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Abstract

Oasis is a high-level/high-performance finite element Navier-Stokes solver written from scratch in Python
using building blocks from the FEniCS project (fenicsproject.org). The solver is unstructured and targets
large-scale applications in complex geometries on massively parallel clusters. Oasis utilizes MPI and inter-
faces, through FEniCS, to the linear algebra backend PETSc. Oasis advocates a high-level, programmable
user interface through the creation of highly flexible Python modules for new problems. Through the high-
level Python interface the user is placed in complete control of every aspect of the solver. A version of the
solver, that is using piecewise linear elements for both velocity and pressure, is shown reproduce very well the
classical, spectral, turbulent channel simulations of Moser, Kim and Mansour at Reτ = 180 [Phys. Fluids,
vol 11(4), p. 964]. The computational speed is strongly dominated by the iterative solvers provided by the
linear algebra backend, which is arguably the best performance any similar implicit solver using PETSc may
hope for. Higher order accuracy is also demonstrated and new solvers may be easily added within the same
framework.
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1. Introduction

The Navier-Stokes equations describe the flow of
incompressible, Newtonian fluids. The equations
are transient, nonlinear and velocity is non-trivially
coupled with pressure. A lot of research has been
devoted to finding efficient ways of linearizing, cou-
pling and solving these equations. Many com-
mercial solvers for Computational Fluid Dynamics
(CFD) are available, and, due to the complexity of
the high-level implementations (usually Fortran or
C), users are often operating these solvers through
a Graphical User Interface (GUI). To implement
a generic, unstructured Navier-Stokes solver from
scratch in a low-level language like C or Fortran is
a considerable and time-consuming task involving
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tens of thousands of lines of error prone code that
require much maintenance. Nowadays, as will be
shown in this paper, the use of new and modern
high-level software tools enables developers to cut
the size of programs down to a few hundred lines
and development times to hours.

The implementation of any unstructured (Eule-
rian) CFD-solver requires a computational mesh.
For most CFD software packages today the mesh
is generated by a third-party software like, e.g., the
open source projects VMTK [1], Gmsh [2] or Cubit
[3]. To solve the governing equations on this com-
putational mesh, the equations must be linearized
and discretized such that a solution can be found for
a certain (large) set of degrees of freedom. Large
systems of linear equations need to be assembled
and subsequently solved by appropriate direct or
iterative methods. Like for mesh generation, ba-
sic linear algebra, with matrix/vector storage and
operations, is nowadays most commonly outsourced
to third-party software packages like PETSc [4] and
Trilinos [5] (see, e.g., [6, 7, 8]).

With both mesh generation and linear algebra
outsourced, the main job of CFD solvers boils
down to linearization, discretization and assem-
bly of the linear system of equations. This is by
no means a trivial task as it requires, e.g., maps
from computational cells to global degrees of free-
dom and connectivity of cells, facets and vertices.
For parallel performance it is also necessary to dis-
tribute the mesh between processors and set up for
inter-communication between compute nodes. For-
tunately, much of the Message Passing Interface
(MPI) is already handled by the providers of ba-
sic linear algebra. When it comes down to the ac-
tual discretization, the most common approaches
are probably the finite volume method, which is
very popular for fluid flow, finite differences or the
finite element method.

FEniCS [9] is a generic open source software
framework that aims at automating the discretiza-
tion of differential equations through the finite ele-
ment method. FEniCS takes full advantage of spe-
cialized, reliable and robust third-party providers
of computational software and interfaces to both
PETSc and Trilinos for linear algebra and several
third-party mesh generators. FEniCS utilizes the
Unified Form Language (UFL, [10]) and the FEn-
iCS Form Compiler (FFC, [11]) to automatically
generate low-level C++ code that efficiently eval-
uates any equation formulated as a finite element
variational form. The FEniCS user has to provide

the high-level variational form that is to be solved,
but does not need to actually perform any coding
on the level of the computational cell, or element.
A choice is made of finite element basis functions,
and code is then generated for the form accordingly.
There is a large library of possible finite elements
to choose from and they may be combined both
implicitly in a coupled manner or explicitly in a
segregated manner - all at the same level of com-
plexity to the user. The user never has to see the
generated low-level code, but, this being an open
source project, the code is wide open for inspec-
tion and even manual fine-tuning and optimization
is possible.

In this paper we will describe the Navier-Stokes
solver Oasis, that is written from scratch in Python,
using building blocks from FEniCS and the PETSc
backend. Our goal with this paper is to describe
a code that is (i) short and easily understood, (ii)
easily configured and (iii) as fast and accurate as
state-of-the-art Navier-Stokes solvers developed en-
tirely in low-level languages.

We assume that the reader has some basic knowl-
edge of how to write simple solvers for partial dif-
ferential equations using the FEniCS framework.
Otherwise, reference is given to the online FEniCS
tutorial [12].

2. Fractional step algorithm

In Oasis we are solving the incompressible
Navier-Stokes equations, optionally complemented
with any number of passive or reactive scalars. The
governing equations are thus

∂u
∂t

+ (u · ∇)u = ν∇2u−∇p+ f , (1)

∇ · u = 0, (2)
∂cα
∂t

+ u · ∇cα = Dα∇2cα + fα, (3)

where u(x, t) is the velocity vector, ν the kine-
matic viscosity, p(x, t) the fluid pressure, cα(x, t)
is the concentration of species α and Dα its diffu-
sivity. Any volumetric forces (like buoyancy) are
denoted by f(x, t) and chemical reaction rates (or
other scalar sources) by fα(c), where c(x, t) is the
vector of all species concentrations. The constant
fluid density is incorporated into the pressure. Note
that through the volumetric forces there is a pos-
sible feedback to the Navier-Stokes equations from
the species, and, as such, a Boussinesq formulation
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for natural convection (see, e.g., [13]) is possible
within the current framework.

We will now outline a generic fractional step
method, where the velocity and pressure are solved
for in a segregated manner. Since it is important for
the efficiency of the constructed solver, the velocity
vector u will be split up into its individual compo-
nents uk.1 Time is split up into uniform intervals2

using a constant time step 4t = tn − tn−1, where
superscript n is an integer and tn ∈ R+. The gov-
erning equations are discretized in both space and
time. Discretization in space is performed using fi-
nite elements, whereas discretization in time is per-
formed with finite differences. Following Simo and
Armero [14] the generic fractional step algorithm
can be written as

uIk − u
n−1
k

4t +B
n−1/2
k = ν∇2ũk −∇kp∗ + f

n−1/2
k

for k = 1, . . . , d, (4)

∇2ϕ = − 1
4t∇ · u

I , (5)

unk − uIk
4t = −∇kϕ for k = 1, . . . , d, (6)

cnα − cn−1
α

4t +Bn−1/2
α = Dα∇2c̃α + fn−1/2

α , (7)

where unk is component k of the velocity vector
at time tn, d is the dimension of the problem,
ϕ = pn−1/2− p∗ is a pressure correction and p∗ is a
tentative pressure. We are solving for the velocity
and pressure on the next time step, i.e., unk for k =
1, . . . , d and pn−1/2. However, the tentative veloc-
ity equation (4) is solved with the tentative veloc-
ity component uIk as unknown. To avoid strict time
step restrictions, the viscous term is discretized us-
ing a semi-implicit Crank-Nicolson interpolated ve-
locity component ũk = 0.5 (uIk + un−1

k ). The non-
linear convection term is denoted by Bn−1/2

k , indi-
cating that it should be evaluated at the midpoint
between time steps n and n− 1. Two different dis-
cretizations of convection are currently used by Oa-
sis

B
n−1/2
k = 3

2un−1 · ∇un−1
k − 1

2un−2 · ∇un−2
k , (8)

B
n−1/2
k = u · ∇ũk, (9)

1FEniCS can alternatively solve vector equations where
all components are coupled.

