Lωσ2 ...ωσn (z)
z−σ

is of lower weight. This recursion terminates when w be-
comes the empty word. Hence computation of a conver-
gent integral

∫∞
0 f(z)dz for f ∈ L(Σ) reduces to obtaining

a primitive F ∈ L+(Σ) of f as described and evaluating
the limits∫ ∞

0
f(z) dz = lim

z→∞
F (z)− lim

z→0
F (z). (2.11)

2.3. Divergences and logarithmic regularization
The singularities of Lw(z) at z → τ ∈ Σ ∪ {∞} are

at worst logarithmic, namely for any w ∈ T (Σ) there is a
decomposition

Lw(z) =
|w|∑
i=0

f (i)
w,τ (z) ·

{
logi z, τ =∞
logi(z − τ), τ 6=∞

(2.12)

with functions f (i)
w,τ (z) uniquely defined upon the require-

ment of being holomorphic at z → τ ; for t =∞ this means
holomorphy of f (i)

w,∞
( 1
z

)
at z → 0. Note that Lw(z) is fi-

nite for z → τ /∈ {0,∞} whenever w does not begin with
the letter ωτ .

The regularized limits are defined for any τ as

Reg
z→τ

Lw(z) := f (0)
w,τ (τ), (2.13)

such that limz→τ Lw(z) = Regz→τ Lw(z) whenever this
limit is finite. The advantage is then that by linearity,

lim
z→τ

f(z) =
∑
w∈Σ×

λw Reg
z→τ

Lw(z) for f(z) =
∑
w∈Σ×

λwLw(z)

can be computed for each word w separately and is thus
well suited for an implementation, even though the limits
limz→τ Lw(z) might diverge individually.

Definition 2.1. For disjoint sets A,B ⊂ Σ the projection
regBA : T (Σ) −→ T (Σ) is determined by the requirements

1. regBA(w� w′) = regBA(w)� regBA(w′) ∀w,w′ ∈ Σ×,
2. regBA(w) = w = ωσ1 . . . ωσn if σ1 /∈ B and σn /∈ A,
3. regBA(w) = 0 for all 1 6= w ∈ A× ∪B×.

We write regτσ := reg{τ}{σ} and suppress empty sets in the
notation, e.g. regσ = reg∅σ and regτ = regτ∅.

This shuffle-regularization is a combinatorial operation
that projects onto words that neither begin with a letter
in A nor end with a letter from B. Every word w ∈ T (Σ)
decomposes uniquely as

w =
∑
a∈A×

∑
b∈B×

a� b� w
(a,b)
A,B (2.14)

into such A-B-regularized words w(a,b)
A,B ∈ im regBA and thus

regBA(w) = w
(1,1)
A,B . To compute (2.14) we can use

Lemma 2.2. For w = uωσa with a = ωa1 . . . ωan ,

w =
n∑
i=0

[u� (−ωai) . . . (−ωa1)]ωσ�ωai+1 . . . ωan . (2.15)

So when σ /∈ A is the last letter of w not in A, thus a ∈ A×,
we deduce regA(w) = (−1)n (u� ωan . . . ωa1)ωσ.

Analogously regB(bωσu) = ωσ (u� S(b)) for b ∈ B×

and σ /∈ B, setting S(b1 . . . bk) := (−bk) . . . (−b1).
Finally note regBA = regA ◦ regB = regB ◦ regA.

For A = {0} and B = ∅, (2.14) reads w =
∑
i ω

i
0 � wi

where wi do not end in ω0. Since Lwi(z) is holomorphic
at z → 0 and Lw(z) =

∑
i logi z · Lwi(z) reveal f i0,w(z) =

Lwi(z) from (2.12), we can compute the limit

Reg
z→0

Lw(z) = Lreg0(w)(0) = 0 when w ∈ Σ× \ {1} . (2.16)

In fact our definition (1.2) is deliberately tuned such that
the empty word w = 1 7→ Lw(z) = 1 is the only word in
Σ× with non-vanishing Regz→0 Lw(z).

Lemma 2.3. Let w =
∑
i ω

i
0�wi ∈ L(Σ) for reg0(wi) =

wi not ending on ω0. Then Lw(z) =
∑
i

logi z
i! Lwi(z) and

Lwi(z) are holomorphic at z → 0 and their series expan-
sion Lwi(z) =

∑
n≥0 anz

n can be directly computed (recur-
sively) from the iterated integral representation: Starting
with the empty word L1(z) = 1, let Lw(z) =

∑
n≥0 anz

n.
Then

Lω0w(z) =
∞∑
n=1

an
n
zn and for any σ ∈ Σ \ {0} , (2.17)

Lωσw(z) = 1
−σ

∞∑
n,m=0

an
σm(n+m+ 1)z

n+m+1. (2.18)
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For expansions up at infinity, we first introduce an in-
termediary point u ∈ (0,∞) to split up the integration
using Chen’s lemma (2.5), and then let u→∞:

Lw(z) =
n∑
k=0

Reg
u→∞

∫ z

u

ωσ1 . . . ωσk · Reg
u→∞

Lωσk+1 ...ωσn
(u).

(2.19)
Definition 2.4. For a word w = ωσ1 . . . ωσn , let

reg∞(w) :=
n∑
k=1

(ωσk − ω−1)
[
(−ω−1)k−1

� ωσk+1 . . . ωσn
]

(2.20)
denote the projection of T (Σ) on words beginning with dif-
ferences (ωσ − ω−1) that annihilates reg∞(ωn−1) = 0 for
any n > 0. Further set reg∞0 := reg∞ ◦ reg0.

If w = (ωσ − ω−1)w′ ∈ im(reg∞0 ), then

Lw(z) =
∫ z

0

(1 + σ)dz′

(z′ − σ)(z′ + 1)Lw
′(z′) (2.21)

reveals that Lw(∞) = Regz→∞ Lw(z) is finite as an ab-
solutely convergent integral since Lw′(z′) grows at worst
logarithmically by (2.12). We therefore conclude

Reg
z→∞

Lw(z) = Lreg∞0 (w)(∞) for any w ∈ T (Σ) (2.22)

from Reg
z→∞

Lω−1(z) = 0 = Reg
z→∞

Lω0 and

Lemma 2.5. For any w,w′ ∈ L(Σ), reg∞(w � w′) =
reg∞(w) � reg∞(w′) is multiplicative and for any word
w = ωσ1 . . . ωσn , the following identity holds:

w =
n∑
k=0

ωk−1 � reg∞
(
ωσk+1 . . . ωσn

)
. (2.23)

The second ingredient to compute (2.19) lies in
Lemma 2.6. For any Möbius transform f(z) = az+b

cz+d ,

df−1(z)
f−1(z)− σ = dz

z − f(σ) −
dz

z − f(∞) (2.24)

wherefore
∫ B
A
w =

∫ f(B)
f(A) Φf (w) with the linear (and mul-

tiplicative) map Φf that replaces any letter ωσ by

Φf (ωσ) := ωf(z) − ωf(∞), dropping any ω∞ := 0. (2.25)

We apply this to
∫ z
u
w =

∫ 1/z
1/u Φ 1

z
(w) and recall that

limu→∞
∫ 1/z

1/u w = Lw( 1
z ) is finite for w ∈ im (reg0) not

ending in ω0. Furthermore,

Reg
u→∞

∫ 1/z

1/u
ω0 = Reg

u→∞
log u

z
= log 1

z
= Lω0

(
1
z

)
completes (2.19) to a combinatorial algorithm of the form

Lw(z) =
∑
w

LΦ 1
z

(w1)

(
1
z

)
· Lreg∞0 (w2)(∞). (2.26)

Employing (2.18), this equation can be used to expand
Lw(z) at z →∞ as a polynomial in log z and a power series
in 1

z . This suffices to compute limz→∞ F (z) in (2.11).

2.4. Regularized limits as hyperlogarithms
When we follow (1.4), after taking the limits (2.11)

we will from (2.26) have a representation of the partial
integral Fk in terms of expressions Lreg∞0 (w)(∞) that de-
pend on the next integration variable t := zk+1 implicitly
through the letters in the word w. To proceed with the in-
tegration process, we must rewrite Fk as a hyperlogarithm
in t.

So let w = ωσ1 . . . ωσn (σn 6= 0) with letters σi(t) de-
pending on a parameter t, then we can take the derivative
∂tLw(z) in the integrand of the iterated integral Lw. Par-
tial fractioning and partial integration suffice to prove

∂tLw(z) =
n−1∑
i=1

[
∂t(σi(t)− σi+1(t))
σi(t)− σi+1(t)

]
L...6ωσi+1 ...−... 6ωσi ...(z)

+
[
−∂tσ1

z − σ1

]
Lωσ2 ...ωσn

(z)−
[
∂tσn
σn

]
Lωσ1 ...ωσn−1

(z)

where 6 ωσi means to delete the letter ωσi from w. Applying
Regz→∞ and exploiting Regz→∞ ∂t = ∂t Regz→∞ yields

∂t Reg
z→∞

Lw(z) = − [∂t ln σn(t)] · Reg
z→∞

L...6ωσn (z) (2.27)

+
n−1∑
i=1

[∂t ln(σi − σi+1)] · Reg
z→∞

L... 6ωσi+1 ...−... 6ωσi ...(z).

