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a b s t r a c t

This paper presents two discretisation schemes for the parallel gradient operator used in scrape-off layer
plasma turbulence simulations. First, a simple model describing the propagation of electrostatic shear-
Alfvén waves, and retaining the key elements of the parallel dynamics, is used to test the accuracy of the
different schemes against analytical predictions. Themost promising scheme is then tested in simulations
of limited scrape-off layer turbulence with the flux-driven 3D fluid code GBS (Ricci et al., 2012): the new
approach is successfully benchmarked against the original parallel gradient discretisation implemented
in GBS. Finally, GBS simulations using a radially varying safety profile, which were inapplicable with the
original scheme are carried out for the first time: the well-known stabilisation of resistive ballooning
modes at negativemagnetic shear is recovered. Themain conclusion of this paper is that a simple approach
to the parallel gradient, namely centred finite differences in the poloidal and toroidal direction, is able to
simulate scrape-off layer turbulence provided that a higher resolution and higher convergence order are
used.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A magnetically confined fusion plasma is composed of a closed
field line region, inside which fusion reactions take place, and an
open field line region called the Scrape-Off Layer (SOL). In this
narrow region themagnetic field lines terminate on either a limiter
or a divertor. The physical understanding of the SOL is crucial to
determine the performance of future fusion devices such as ITER
as the SOL, e.g., exhausts the tokamak power, controls the plasma
fuelling and the impurity dynamics. More precisely, turbulent
phenomena inside the SOL have a direct influence on its width and
on the power density reaching the vacuum vessel components.

Realistic turbulence simulations of the SOL are extremely
challenging for several reasons. First, the SOL is characterised by
background gradient lengths comparable to the typical size of tur-
bulence, making the separation between the equilibrium and the
fluctuations inconvenient. Second, the typical size of turbulent
structures, of the order of the ion sound gyroradius, is several or-
ders of magnitude smaller than the domain size. Third, the very
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complex magnetic geometry implies non-periodic boundary con-
ditions and a fine grid resolution to solve for X points. Fourth, the
main instabilities such as drift waves and ballooning modes are
destabilised by the parallel dynamics of the electrons, while the
turbulence time scale is set by the ions: the electron to ion time
scale scales as

√
mi/me ∼ 60 for a Deuterium plasma. Finally, the

turbulence, mostly aligned parallel to the magnetic field lines, is
strongly anisotropic.

Despite the rapid increase of computational power, it remains
difficult to include all the key physics ingredients in a self-
consistent manner. Although some effort to perform massively
parallel kinetic simulations in the tokamak edge has started
[1–3], the computational challenges remain tremendous. In fact,
as several key physical mechanisms are not understood yet, most
of the present studies focus on fluid models that retain the main
characteristics of the SOL turbulence. The fluid approach is justified
by the high collisionality in the SOL.While the first studies focused
on 2D fluid turbulence, assuming k� = 0 and modelling sheath
losses [4,5], recently state-of-the art 3D fluid simulations have
been developed, using a flux-driven model where profiles are a

priori unknown.
One of the key numerical challenges to simulate 3D turbulence

in tokamaks is the accurate computation of the parallel gradient.
The most popular approach is to take advantage of the strong
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anisotropy of the turbulence by using field-aligned coordinates
[6–9]. The first local gyrofluid simulations using a flux tube geom-
etry were performed in the early 90s [6]. The shifted metric [10]
procedure further allowed global simulations in field-aligned coor-
dinates. An alternative approach is to use the straight-field-line an-
gle [11] and to filter large k� modes [12]. Unfortunately, these two
approaches are inapplicable in several situations such as large elec-
tromagnetic perturbations, time-dependent magnetic fields and
X-point geometry, for which the safety factor goes to infinity and
both the straight-field-line and the field-aligned coordinate be-
come singular.

Recently, a new approach called the Flux Coordinates Indepen-
dent (FCI) approach has been proposed [13], in which the fluid
quantities of interests are interpolated along the field-line us-
ing cubic Hermite interpolation. However, the FCI method has
been tested for closed field line configuration only. Additionally,
several magnetohydrodynamic and turbulence studies have been
performed without taking advantage of field-aligned property
[14–17]. Although the required resolution in such cases is higher
compared to field-aligned methods, the implementation is usually
simpler. An additional difficulty specific to the SOL region comes
from the non-periodic boundary conditions. In proximity of a di-
vertor or a limiter, the parallel gradient scheme must be modified,
for example, by using one-sided derivatives [17].

The aim of this work is to test the implementation of a non-
field-aligned approach to simulate tokamak SOL turbulence using
GBS, a 3D global fluid flux-driven code [18]. GBS was specifically
conceived to study plasma turbulence in settings where the high
fluctuation level and the large radial and poloidal mode extension
prevent the expansion of the model equations by separating
turbulent and equilibrium length scales. Until now, GBS has
employed a field-aligned parallel gradient operator.

Studies carried out using GBS simulations have helped provide
an understanding of the turbulence saturation mechanisms in the
SOL, the non-linear turbulent regimes, the scaling of the tokamak
SOL width, the role of electromagnetic effects, and the equilibrium
electric field [19–22]. Since the codewas designed around a simple,
robust, and scalable numerical scheme, we are able to simulate the
SOL of medium size tokamaks such as TCV or Alcator C-Mod at a
cost of roughly 106 CPU hours on the Helios supercomputer at the
International Fusion Energy Research Center, based on Intel Sandy
Bridge processors.

The main conclusion of our study is that SOL turbulence sim-
ulations using a non-field aligned approach are still possible at a
reasonable cost, within an algorithm that can be extended to sim-
ulate more complex magnetic geometries. Using standard centred
finite difference formulas for the parallel gradient operator, it was
found that it is possible to reproduce the results of the field-aligned
with an increase in computational cost of roughly 10%. Thismodest
increase in cost results from mutually cancelling changes in reso-
lution requirements: the number of toroidal grid points must be
doubled in order to achieve the required resolution and stability,
but the number of poloidal grid points can be decreased by a factor
of two.