2It is trivial to use nonuniform intervals, but uniform is
used here for convenience.

where the first is a fully explicit Adams-Bashforth
discretization and the second is implicit, with
an Adams-Bashforth projected convecting velocity
vector u = 1.5 un−1 − 0.5 un−2 and Crank-Nicolson
for the convected velocity. Both discretizations are
second order accurate in time, and, since the con-
vecting velocity is known, there is no implicit cou-
pling between the (possibly) three velocity compo-
nents solved for.

Convection of the scalar is denoted by B
n−1/2
α .

The term must be at most linear in cnα and otherwise
any known velocity and scalar may be used in the
discretization. Note that solving for cnα the velocity
un will be known and may be used to discretize
B
n−1/2
α . The discretization used in Oasis is

Bn−1/2
α = u · ∇c̃α

where c̃α = 0.5 (cnα + cn−1
α ).

An iterative fractional step method involves solv-
ing Eq. (4) for all tentative velocity components and
(5) for a pressure correction. The procedure is re-
peated a desired number of times before finally a
velocity correction (6) is solved to ensure conserva-
tion of mass before moving on to the next time step.
The fractional step method can thus be outlined as
shown in Algorithm 1. Note that if the momentum
equation depends on the scalar (e.g., when using a
Boussinesq model), then there may also be a sec-
ond iterative loop over Navier-Stokes and tempera-
ture. The iterative scheme shown in Algorithm 1 is
based on the observation that the tentative veloc-
ity computed in Eq. (4) only depends on previous
known solutions un−1,un−2 and not un. As such,
the velocity update can be placed outside the inner
iteration. In case of an iterative scheme where the
convection depends on un (e.g., un·∇ũk) the update
would have to be moved inside the inner loop.

We now have an algorithm that can be used to
integrate the solution forward in time, and it is
clear that the fractional step algorithm allows us
to solve for the coupled velocity and pressure fields
in a computationally efficient segregated manner.
The efficiency and long term stability (see [14]) are
the main motivations for our choice of algorithm.
However, we should mention here that there are
plenty of similar, alternative algorithms for time
stepping of segregated solvers. The most common
algorithm is perhaps Pressure Implicit with Split-
ting of Operators (PISO) [15], which is used by
both Ansys-Fluent [16], Star-CD [17] and Open-
FOAM [18]. A completely different strategy would
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Set time and initial conditions
t = 0
for time steps n = 0, 1, 2, ... do

t = t + dt
for inner iterations i = 0, 1, ... do

ϕ = p∗ = pn−1/2

solve (4) for uIk, k = 1, . . . , d
solve (5) for pn−1/2

ϕ = pn−1/2 − ϕ
end
solve (6) for unk , k = 1, . . . , d
solve (7) for cnα
update to next timestep

end
Algorithm 1: Generic fractional step algorithm
for the Navier-Stokes equations.

be to solve for velocity and pressure simultaneously
(coupled solvers). Using FEniCS such a coupled
approach is straightforward to implement, and, in
fact, it requires less coding than the segregated one.
However, since the coupled approach requires more
memory than a segregated, and since there are more
issues with the efficiency of linear algebra solvers,
the segregated approach is favoured here.

We are still left with the spatial discretization
and the actual implementation. To this end we
will first show how the implementation can be per-
formed naively, using very few lines of Python code.
We will then, finally, describe the implementation
of the high-performance solver.

3. Variational formulations for the fractional
step solver

The governing PDEs (4), (5), (6) and (7) are dis-
cretized with the finite element method in space on
a bounded domain Ω ⊂ Rd, with 2 ≤ d ≤ 3, and the
boundary ∂Ω. Trial and test spaces for the velocity
components are defined as

V = {v ∈ H1(Ω) : v = u0 on ∂Ω},
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}, (10)

where u0 is a prescribed velocity component on
part ∂Ω of the boundary and H1(Ω) is the Sobolev
space containing functions v such that v2 and |∇v|2
have finite integrals over Ω. Both the scalars and
pressure use the same H1(Ω) space without the re-
stricted boundary part. The test functions for ve-
locity component and pressure are denoted as v and

q, respectively, whereas the scalar simply uses the
same test function as the velocity component.

To obtain a variational form for component k of
the tentative velocity vector, we multiply equation
(4) by v and then integrate over the entire domain
using integration by parts on the Laplacian∫

Ω

(uIk − un−1
k

4t +B
n−1/2
k

)
v + ν∇ũk · ∇v dx =∫

Ω

(
−∇kp∗ + f

n−1/2
k

)
v dx+

∫
∂Ω
ν∇nũk v ds.

(11)

Here ∇n represents the gradient in the direction
of the outward normal on the boundary. Note that
the trial function uIk enters also through the Crank-
Nicolson velocity component ũk = 0.5(uIk + un−1

k ).
The boundary term is only important for some
boundaries and is neglected for the rest of this pa-
per.

The variational form for the pressure correction
is obtained by multiplying Eq. (5) by q and then
integrating over the domain, using again integration
by parts∫

Ω
∇ϕ · ∇q dx−

∫
∂Ω
∇nϕ qds =

∫
Ω

∇ · uI

4t q dx.

(12)
The boundary integral can be neglected for all parts
of the domain where the velocity is prescribed.

A variational form for the velocity update of com-
ponent k is obtained by multiplying (6) by v and
integrating over the domain∫

Ω

unk − uIk
4t v dx = −

∫
Ω
∇kϕv dx. (13)

Finally, a variational form for the scalar compo-
nent α is obtained by multiplying Eq. (7) by v, and
then integrating over the domain using integration
by parts on the diffusion term∫

Ω

(cnα − cn−1
α

4t +Bn−1/2
α

)
v +Dα∇c̃α · ∇v dx =∫

Ω
fn−1/2
α v dx+

∫
∂Ω
Dα∇nc̃α v ds. (14)

4. Oasis

We now have all the variational forms that to-
gether constitute a fractional step solver for the
Navier-Stokes equations, complemented with any
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Oasis
init .py

NSfracStep.py
common/

init .py
io.py

solvers/
init .py

Chorin.py
IPCS.py
IPCS ABCN.py
...

problems/
init .py

DrivenCavity.py
TaylorGreen2D.py
Channel.py
...