We assume that σ1, . . . , σn ∈ Q(t) are rational, such that
any σi(t)−σj(t) = c

∏
τ (t−τ)λτ factors linearly2 and thus

∂t ln [σi(t)− σj(t)] =
∑
τ
λτ
t−τ together with (2.27) prove

Lemma 2.7. For rational letters Σ = {σ1(t), . . . , σN (t)} ⊂
Q(t)\(0,∞) without positive constants (such that the limit
Regz→∞ Lw(z) is well-defined for general t) and w ∈ T (Σ),

Reg
z→∞

Lw(z) ∈ L(Σt)(t)⊗ Reg
t→0

Reg
z→∞

L(Σ)(t) (2.28)

is itself a hyperlogarithm in t with algebraic letters

Σt :=
{
zeros of

∏
i<j

[
σi(t)− σj(t)

]}
⊂ Q. (2.29)

Namely, equation (2.27) presents an effective recursive
algorithm to compute (2.28): First translate all shorter
words Regz→∞ L...6ωσi ...(z) such that (2.27) reads

∂t Reg
z→∞

Lw(z) =
∑

u∈Σ×t ,τ∈Σt

λτ,u
t− τ

Lu(t) · cu (2.30)

for some multiplicities λτ,u ∈ Z and constants cu. So

Reg
z→∞

Lw(z) = C +
∑

u∈Σ×t ,τ∈Σt

λτ,uLωτu(t) · cu (2.31)

is determined up to the integration constant

C = Reg
t→0

Reg
z→∞

Lw(z) by (2.16). (2.32)

2with zeros τ ∈ Q in the algebraic closure and integer multiplici-
ties λ ∈ Z
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2.5. Regularized limits of regularized limits at infinity
We now explain how to compute the regularized limits

(2.32) symbolically, without a need for numeric evaluations
(which are for example used in [17] as explained in its
appendix D). The ideas we present in the first half of this
section were very recently also sketched in [16].

Note that the limits C of (2.32) are constant only with
respect to the variable t, while in our applications these
will in general still depend on further variables.

Let w ∈ Σ× be a word with letters Σ ⊂ Q(t) \ (0,∞)
depending rationally on t. We can restrict to w = reg0(w)
not ending with ω0 since Regz→∞ Lω0(z) = 0. The sim-
plest possible case is

Lemma 2.8. When limt→0(Σ) ⊂ Q \ (0,∞) is finite and
w = ωσ1 . . . ωσn ends in a letter with limt→0(σn) 6= 0, then

Reg
t→0

Reg
z→∞

Lw(z) = Reg
z→∞

L lim
t→0

w(z). (2.33)

Proof. Using (2.22) it suffices to investigate differences
w = (ωσ1 − ω−1)ωσ2 . . . ωσn and consider Lw(∞) as the
absolutely convergent integral (2.21) with integrand

1 + σ1(t)
(z1 + 1)(z1 − σ1(t))

1
z2 − σ2(t) · · ·

1
zn − σn(t) . (2.34)

We can apply the theorem of dominated convergence to
show limt→0 Lw(∞) = Llimt→0 w(∞), essentially because
the limiting integrand is absolutely integrable itself. So

Reg
t→0

Reg
z→∞

Lw(z) = Reg
t→0

Lreg∞(w)(∞) = L lim
t→0

reg∞(w)(∞)

holds for all w as allowed in 2.8. Looking at (2.20), we
may swap reg∞ and limt→0 since the latter just substitutes
letters ωσ 7→ ωσ(0). Finally apply (2.22) again.

This naive method can fail for three different reasons:
I Some σ(t) ∈ Σ diverges in the limit t→ 0.
II σn(0) = 0, because the limiting integrand (2.34) at
t = 0 is not integrable:

∫ zn−1
0

dzn
zn

diverges.
III Some letter has a limit σi(0) ∈ (0,∞) on the positive

real axis, wherefore (2.34) acquires a singularity at
zi = σi(0) inside the domain of integration.
We consider our main contribution as the algorithm to

deal with these cases, which we present below. First note

Lemma 2.9 (Scaling invariance). Given some α ∈ Z and
a word w = ωσ1 . . . ωσn in letters σi ∈ Q(t), let w′ :=
ωσ′1 . . . ωσ′n for σ′i(t) := tα · σi(t). Then

Reg
t→0

Reg
z→∞

Lw(z) = Reg
t→0

Reg
z→∞

Lw′(z). (2.35)

Proof. Since Regz→∞ Lw(z) = Regz→∞ Lreg0(w)(z) we can
restrict to σn 6= 0 and rescale z′ = z′′t−α in (1.2) to con-
clude that Lw(z) = Lw′ (ztα). In regard of the regulariza-
tion (2.12) at τ =∞, this shows that

f (i)
w,∞(z) =

∑
j≥i

(
j

i

)
logj−i (tα) · f (j)

w′,∞ (ztα) .

Therefore we can conclude that indeed,

Reg
t→0

f (0)
w,∞(∞) = Reg

t→0

∑
i

(α log t)i · f (i)
w′,∞(∞)

= Reg
t→0

f
(0)
w′,∞(∞) = Reg

t→0
Reg
z→∞

Lw′(z).

A suitable such rescaling ensures finiteness of all σ′i(t)
at t→ 0 and thus resolves problem I above.

Example 2.10. Applying lemmata 2.9, 2.8, equation (2.22)
and a Möbius transformation 2.6 with f(z) = z

1+z shows

Reg
t→0

Reg
z→∞

Lω−1ω−1/t(z) = Reg
t→0

Reg
z→∞

Lω−tω−1(z)

= Reg
z→∞

Lω0ω−1(z) = L(ω0−ω−1)ω−1(∞) = −
∫ 1

0
ω0ω1 = ζ2.

To address the issue II when σn(0) = 0, we make

Definition 2.11. For any 0 6= σ(t) ∈ Q(t), the Laurent
series σ(t) =

∑∞
n=N t

nan at t → 0 with aN 6= 0 defines
a vanishing degree degt(σ) := N ∈ Z and a leading coef-
ficient leadt(σ) := aN = limt→0

[
σ(t) · t−N

]
. For a word

w = ωσ1 . . . ωσn set degt(w) := min {degt(σi) : 1 ≤ i ≤ n}.

Whenever the final letter of a word w = ωσ1 . . . ωσn is
of smallest vanishing degree degt(σn) = degt(w), rescaling
σ′k := σk · t− degt(w) ensures σ′n(0) = leadt(σn) 6= 0 and
lemma 2.8 becomes applicable. Hence let us define

reg
t→0

w := lim
t→0

ωσ′1 . . . ωσ′n if degt(w) = degt(ωσn), (2.36)

e.g. regt→0(ω−1ω−1/t) = ω0ω−1 in example 2.10.
But if degt(σn) > degt(w), the rescaled σ′n(t) will van-

ish at t→ 0. In this case let

k := max {i : degt(σi) = degt(w)} < n

denote the last place in w with minimal vanishing degree.
Using (2.15) we can rewrite w =

∑
wi � ai such that

each wi ends in ωσk and ai is a suffix of ωσk+1 . . . ωσn , i.e.
|ai| ≤ n − k < n. Applying this procedure recursively to
each ai finally results in a representation

w =
∑
i

(wi,1 � . . .� wi,ri) (2.37)

of w in the shuffle algebra into elements wi,j each ending
in some σi,j with minimum vanishing degree degt (σi,j) =
degt (wi,j).

Example 2.12. For w = ω−1ω−t this decomposition reads
w = ω−1 � ω−t − ω−tω−1. So with Regz→∞ Lω−1(z) = 0,

Reg
t→0

Reg
z→∞

Lω−1ω−t(z) = − Reg
z→∞

Lω0ω−1(z).

Definition 2.13. For any alphabet Σ ⊂ Q(t) let

leadt(Σ) := {0} ∪̇ {leadt(σ) : σ ∈ Σ \ 0} . (2.38)

Further we denote by regt→0 : T (Σ) −→ T (leadt(Σ)) the
unique morphism of shuffle algebras that extends (2.36)
with regt→0(ω0) = 0.
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This combinatorial regularized limit of words is a pro-
jection. For w ∈ T (Σ) decomposed as (2.37), it is just

reg
t→0

w =
∑
i

(
reg
t→0

wi,1 � . . .� reg
t→0

wi,ri

)
. (2.39)

Putting together the lemmata 2.9 and 2.8 with the lin-
earity and multiplicativity of Regt→0, Regz→∞ and w 7→
Lw(z) we can compute regularized limits combinatorially
using

Corollary 2.14. For an alphabet Σ ⊂ C(t) \ (0,∞) such
that leadt(Σ) ⊂ C \ (0,∞), any w ∈ T (Σ) fulfills

Reg
t→0

Reg
z→∞

Lw(z) = Reg
z→∞

Lregt→0(w)(z). (2.40)

Example 2.15. For a, b, c ∈ C\ [0,∞), the decomposition
of the form (2.37) for the word w = ωaωbtωct2 is

w = ωa�ωbt�ωct2−ωa�ωct2ωbt−ωbtωa�ωct2 +ωct2ωbtωa

and shows Regt→0 Regz→∞ Lw(z) = Regz→∞ Lu(z) for

u = ωa � ωb � ωc − ωa � ω0ωb − ω0ωa � ωc + ω0ω0ωa.

We still need to address problem III on our agenda:
What happens when some leadt(σk) ∈ (0,∞) approaches
a positive value? In this situation, Regt→0 Regz→∞ Lw(z)
can have a discontinuity along t ∈ [0,∞). For example,

Reg
z→∞

Lωt(z) = Reg
z→∞

log z − t
−t

= log 1
−t

= ln |t| − i arg(−t)

is defined only when t ∈ C\ [0,∞); otherwise Lωt(z) is not
well-defined for real z ≥ t. So to make sense of Regt→0
we must tie t ∈ H± := {z ∈ C : ± Im z > 0} to either the
upper or lower half-plane resulting in

Reg
t→0+iε

Reg
z→∞

Lωt(z) = −iπ and Reg
t→0−iε

Reg
z→∞

Lωt(z) = iπ.