Earlier GBS simulations described in the literature were carried
out using a centred, field-aligned finite difference scheme for
the parallel gradients. Fluid quantities are evaluated on a non-
field aligned grid with their parallel gradient being computed by
appropriately choosing the grid resolution such that the field lines
intersect grid points exactly. This approach is limiting for several
reasons, the main one being its inapplicability to treat radially
varying safety factor profiles, and, therefore, X points. In this paper,
the simplest parallel gradient operator that should be able to treat
this configuration, i.e. computing separately the derivatives along
the poloidal and toroidal directions, is tested. First, its numerical
properties are studied on the propagation of shear-Alfvén waves

(SAWs). The necessary requirements for a satisfactory accuracy
are obtained by comparing the analytical dispersion relation with
the numerical results. Then, the new numerical scheme is tested
in GBS nonlinear simulations. Benchmark between simulations
using the field-aligned and the non-field-aligned parallel gradient
operator show that the latter is able to capture SOL turbulence
correctly. Finally, a physical example is given by considering a
radially varying safety factor profile.

This paper is organised as follows. The fluidmodel used to study
SOL physics and employed by GBS is introduced in Section 2. The
details of the parallel gradient operator schemes (both the one
that has been used by GBS in the past and various proposed ones)
are derived in Section 3. These numerical methods are applied
on the analytical test case of the SAWs in Section 4. Nonlinear
GBS simulations are then presented in Section 5. Finally, the
conclusions are given in Section 6.

2. Fluid model of the SOL plasma

The study of the SOL presented in this paper is based on the
two-fluid, electromagnetic, cold ion (Ti = 0) drift-reduced Bragin-
skii equations. By assuming the ordering d/dt � ωci (ωci = eB/mi

is the ion gyrofrequency) and k⊥ � k�, the perpendicular veloc-
ities are written as V⊥i = VE×B + Vpol and V⊥e = VE×B + V∗e,
where VE×B = (−∇φ × B)/B is the E × B drift velocity, V∗e =
−(1/enB2)B × ∇pe is the electron diamagnetic drift, e is the el-
ementary charge, and Vpol is the polarisation velocity defined in
Ref. [23]. The continuity, vorticity, ion and electron parallel mo-
mentum and electron temperature equations then read, in nor-
malised form:

∂tn = −R0

B0
[φ, n] − ∇�
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where R0 is the tokamak major radius expressed in ρs0 units, ω =
∇2

⊥φ is the vorticity, j� = n

�
v�i − v�e

�
is the parallel current,
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b0 = B0/B0 is the unit unperturbed magnetic field vector, χ =
v�e + miβe0ψ/(2me), βe0 = 2µ0pe/B

2
0 is the plasma beta and ψ is

such that −βe0ψ/2 = −b · A1 where A1 is a vector potential func-
tion such that ∇ × A1 = B1. The normalised Spitzer resistivity is
ν, and χ� is the parallel heat flux diffusivity given as an input con-
stant. Quasineutrality is assumed such that ne = ni ≡ n. Plasma
outflow from the closed flux surface region ismimicked using den-
sity and temperature sources, respectively, Sn and STe . The Ge and
Gi terms represent the gyroviscous part of the pressure tensor and
are given by:

Gi = −3η0i

�
2
3
∇�v�i +

1
3B0

C(φ)

�
(6)

Ge = −3η0e

�
2
3
∇�v�e + 1

3B0
C(φ) − 1

3B0n
C(pe)

�
(7)

where η0i and η0e are constant coefficients given on input. The gy-
roviscous coefficient η0i is formally equal to 0 in a cold ion model,
but a finite value is used for numerical stability; the value of η0e
used in GBS is usually larger than the physical one but it has been
checked not to influence the main results presented herein. Fur-
thermore, the vorticity equation has been obtained using the com-
monly used Boussinesq approximation:

∇ ·
�
nmi

B
2
0e

d
dt

∇⊥φ

�
∼= nmi

B
2
0e

d
dt

∇2
⊥φ. (8)

This approximation is equivalent to neglecting the space depen-
dence of n/B2

0 in the polarisation current and to assume that the
d/dt and ∇ operators commute.

Small perpendicular diffusion terms of the form Da∇2
⊥a are

added for numerical reasons. Perpendicular Laplacians are as-
sumed to lie in the poloidal plane. The curvature operator is de-
fined by C(A) = B0/2[∇ × (b0/B0)] · ∇A, the parallel gradient
is ∇�A = b0 · ∇A + βe0R0[ψ, A], the perpendicular Laplacian is
∇2

⊥A = −∇ · [b0 × (b0 × ∇A)] and the Poisson bracket is [φ, A] =
b0 · (∇φ ×∇A). The differential operators are written for a general
geometry:
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�
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Here, repeated indices are summed over using the usual Einstein
notation, vectors have been expanded using their co or contravari-
ant basis, and J = [∇ξ 1 · (∇ξ 2 × ∇ξ 3)]−1 is the Jacobian.

The normalisations are (tilde denotes quantities in physical
units): t = t̃/(R0/cs0), ∇⊥ = ∇̃⊥ρs0, ∇� = ∇̃�R0, v = ṽ/cs0,
n = ñ/n0, Te = T̃e/Te0, φ = eφ̃/Te0, ν = ν̃/(cs0me/R0mi), with
cs0 = √

Te0/mi andρs0 = cs0/ωci, while Te0 and n0 are the reference
temperature and density.