Figure 1: Directory tree structure of Python package Oasis.

number of scalar fields. We will now describe how
the fractional step algorithm has been implemented
in Oasis and discuss the design of the solver pack-
age. For installation of the software, see the user
manual [19]. Note that this paper refers to version
1.3 of the Oasis solver, which in turn is consistent
with version 1.3 of FEniCS.

4.1. Python package

The Oasis solver is designed as a Python package
with tree structure shown in Fig. 1. The generic
fractional step algorithm is implemented in the top
level Python module NSfracStep.py and the solver is
run by executing this module within a Python shell
using appropriate keyword arguments, e.g.,

>>> python NSfracStep .py problem = Channel
solver =IPCS

The fractional step solver pulls in a required mesh,
parameters and functions from two submodules lo-
cated in folders solvers and problems. The user com-
municates with the solver through the implementa-
tion of new problem modules in the problems folder.
With the design choice of placing the solver at the
root level of a Python module, there is a conscious
decision of avoiding object oriented classes. How-
ever, remembering that everything in Python is an
object, we still, as will be shown, make heavy use of
overloading Python objects (functions, variables).

The fractional step module NSfracStep.py is
merely one hundred lines of code (excluding com-
ments and spaces) dedicated to allocation of neces-
sary storage and variables, plus the implementation
of the generic fractional step Algorithm 1. The first
half of NSfracStep.py is shown in Fig. 2. Except from
the fact that most details are kept in submodules,
the design is very similar to most FEniCS Python
demos, and, as such, Oasis should feel familiar and
be quite easily accessible to new users with some
FEniCS experience.

Consider the three functions towards the end
of Fig. 2 that take **vars() as argument. The
body_force function returns f in (1) and should thus
by default return a Constant vector of zero values
(length 2 or 3 depending on whether the problem
is 2D or 3D). The initialize function initializes the
solution in q_, q_1, q_2 and create_bcs must return a
dictionary of boundary conditions. These functions
are clearly problem specific and thus default im-
plementations are found in the problems/__init__.py
module that all new problems are required to im-
port from. The default functions may then be over-
loaded as required by the user in the new prob-
lem module (see, e.g., Fig. 5). An interesting fea-
ture is the argument **vars(), which is used for
all three functions. The Python built-in function
vars() returns a dictionary of the current module’s
namespace, i.e., it is here NSfracStep’s namespace
containing V, Q, u, v, and all the other variables
seen in Fig. 2. When **vars() is used in a function’s
signature, any variable declared within NSfracStep’s
namespace may be unpacked in that function’s list
of arguments and accessed by reference. Figure 3
illustrates this nicely through the default implemen-
tations (found in problems/__init__.py) of the three
previously mentioned functions.

After initialization the solution needs to be ad-
vanced in time. The entire implementation of
the time integration performed in NSfracStep.py is
shown in Fig. 4, that closely resembles Algorithm 1.
In Fig. 4 the functions ending in hook are imported
through the problems submodule, save_solution from
common and the rest of the functions are imported
from the solvers submodule.

The common submodule basically contains routines
for parsing the command line and for storing and
retrieving the solution (common/io.py). There is, for
example, a routine here that can be used if the
solver needs to be restarted from a previous sim-
ulation. The problems and solvers submodules are
more elaborate and will be described next.
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from common import *

commandline_kwargs = parse_command_line ()

# Get the problem from commandline
problem = commandline_kwargs .get(" problem ", " DrivenCavity ")

# import mesh , NS_parameters , body_force , create_bcs , velocity_degree , etc ...
exec("from problems .{} import *". format ( problem ))

# Update NS_parameters with parameters modified through the command line
NS_parameters . update ( commandline_kwargs )
vars (). update ( NS_parameters )

# Import functionality from chosen solver
exec("from solvers .{} import *". format ( solver ))

# Declare function spaces and trial and test functions
V = FunctionSpace (mesh , " Lagrange ", velocity_degree )
Q = FunctionSpace (mesh , " Lagrange ", pressure_degree )
u, v = TrialFunction (V), TestFunction (V)
p, q = TrialFunction (Q), TestFunction (Q)

# Get dimension of problem
dim = mesh. geometry ().dim ()

# Create list of components we are solving for
u_components = map(lambda x: "u"+str(x), range (dim)) # velocity components
uc_comp = u_components + scalar_components # velocity + scalars
sys_comp = u_components + ["p"] + scalar_components # velocity + pressure + scalars

# Create dictionaries for the solutions at three timesteps
q_ = {ui: Function (V) for ui in uc_comp }
q_1 = {ui: Function (V) for ui in uc_comp }
q_2 = {ui: Function (V) for ui in u_components } # Note only velocity

# Allocate solution for pressure field and correction
p_ = q_["p"] = Function (Q)
phi_ = Function (Q)

# Create vector views of the segregated velocity components
u_ = as_vector ([ q_ [ui] for ui in u_components ]) # Velocity vector at t
u_1 = as_vector ([ q_1[ui] for ui in u_components ]) # Velocity vector at t - dt
u_2 = as_vector ([ q_2[ui] for ui in u_components ]) # Velocity vector at t - 2*dt

# Set kinematic viscosity constant
nu = Constant ( NS_parameters ["nu"])

# Set body force
f = body_force (** vars ())

# Initialize solution
initialize (** vars ())

# Get boundary conditions
bcs = create_bcs (** vars ())

Figure 2: The opening section of NSfracStep.py. Allocation of necessary storage and parameters for solving the momentum
equation through its segregated components. Note that a mesh, some parameters (for e.g., viscosity, time step, end time etc),
and some functions (for e.g., body force, boundary conditions or initializing the solution) must be imported from the problem
module. The UFL function as_vector creates vectors (u_, u_1, u_2) from the segregated velocity components. The built-in
function vars() returns the current moduoles namespace. Neglecting scalar components the list sys_comp = ["u0", "u1",
"p"] for 2D and ["u0", "u1", "u2", "p"] for 3D problems. The list is used as keys for the dictionary bcs.
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def body_force (mesh , ** NS_namespace ):
""" Specify body force """
dim = mesh. geometry ().dim ()
return Constant ((0 ,)*dim)

def initialize (** NS_namespace ):
""" Initialize solution . """
pass

def create_bcs (sys_comp , ** NS_namespace ):
""" Return dictionary of Dirichlet
boundary conditions ."""
return {ui: [] for ui in sys_comp }

Figure 3: Default implementations of three of the functions
found in problems/__init__.py.

The problems submodule
Oasis is a programmable solver and the user is

required to implement the problem that is to be
solved. The implemented problem module’s names-
pace must include at least a computational mesh
and functions for specifying boundary conditions
and initialization of the solution. Other than that,
the user may interact with NSfracStep through cer-
tain hook files strategically placed within the time
advancement loop, as seen in Fig. 4, and as such
there is no need to modify NSfracStep itself.