Definition 2.16. Choosing t ∈ H+ partitions the alphabet

Σ = Σ̃ ∪̇ Σ+ ∪̇ Σ− ⊂ C(t) \ (0,∞) (2.41)

into non-positive leadt(Σ̃) ∩ (0,∞) = ∅ and letters with
leadt(Σ±) ⊂ (0,∞). These are separated by Σ± ⊂ H±
for sufficiently small Re t and infinitesimal Im t > 0. In
particular we note that whenever leadt(σ) ∈ (0,∞),

degt(σ) < 0⇒ σ ∈ Σ− and degt(σ) > 0⇒ σ ∈ Σ+.
(2.42)

We denote the finite positive limits by

Σ±0 :=
{

lim
t→0

σ(t) : σ ∈ Σ± and degt(σ) = 0
}
. (2.43)

Example 2.17. For Σ =
{
−1 + it,−t, 3t, 1 + t, 2− t, 1

t

}
,

the limit t→ 0 + iε is shown in figure 1 and (2.41) reads

Σ̃ = {−1 + it, 0,−t} ,Σ+ = {1 + t, 3t} ,Σ− =
{

2− t, 1
t

}
.

1

t

3t

−t

0 1 2

1 + t

2− t

it− 1

−1
R

iR

Figure 1: This graph shows the limits of Σ in example 2.17 when
t→ 0 with positive real part and small positive imaginary part.

γ
0

1

2−1

R

iR

Figure 2: The letters {1 + t, 2− t} ⊂ Σ in example 2.17 induce a
deformation of the real integration path [0,∞) towards γ, which
avoids the positive limits in passing below Σ+

0 = {1} and above
Σ−

0 = {2}.

Now consider a word w = ωσ1 . . . ωσn with degt(σn) =
degt(w). Only the letters Σw := {σk : degt(σk) = degt(w)}
play a role since after rescaling σ′k(t) = σk(t) · t− degt(w) by
lemma 2.9, all other letters have degt(σ′k) = degt(σk) −
degt(w) > 0 and therefore approach 0 /∈ (0,∞) in the
limit t→ 0 of (2.33). By homotopy invariance,

Reg
t→0+iε

Reg
z→∞

Lw(z) =
∫
γ

reg
t→0

(w) (2.44)

is the iterated integral along a smooth deformation γ of
the originally real integration contour [0,∞). It avoids
the positive letters among leadt(Σ) as follows:

degt(w) < 0: Σw\Σ̃ ⊂ Σ−, γ passes above all leadt (Σw),

degt(w) > 0: Σw\Σ̃ ⊂ Σ+, γ passes below all leadt (Σw),

degt(w) = 0: limt→0(Σw \ Σ̃) ⊂ Σ−0 ∪ Σ+
0 and γ passes

above Σ−0 and below Σ+
0 as illustrated in figure 2 for

example 2.17. We must require that Σ+
0 ∩Σ−0 = ∅ as

otherwise γ is pinched between letters from Σ+ and
Σ− in the limit t → 0. This situation did not occur
in our applications but could be incorporated in the
future.

In order to keep the implementation simple, we express
(2.44) again in the form Regz→∞ Lv(z) with v not contain-
ing any positive letters (such that Lv(z) is single-valued on
z ∈ (0,∞) and does not need additional specification of the
contour γ). This is achieved by splitting up the contour
γ = ηu ?γu at u > 0 with the straight path ηu from 0 to u.
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γu
0

1

2
R

iR

ηu u z

Figure 3: The contour γ of example 2.17 shown in figure 2 is homo-
topic to the splitting ηu ? γu.

So for w = ωσ1 . . . ωσn with σn 6= 0, Chen’s lemma (2.5)
takes the form∫

γ

w =
n∑
k=0

∫
γu

ωσ1 . . . ωσk · Lσk+1,...,σn(u) (2.45)

where u < τ := min ({σ1, . . . , σn} ∩ (0,∞)) approaches
the first potential branch point of Lw(z) on the positive
real axis, see figure 3. In the limit u→ τ we obtain

Lemma 2.18. Let w = ωσ1 . . . ωσn ∈ Σ× with σn 6= 0
and denote by τ := min (Σ ∩ (0,∞)) the first (smallest)
potential branch point of Lw(z) on the positive real axis.
The analytic continuation past τ < z = γ(1) along γ is

Lw(z) =
n∑
k=0

∫ z

τ

(ωσ1 . . . ωσk) ·Lregτ (ωσk+1 ...ωσn )(τ) (2.46)

where
∫ z
τ
denotes the iterated integral (2.4) whenever σk 6=

τ . It is extended to all words by imposition of
∫ z
τ

(w�v) =∫ z
τ

(w) ·
∫ z
τ

(v) and letting γ determine the branch of∫ z

τ

ωτ :=
∫
γ

ωτ = ±iπ + log z − τ
τ

for z > τ. (2.47)

Example 2.19. Take the dilogarithm Lω0ω1(z) = −Li2(z)
and the path γ passing below τ = 1 shown in figure 3. Since
reg1(ω1) = 0 and Lω0ω1(1) = −ζ2, (2.46) reduces to

Li2(z)−ζ2 = −
∫ z

1
(ω0ω1) := −

∫ z

1
ω0 ·
∫ z

1
ω1 +

∫ z

1
(ω1ω0).

Inserting
∫ z

1 ω1 :=
∫
γ
ω1 = iπ + log(z − 1)and z = 1 + z′,

we obtain for z′ = z − 1 > 0 (z > 1) the representation

Li2(z) = ζ2 + Lω0ω−1(z′)− (iπ + log z′)Lω−1(z′)
= ζ2 − Li2(−z′)− (iπ + log z′) log z.

In (2.46) we can resolve
∫ z
τ

into explicit factors ±iπ
from (2.47) as dictated by γ and the iterated integrals

∫ z
τ
.

Recursive splitting of these at the next positive let-
ter τ ′ := min ({σ1, . . . , σn} \ τ ∩ (0,∞)) finally expresses∫
γ
(w) in powers of ±iπ and integrals

∫ τ
0 (v′),

∫ τ ′
τ

(v′′), . . .
which are simply defined by the straight line integration
paths 0→ τ , τ → τ ′ and so on. Through Möbius transfor-
mations (2.25), these may all be transformed to 0→∞.

3. The implementation HyperInt

3.1. General remarks
We implemented the algorithms of section 2 in the

computer algebra system Maple [22]. Even though these
procedures are very flexible, we did not intend to provide
a general purpose package supporting arbitrary symbolic
calculations with hyper- and polylogarithms.

Instead, we were driven by our aim to compute Feyn-
man integrals as we comment on in section 5. Therefore
other applications are not as well supported, but we will
give examples showing how HyperInt can be used for quite
general calculations with polylogarithms.

Note that we did not include facilities for numeric eval-
uations of hyper- and polylogarithms, because first of all
these are not necessary for the algorithms and secondly
there are already established programs available for this
task, e.g. [32, 33].

The program uses the remember option of Maple, which
creates lookup tables to avoid recomputations of func-
tions. But some of these functions depend on global pa-
rameters as explained for instance in section 3.6. There-
fore, whenever such a parameter is changed, the function
forgetAll() must be called to invalidate those lookup ta-
bles. Otherwise the program might behave inconsistently.

3.2. Installation and files
The program requires no installation. It is enough to

load it during a Maple-session by invoking
> read "HyperInt.mpl";

if the file HyperInt.mpl is located in the current direc-
tory or another place in the search paths of Maple. If
periodLookups.m can be found, it will be loaded automat-
ically which is of great benefit as explained in section 3.4.

All together, we supply the following main files:

HyperInt.mpl
Contains our implementation of the algorithms in
section 2 as well as supplementary procedures to
handle Feynman graphs and Feynman integrals.

periodLookups.m
This table stores a reduction of multiple zeta values
up to weight 12 to a (conjectured) basis and simi-
larly for alternating Euler sums up to weight 8. It is
not required to run the program, but necessary for
efficient calculations involving high weights. Details
follow in section 3.4.

Manual.mw
This Maple worksheet explains the practical usage
of HyperInt. In particular it includes plenty of ex-
plicit Feynman integral computations. Many expla-
nations, details and comments are provided here.

HyperTests.mpl
A series of various tests of the program. Calling
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Maple with maple HyperTests.mpl has to run with-
out any error messages. Please report immediately if
errors occur. Note that these tests only work when
periodLookups.m can be found by HyperInt.
Due to the many different tests, including some Feyn-
man integrals, the reader might find it instructive to
read this file. See also section Appendix A.

3.3. Representation of polylogarithms and conversions
Internally, polylogarithms are represented as lists

f = [[g1, [w1,1, . . . , w1,r1 ]], [g2, [w2,1, . . . , w2,r1 ]], . . .] (3.1)

of pairs of rational prefactors gi and lists of words wi,j =
reg0 (wi,j) not ending on ω0. These encode the function

f =
∑
i

gi ·
ri∏
j=1

Lreg∞(wi,j)(∞) (3.2)

and we decided not to use (2.2) to combine those words
into the linear combination �jwi,j for two reasons:

1. Empirically, this expansion of shuffle products tends
to increase the number of terms considerably.

2. Our algorithm of section 2.5 to compute Regt→0 pro-
duces products of words with different sets of letters.
Mixing these letters due to a shuffle introduces spu-
rious letters in following integration steps which we
want to avoid.