The above system of equations is completed by a proper set
of boundary conditions to describe the interface between the SOL
and the magnetic pre-sheath where the ion drift approximation
d/dt � ωci breaks down [24]. At the top and bottom of the
limiter, these are, in normalised units, v�i = ±√

Te, v�e =
±√

Te exp (Λ − φ/Te), ∂sn = ∓n/
√
Te∂sv�i, ∂sφ = ∓√

Te∂sv�i,
ω = −(∂sv�i)2 ∓ √

Te∂ssv�i, ψ = 0 and ∂sTe = κT/Te∂sφ, with
Λ = 3 and κT

∼= 0.15. Here s is a coordinate normal to the limiter
walls. Corrections of order ρs0/Lp described in Ref. [24] have been
neglected.

The radial boundary conditions, which are not described in
Ref. [24], can be specified as either Dirichlet or Neumann. Typically,
we specify ∂rn = ∂r Te = ∂rχ = ∂rv�i = 0 and ω = 0 at the radial
boundaries. Since the electrostatic potential is tightly coupled to
the temperature [22], we use φ = ΛTe as a radial boundary con-
dition. Finally, as is customary in flux-driven codes, a small buffer
region (roughly, 10 grid points wide) is implemented in order to
decrease the amplitude of the fluctuations as they approach the
simulation boundary.

The system of equations (1)–(5) with the boundary conditions
described above has been implemented in the GBS code. These
equations are general, and can be formulated in an arbitrary
coordinate system. Note that similar equations are implemented
in other edge and SOL turbulence codes [25,17,26–29]. In GBS,
(x = r, y = aθ∗, z = R0ϕ) is used, where ϕ is the toroidal angle
and θ∗ is the straight-field-line coordinate defined by:

θ∗ = 1
q(r)

� θ

0
dθ � B0 · ∇ϕ

B0 · ∇θ � (16)

q(r) = 1
2π

� 2π

0
dθ

B0 · ∇ϕ

B0 · ∇θ
(17)

where q(r) is the safety factor. The straight-field-line coordinate is
such that B0 · ∇θ∗ = B0 · ∇ϕ. In other words, the magnetic field
lines are straight in the (y, z) plane.

Derivatives in the x and y directions, needed to compute the
curvature, Laplacian and diffusion operators, are computed using
standard second order centred finite difference schemes, while
the Poisson bracket operator is discretised using the Arakawa
scheme [30]. This implies that one ghost cell must be added in the
x and y directions at the boundaries. The parallel gradient scheme
is detailed in Section 3. The integration is done with an explicit
4th order Runge–Kutta scheme. At each substep, the boundary
conditions presented in Section 2 are imposed and the potential
is obtained by inverting the linear system ∇2

⊥φ = ω.
GBS is implemented using standardMPI domain decomposition

in the x and z direction. At each iteration substep, the ghost
cells are communicated to their neighbouring processors in both
x and z directions. The Poisson operator is independent of z,
which naturally leads to the parallelisation of the Poisson solver
in the z direction. The linear system is solved using the parallel
direct solver MUMPS with a domain decomposition along the x

communicator.
The parallel dynamics plays a crucial role in SOL physics. Plasma

is transported parallel to the field lines with a velocity much larger
than in the perpendicular direction and it is lost at the limiter.
This plasma parallel flow requires an accurate description of the
parallel gradient, which should not lead to unphysical flow in the
perpendicular directions. Then, the parallel dynamics allows k� �=
0 modes such as Drift Waves to develop when the adiabaticity of
electrons is broken. Finally, large k� modes are usually damped and
will influence the turbulence spectrum: an inaccurate formulation
of the parallel gradient operator may lead to spurious modes and
spectral pollution.
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Fig. 1. Illustration of the fa2 parallel gradient scheme on the z − y parallel plane. The solid circles represent grid points in the unshifted grid (n, ω, Te), while the squares
represent points in the shifted grid (V�i, V�e , and χ ). Left: nodes required to compute fa2 finite difference in the unshifted grid are shown. Right: fa2 scheme applied to obtain
the parallel gradient of a quantity defined in the shifted grid.

3. Parallel gradient schemes

In this section, the various schemes that can be used to compute
the first and second order parallel gradient operators are given. For
instance, the y direction hasNy grid points, numbered from 1 toNy,
the ghost cells being indexed with 0 and Ny + 1. The z coordinate
is periodic, and ghost cells are necessary at each end the domain-
decomposed z grid in order to compute the parallel gradients. To
evaluate centred finite difference schemes, the number of ghost
cells is increased as the order of the scheme increases.

3.1. The field-aligned parallel gradient scheme

The property of straight field lines in the (y, z) plane has been
used in the past by GBS to compute the parallel gradient in a field-
aligned way. The concept is illustrated in Fig. 1. If the number of
grid intervals in the y and z directions are conveniently chosen, the
field lineswill intersect the grid points and theparallel gradient can
be computed using a field-aligned second-order finite difference
scheme, named hereafter as the fa2 scheme:

∇�0A
��
i,j,k

= qb
θ∗R0

∂A

∂ζ

= qb
θ∗R0

1
2�ζ

�
Ai,j+�j,k+1 − Ai,j−�j,k−1

�
(18)

where ζ = z + ay/q is a field-following coordinate, �ζ =
�z

�
1 + �2/q2, � = a/R0 is the inverse aspect ratio, �j = Ny/

(qNz) and Ny (respectively Nz) are the number of grid points in the
y (respectively z) direction. The second order parallel gradient is
approximated as:

∇2
�0A

��
i,j,k

= (qbθ∗R0)
2 ∂2

A

∂ζ 2

= (qbθ∗R0)
2 1
(�ζ)2

�
Ai,j+�j,k+1 − 2Ai,j,k + Ai,j−�j,k−1

�
(19)

and a small term proportional to ∂(qbθ∗R0)/∂ζ has been neglected
as it is usually extremely small.