Consider a lid driven cavity with Ω = [0, 1]×[0, 1].
The velocity boundary conditions are u = (1, 0)
for the top lid (y = 1) and zero for the remain-
ing walls. We start the simulations from a fluid
at rest and advance the solution in time steps of
4t = 0.001 from t = 0 to t = 1. The viscos-
ity is set to ν = 0.001. This problem can be
implemented as shown in Fig. 5. Here we have
made use of the standard python package numpy and
two dolfin classes UnitSquareMesh and DirichletBC.
UnitSquareMesh creates a computational mesh on the
unit square, whereas DirichletBC creates Dirichlet
boundary conditions for certain segments of the
boundary identified through two strings noslip and
top (x[0] and x[1] represent coordinates x and y re-
spectively). A default set of problem parameters
can be found in the dictionary NS_parameters de-
clared in problems/__init__.py, and all these param-
eters may be overloaded, either as shown in Fig.5,
or through the command line.

A comprehensive list of parameters and
their use is given in the user manual. We
use preconditioned iterative Krylov solvers
(NS_parameters["use_krylov_solvers"]=True), and not
the default direct solvers based on LU decomposi-

# Preassemble and prepare solver
vars (). update ( setup (** vars ()))

# Enter loop for time advancement
while t < T and not stop:

t += dt
inner_iter = 0
# Do something at start of timestep
start_timestep_hook (** vars ())

# Enter velocity / pressure inner loop
for inner_iter < max_iters :

inner_iter += 1
i f inner_iter == 1:

assemble_first_inner_iter (** vars ())

# Solve Eq. (17)
for i, ui in enumerate ( u_components ):

velocity_tentative_assemble (** vars ())
velocity_tentative_hook (** vars ())
velocity_tentative_solve (** vars ())

# Solve Eq. (18)
pressure_assemble (** vars ())
pressure_hook (** vars ())
pressure_solve (** vars ())

# Solve Eq. (19)
velocity_update (** vars ())

# Solve for all scalar components (20)
i f len( scalar_components ) > 0:

scalar_assemble (** vars ())
for ci in scalar_components :

scalar_hook (** vars ())
scalar_solve (** vars ())

# Do something at end of timestep
temporal_hook (** vars ())

# Save and update to next timestep
stop = save_solution (** vars ())

# Finalize solver
theend_hook (** vars ())

Figure 4: Time loop in NSfracStep.py

tion, since the former here are faster and require
less memory (the exact choice of iterative solvers
is discussed further in Sec7). Note that FEniCS
interfaces to a wide range of different linear algebra
solvers and preconditioners. The iterative solvers
used by Oasis are defined in function get_solvers
imported from the solvers submodule.

To run the solver for the driven cavity problem
we need to specify this through the command line -
along with any other parameter we wish to modify
at runtime. For example, the default size of the
computational mesh has been implemented in Fig. 5
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from problems import *
from numpy import cos , pi

# Create a mesh skewed towards walls
def mesh(Nx , Ny , ** params ):

m = UnitSquareMesh (Nx , Ny)
x = m. coordinates ()
x[:] = (x-0.5)*2.
x[:] = 0.5*( cos(pi *(x-1.)/2.)+1.)
return m

# Override some problem specific parameters
NS_parameters . update (

nu = 0.001 ,
T = 1.0,
dt = 0.001 ,
Nx = 50 ,
Ny = 50 ,
use_krylov_solvers = True)

# Specify boundary conditions
noslip ="std :: abs(x[0]*x[1]*(1-x[0]))<1e -8"
top ="std :: abs(x[1]-1) < 1e -8"
def create_bcs (V, ** NS_namespace ):

bc0 = DirichletBC (V, 0, noslip )
bc00 = DirichletBC (V, 1, top)
bc01 = DirichletBC (V, 0, top)
return dict(u0 = [bc00 , bc0],

u1 = [bc01 , bc0],
p = [])

# Initialize by enforcing boundary cond .
def initialize (q_1 , q_2 , bcs , ** NS_namesp ):

for ui in q_2:
for bc in bcs[ui ]:

bc. apply (q_1[ui ]. vector ())
bc. apply (q_2[ui ]. vector ())

Figure 5: Drivencavity.py - Implementation of the driven
cavity problem.

as Nx=Ny=50. This may be overloaded through the
command line while running the solver, like

>>> python NSfracStep .py
problem = DrivenCavity Nx=20 Ny=20

The ability to overload parameters through the
command line is useful for, e.g., fast convergence
testing.

The computational mesh has to be part of the
problem module’s namespace. However, it does not
need to be defined as a callable function, like that
used in Fig. 5. Three equally valid examples are

mesh = UnitSquareMesh (10 , 10)
mesh = Mesh(" SomeMesh .xml.gz")
def mesh(N, ** params ):

return UnitSquareMesh (N, N)

The first mesh is hardcoded in the module and can-

not be modified through the commandline. The
second approach, mesh = Mesh("some_mesh.xml.gz"), is
usually used whenever the mesh has been created
by an external software. The third option uses a
callable function, making it possible to modify the
mesh size through the command line.

A complete list of all default functions and pa-
rameters that may be overloaded by the user in
their implemented problem module is found in
problems/__init__.py.

The solvers submodule
The finer details of the fractional step solver are

implemented in the solvers submodule. A list of all
functions that are imported by NSfracStep is found
in the solvers/__init__.py module. The most impor-
tant can be seen in Fig. 4. Note the special calling
routine for the function setup

vars (). update ( setup (** vars ()))

The purpose of this setup function is to prepare the
solver for time advancement. This could mean ei-
ther defining UFL forms of the variational prob-
lems (see Fig. 6) or to preassemble matrices that
do not change in time, e.g., diffusion and mass ma-
trices (see Sec. 5). The setup function returns a
dictionary and this dictionary is updated and made
part of the NSfracStep namespace through the use of
vars().update.

We may now take the naive approach and im-
plement all variational forms exactly as described
in Sec. 3. A smart approach, on the other hand,
will take advantage of certain special features of
the Navier-Stokes equations. The starting point for
implementing a new solver, though, will usually be
the naive approach. A naive implementation re-
quires very few lines of code, it is easy to debug
and as such it can be very useful for verification of
the slightly more complex and optimized solvers to
be discussed in the next section.