To encode hyperlogarithms of a particular variable z, we
use a list notation without explicit products:

f = [[g1, w1], [g2, w2], . . .] :=
∑
i

gi(z)Lwi(z). (3.3)

These representations make the implementation of the al-
gorithms of section 2 straightforward, but for easier, human-
readable input and output we allow the notations

Hlog (z, [σ1, . . . , σr]) := Lσ1,...,σr (z) and
Mpl ([n1, . . . , nr], [z1, . . . , zr]) := Lin1,...,nr (z1, . . . , zr)

for hyperlogarithms (1.2) and multiple polylogarithms (1.1).
HyperInt extends the native function convert(f, form) to
transform an expression f containing any of the functions

{log, ln, polylog, dilog, Hlog, Mpl, Hpl}

into one of the possible target formats

form = HlogRegInf:
transforms f into the list representation (3.1).

form ∈ {Hlog, Mpl}:
expresses f in terms of L or Li, using (1.3).

form = Hpl
translates hyperlogarithms Hlog(z, w) with words w ∈
{−1, 0, 1}× into the compressed notation of harmonic
polylogarithms that was introduced in [6]. Concretely,
Hpln1,...,nr

(z) := Ln1,...,nr (z) where 0 := ω0 and for
any n ∈ N, ±n := ∓ωn−1

0 ω±1.

form = i
same as form = Hlog, but produces the notation

i[0, σn, . . . , σ1, z] := Hlog (z, [σ1, . . . , σn])

which is used in zeta_procedures [34]. The result
can then be evaluated numerically in that program,
e.g. using evalz (·).

Example 3.1. The dilogarithm Li2(z) has representations
> convert(polylog(2,z), Hlog);

−Hlog (1, [0, 1/z])

> convert(polylog(2,z), HlogRegInf);
[[1, [[−1 + z,−1]]], [−1, [[−1,−1]]]]

Due to the many functional relations, a general polyloga-
rithm f(~z) has many different representations. In partic-
ular, the representation (3.2) is far from being unique.

It is therefore crucial to be able to express polyloga-
rithms in a basis in order to simplify results and to detect
relations. As was demonstrated in [11], lemma 2.7 provides
such a basis through

Corollary 3.2. Let f(~z) = Regz→∞ Lw(z) for w ∈ L(Σ)
with rational letters Σ ⊂ C(~z) and choose an order ~z =
(z1, . . . , zn). Then there is a unique way to write

f(~z) =
∑
i

Lwi,1(z1) · . . . · Lwi,n(zn) · ci (3.4)

as a linear combination of products of hyperlogarithms of
words wi,j ∈ T (Σi) with letters in some algebraic alpha-
bets Σi ⊂ C(zi+1, . . . , zn), which may only depend on the
following variables. The factors ci in (3.4) are constants
(with respect to ~z), namely

ci ∈ Reg
zn→0

. . . Reg
z1→0

Reg
z→∞

L(Σ)(z). (3.5)

Its implementation constitutes the essential function

fibrationBasis (f, [z1, . . . , zr], F ) ,

which writes a polylogarithm f (preferably in the list nota-
tion (3.1), otherwise it will be converted first) in the form
(3.4) with respect to the order ~z = [z1, . . . , zr] of variables
(when ~z is omitted, ~z = [] is used). If the optional table F
is supplied, the result will be stored as F[wi,1,...,wi,n] = ci.

Example 3.3. This function can be used to obtain func-
tional relations between polylogarithms. For example,

> fibrationBasis(polylog(2,1-z), [z]);
> convert(%, Mpl);

−Hlog (z, [1, 0]) + ζ2

−Mpl ([2] , [z]) + ln(z) Mpl ([1] , [z]) + ζ2

reproduces the classic identity Li2(1 − z) = ζ2 − Li2(z) −
log z log(1−z). Similarly, we obtain the inversion relation
for Li5

(
− 1
x

)
= 1

120 ln5 x+ ζ2
6 ln3 x+ 7

10ζ
2
2 ln x+ Li5(−x):
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> fibrationBasis(polylog(5, -1/x), [x]):
> convert(%, Mpl);
1
6ζ2 ln(x)3 + 1

120 ln(x)5 + Mpl ([5] , [−x]) + 7
10ζ

2
2 ln(x)

As an example involving multiple variables, the five-term
relation of the dilogarithm is recovered as

> polylog(2,x*y/(1-x)/(1-y))-polylog(2,x/(1-y)
)-polylog(2,y/(1-x)):

> fibrationBasis(%, [x, y]);
Hlog (y, [0, 1]) + Hlog (x, [0, 1])−Hlog (x, [1]) Hlog (y, [1])

Note that for more than one variable, each choice ~z
of order defines a different basis and a function may take
a much simpler form in one basis than in another. For
example, Li1,2(y, x) + Li1,2( 1

y , xy) is just
> f:=Mpl([1,2], [y,x])+Mpl([1,2], [1/y,y*x]):
> fibrationBasis(f, [x,y]);

Hlog (x, [0, 1/y, 1]) + Hlog (x, [0, 1, 1/y])
but in another basis takes the form

> fibrationBasis(f, [y,x]);
Hlog (y, [0, 1, 1/x]) + Hlog (y, [0, 1/x]) Hlog (x, [1])
−Hlog (y, [0, 0, 1/x])−Hlog (y, [0, 1]) Hlog (x, [1])

We like to emphasize that every order ~z defines a true basis
without relations. In particular this means that f = 0
if and only if fibrationBasis(f, ~z) returns 0, no matter
which order ~z was chosen.

Analytic continuation in a variable z is performed along
a straight path, therefore the result can be ambiguous
when this line contains a point where the function is not
analytic. In this case, an auxiliary variable

δz =
{

+1 when z ∈ H+,
−1 when z ∈ H−

(3.6)

will appear to distinguish the branches above and below
the real axis. From example 2.19 consider

> fibrationBasis(polylog(2, 1+z), [z]);

Iπδz Hlog (z, [−1])−Hlog (z, [−1, 0]) + ζ2

3.4. Periods
Our algorithms express constants like (3.5) through it-

erated integrals Reg0→∞ Lw(z) of words w ∈ Q× with
algebraic letters. These are transformed into iterated in-
tegrals Lu(1) by u = zeroInfPeriod(w). Such special
values of multiple polylogarithms satisfy a huge number of
relations and it is clearly highly desirable to express them
in a basis over Q.

The case u ∈ {0, 1}× of multiple zeta values (MZV)
is by now perfectly understood on the motivic level [35],
such that conjectural Q-bases are available at arbitrary
weight and [36] even provides a reduction algorithm that
was implemented in [34]. Similar results can also be found

for some cases of u ∈
{

0, µ : µN = 1
}× with N -th roots of

unity µ, see [37].
HyperInt can load lookup tables to benefit from such

relations and we supply the file periodLookups.m which
provides the reductions that were proven in the data mine
project [38] using standard relations. It includes multiple
zeta values up to weight 12 and alternating Euler sums
(u ∈ {−1, 0, 1}×) up to weight 8 in the notation

ζn1,...,nr
:= Li|n1|,...,|nr|

(
n1

|n1|
, . . .

nr
|nr|

)
, (3.7)

with indices n1, . . . , nr ∈ Z \ {0}, nr 6= 1. When u ∈
{0, a, 2a}×∪{−a, 0, a}×, Möbius transformations are used
to express Lu(1) in terms of alternating Euler sums and
log a.

Example 3.4. HyperInt automatically attempts to load
periodLookups.m, but can run without it. With its help,

> fibrationBasis(Mpl([3], [1/2]));
1
6 ln(2)3 − 1

2 ln(2)ζ2 + 7
8ζ3

is reduced to MZV and ln 2. But if periodLookups.m is
not available, we obtain merely

> fibrationBasis(Mpl([3], [1/2]));

−ζ−3 − ζ2,−1 − ζ1,−2 + 1
6 ln(2)3

The user can define a different basis reduction or pro-
vide bases for periods involving higher weights3, or addi-
tional letters. These must be defined as a table,

zeroOnePeriods[u] := Lu(1), (3.8)

and saved to a file f . To read it call loadPeriods(f).

Example 3.5. Polylogarithms Li~n(~z) at fourth roots of
unity ~z ∈ {±1,±i}|n| up to weight |n| ≤ 2, like

> f := Mpl([1,1],[I,-1])+Mpl([1,1],[-1,I]):
> fibrationBasis(f);

Hlog (1, [−I, I]) + Hlog (1, [−1, I])
are tabulated in periodLookups4thRoots.mpl in terms of
ln 2, i, π and Catalan’s constant Im Li2(i):

> loadPeriods("periodLookups4thRoots.mpl"):
> fibrationBasis(f);

1
8ζ2 + 1

2 ln(2)2 − 1
4Iπ ln(2) + I Catalan

3For MZV and alternating sums, [38] provides reductions up to
weights 22 and 12, respectively.
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3.5. Integration of hyperlogarithms
The most important function provided by HyperInt is

integrationStep(f, z) :=
∫ ∞

0
f(z) dz (3.9)

and computes the integral of a polylogarithm f , which
must be supplied in the form (3.1). First it explicitly
rewrites f(z) ∈ L(Σ)(z) following lemma 2.7 as a hyper-
logarithm in z. Then a primitive F = integrate(f, z)
is constructed as explained in section 2.2 and finally ex-
panded at the boundaries z → 0,∞.