In expressions (18) and (19),�j = Ny/(qNz) is constrained to be
an integer. Furthermore, to avoid a null-space problem, a staggered
grid in the z direction, shifted by one half cell to the left, must
be used. More precisely, in GBS, n, ω, φ, and Te are expressed on
the standard (unshifted) grid while v�e and v�i are discretised on
the shifted grid. The parallel gradient must therefore be carefully
computed when one needs the gradient of a field discretised on
a shifted grid on an unshifted grid, and vice-versa. The parallel
gradient becomes:

∇u→s

�0 A

��
i,j,k

= qb
θ∗R0

∂A

∂ζ

= qb
θ∗R0

1
2�ζ

�
Ai,j+�j/2,k − Ai,j−�j/2,k−1

�
. (20)

Consequently, �j is constrained to be an even integer. Simulations
with odd ∆j could be obtained by further shifting by one poloidal
half cell the shifted z-grid; this has not been implemented in GBS.
Special care must be taken at the limiter. In fact, for example,
it is impossible to compute the parallel gradient at the first and
last poloidal point j = 1 and j = Ny using Eq. (18) as the grid
points j = 1 − �j and j = Ny + �j do not exist. The parallel
gradient is therefore computed using a 3 points stencil one-sided
derivative.

For the second order parallel gradients, the one-sided derivative
scheme has been found unstable. Instead, a partially centred
scheme, represented in Fig. 2, is used. The field line intersects the
j = Ny + 1 line at a position k + δ depending on the safety factor.
Since �j − 1 points require a partially centred scheme, the values
of δ in ]0, 1[ are given by l/�j, l = 1, . . . , �j when the second
order parallel gradient is evaluated at j = Ny − �j + 2, . . . ,Ny. In
fact, the second order parallel gradient for j = Ny −�j+2, . . . ,Ny

becomes:

∇2
�0

��
i,j,k

= (qbθ∗R0)
2

�ζ 2

�
aδAi,Ny+1,k+δ + bδAi,j,k + cδAi,j−�j,k−1

�
(21)

aδ = 2
δ(δ + 1)

(22)
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Fig. 2. Diagram of the second order parallel gradient scheme at the top edge for
�j = 2. The field-line crossing the last grid point (k,Ny) intersects the Ny +1 plane
at a position k+ δ, with δ ∈]0 : 1[ that depends on the field line pitch. The stencil is
therefore composed of the three points (k− 1,Ny − 1), (k,Ny), and (k+ δ,Ny + 1),
which can be used to evaluate Eqs. (21)–(24). If �j > 2, the second order parallel
gradient scheme at the grid points (k,Ny − �j + 2), (k,Ny − �j + 1), . . . , (k,Ny)
are computed in a similar way. Equivalent expressions are used at the bottom
edge.

bδ = −2
δ

(23)

cδ = 2
(δ + 1)

(24)

and the standard coefficients of the second order scheme are
recovered for δ = 1. For δ �= 1, the value of Ai,Ny+1,k+δ is obtained
through a quadratic interpolation in the z direction.

Finally, it is noted that the fluid fields are interpolated between
grids using 2nd order accurate parallel interpolation:

A|
i,j,k+1/2 = 1

2
�
A|

i,j+�j/2,k+1 + A|
i,j−�j/2,k

�
. (25)

While grid shifting is not numerically reversible, interpolations
of the necessary fluid quantities take place once during each
evaluation of the right-hand-side of the equations. Therefore, it is
not necessary to invert the interpolation to the initial grid.

The fa2 scheme has been extensively used in electrostatic and
electromagnetic simulations of SOL turbulence in limited config-
urations [31,21,24,22,20,32] but has several limitations. First, the
constraint �j ≥ 2 implies Ny ≥ 2qNz . Depending on the plasma
parameters, SOL turbulence is dominated by ballooning modes
with k� ≈ 0 or by drift waves with a small k�. It is then rea-
sonable to assume that Ny

∼= qNz . The present parallel gradient
scheme tends to over-resolve turbulent structures in the poloidal
direction by, at least, a factor of 2. Second, this scheme cannot be
used to simulate a radially varying safety factor profile. �j would
become a function of the radial surface and could not be main-
tained as an integer everywhere. Third, the fa2 scheme relies on
the straight-field-line angle which is singular at an X-point. The
fa2 scheme is therefore ineffective to treat realistic SOL geome-
tries. These drawbacks motivate the development of another par-
allel gradient scheme.

3.2. An alternative parallel gradient scheme for non-periodic systems

To overcome the drawbacks exposed in Section 3, an alternative
parallel gradient scheme should have the following properties:
first, the scheme should not be tied to the straight-field-line
coordinate and should be applicable to arbitrary coordinates.
Second, the new boundary conditions at the limiter should be
easily implemented in the new scheme. The real-space parallel
gradient scheme is perhaps the simplest approach one can think
of. The parallel gradient is simply expressed as a sum of derivatives
in the y and z direction:

∇�0A = b
0y ∂A

∂y
+ b

0z ∂A

∂z
(26)

and analogously, the second order parallel gradient is:
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∂A
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0y ∂b0z

∂y

∂A

∂z
. (27)

Both the ∂/∂y and ∂/∂z operators have been discretised with 2nd,
4th or 6th order centred finite differences. These schemes will be
abbreviated as the yz2, yz4 and yz6 schemes. At the y boundaries,
partially-centred derivatives are used, using the ghost cell value at
one of the extremities of the stencil. For a 4th order finite difference
scheme, the first and second order y derivatives at j = 1 are given
by:
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12�y
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= 1
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For a 6th order finite difference scheme, the first and second order
y derivatives at j = 1, 2 are given by:

∂A

∂y

����
j=1

= 1
60�y

(−10A0 − 77A1 + 150A2 − 100A3

+ 50A4 − 15A5 + 2A6) (30)

∂A

∂y

����
j=2

= 1
60�y

(2A0 − 24A1 − 35A2 + 80A3 − 30A4

+ 8A5 − A6) (31)

∂2
A

∂y2

����
j=1

= 1
180�y2

(137A0 − 147A1 − 255A2 + 470A3

− 285A4 + 93A5 − 13A6) (32)

∂2
A

∂y2

����
j=2

= 1
180�y2

(−13A0 + 228A1 − 420A2 + 200A3

+ 15A4 − 12A5 + 2A6). (33)
Similar formulas can be obtained at j = Ny and j = Ny − 1. Finally,
we note that within the 4th and 6th order schemes consecutive
poloidal planes are coupled through the parallel advection terms.
Therefore, we have not used shifted-grids for these schemes.

3.3. Parallel gradient scheme for periodic systems

If the system is periodic, one can use a Fourier decomposition
in the poloidal and toroidal directions. Writing A(x, y, z) =�

ky,kz
Âky,kz (x)e

ikyye
ikz z , one has:

∇�0Âky,kz (x) = i

�
kyb

y + kzb
z
�
Âky,kz (x) (34)

∇2
�0Âky,kz (x) = −

�
kyb

y + kzb
z
�2

Âky,kz (x). (35)
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This scheme will be abbreviated as the mn scheme and it will be
used as a benchmark for the other operators in Section 4. This
scheme has not been implemented in GBS, which features a non-
poloidal periodic geometry.

4. Verification of the parallel gradient schemes in a shear-

Alfvén wave model

In order to test various schemes for the parallel gradient oper-
ator, we consider the minimal model containing parallel dynamics
relevant to Eqs. (1)–(5), the drift-reduced Braginskii system. In the
tokamak SOL, unstable modes are either driven by the compress-
ibility of curvature-driven flows or by E × B convection of pres-
sure perturbations. In both of these cases (ballooning modes and
drift waves) mode growth is fed by the radial variation of density
or temperature. In addition to these unstable modes, there are os-
cillating modes, in particular the shear-Alfén waves, which arise
from the coupling of the vorticity equation (Eq. (2)) with the paral-
lel electron dynamics described by Ohm’s law (Eq. (3)). In the drift-
reducedmodel, the parallel coupling effect is affected by collisions,
electron inertia, or by magnetic field fluctuations.

We implement here a standalone code describing the parallel
dynamics of a simplified version of the drift-reduced Braginskii
system in a single y−z parallel plane. In particular, we concentrate
on a model containing electrostatic shear-Alfvén waves mediated
by electron inertial. The equations are given by:

∂v�e
∂t

= mi

me

∇�φ + 4η
3

∇2
�v�e (36)

∂∇2
⊥φ

∂t
= −∇�v�e (37)

where η = η0e and, to carry out the test in the simplest possi-
ble scenario, the domain is assumed to be poloidally and toroidally
periodic. This system describes the propagation of the electrostatic
SAW [33] subject to parallel diffusion and is a subset of the drift-
reduced equations. SAWs are encountered in both fluid and gyroki-
netic simulations of electron turbulence and are high-frequency
stable waves that can limit the time step when using an explicit
scheme. The frequency of these waves can be decreased by adding
electromagnetic perturbations or simply by neglecting electron in-
ertia.

This model, implemented as a standalone code, represents an
ideal testbed for the parallel gradient schemes for several reasons.
First, it contains the key elements of a scheme involving a parallel
gradient which can be tested using the same GBS numerical
scheme. Second, the k� of the initial perturbation can be chosen
in agreement to what is observed in GBS simulations and remains
fixed in time, therefore simplifying the analysis of the results.
Third, the SAW are the fastest waves in the full GBS system such
that the time steps used in both codes are of the same order
of magnitude. Fourth, results can be compared to an analytical
dispersion relation, as contrary to the SOL model described in
Section 2, this test case can be run in a periodic system. As amatter
of fact, the proper performance of a numerical scheme for the
parallel gradient in the SAWmodel is a necessary condition for the
implementation.

The dispersion relation can be obtained assuming perturbations
of the form exp[i(kyy + kzz − ωt)], giving:
ω2 + 2iγDω − ω2

0 = 0 (38)
with:

ω0 =
�

mi

me

k�
k⊥

(39)

γD = 2η
3

k
2
� (40)

and k� = a/qky+kz .Whenparallel diffusion is absent, Eqs. (36) and
(37) describe an electrostatic SAW propagating at a frequency ω0.
Parallel diffusion introduces a damping rate γD and decreases the

real frequency to
�

ω2
0 − γ 2

D
. The mode becomes purely damped

for η > ηc , where:

ηc = 3
2

�
mi

me

1
k�k⊥

. (41)

For η < ηc , the damping increases linearlywith η, while for η > ηc

the damping decreases and tends towards 0.
A 2D code simulating the SAWsystemhas beendevelopedusing

the same numerical techniques as those proposed for GBS. The
simulation is initialisedwith a perturbation of the form sin(my/a−
nz) with m = nq + �m, �m = k�q being an input parameter
that sets the parallel wave number of the mode. Typical values for
n and �m are chosen based on GBS simulations. n is chosen such
that ky ∼= 2πnq/Ly ∼= 0.1, value commonly observed in nonlinear
steady states and �m = 1–10 is chosen based on typical GBS
spectra.

The explicit time integration constrains the time step to the
following CFL condition:

�t ≤ 4π2

LyNz

�
me

mi

. (42)

The initialised mode oscillates at a frequency and is damped at a
rate that can be compared to the solution of the dispersion relation
(38).