The solvers/IPCS.py module contains a naive im-
plementation of the variational forms (11), (12)
and (13). The forms are implemented using the
setup function shown in Fig. 6. Dictionaries are
used to hold the forms for the velocity components,
whereas there is only one form required for the pres-
sure. Note the very close correspondence between
the high-level Python code and the mathematical
description of the variational forms. The varia-
tional forms are assembled and solved through the
very compact routines velocity_tentative_solve,
pressure_solve and velocity_update that are imple-
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def setup (u_ , u_1 , q_ , q_1 , u, v, p, q,
nu , dt , p_ , f, u_components ,
phi_ , ** NS_namespace ):

F, Fu = {}, {}
U_AB = 1.5*u_1 - 0.5*u_2
for i, ui in enumerate ( u_components ):

# Crank - Nicolson velocity
U_CN = 0.5*(u+q_1[ui ])

# Tentative velocity variational form
F[ui] = (1./ dt* inner (u-q_1[ui], v)*dx

+ inner (dot(U_AB , grad(U_CN)), v)*dx
+ nu* inner (grad(U_CN), grad(v))*dx
+ inner (p_.dx(i), v)*dx
- inner (f[i], v)*dx)

# Velocity update variational form
Fu[ui ]= ( inner (u, v)*dx

- inner (q_[ui], v)*dx
+ dt* inner (phi_.dx(i), v)*dx)

# Variational form for pressure
phi = p - p_
Fp = ( inner (grad(q), grad(phi))*dx

- (1./ dt)*div(u_)*q*dx)

return dict(F=F, Fu=Fu , Fp=Fp)

Figure 6: Naive implementation in solvers/IPCS.py of vari-
ational forms used for solving the momentum equation (11),
pressure correction (12) and momentum update (13).

mented as shown in Fig. 7. The remaining default
functions are left to do nothing, as implemented
already in solvers/__init__.py, and as such these 4
functions shown in Figs. 6 and 7 are all it takes
to complete the implementation of the naive incre-
mental pressure correction solver. Note that this
implementation works for any order of the veloci-
ty/pressure function spaces. There is simply no ad-
ditional implementation cost for using higher order
elements.

5. High-performance implementation

The naive solver described in the previous sec-
tion is very easy to implement and understand, but
for obvious reasons it is not very fast. For exam-
ple, the entire coefficient matrix is reassembled each
timestep (see Fig. 4), even though it is only the
convection term that changes in time. We will now
explain how the same incremental pressure correc-
tion solver can be implemented efficiently, at the
cost of loosing some intuitiveness. The implemen-
tation of the high-performance solver described in
this section can be found in solvers/IPCS_ABCN.py.

def velocity_tentative_solve (ui , F, q_ ,bcs ,
** NS_namespace ):

A, L = system (F[ui ])
solve (A == L, q_[ui], bcs[ui ])

def pressure_solve (Fp , p_ , bcs , phi_ ,
** NS_namespace ):

# Compute pressure
phi_. vector () [:] = p_. vector ()
A, L = system (F[ui ])
solve (A == L, p_ , bcs[’p’])

# Normalize pressure if no bcs[’p ’]
i f bcs[’p’] == []:

normalize (p_. vector ())

# Compute correction
phi_. vector () [:] = p_. vector () -

phi_. vector ()

def velocity_update ( u_components , q_ , bcs ,
Fu , ** NS_namespace ):

for ui in u_components :
A, L = system (F[ui ])
solve (A == L, q_[ui], bcs[ui ])

Figure 7: Implementation in solvers/IPCS.py of routines
called in Fig. 4.

The most significant steps in the optimization
can roughly be split into four contributions: (i) pre-
assembling of constant matrices making up the vari-
ational forms, (ii) efficient assembly of the entire co-
efficient matrix, where in an intermediate form it is
used also to compute large parts of the linear right
hand side, (iii) use of constructed (constant) matri-
ces for assembling terms on right hand side through
fast matrix vector products and (iv) efficient use
and re-use of iterative solvers with preconditioners.

To implement an efficient solver we need to split
up the variational forms (11), (12) and (13) term by
term and view the equations on an algebraic level.
The finite element solution, which is the product of
the solver, is then written as

uIk =
Nu∑
j=1
Uk,Ij φj , (15)

where φj are the basis functions and {Uk,Ij }
Nu
j=1 are

the Nu degrees of freedom.

We start by inserting for the tentative velocity uIk
and v = φi in the bilinear terms of the variational
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form (11)∫
Ω
uIkv dx =

Nu∑
j=1

(∫
Ω
φj φi dx

)
Uk,Ij , (16)

∫
Ω
∇uIk · ∇v dx =

Nu∑
j=1

(∫
Ω
∇φj · ∇φi dx

)
Uk,Ij .

(17)

Each term inside the parenthesis on the right hand
side represents a matrix

Mij =
∫

Ω
φj φi dx, (18)

Kij =
∫

Ω
∇φj · ∇φi dx. (19)

The two matrices are independent of time and can
be preassembled once through (u, v are trial and
test functions respectively)
M = assemble ( inner (u, v)*dx)
K = assemble ( inner (grad(u), grad(v))*dx)

Note that the solution vectors and matrices repre-
sent the major cost in terms of memory use for the
solver. The matrices are sparse and allocated by the
linear algebra backend, using appropriate wrappers
that are hidden to the user. The allocation takes
place just once, when the matrices/vectors are cre-
ated.

The nonlinear convection form contains the
evolving solution and requires special attention. We
use the implicit convection form given in Eq. (9)
and write out the implicit Crank-Nicolson con-
vected velocity for component k

u · ∇ũk = 1
2 u · ∇

(
uIk + un−1

k

)
. (20)

Inserting for the algebraic form of the finite element
trial and test functions, the variational form for the
bilinear convection term becomes∫

Ω
u · ∇uIk v dx =

Nu∑
j=1

(∫
Ω

u · ∇φj φi dx
)
Uk,Ij ,

(21)
where u = 1.5 un−1−0.5 un−2. The convection ma-
trix can be recognized as the term inside the paren-
thesis

C
n−1/2
ij =

∫
Ω

u · ∇φj φi dx. (22)

The convecting velocity is time-dependent and in-
terpolated at tn−1/2. As such, the convection ma-
trix is also evaluated at n − 1/2 and needs to be

reassembled each timestep. To simplify notations,
though, we have for the rest of this paper omitted
the time notation on Cij . The assembly of the Cij
matrix is prepared in the setup function:

# Defined in setup
u_ab = as_vector ([ Function (V) for i in

range (len( u_components ))])
aconv = inner (v, dot(grad(u), u_ab))*dx

where u_ab is used as a container for the convecting
velocity u. Note that u_ab,is assembled (see Fig 8)
before assembling the matrix Cij , because this leads
to code that is a factor 2 faster than simply us-
ing a form based on the velocity functions at the
two previous levels directly (i.e., aconv = inner(v,
dot(grad(u), 1.5*u_1 - 0.5*u_2))*dx).

Consider now the linear terms, where the
known solution function is written as un−1

k =∑Nu

j=1 U
k,n−1
j φj , where Uk,n−1

j are the known co-
efficients of velocity component k at the previous
time step tn−1. We have the following linear terms
in Eq. (11) ∫

Ω
un−1
k v dx = Mij Uk,n−1

j , (23)∫
Ω
∇un−1

k · ∇v dx = Kij Uk,n−1
j , (24)∫

Ω
u · ∇un−1

k v dx = Cij Uk,n−1
j , (25)

that are all very quickly computed using simple ma-
trix vector products.