Example 3.6. To compute
∫∞

0
Li1,1(−x/y,−y)

y(1+y) dy, type
> convert(Mpl([1,1],[-x/y,-y])/y/(y+1),

HlogRegInf): integrationStep(%, y):
> fibrationBasis(%, [x]);
ζ2 Hlog (x, [1]) + Hlog (x, [1, 0, 1])−Hlog (x, [0, 0, 1])

A more convenient and flexible form is the function
hyperInt (f, [z1 = a1..b1, . . . , zr = ar..br])

:=
∫ br

ar

· · ·

[∫ b1

a1

f dz1

]
· · · dzr

(3.10)

which computes multi-dimensional integrals by repeated
application of (3.9) in the order z1, . . . , zr as specified. It
automatically transforms the domains (ak, bk) of integra-
tion to (0,∞) and furthermore, f can be given in any form
that is understood by convert (·, HlogRegInf).
Example 3.7. A typical integral studied in the origin [10]
of the algorithm is I2 of equation (8.6) therein:

> I2 := 1/(1-t1)/(t3-t1)/t2:
> hyperInt(I2, [t1=0..t2, t2=0..t3, t3=0..1]):
> fibrationBasis(%);

2ζ3

Example 3.8. The “Ising-class” integrals En were defined
in [39]: For n ≥ 2 let uk :=

∏k
i=2 ti, u1 := 1 and set

En := 2
∫ 1

0
dt2 . . .

∫ 1

0
dtn

 ∏
1≤j<k≤n

uj − uk
uj + uk

2

. (3.11)

Because the denominators uj +uk = (1 +
∏k−1
i=j ti)

∏n
i=k ti

have very simple factors, it is easy to prove linear reducibil-
ity along the sequence t2, . . . , tn and to show that all En
are rational linear combinations of alternating Euler sums.

We included a simple procedure IsingE(n) to evaluate
them in the attached manual. In particular we can confirm
the conjecture on E5 made in [39]:

> IsingE(5);

2ζ3 (−37 + 232 ln(2))− 4ζ2
(
31− 20 ln(2) + 64 ln2(2)

)
−318

5 ζ2
2 + 42− 992ζ1,−3 − 40 ln(2) + 464 ln2(2) + 512

3 ln4(2)

For illustration further exact results for En up to n = 8 can
be found in IsingE.mpl. Time- and memory-requirements
of these computations are summarized in table 1.

3.5.1. Singularities in the domain of integration
The integration (3.9) requires that f(z) ∈ L(Σ)(z) is a

hyperlogarithm without any letters Σ+ := Σ ∩ (0,∞) = ∅
inside the domain of integration, which ensures that f(z)
is analytic on (0,∞).

Otherwise f(z) can have poles or branch points on Σ+
and the integration is then performed along a deformed
contour γ as discussed in section 2.5. The dependence on
γ (see figure 3) is encoded in the variables

δz,σ =
{

+1 when γ passes below σ,

−1 when γ passes above σ.
(3.12)

Example 3.9. The integrand f(z) = 1
1−z2 has a simple

pole at z → 1 and is not integrable over (0,∞). Instead,
HyperInt computes the contour integrals

> hyperInt(1/(1-z^2), z): fibrationBasis(%);
Warning, Contour was deformed to avoid
potential singularities at {1}.

−1
2 · Iπδz,1

Note even when positive letters Σ+ occur, f(z) can be
analytic on (0,∞) nonetheless. In this case the dependence
on any δz,σ drops out in the result.

Example 3.10. The integrand f(z) = ln(z)
1−z2 is analytic at

z → 1 and thus on all of (0,∞). It integrates to
> hyperInt(ln(z)/(1-z^2), z):
> fibrationBasis(%);
Warning, Contour was deformed to avoid
potential singularities at {1}.

−3
2ζ2

3.5.2. Detection of divergences
By default, the option _hyper_check_divergences =

true is activated and triggers, after each integration, a
test of convergence. The primitive F (z) is expanded as

F (z) =
N∑
i=0

logi z
∞∑

j=−M
zjFi,j at z → 0 (3.13)

and all polylogarithms Fi,j with i > 0 or j < 0 are explic-
itly checked to vanish Fi, j = 0 using fibrationBasis;
the limit z → ∞ is treated analogously. This method
is time-consuming and we recommend to deactivate this
option for any involved calculations, expecting that the
convergence is granted by the problem at hand.

Example 3.11. An endpoint divergence at z →∞ is de-
tected for

∫∞
0

ln z
1+zdz = limz→∞ Lω−1ω0(z):

> hyperInt(ln(z)/(1+z), z);
Error, (in integrationStep) Divergence at z =
infinity of type ln(z)^2
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n 1 2 3 4 5 6 7 8
time 10 ms 41 ms 52 ms 235 ms 2.0 s 40.6 s 29.3 min 28 h
RAM 35 MiB 51 MiB 51 MiB 76 MiB 359 MiB 1.6 GiB 1.9 GiB 30 GiB

Table 1: Resources consumed during computation of the Ising-type integrals En of (3.11) running on IntelR© CoreTM i7-3770 CPU @ 3.40 GHz.
The column with n = 1 (when En := 1) requires no actual computation and shows the time and memory needed to load periodLookups.m.

The expansions (3.13) are only performed up to i, j ≤
_hyper_max_pole_order (default value is 10). If higher
order expansions are needed, an error is reported and this
variable must be increased.

Note that the expansion (3.13) is only computed at
the endpoints z → 0,∞. Polar singularities inside (0,∞)
are not detected, e.g. hyperInt

(
1

(1−z)2 , z
)

= 1
1−z

∣∣∣∞
0

= 1
calculates the integral along a contour evading z = 1 just
as discussed in section 3.5.1. One can split the integration∫ ∞

0
f(z) dz =

k∑
i=0

∫ τi+1

τi

f(z) dz (3.14)

at such critical points Σ+ = {τ1 < . . . < τk} with τ0 := 0,
τk+1 := ∞ with the effect that all singularities now lie at
endpoints and will be properly analyzed by the program.

A problem arises if calculations involve periods for which
no basis reduction is known to HyperInt, because the van-
ishing Fi,j = 0 of a potential divergence might not be de-
tected. One can then set _hyper_abort_on_divergence :=
false to continue with the integration. All Fi,j of (3.13)
are stored in the table _hyper_divergences.

Example 3.12. When periodLookups.m is not loaded,
> hyperInt(polylog(2,-1/z)*polylog(2,-z)/z,z);
Error, (in integrationStep) Divergence at z =
infinity of type ln(z)

inadvertently finds a divergence. Namely, F1,0 of (3.13) is
> entries(_hyper_divergences, pairs);

(z =∞, ln (z)) = 4ζ1,3 + 2ζ2,2 −
1
36π

4

and its vanishing corresponds to an identity of MZV.

We like to remark that through this observation, the
computation of an integral which is known to be finite in
fact implies some relations among periods.

3.6. Factorization of polynomials
Since we are working with hyperlogarithms through-

out, it is crucial that all polynomials occurring in the cal-
culation factor linearly with respect to the integration vari-
able z. For example,

> integrationStep([[1/(1+z^2), []]], z);

Error, (in partialFractions) 1+z^2 is not
linear in z

fails because factorization is initially only attempted over
the rationals K = Q. Instead we can allow for an al-
gebraic extension K = Q(R) by specification of a set
R = _hyper_splitting_field of radicals:

> _hyper_splitting_field := {I}:
> integrationStep([[1/(1+z^2), []]], z);
> fibrationBasis(%);[[

1
2I, [[−I]]

]
,

[
−1

2I, [[I]]
]]

1
2π

We can also go further and factorize over the full algebraic
closureK = Q(~z) by setting _hyper_algebraic_roots :=
true. Over K, all rational functions Q(~z) factor linearly
such that we can integrate any f ∈ Regt→∞ L(Σ)(t) as
long as we start with rational letters Σ ⊂ Q(~z).

This feature is to be considered experimental and only
applied in transformWord which implements lemma 2.7:
Given an irreducible polynomial P ∈ Q[~z] and a distin-
guished variable z, the symbolic notation

ωRoot(P,z) :=
∑{

ωz0 : P |z=z0
= 0
}

(3.15)

sums the letters corresponding to all the roots of P .

Example 3.13. A typical situation looks like this:
> f,g:=Hlog(x,[-z,x+x^2]),Hlog(x,[x+x^2,-z]):
> fibrationBasis(f+g, [x, z]);
Error, (in linearFactors) z+x+x^2 does not
factor linearly in x

To express f + g as a hyperlogarithm in x, the roots R =
Root(P, x) =

{
− 1±

√
1−4z
2

}
of P = z + x+ x2 seem neces-

sary. After allowing for such algebraic letters, we obtain:
> _hyper_algebraic_roots := true:
> fibrationBasis(f+g, [x, z]);

−Hlog (x, [−1,−z])−Hlog (x, [−z,−1])
+ Hlog (x, [−z, 0]) + Hlog (x, [0,−z])

Since this result actually does not involve ωR at all one
might wonder why it was necessary in the first place. The
reason is that the individual contributions f and g indeed
need ωR. Only in their sum this letter drops out:4

4In this extremely simple example this is clear since by (2.5),
f + g = Lω−z (x) · Lωx(x+1) (x) factorizes into log x+z

z
· log x

1+x
. We

thus see why our representation (3.1) is preferable to one where all
products of words are multiplied out (as shuffles).
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> alias(R = Root(z+x+x^2, x)):
> fibrationBasis(f, [x, z]);

Hlog (x, [R,−z]) + Hlog (x, [R,−1])−Hlog (x, [R, 0])
+ Hlog (x, [−z, 0])−Hlog (x, [−z,−1])
−Hlog (x, [−1,−z])−Hlog (x, [0,−z])

Note that further processing of functions with such al-
gebraic letters5 is not supported by HyperInt, because
their integrals are in general not hyperlogarithms anymore.
However, the case of example 3.13 occurs frequently where-
fore the option _hyper_ignore_nonlinear_polynomials
(default value is false) is available to ignore all algebraic
letters in the first place. That is, all words containing such
a letter are immediately dropped when it is set to true.