First, the accuracy of the different schemes is examined by ap-
plying the different numerical operators to the analytical perturba-
tion f (y, z) = sin(my/a−nz). The relative numerical error, defined
by:

E =
max
y,z

�
(∇�f )num − (∇�f )ana

�

max
y,z

(∇�f )ana
, (43)

is reported against the grid resolution in Fig. 3 for periodic and
non-periodic discretisation schemes. In the latter case, the paral-
lel gradient at the y boundary of the system is computed using
one-sided derivatives. The value of q has been fixed to 4, Nz and
Ny are scanned bymaintaining Ny = 2qNz . The mode considered is
a nearly field-aligned mode n = 4, �m = 2(m = 18) mode.

As expected, the mn scheme gives results valid up to machine
precision when the number of grid points is large enough to
resolve the Fourier harmonics. For the other schemes, the order
of accuracy is recovered. The top left panel of Fig. 3 also shows
that the fa2 method is more accurate than the yz2 scheme for a
periodic geometry while those twomethods give equivalent result
in non-periodic geometry. Thus, in the periodic case, obtaining
an accuracy level equivalent to the fa2 scheme requires a higher
resolution and a higher order scheme. In the non-periodic case,
using a higher order scheme gives much more accurate results
than the fa2 scheme. These findings are amplified if one looks at
the accuracy of the ∇2

� operator for a high k� mode in the bottom
right panel of Fig. 3. The following conclusions can be drawn: the
alternative scheme to the fa2 scheme requires a higher accuracy
order and a higher grid resolution to obtain similar numerical
errors. However, at the limiter position, a higher order scheme
gives more accurate results compared to the fa2 scheme.

Next, the dispersion relation (38) is compared against numeri-
cal results for various spatial discretisation schemes. The physical
parameters for this scan are q = 4,mi/me = 200, η = 5 and the
numerical parameters are Ny = 128,Nz = 32, �t = 2 · 10−4 ex-
cept for the fa2 schemewhere Ny = 256 has to be imposed to have
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Fig. 3. Accuracy test of the different parallel gradient schemes: the numerical ∇� (top) and ∇2
� (bottom) operators are applied on an analytical function f (y, z) =

sin(my/a− nz) withm = nq+ �m and the error is reported against the grid resolution. The value of q has been fixed to 4, and a nearly field-aligned mode n = 4, �m = 2
is considered. Nz and Ny are scanned by maintaining Ny = 2qNz . The left plots show scans in a periodic domain and the right plots show scans in a non-periodic domain for
which one sided-derivatives are used.

�j ≥ 2. Those parameters are rescaled from typical GBS simula-
tions at Ly = 800 [32].

Fig. 4 shows that the mn scheme reproduces the dispersion re-
lation with a very high accuracy as the mn scheme is analytical.
Fig. 4 shows the numerical dispersion relation obtained with the
fa2 scheme. Results are fairly accurate for n ≤ 4. For n > 4,
both real frequency and damping rate are not captured, due to the
lack of resolution in the y direction. The same exercise shows that
the yz2 method is completely inaccurate. On the other hand, the
yz4 method, although slightly less accurate, seems to yield com-
parable results to the fa2 method. The numerical real frequencies
and damping rates start to diverge from the analytical value once
the poloidal wave number becomes too high with respect to the
poloidal resolution. The results of the yz6 scheme (not shown)
do not reveal clear signs of improvements compared to the yz4

scheme.
Another useful check consists in studying the behaviour of the

eigenmodes of the system, i.e. the k� = 0 modes. Physically, such
modes should neither oscillate nor be damped. Results are plotted
in Fig. 5. When η = 0 (left panel), the eigenmodes of the system
exhibit a numerical oscillation that tend to increasewith n. This os-
cillation becomes important only at n > 6 for schemes yz2/yz4/yz6.
Note that there is no oscillation for the fa2 and mn schemes. The
right panel shows the numerical damping of k� = 0 modes for
η = 5.

In summary, various possible schemes to compute the parallel
gradient in nonlinear SOL turbulence codes, such as GBS, have
been tested using a standalone code for the SAW dynamics and
compared against the analytical theory. Results show that an
accurate discretisation that does not take advantage of the field-
alignment requires a higher resolution and a higher order of
accuracy. The inaccuracy of the schemes become more visible

at large n. Nevertheless, it is anticipated that these schemes
are applicable to SOL turbulence simulations, dominated by low
n modes. Based upon the results of the standalone code, we
implement the yz4 scheme in GBS and we carry out several tests
by using GBS, as described below.

5. Non-linear tests with GBS

Several benchmark tests have been carried out to verify that
the yz4 scheme can recover previously known results. In order
to benchmark a new version of GBS with the yz4 scheme, a scan
in Ny for a standard electrostatic simulation is presented and
these simulations are compared with a simulation using the fa2

scheme. Then, an electromagnetic case showing the transition
from resistive to ideal ballooning modes is presented, recovering
the ideal threshold found in Ref. [31]. Finally, it is demonstrated
that a simulation with a radially varying safety factor profile can
be carried out with the yz4 scheme, circumventing the constant-q
limitation of the fa2.

5.1. Benchmark simulations

According to the results of Section 4, the toroidal resolution
for the yz4 simulations should be twice the one needed in a fa2

simulations. This resolution increase introduces unnecessary short
wavelengths modes into the system and, according to the CFL
condition (42), it decreases the maximum time step. These high-
nmodes are eliminated through Fourier filtering of toroidal modes
with |n| > Nz/4 at each Runge–Kutta substep. The filtering is
applied on all the fluid moments, only for the yz4 scheme. The
suppression of these modes allows to relax the CFL condition.
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Fig. 4. Real frequency (left) and damping rate (right) of the SAW dispersion relation (38) obtained numerically for various toroidal mode numbers using various schemes
for the parallel gradient operator. The analytical dispersion relation is represented with solid lines. Parameters for the dispersion relation are Ly = 200,mi/me = 200, q =
4, η = 5,Ny = 128,Nz = 32, �t = 2 · 10−4.