We may now reformulate our variational prob-
lem on the algebraic level using the three assembled
matrices. It is required that for each test function
v = φi, i = 1, . . . , Nu, the following equations must
hold

Mij

(
Uk,Ij − Uk,n−1

j

)
4t

+
Cij

(
Uk,Ij + Uk,n−1

j

)
2

+ ν
Kij

(
Uk,Ij + Uk,n−1

j

)
2 = Φk,n−1/2

i , (26)

where

Φk,n−1/2
i =

∫
Ω

(
−∇kp∗ + f

n−1/2
k

)
φi dx. (27)

If separated into bilinear and linear terms, the fol-
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lowing system of algebraic equations is obtained(
Mij

4t
+ Cij

2 + ν
Kij

2

)
Uk,Ij =(

Mij

4t
− Cij

2 − ν
Kij

2

)
Uk,n−1
j + Φk,n−1/2

i . (28)

If now Aij = Mij/4t + Cij/2 + νKij/2 is used as
the final coefficient matrix, then the equation may
be written as

Aij Uk,Ij =
(

2Mij

4t
−Aij

)
Uk,n−1
j + Φk,n−1/2

i ,

(29)
or

Aij Uk,Ij = b
k,n−1/2
i , for k = 1, . . . , d, (30)

where bk,n−1/2
i is the right hand side of (29). Note

that the same coefficient matrix is used by all ve-
locity components, even when there are Dirichlet
boundary conditions applied.

An efficient algorithm (2) can now be designed
to assemble both large parts of the right hand side
and the left hand side of Eq. (30) at the same time.

Assemble Aij ←− Cij
Aij = Mij/dt−Aij/2− νKij/2

b
k,n−1/2
i = f

k,n−1/2
i +Aij Uk,n−1

j ,

for k = 1, . . . , d
Aij = −Aij + 2Mij/dt

Algorithm 2: Efficient algorithm for assembling
the coefficient matrix Aij , where most of the right
hand side of Eq. (30) is assembled in an interme-
diate step.

Algorithm (2) is implemented as shown in Fig. 8.
At the end of this algorithm, most of bk,n−1/2 (ex-
cept from the pressure gradient) has been assem-
bled and the coefficient matrix Aij is ready to be
used in Eq. (30). The convection matrix needs to
be reassembled each new time step, but only on
the first inner velocity pressure iteration since u
only contains old and known velocities, not the new
unk . For this reason the code in Fig. 8 is placed
inside assemble_first_inner_iter, called in Fig. 4.
Notice that there is no separate matrix used for

# assemble convecting velocity
for i, ui in enumerate ( u_components ):

u_ab[i]. vector ().zero ()
u_ab[i]. vector ().axpy(1.5, x_1[ui ])
u_ab[i]. vector ().axpy(-0.5, x_2[ui ])

# assemble convection into A
A = assemble (a_conv , tensor =A,

reset_sparsity = False )

# Negative convection on the rhs
A. _scale (-0.5)

# Add mass and diffusion matrix
A.axpy(1./dt , M, True)
A.axpy(-0.5*nu , K, True)

# Compute parts of rhs vector
for ui in u_components :

b_tmp [ui ]. zero ()
# Add body force stored in b0
b_tmp [ui ]. axpy(1., b0[ui ])
# Add transient , convection and diffusion
b_tmp [ui ]. axpy(1., A*x_1[ui ])

# Reset matrix for lhs
A. _scale (-1.)
A.axpy(2./dt , M, True)

# Apply boundary conditions
[bc. apply (A) for bc in bcs[’u0 ’]]

Figure 8: Inside assemble_first_inner_iter. Fast assem-
ble of coefficient matrix and parts of right hand side vector.
A temporary rhs vector b_tmp is used for each velocity com-
ponent since this routine is called only on the first inner
iteration. x_1 is the vector of degrees of freedom at tn−1.

2Mij/4t−Aij or Cij and the total memory cost of
the algorithm is exactly three individual sparse ma-
trices (Aij ,Mij and Kij). The sparsity pattern of
the matrices is computed on the first assemble and
the matrix axpy operations take advantage of the
fact that all these matrices share the same pattern.

The linear term Φk,n−1/2
i needs some further

comments. Neglecting the constant forcing, f , the
second part of Φk,n−1/2

i is

∫
Ω
−∇kp∗ φi dx, (31)

where p∗ =
∑Np

j=1 P∗
j φ̂j , φ̂j is the basis function

for the pressure and P∗
j are the known degrees of
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freedom. On algebraic form we get∫
Ω
∇kp∗ φi dx =

Np∑
j=1

(∫
Ω
∇kφ̂j φi dx

)
P∗
j ,

= dP kij P∗
j , (32)

where dP kij for k = 1, . . . , d are d matrices that are
constant in time. Since the matrices can be pre-
assembled, the computation of Φk,n−1/2

i through a
matrix vector product is very fast. Unfortunately,
though, three additional matrices require storage
(in 3D), which may be too expensive. In that case
there is a parameter in Oasis that can be used. Set-
ting
NS_parameters [" low_memory_version "] = False

enables the creation of the matrices dP kij . If dis-
abled the term is computed simply through
assemble ( inner (p_.dx(k), v)*dx)

for k = 0, . . . , d − 1. The pressure gradient is
added to bk in velocity_tentative_assemble and not
in Fig. 8, since the pressure is modified on inner
iterations.

The pressure correction equation can also be op-
timized on the algebraic level. Using trial function
pn−1/2 =

∑Np

j=1 P
n−1/2
j φ̂j and test function q = φ̂i

we can write (12) for each test function

K̂ijPn−1/2
j = K̂ijP∗

j −
∫

Ω

∇ · uI

4t φ̂i dx. (33)

The Laplacian matrix K̂ij can be preassembled. If
the pressure function space is the same as the ve-
locity function space, then K̂ij = Kij and no addi-
tional work is required. The divergence term may
be computed as∫

Ω

∇ · uI

4t φ̂i dx = 1
4t

d∑
k=1

Nu∑
j=1

∫
Ω
∇kφj φ̂i dxUk,Ij

 ,

= 1
4t

d∑
k=1

dUkij U
k,I
j , (34)

where the matrices dUkij for k = 1, . . . , d can be
preassembled. Again, the cost is three additional
sparse matrices, unless the function spaces of pres-
sure and velocity are the same. In that case
dUkij = dPkij and memory can be saved. If the
low_memory_version is chosen, then we simply use the
slower finite element assembly

assemble ((1/dt)*div(u_)*q*dx)

The final step for the fractional step solver is the
velocity update that can be written for component
k as

Mij Uk,nj = Mij Uk,Ij −4t dPkijP
n−1/2
j , (35)

where Uk,Ij and Pn−1/2
j now are the known degrees

of freedom of tentative velocity and pressure respec-
tively, whereas Uk,nj represent the unknowns. The
velocity update requires a linear algebra Krylov or
direct solve and as such it is quite expensive even
though the equation is cheap to assemble. For this
reason the velocity update has an additional option
to use either a weighted gradient matrix3 Gkij or
lumping of the mass matrix, that allows the update
to be performed directly

Uk,ni = Uk,Ii −4tGkij P
n−1/2
j , for i = 1, . . . , Nu.