In the example above this gives the correct result for
f+g, but will provoke false answers when fibrationBasis
is applied to f or g alone. Hence this option should only be
used when linear reducibility is granted; preferably using
the methods of section 4.

3.7. Additional functions
In the manual we describe some further procedures pro-

vided by HyperInt (note that all algorithms of section 2
are were implemented), like the extension of the commands
diff and series to compute differentials and series ex-
pansions of hyperlogarithms.

3.8. Performance
During programming we focussed on correctness and

we are aware of considerable room for improvement of the
efficiency of HyperInt. But we hope that our code and the
details provided in section 2 will inspire further, stream-
lined implementations, even outside the regime of com-
puter algebra systems. This is possible since apart from
the factorization of polynomials (which can be performed
before the actual integration, see the next section), all op-
erations boil down to elementary manipulations of words
(lists) and computations with rational functions.

Ironically, often just decomposing into partial fractions
becomes a severe bottleneck in practice, as was also noted
in [16]. This happens when an integrand contains denom-
inator factors to high powers or very large polynomials in
the numerator.

We observed that Maple consumes a lot of main mem-
ory, in very challenging calculations the demand grew be-
yond 100 GiB. Often this turns out to be the main limita-
tion in practice.

Our program uses some functions that are not thread-
safe and can therefore not be parallelized automatically.
However, since the integration procedure considers every
hyperlogarithm individually, a manual parallelization is

5These are sometimes referred to as generalized harmonic poly-
logarithms with nonlinear weights.

straightforward: Multiple instances of Maple can each com-
pute a different piece of an integral whose results can be
added up afterwards. Some example scripts are provided
and discussed in the manual.

Also note that the product representation (3.1) inher-
ently allows for different representations of the same words,
because a product can either be represented symbolically
or as the corresponding sum of shuffles. We argued that
shuffling out every product is not desirable, so a better
solution could be to choose an order on the alphabet Σ,
which then gives rise to a polynomial basis of the shuffle
algebra T (Σ) in terms of Lyndon words [40].

4. Polynomial reduction and linear reducibility

In order to compute multi-dimensional integrals (1.4)
by iterated integration using the algorithms of section 2,
we must require that for each k, the partial integral

fk ∈ L (Σk) (zk+1) where Σk ⊂ C (zk+2, . . . , zn) (4.1)

is a hyperlogarithm in the next integration variable zk+1.
The alphabet Σk is restricted to rational functions of the
remaining variables, in particular Σk ⊂ C(zk+2), because
only then lemma 2.7 guarantees that its integral fk+1 ∈
L ((Σk)z+2) (zk+2) is a hyperlogarithm in zk+2.

Definition 4.1. We call f0(~z) linearly reducible if for
some ordering z1, . . . , zn of its variables, sets Σk exist such
that (4.1) holds for all 0 ≤ k < n.

For illustration let us suppose we want to integrate

f0(x, y, z) := 1
((1 + x)2 + y)(y + z2) (4.2)

over x and y. To integrate x, we must include in Σx the
algebraic zeros −1± i√y to get a hyperlogarithm f0(x) ∈
L (Σx) (x) in x. But then the integral∫ ∞

0
f0 dx =

arctan√y
√
y(y + z2) (4.3)

is not a hyperlogarithm in y at all6. On the other hand,
since f0(y) ∈ L

({
−(1− x)2,−z2}) (y) for letters rational

in x, integration of y results in a hyperlogarithm∫ ∞
0

f0 dy = 2 log(1 + x)− log z
(x+ 1 + z)(x+ 1− z) (4.4)

in x over letters {−1,−1± z}. So in the order z1 := y,
z2 := x linear reducibility is given and we can integrate∫ ∞

0
dx
∫ ∞

0
dy f0 =

Lω1ω0(z)− Lω−1ω0(z)
z

, (4.5)

which is a harmonic polylogarithm in z.

6But it is a hyperlogarithm in t := √y, so in this simple case a
change of variables would help us out.
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In principle, we can try to integrate f0 for some arbi-
trary order and verify, after each step, that Σk is rational
(or otherwise abort and try a different order). But for-
tunately this is not necessary since there are means to
analyse the singularities of the integrals fk in advance.

Namely, polynomial reduction algorithms were presented
in [11] and [12]. These compute, for each subset I ⊂ E :=
{z1, . . . , zn} of variables, a set SI ⊂ Q[E \ I] of irreducible
polynomials that provide an upper bound of the Landau
varieties as introduced in [12]. In particular this means
that if there exists an ordering z1, . . . , zn of the variables
such that all p ∈ SIk are linear in zk+1, for any 0 ≤ k < n
and Ik := {z1, . . . , zk}, then the linear reducibility (4.1) is
granted with the rational alphabets

Σk := {0} ∪
⋃

p∈SIk

{zeros of p in w.r.t. zk+1} . (4.6)

Readers familiar with the symbol calculus will realize that
the polynomials SIk provide an upper bound of the entries
of the symbol of fk. Explicit examples of such reductions
are worked out in [11, 12] and the appendix of [24].

4.1. Performance
A polynomial reduction can significantly speed up com-

putations of integrals (1.4): During the step when fk is
rewritten as a hyperlogarithm in zk+1 following section 2.4,
all words that contain a letter not in Σk can be dropped,
since the knowledge of (4.6) proves that all such contri-
butions must in total add up to zero (see example 3.13,
where the algebraic roots ωRoot(P,z) drop out for f + g).

Note that the dimension of the space of hyperloga-
rithms over an alphabet Σk grows exponentially with the
weight. Therefore, a polynomial reduction is absolutely
crucial for problems of high complexity and cutting down
the number of polynomials in Σk is highly desirable. In
practice this means that after computation of a polyno-
mial reduction, one should look for a sequence z1, . . . , zn
of variables not only ensuring that SIk are linear in zk+1,
but also minimizing the number of zk+1-dependent poly-
nomials in SIk .

4.2. Implementation in HyperInt
HyperInt implements the compatibility graph method

[12] of polynomial reduction and provides it as the com-
mand cgReduction (L). The entries LI = [SI , CI ] of the
table L are pairs of polynomials SI and edges CI ⊂

(
SI
2
)

between them.

Example 4.2. The reduction of the integrand (4.2) starts
with the complete graph on the factors of its denominator:

> S:={x^2+2*x+1+y,y+z^2}: L[{}]:=[S, {S}]:
> cgReduction(L):
> L[{x}][1]; L[{y}][1]; L[{x,y}][1];

L{x}1
{x+ 1, x+ 1 + z, x+ 1− z}

{1 + z, z − 1}

We see that the results for S{y} and S{x,y} match with the
letters of (4.4) and (4.5), but S{x} is not computed because
S∅ is not linear in x.

Our implementation can use the knowledge of such re-
ductions in two places (examples are given in the manual):

• When a table S is supplied as the (optional) fourth
parameter to fibrationBasis, then all words wi,k
in (3.4) containing letters not in Σk of (4.6) are re-
moved from the result.

• In the first step of integrating
∫∞

0 f dz, the inte-
grand f is rewritten as a hyperlogarithm in z using
transformWord(f, z) =

∑
w Lw(z) · cu. Setting

> _hyper_restrict_singularities := true:
> _hyper_allowed_singularities := S:

ensures that any word w containing a letter that is
not a zero of some polynomial p(z) ∈ S is dropped.

4.3. Spurious polynomials and changes of variables
Bear in mind that the sets SI only provide upper bounds

on the alphabet. In course of our calculations we regularly
observed that, with the number |I| of integrated variables
increasing, more and more polynomials in SI tend to be
spurious. In extreme cases it happens that a reduction
contains surplus non-linear polynomials in every variable,
while f0 actually is linearly reducible.

But even when linear reducibility strictly fails, it is
sometimes possible to change variables such that the in-
tegrand becomes linearly reducible in these new variables.
We explain this in [24] using the example of a divergent,
massive four-point box integral. Similar transformations
are also employed in [16] to calculate generating functions
of operator insertions into finite one-scale integrals. Also
note the discussion [41] of alphabets containing square root
letters that are typical for applications in particle physics
and can be rationalized through simple changes of vari-
ables.

5. Application to Feynman integrals

In section 2 we investigated hyperlogarithms on their
own, but the algorithms were originally developed in [11]
for the computation of Feynman integrals. Important re-
sults on their linear reducibility (including counterexam-
ples) and the geometry of Feynman graph hypersurfaces
were obtained in [12]. In [23, 24] we successfully applied
our implementation to compute many non-trivial exam-
ples, including massless propagators up to six loops and
also divergent integrals depending on up to seven kine-
matic invariants. All results7 presented in these papers
were computed using this prgram HyperInt.

7These can be downloaded from http://www.math.hu-berlin.
de/~panzer/.
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Some further discussions on multi-scale and subdiver-
gent integrals in the parametric representation are also
given in [42–44].

We hope that our implementation will be particularly
useful for applications to particle physics.

Remark 5.1. Our method applies only to the small class
of linearly reducible graphs, which is a subset of those
Feynman graphs that can be evaluated in terms of poly-
logarithms. By now it is however well known that quan-
tum field theory exceeds this space of functions not only
in the massive case [45–47], but also in massless integrals
[48]. Even in supersymmetric theories, elliptic integrals
and generalizations have been identified, e.g. [49, 50].