Simulations are initialised with radially flat and poloidally
smooth profiles consistentwith the boundary conditions described
in Section 2. A small perturbation is superimposed. After the
initial phase of the simulation, the localised injection of density
and temperature introduces the free energy necessary to trigger
a number of unstable modes that develop into turbulence. The
simulations will therefore experience a transient phase followed
by a quasi steady-state given by the interplay between the plasma

sources, perpendicular transport, and parallel losses at the limiter
plates. There is no separation between the background gradient
and the fluctuations: the profile gradients are a priori unknown,
and are extracted from the time-averaged data over the quasi
steady-state.

Simulations with parameters q = 4, ŝ = 0, Lx = 100, Ly =
400, R0 = 500, ν = 0.1, mi/me = 200, η0e = η0i = 2 are con-
sidered in the large aspect ratio circular magnetic geometry. The



S. Jolliet et al. / Computer Physics Communications 188 (2015) 21–32 29

Fig. 5. Left: numerical frequency as a function of n for a �m = 0 mode for a η = 0 simulation. Right: Numerical damping rate as a function of n for a �m = 0 mode for a
η = 5 simulation. Other parameters are Ly = 200,mi/me = 200, q = 4,Ny = 128,Nz = 32, �t = 2 · 10−4.

Fig. 6. Steady-state radial profile of the density (top, left), the vorticity (middle, left), the electron parallel velocity (bottom, left), the electron temperature (top, right), the
electrostatic potential (middle, right) and the ion parallel velocity (bottom, right) for the fa2 simulation (blue) and the yz4 simulations with Ny = 64 (red), Ny = 128 (green)
and Ny = 256 (black). Profiles are averaged over y, z and over 50 R0/cs in the steady-state phase. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

source terms Sn and STe in Eqs. (1) and (5) have a Gaussian shape
centred at xS = 30 with a characteristic width σs = 5 and have
an amplitude of 1. The source profiles are flat in the y direction
but decay exponentially at a distance of 40ρs from the top and bot-
tom limiter. As these source terms mimic the outflow of plasma
from the closed flux surface region, the simulations are physically
meaningful for x > xS . In a previous work [19], the source strength
was varied by a factor of fourwithout significant changes in the dy-
namics. Simulations with parameters similar to the ones described
herein have been used to study, among the others, the mecha-
nisms regulating the turbulent amplitude [19] and the role of EM
effects [31]. The following numerical parameters were used for the
fa2 simulation:Nx = 128,Ny = 256,Nz = 32, �t = 6 ·10−5

R0/cs.
Three yz4 simulations have been performedwith the same numer-
ical parameters and Ny = 64, 128, 256, having doubled the z res-
olution, i.e. Nz = 64. Figs. 6 and 7 show the radial and poloidal
steady-state profiles of these fa2 and yz4 simulations. As GBS simu-
lations aremainly used for the prediction of the radial and poloidal
profiles of n, Te,φ, v�e, and v�i, we focus on these quantities. Clearly,

the yz4, Ny = 64, simulation shows a significative difference with
respect to the fa2profiles. The difference decreases at largerNy. The
difference between yz4 simulation profiles and the fa2 simulation
are below 10% for Ny = 128, and below 1% for Ny = 256. The ap-
plication of the Grid Convergence Index (GCI) [34] to estimate the
discretisation error affecting the simulation results show that the
quantities that constitute the main interest of GBS simulations are
affected by an uncertainty below 5%, for the yz4, Ny = 256, simu-
lation. As for the vorticity profile of Fig. 7, note that the advection
term in the density and temperature equations involves the poten-
tial, which is an integrated quantity with respect to the vorticity.
In fact, the vorticity does not enter directly in any of the equations,
if not through the potential. The small difference in the potential
near the source is amplified when evaluating ω = −∇2φ.

Next, the turbulent properties are compared. Fig. 8 shows the
pdf of the potential fluctuations, which looks similar in all cases,
with an error bar of about 5%. The highest resolved cases using
the non-field aligned scheme (yz4) fall within this uncertainty
compared to the original field aligned parallel gradient scheme
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Fig. 7. Steady-state poloidal profile of the density (top, left), the vorticity (middle, left), the electron parallel velocity (bottom, left), the electron temperature (top, right),
the electrostatic potential (middle, right) and the ion parallel velocity (bottom, right) for the fa2 simulation (blue) and the yz4 simulations with Ny = 64 (red), Ny = 128
(green) and Ny = 256 (black). Profiles are averaged over 35 ≤ x ≤ 80, z and over 50 R0/cs in the steady-state phase. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

yz4, Ny=64

yz4, Ny=128

yz4, Ny=256

fa2, Ny=256

Fig. 8. Distribution function of the perturbed potential for various simulations. The
pdfs are computed at z = 0 for 35 ≤ x ≤ 80, the whole poloidal domain and a time
window of 50cs/R in the steady-state phase.

(fa2). This points out that the different numerical schemes agree
within statistical error. The left panel of Fig. 9 shows the poloidal
and toroidal spectrum of the potential in the steady-state phase
for the fa2 simulation. Aliasing is clearly visible in the corners at
high |m| and |n|. These unphysical couplings are suppressed when

applying the dealiasing procedure in the yz4 simulation. When the
|n| > Nz/4 fluid moments are filtered out, they are still produced
through the numerous nonlinear couplings contained in Eqs. (1)–
(5). However, their amplitude remains limited as they are filtered
at every time step.