(36)
The parameter used to enable the direct approach
is NS_parameters["velocity_update_type"] that can be
set to "gradient_matrix" or "lumping".

6. Verification of implementation

The fractional step algorithm implemented in
NSfracStep is targeting transient flows in large-scale
applications, with turbulent as well as laminar or
transitional flow. It is not intended to be used as
a steady state solver.4 Oasis has previously been
used to study, e.g., blood flow in highly complex
intracranial aneurysms [21, 22], where the results
compare very well with, e.g., the spectral element
code NEKTAR [23]. Simulations by Steinman and
Valen-Sendstad [22] are also commented by Ven-
tikos [24], who state this is ”the right way to do
it” - referring to the need for highly resolved CFD
simulations of transitional blood flow in aneurysms.

Considering the end use of the solver in biomedi-
cal applications and research, it is essential that we
establish the accuracy as well as the efficiency of
the solver.

6.1. 2D Taylor Green flow
Two dimensional Taylor-Green flow is one of

very few non-trivial analytical and transient so-
lutions to the Navier-Stokes equations. For this

3Requires the fenicstools [20] package.
4As of 14 Sep 2014 Oasis ships with a coupled steady

state solver for this purpose.
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reason it is often used for verification of com-
puter codes. The implementation can be found in
Oasis/problems/TaylorGreen.py and the Taylor Green
solution reads

ue =
(
− sin(πy) cos(πx) exp(−2π2νt), (37)

sin(πx) cos(πy) exp(−2π2νt)
)
, (38)

pe = −1
4 (cos(2πx) + cos(2πy)) exp(−4π2νt),

(39)

on the doubly periodic domain (x, y) = [0, 2]×[0, 2].
The analytical solution is used to initialize the
solver and to compute the norms of the error, i.e.,
||u − ue||h and ‖p − pe‖h, where ‖ · ‖h represents
an L2 error norm. The mesh consists entirely of
right triangles and is uniform in both spatial direc-
tions. The mesh size h is computed as two times
the circumradium of a triangle. The kinematic vis-
cosity is set to ν = 0.01 and time is integrated
for t = [0, 1] with a short timestep (4t = 0.001)
to practically eliminate temporal integration errors.
The solver is run for a range of mesh sizes and the
order of convergence is shown in Table 1. The veloc-
ity is either piecewise quadratic (P2) or piecewise
linear (P1), whereas the pressure is always piece-
wise linear. The P2P1 solver achieves fourth order
accuracy in velocity and second order in pressure,
whereas the P1P1 solver is second order accurate
in both. Note that the fourth order in velocity is
due to superconvergence [25] and it will drop to
three for a mesh that is not regularly sized and
aligned with the coordinate axis. The order of the
L2 error (k) is computed by comparing the error
norm of two consecutive discretization levels i and
i−1, and assuming that the error can be written as
Ei = Chki , where C is an arbitrary constant. Com-
paring Ei = Chki and Ei−1 = Chki−1 we can isolate
k = ln(Ei/Ei−1)/ ln(hi/hi−1).

To verify the convergence of the transient frac-
tional step scheme, we isolate temporal errors by
practically eliminating spatial discretization errors
through the use of high order P4 and P3 elements
for velocity and pressure respectively. The solver is
then run for a range of time step sizes for t = [0, 6].
The error norms at the end of the runs are shown in
Table 2 indicating that both pressure and velocity
achieve second order accuracy in time. Note that
in Table 2, the order of the error is computed from
Ei = Cdtki , where dti is the time step used at level
i.

Table 1: Taylor-Green flow convergence errors O(hk), where
h and k are mesh size and order of convergence respectively.
‖·‖h represents an L2 norm. The velocity is either quadratic
(P2) or linear (P1), whereas the pressure is always linear
(P1).

P2P1
h ‖u−ue‖h k ‖p−pe‖h k

2.83E-01 2.14E-02 - 1.81E-02 -
1.41E-01 1.44E-03 3.89 5.49E-03 1.72
9.43E-02 2.84E-04 4.01 2.46E-03 1.97
7.07E-02 8.94E-05 4.01 1.39E-03 2.00
5.66E-02 3.65E-05 4.01 8.88E-04 2.00

P1P1
h ‖u−ue‖h k ‖p−pe‖h k

2.83E-01 9.31E-03 - 4.97E-03 -
1.41E-01 2.36E-03 1.98 1.55E-03 1.68
9.43E-02 1.06E-03 1.98 7.12E-04 1.92
7.07E-02 5.98E-04 1.99 4.05E-04 1.97
5.66E-02 3.83E-04 1.99 2.60E-04 1.98

Table 2: Taylor-Green flow convergence errors O(dtk), where
dt and k are time step and order of convergence respectively.
The velocity uses Lagrange elements of degree four (P4),
whereas the pressure uses third degree (P3).

P4P3
dt ‖u− ue‖h k ‖p− pe‖h k

5.00E-01 5.08E-01 - 1.29E+00 -
2.50E-01 1.36E-01 1.91 2.97E-01 2.11
1.25E-01 3.42E-02 1.99 7.12E-02 2.06
6.25E-02 8.62E-03 1.99 1.77E-02 2.01
3.12E-02 2.17E-03 1.99 4.41E-03 2.00

6.2. Turbulent channel flow
The second test case is a direct numerical sim-

ulation5 of turbulent, fully developed, plane chan-
nel flow. The flow is bounded between two par-
allel planes located at y = ±1 and is periodic in
the x and z directions. The flow is driven by an
applied constant pressure gradient (forcing) in the

5A direct numerical simulation indicates a simulation
where all scales of turbulence have been resolved.