5.1. Parametric representation and ε-expansion
The popular method of Schwinger parameters [51] ex-

presses Feynman integrals Φ(G) associated to Feynman
graphs G by

Φ(G) = Γ(sdd)
∏
e∈E

∫ ∞
0

αae−1
e dαe
Γ(ae)

· ϕ− sdd

ψD/2−sdd · δ(1−αeN )

(5.1)
in D space-time dimensions. To each edge e ∈ E of
the graph corresponds a Schwinger variable αe, and the
corresponding scalar propagator may be raised to some
power ae. The superficial degree of divergence is sdd :=∑
e∈E ae − |G| ·

D
2 for the loop number |G| of G. The two

graph polynomials ψ and ϕ are for example defined in [52],
the δ-distribution freezes an arbitrary αeN .

5.2. ε-expansion
For calculations in dimensional regularization8, we set

D = 4 − 2ε and also the edge powers ae = Ae + ενe are
ε-dependent and expanded near an integer Ae ∈ Z. As-
suming that (5.1) is convergent9 for ε = 0, we can expand
the integrand in ε and obtain each coefficient cn of the
Laurent series Φ(G) =

∑
n cnε

n as period integrals

cn = Γ(sdd)
∏
e∈E

∫ ∞
0

dαe
Γ(ae)

· P
(n) · f (n)

Q(n) δ(1− αeN ) (5.2)

where P (n), Q(n) ∈ Q[~α] denote polynomials and f (n) ∈
Q[~α, log ~α, logϕ, logψ]. In particular f (n) ∈ L(Σe)(αe) is
a hyperlogarithm in αe whenever ϕ and ψ are linear in
αe. If f (n) even turns out to be linearly reducible, we can
integrate it with HyperInt.

8A definition in momentum space can be found in [53], while in
the parametric representation it is immediate.

9This can always be arranged for with the help of preparatory
partial integrations as was shown in [24].
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Figure 4: Four-loop massless propagator of section 5.4. In [23] this
one is called M3,6. Edges are labelled in black, vertices in red.

5.3. Additional functions in HyperInt

In Appendix C.4 we list the most important functions
that support the calculation of Feynman integrals. These
entail simple routines to construct the graph polynomials
ψ and ϕ.

For divergent integrals, the parametric integrands in
the representation (5.1) can be divergent. Such a situation
demands partial integrations, which effectively implement
the analytic (dimensional) regularization and produce a
convergent integral representation in the end. This pro-
cedure is defined and exemplified in [24] and implemented
into HyperInt as described in the manual.

5.4. Examples
Plenty of examples are provided in the Maple worksheet

Manual.mw, wherefore we only present a very brief case of
a four-loop massless propagator here.

First we define the graph of figure 4 by its edges E and
specify two external momenta of magnitude one entering
the graph at the vertices 1 and 3. The polynomials ψ and
ϕ can be computed with

> E:=[[1,2],[2,3],[3,4],[4,1],[5,1],[5,2],
[5,3],[5,4]]:

> psi:=graphPolynomial(E):
> phi:=secondPolynomial(E, [[1,1], [3,1]]):

This graph has vertex-width three [12] and is therefore
linearly reducible. Still let us calculate a polynomial re-
duction to verify this claim:

> L:=table(): S:=irreducibles({phi,psi}):
> L[{}]:=[S, {S}]: cgReduction(L):

Afterwards we can investigate the polynomial reduction
(for example with the procedure reductionInfo(L)) and
find a linearly reducible sequence ~z of variables. We rec-
ommend to always check this with

> z:=[x[1],x[2],x[6],x[5],x[3],x[4],x[7],x
[8]]:

> checkIntegrationOrder(L, z[1..7]):
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1. (x[1]): 2 polynomials, 2 dependent
2. (x[2]): 5 polynomials, 4 dependent
3. (x[6]): 8 polynomials, 4 dependent
4. (x[5]): 7 polynomials, 4 dependent
5. (x[3]): 6 polynomials, 6 dependent
6. (x[4]): 4 polynomials, 3 dependent
7. (x[7]): 1 polynomials, 1 dependent
Final polynomials:

{}

The integrand is assembled according to (5.1) which in
this case is already convergent as-is. We expand to second
order in ε with

> sdd := nops(E)-(1/2)*4*(4-2*epsilon):
> f := series(psi^(-2+epsilon+sdd)*phi^(-sdd),

epsilon=0):
> f:=add(coeff(f,epsilon,n)*epsilon^n,n=0..2):

Now we integrate out all but the last Schwinger parameter
> hyperInt(f, z[1..-2]):

and reduce the result into a basis of MZV:
> fibrationBasis(f)*z[-1]:
> collect(%, epsilon);(
254ζ7 + 780ζ5 − 200ζ2ζ5 − 196ζ2

3 + 80ζ3
2 −

168
5 ζ2

2ζ3

)
ε2

+
(
−28ζ2

3 + 140ζ5 + 80
7 ζ

3
2

)
ε+ 20ζ5.

Examples containing more external momenta, massive prop-
agators and also divergences are included in Manual.mw.
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Appendix A. Tests of the implementation

We extensively tested our implementation with a va-
riety of examples. Most of these are supplied in the file
HyperTests.mpl which must run without any errors. Since
it contains many diverse applications of HyperInt, it might
also be useful as a supplement to the manual.

Plenty of functional and integral equations of polylog-
arithms, taken from the books [3, 57], are checked with
HyperInt. These tests revealed a few misprints in [3]:

• Equation (7.93): − 9
4π

2 log2(ξ) must be− 9
12π

2 log2(ξ).

• Equation (7.99), repeated as (44) in appendix A.2.7:
The second term − 9

4π
2 log3(ξ) of the last line must

be replaced with − 3
4π

2 log3(ξ).

• Equation A.3.5. (9): The terms−2 Li3 (1/x)+2 Li3(1)
should read + Li3(1/x)− Li3(1) instead.

• In equation (7.132), a factor 1
2 in front of the sec-

ond summand Dn
p=0

1
p {· · · } is missing (it is correctly

given in 7.131).

• Equation (8.80): (1 − v) inside the argument of the
fourth Li2-summand must be replaced by (1 + v), so
that after including the corrections mentioned in the
following paragraph, the correct identity reads

0 = Li2
(

(1 + v)w
1 + w

)
+ Li2

(
−(1− v)w

1− w

)
+ Li2

(
(1− v)w

1 + w

)
+ Li2

(
−(1 + v)w

1− w

)
−Li2

(
−(1− v2)w2

1− w2

)
+ 1

2 log2
(

1 + w

1− w

)
.

(A.1)

• Equation (16.46) of [57]: x2 must read x−2.

• Equation (16.57) of [57]: π4

40 must read π4

30 .

Some tests are constructed by calculation of parametric
integrals with known results in terms of polylogarithms
and MZV. We used the expansion of Euler’s beta function
in the form

exp
[ ∞∑
n=2

ζ(n)
n (xn + yn − (x+ y)n)

]
1− x− y =

∫ ∞
0

z−x dz
(1 + z)2−x−y

and also checked the identity (z ≥ 0)∫ ∞
0

[(
1
x
− 1
x+ z

)
Lin(−x− z)− 1

x
Lin

(
− z

x+ 1

)]
dx

= nLin+1(−z), (A.2)

which is easily derived inductively for any n ∈ N.
The two families of “bubble chain graphs” shown in

figure A.5 can be calculated with standard techniques in
momentum-space. Following the forest formula, we get

P (Bn,m) := ∂

∂q2

∣∣∣∣
q2=1

ΦR (Bn,m) = (n+m)! (A.3)

for the derivative of the Feynman integrals ΦR renormal-
ized by subtraction at external momentum q2 = 1. The
second family has generating function

ln
{

(1− x− y)
∑
n,m≥0

xnym

n!m! P
(
B̂n,m

)}
=
∑
r≥1

2ζ2r+1
2r + 1

[
x2r+1 + y2r+1 − (x+ y)2r+1] (A.4)
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Bn,m := n m
B̂n,m := n m

Figure A.5: Two series of one-scale graphs with subdivergences in four dimensions. They occur in φ4-theory as vertex graphs with two
nullified external momenta, incident to the two three-valent vertices.

and we used (A.3) and (A.4) to verify our results obtained
from the parametric integral representations for these pe-
riods derived in [58].

We furthermore tested some simple period integrals of
[10] and transformations of polylogarithms into hyperlog-
arithms given in [59]. Our results for the integrals En of
(3.11) match the analytic results up to n = 4 given in [39]
and the numeric values obtained therein for E5 and E6
agree with our exact results.

Probably the strongest tests of our implementation are
the computations of ε-expansions of various single-scale
[23] and multi-scale [24] Feynman integrals. We cross-
checked these results with many different references, veri-
fied that they obey the symmetries of the associated Feyn-
man graphs and in some cases used established programs
[60, 61] to obtain numeric evaluations to confirm our ana-
lytic formulas.

Also we confirmed the operator matrix elements Î1a,
Î1b, Î2a, Î2b, Î4 of ladder graphs computed in [14] and
checked the Benz graphs I1, I2 and I3 of [16]. The exam-
ples of Î4 and I1 are part of our manual, where we also
correct mistakes in the equations (3.18) and (3.1) loc.cit.

Another check was done with the massless hexagon in-
tegral [62, 63], which is also included in the manual.

Appendix B. Proofs

Lemma 2.2. The statement is trivial for n = 0 and we
apply induction. For n > 0, the outer shuffle product in
the right-hand side of (2.15) decomposes with respect to
the last letter into{

n−1∑
i=0

[u� (−ωai) . . . (−ωa1)]ωσ � ωai+1 . . . ωan−1

}
ωan

+
{
u�

n∑
i=0

(−ωai) . . . (−ωa1)� ωai+1 . . . ωan

}
ωσ.