5.2. Electromagnetic simulations

In this section, nonlinear electromagnetic simulations are car-
ried out using the same parameters as in Section 5.1 except for
q = 6, Ly = 800. A βe = 0, electrostatic simulation and a
βe = 6 · 10−3 electromagnetic simulation have been performed.
Electromagnetic effects tend to destabilise ideal ballooning modes
(IBM) [31] which are triggered for αMHD > 0.5 where αMHD =
pq

2βeR/(p0Lp). Contrary to resistive ballooning modes (RBM), IBM
tend to develop at the longest possible parallel wavelength in the
system. Fig. 10 shows a snapshot of the electrostatic potential
for the two simulations. The electrostatic simulation is dominated
by a m = 12 poloidal mode, corresponding to a n = 2 mode
in the toroidal direction while the electromagnetic simulation is
dominated by a m = 6 mode, corresponding to the longest field-
aligned parallel wavelength available in the system, a characteris-
tic of ideal ballooning modes. The estimated value of αMHD for the

Fig. 9. Poloidal and toroidal spectrum of the potential for the fa2 simulation (left) and the yz4 simulation (right). The spectrum is radially averaged over [x1 : x2] = [35 : 80]
and is time-averaged over 50 R0/cs in the steady-state phase.
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Fig. 10. Snapshot of the electrostatic potential φ in the poloidal plane for a βe = 0,
electrostatic (left) and a βe = 6·10−3 electromagnetic simulation. Both simulations
have q = 6.

electromagnetic simulation is 0.6 and exceeds the threshold. The
conclusion is that the ideal ballooning threshold, as studied in
Ref. [31], can be correctly captured by the yz4 scheme.

5.3. Global safety profile simulations

The goal of the present subsection is to demonstrate that the
yz4 scheme is able to simulate a SOL with a radially varying safety
profile. The implemented profile is:

q(x) = qS

�
a + x

a + xS

�
ŝ

(44)

where ŝ is an input parameter representing the magnetic shear
and qS is the value of the safety profile at the source position xS .
This safety profile has a constant shear throughout the SOL. The
nonlinear simulations described below have the same parameters
as in Section 5.1 with qS = 4. Simulations at ŝ = −1 and ŝ = 1
have been carried out.

The effect of a varying q profile on SOL turbulence can be
seen in Fig. 11, where the perturbed density is plotted along the
x = 80 magnetic surface for the ŝ = −1, 0, 1 simulations. The
corresponding safety factor is q = 2.6, 4, 6.1, respectively. This

plot shows field-aligned structures consistent with the expected
pitch of the field line.

Fig. 12 shows the electrostatic potential on the poloidal plane
for a given time in the nonlinear steady-state phase. At negative
shear, the radial correlation length of the turbulent eddies is
strongly reduced, whereas it is amplified at positive shear. In
electrostatic simulations, several turbulent regimes may coexist
such as resistive ballooning modes, inertial ballooning modes,
resistive drift waves or inertial drift waves. The dominant regime
depends on the phase space parameters ν,me/mi, q, ŝ. For the
present parameters, it has been shown that the dominant regime
at ŝ = 0 is the resistive ballooning mode [32]. At negative shear,
resistive ballooning modes tend to be stabilised while they can be
destabilised at small positive shear [20]. This trend is confirmed by
calculating the sustainedpressure gradient by averaging toroidally,
poloidally, in time over a steady-state window of 30 R0/cs, and
radially between xs and x = 80. The values obtained are R0/Lp =
30.8, 11.6, 7.1 for ŝ = −1, 0, 1, respectively. Ballooning modes
are strongly suppressed at negative shear, resulting in a much
higher sustained pressure gradient inside the SOL. On the other
hand, small positive shear destabilises ballooning modes and the
sustained pressure gradient decreases.

6. Conclusion

In this work, flux-driven 3D fluid simulations of SOL turbulence
in limited circular geometry are performed using an approach to
theparallel gradient operator basedon anon-field-aligned scheme.
Precisely, it is shown, through a comparison with the analytical
dispersion relation of electrostatic SAWs, that a discretisation us-
ing 4th order centred finite differences in both the poloidal and
toroidal direction is accurate enough to study the evolution of low
wave number modes, provided that the resolution is increased
with respect to a field-aligned scheme. This increase of the pos-
sible mode spectrum further constrains the CFL condition so that
a toroidal mode filter may need to be implemented. This is the
case in GBS. Nonlinear electrostatic simulations using this filter-
ing technique and the new parallel gradient scheme have been
successfully benchmarked against original GBS simulations. The
two cases show good agreement on the equilibria and the fluctua-
tion properties are very similar. Furthermore, a convergence test in
the poloidal direction shows that the resolution employed is suf-
ficient. The CPU cost of the non-field-aligned simulation is slightly

Fig. 11. Snapshot of density fluctuations inside the magnetic surface x = 80 for the ŝ = −1 (left), ŝ = 0 (middle) and ŝ = 1 (right) simulation. Values of q are 2.6, 4, 6.1,
respectively. The superimposed black lines indicate the pitch of the magnetic field lines.
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Fig. 12. Snapshot of the electrostatic potential in the poloidal plane for the ŝ = −1 (left), ŝ = 0 (middle) and ŝ = 1 (right) simulation.

increased with respect to the field-aligned one. The new scheme
is also successfully applied to electromagnetic simulations, where
the presence of an ideal ballooning mode is retrieved. The new
scheme is applied to a configuration with a radially varying safety
profile and the RBM stabilisation at negative shear is recovered.

More generally, the present work shows that it is possible
to simulate SOL turbulence without a field-aligned approach at
a reasonable cost. The main reason is that turbulence in this
region is dominatedby lowwavenumbermodes that are accurately
resolved by a non-field-aligned scheme.
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