The first contribution is uωσωa1 . . . ωan by the induction
hypothesis and the second contribution vanishes because it
represents {u� (S ? id)(ωa1 . . . ωan)}ωσ for the antipode
S of the Hopf algebra T (Σ).

Lemma 2.5. The statement is trivial for n = 1 and for
n > 1 we apply (2.2) to (2.23) such that the right-hand
side becomes

n∑
0≤k<i≤n

(ωσi − ω−1)
[
ωk−1 � (−ω−1)i−k−1

� ωσi+1 . . . ωσn
]

+ ω−1

n∑
k=1

[
ωk−1
−1 � reg∞

(
ωσk+1 . . . ωσn

)]
.

The second contribution is ω−1ωσ2 . . . ωσn by the induction
hypothesis, while the sum

∑i−1
k=0 ω

k
−1 � (−ω−1)i−1−k =

(ω−1 − ω−1)�(i−1) = δi,1 reduces the first contribution to
(ωσ1 − ω−1)ωσ2 . . . ωσn .

Lemma 2.18. Consider a sequence ωnτ in a word w = u(ωnτ )v
where u ∈ im(regτ ) does not end in ωτ and v ∈ im(regτ )
does not begin with ωτ . The contributions to (2.45) that
split w between u and v are

n∑
k=0

∫
γu

(
uωkτ

)
·
∫
ηu

(
ωn−kτ v

)
. (∗)

From lemma 2.2 we obtain the identities

u(ωkτ ) =
k∑
µ=0

ωk−µτ � regτ (uωµτ ) and (B.1)

(ωkτ )v =
k∑
ν=0

ωk−ντ � regτ (ωντ v) , (B.2)

which allow us to rewrite (∗) as∑
µ+ν+a+b=n

∫
γu

regτ (uωµτ ) ·
∫
ηu

regτ (ωντ v) ·
∫
γu

ωaτ ·
∫
ηu

ωbτ .

The sum over a+ b = n−µ− ν of the last two terms com-
bines to

∫
γ
ωn−µ−ντ . Now the limit u→ τ in the remaining

two factors is finite, such that (∗) then becomes∑
µ+ν≤n

∫ z

τ

regτ (uωµτ ) ·
∫ z

τ

ωn−µ−ντ ·
∫ τ

0
regτ (ωντ v)

=
n∑
µ=0

∫ z

τ

(uωµτ ) ·
∫ τ

0
regτ

(
ωn−µτ v

)
.
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We used (B.1) again and the definition
∫ z
τ
ωτ :=

∫
γ
ωτ .

Appendix C. List of functions and options provided
by HyperInt

Appendix C.1. Options and global variables
_hyper_verbosity (default: 1)

The higher this integer, the more progress informa-
tion is printed during calculations. The value zero
means no such output at all.

_hyper_verbose_frequency (default: 10)
Sets how often progress output is produced during
integration or polynomial reduction.

_hyper_return_tables (default: false)
When true, integrationStep returns a table in-
stead of a list. This is useful for huge calculations,
because Maple can not work with long lists.

_hyper_check_divergences (default: true)
When active, endpoint singularities at z → 0,∞ are
detected in the computation of integrals

∫∞
0 f(z) dz.

_hyper_max_pole_order (default: 10)
Sets the maximum values of i and j in (3.13) for
which the functions fi,j are computed to check for
potential divergences fi,j 6= 0.

_hyper_abort_on_divergence (default: true)
This option is useful when divergences are detected
erroneously, as happens when periods occur for which
no basis is supplied to the program.

_hyper_divergences
A table collecting all divergences that occurred.

_hyper_splitting_field (default: ∅)
This set R of radicals defines the field k = Q(R) over
which all factorizations are performed.

_hyper_ignore_nonlinear_polynomials (default: false)
Set to true, all non-linear polynomials (that would
result in algebraic zeros as letters) will be dropped
during integration. This is permissible when linear
reducibility is granted.

_hyper_restrict_singularities (default: false)
When true, the rewriting of f as a hyperlogarithm
in z (performed during integration) projects onto the
algebra L(Σ) of letters Σ specified by the roots of the
set _hyper_allowed_singularities (default: ∅) of
irreducible polynomials. This can speed up the inte-
gration.

_hyper_algebraic_roots (default: false)
When true, all polynomials will be factored linearly
which can introduces algebraic functions. Further
computations with such functions are not supported.

Appendix C.2. Maple functions extended by HyperInt

convert(f, form) with form ∈ {Hlog, Mpl, HlogRegInf}
Rewrites polylogarithms f in terms of hyper- or poly-
logarithms using (1.3). Choosing form = HlogRegInf
transforms f into the list representation (3.1).

diff(f, z)
Computes the partial derivative ∂tf of hyperloga-
rithms Hlog (g(t), w(t)) or polylogarithms Mpl (~n, ~z(t))
that occur in f . This works completely generally, i.e.
also when a word w(t) depends on t.

series(f, z = 0)
Implements the expansion of f = Lw(z) at z → 0.
To expand at different points, use fibrationBasis
first as explained in the manual.

Appendix C.3. Some new functions provided by HyperInt

Note that there are further functions in the package,
cf. the manual.

integrationStep(f, z)
Computes

∫∞
0 f dz for f in the form (3.1).

hyperInt(f, ~z) with a list ~z = [z1, . . . , zr] or single ~z = z1
Computes

∫∞
0 dzr . . .

∫∞
0 dz1f from right to left. Any

variable can also specify the bounds zi = ai..bi to
compute

∫ bi
ai

dzi instead.

fibrationBasis(f, [z1, . . . , zr], F, S)
Rewrites f as an element of L(Σ1)(z1)⊗. . .⊗L(Σr)(zr).
Note that Σi ⊂ C(zi+1, . . . , zr) in general are alge-
braic functions of the following variables. A table F
(with indexing function sparsereduced) can be sup-
plied to store the result in compact form, otherwise
Hlog-expressions are returned.
For each defined key zi of S, the result is projected
from L(Σi)(zi) onto L(ΣSi )(zi) restricting to letters
ΣSi := {zeros of p(zi) : p ∈ Szi}. All words including
other letters are dropped in the computation.

index/sparsereduced
This indexing function corresponds to Maples sparse,
but entries with value zero are removed. It is used
to collect coefficients of hyperlogarithms.

forgetAll()
Clears cache tables for internal functions and should
be called when options were changed.

transformWord(w, t)
Given a word w = [σ1, . . . , σn] as a list, this function
returns a list [[w1, u1], . . .] of pairs such that

Reg
z→∞

Lw(z) =
∑
i

Lwi(t) · Reg
z→∞

Lui(z)

and implements the algorithm of section 2.4. Note
that ui is given in the product form (3.1).
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reglimWord(w, t)
Given a word w = [σ1, . . . , σn] ∈ Σ× with rational
letters Σ ⊂ C(t), it implements our algorithm from
section 2.5 to compute u (in the representation (3.1))
such that

Reg
t→0

Reg
z→∞

Lw(z) = Reg
z→∞

Lu(z).

integrate(f, z)
Takes a hyperlogarithm f(z) in the form (3.3) and
computes a primitive F (∂zF (z) = f(z)) following
section 2.2.

cgReduction(L, todo, d)
Computes compatibility graphs (stored in the table
L) for the variable sets in the list todo, only taking
reductions into account where every polynomial is of
degree d or less (default d = 1).
When todo is a set, then all reductions of variables
not overlapping this set are computed.

checkIntegrationOrder(L, ~z)
Tests whether for ~z = [z1, . . .], all polynomials in the
reduction L are linear in the corresponding zi and
prints the number of polynomials.

Appendix C.4. Functions related to Feynman integrals
graphPolynomial(E)

Computes ψ for the graph with edges E = [e1, . . .]
given as a list of pairs of vertices ei = [vi,1, vi,2].
The vertices V = {1, . . . , |V |} must be numbered
consecutively.

forestPolynomial(E,P )
The spanning forest polynomial ΦP of [54] of the
graph E, P is a partition of a subset of vertices.

secondPolynomial(E,P,M)
Computes ϕ for the graph with edges E that denote
scalar propagators of masses M (optional). P =
[[v1, p

2
1], . . .] lists the vertices vi to which external

momenta pi are attached.

graphicalFunction(E, Vext)
Constructs the parametric integrand for a graphical
function as defined in [55] in D = 4. The edge list
E = [e1, . . .] can contain lists ei = [vi,1, vi,2] to de-
note propagators and sets ei = {vi,1, vi,2} to denote
inverse (numerator) propagators. The external ver-
tices are Vext = [vz, v0, v1, v∞] with v∞ optional.

drawGraph(E,P,M, s)
Draws the graph defined by the edge list E. The
remaining parameters are optional: P and M are as
for secondPolynomial while s sets the style of the
drawing (see GraphTheory[DrawGraph]).

findDivergences(f, P )
For any pair J ∩K = ∅ of disjoint sets of variables,
the degree ωKJ (f) of divergence when z → 0,∞ (for
z ∈ J,K) is computed as defined in [24]. The result
is a table indexed by the sets J ∪̇K−1, holding the
values of ωKJ (f) that are ≤ 0 when ε = 0.
The variables P are considered fixed parameters, so
only sets with (J ∪̇K) ∩ P = ∅ are considered.

dimregPartial(f, I, sdd)
Computes the new integrand DKJ (f) after a partial
integration, as defined in [24]:

DKJ = 1− 1
sdd

[∑
z∈J

∂zz −
∑
z∈K

∂zz

]
. (C.1)

The set I = J ∪̇K−1 must consist of variables J and
inverses K−1 =

{
z−1 : z ∈ K

}
.
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