13



x-direction. This flow has been studied extensively
with numerous CFD-codes, often using spectral ac-
curacy since it is of primary importance to capture
the rate of dissipation of turbulent kinetic energy,
allowing no (or very little) numerical diffusion. To
verify our implementation we will here attempt to
reproduce the classical simulations of Moser, Kim
and Mansour (MKM, [26]) for Reτ = 180, based on
the wall friction velocity uτ =

√
ν∂u/∂ywall. The

computational box is of size Lx = 4π, Ly = 2 and
Lz = 4π/3. The resolution of MKM was a box of
size 1283, uniform in x and z-directions and skewed
towards the walls using Chebyshev points in the y-
direction. In this test we use one under-resolved
box of size 643 and one of the same size as MKM
to show convergence towards the correct solution.
Since each hexahedron is further divided into 6
tetrahedrons, this corresponds to 6 ·643 and 6 ·1283

finite elements6. MKM performed their simulations
using spectral accuracy with Fourier representation
in the periodic directions and a Chebyshev-tau for-
mulation in the y-direction. Here we use piecewise
linear Lagrange elements (P1P1) of second order
accuracy. The creation of the mesh and boundary
conditions in module problems/Channel.py is shown
in Fig. 9. The sampling of statistics is performed
using routines from the fenicstools [20] package and
are not described in detail here. Reference is given
to the complete source code in problems/Channel.py
in the Oasis repository. Figure 10 shows the statis-
tically converged mean velocity in the x-direction
across the channel normalized by uτ . The black
curve shows the spectral solution of MKM. The
dashed and dotted curves show, respectively, the
Oasis solution using 6 · 643 and 6 · 1283 computa-
tional cells. The coarse solution represents an un-
derresolved simulation where the sharpest velocity
gradients cannot be captured. The total amount
of dissipation within the flow is thus underpre-
dicted and the mean predicted velocity is conse-
quently higher than it should be. This result is
in agreement with the understanding of underre-
solved Large Eddy Simulations (LES) of turbulent
flows, that in effect adds viscosity to the large re-
solved scales to counteract the lack of dissipation
from the unresolved small scales. Hence, simply
by increasing the kinematic viscosity, the predicted
mean flow could be forced closer to the spectral

6Due to two periodic directions the number of degrees of
freedom for the fine mesh are 128 · 129 · 128 for each velocity
component and pressure, which is the same as used by MKM.

from numpy import arctan , pi
N = 128
Lx , Ly , Lz = 2.0*pi , 1.0, 2.0*pi/3.0
def mesh(Nx , Ny , Nz , ** params ):

m = BoxMesh (0, -Ly , -Lz , Lx , Ly , Lz ,
N, N, N)

x = m. coordinates ()
x[:, 1] = arctan (pi *(x[:, 1])) /
arctan (pi)

nu = 2.e-5
Re_tau = 395.
NS_parameters . update (

nu = nu ,
Re_tau = Re_tau ,
dt = 0.05 ,
velocity_degree = 1,
folder = " channel_results ",
use_krylov_solvers = True)

def walls (x, on_boundary ):
return ( on_boundary and

near ((x[1]+ Ly)*(x[1]-Ly), 0.0))

def create_bcs (V, u_components , ** NS_name ):
bc = {ui: [ DirichletBC (V, 0, walls )]

for ui in u_components ]}
bcs[’p’] = []
return bcs

utau = nu * Re_tau
def body_force (** NS_namespace ):

return Constant (( utau **2, 0., 0.))

Figure 9: Implementation of the Channel problem.

DNS solution seen in Fig. 10. Another option is, of
course, to refine the mesh and thereby resolve the
smallest scales. As expected, we see in Fig. 10 that
the 6 · 1283 simulations are in much closer agree-
ment with the spectral DNS. There is still a slight
mismatch, though, that should be attributed to the
lower order of the Oasis solver, incapable of captur-
ing all the finest scales of turbulence. It is worth
mentioning that the Galerkin finite element method
used by Oasis contains no, or very little, numeri-
cal diffusion. A dissipative solver, like, e.g., a finite
volume using an upwind scheme or a monotonically
integrated implicit LES [27], would have the same
effect as a LES model that adds viscosity and as
such could lead to coarse simulations with mean
velocity profiles closer to MKM.

Figure 11 shows the normal, non-
dimensionalized, Reynolds stresses. The results
confirm that the underresolved stresses are un-
derpredicted close to the wall, whereas the fine
simulations converge towards the spectral MKM
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results.
The channel simulations do not require more

computational power than can be provided by a
relatively new laptop computer. However, since
these simulations are run for more than 30000
timesteps to sample statistics, we have performed
parallel computations on the Abel supercomputer
at the University of Oslo. The simulations scale
weakly when approximately 200,000 elements are
used per CPU, and thus we have run our simu-
lations using 8 CPUs for the coarse mesh and 64
for the fine, which contains 12.5 million tetrahe-
drons. Simulations for the fine grid take approxi-
mately 1.5-1.7 seconds real time per computational
timestep depending on traffic and distribution on
Abel (20-25 % lower for the coarse simulations) and
thus close to 12 hours for the entire test (30000
timesteps). Approximately 75 % of the comput-
ing time is spent in the linear algebra backend’s
iterative Krylov solvers and assembling of the coef-
ficient matrix, as detailed in Sec. 5, is responsible
for most of the remaining time. The backend (here
PETSc) and the iterative linear algebra solvers are
thus key to performance. For the tentative veloc-
ity computations we have used a stabilized version
of a biconjugate gradient squared solver [28] with
a very cheap (fast, low memory) Jacobi precon-
ditioner imported from method get_solvers, where
it is specified as KrylovSolver(’bicgstab’, ’jacobi’).
This choice is justified since the tentative velocity
coefficient matrix is diagonally dominant due to the
short timesteps, and each solve requires approxi-
mately 10 iterations to converge (the same number
for coarse and fine). The pressure coefficient ma-
trix represents a symmetric and elliptic system and
thus we choose a solver based on minimal residuals
[29] and the hypre [30] algebraic multigrid precon-
ditioner (KrylovSolver(’minres’, ’hypre_amg’)). The
pressure solver uses an average of 6 iterations (same
for coarse and fine) to converge to a given tolerance.
The velocity update is computed using a lumped
mass matrix and no linear algebra solver is thus
required for this final step.

7. Concluding notes on performance

The computational speed of any implicit, large-
scale Navier-Stokes solver is determined by many
competing factors, but most likely it will be limited
by hardware and by routines for setting up (assem-
bly) and solving for its linear algebra subsystems.
In Oasis, and many comparable Navier-Stokes

solvers, the linear algebra is performed through rou-
tines provided by a backend (here PETSc) and are
thus arguably beyond our control. Accepting that
we cannot do better than limits imposed by hard-
ware and the backend, the best we can really hope
for through high-level implementations is to elimi-
nate the cost of assembly. In Oasis we take all con-
ceivable measures to do just this, as well as even re-
ducing the number of required linear algebra solves.
As mentioned in the previous section, for the tur-
bulent channel case with 12.5 mill. tetrahedrons,
75 % of the computational time was found spent
inside very efficient Krylov solvers and we are thus,
arguably, pushing at the very boundaries of what
may be achieved by a solver developed with similar
numerical schemes, using the same backend.

To further support this claim, without making a
complete comparison in terms of accuracy, we have
also set up and tested the channel simulations on
Abel for two low-level, second order accurate, semi-
implicit, fractional step solvers, OpenFOAM[18]
and CDP [31], that both are targeting high per-
formance on massively parallel clusters. We used
channelFoam, distributed with OpenFOAM version
2.2.1 [32] and 2.5.0 version of CDP (requires li-
cense). The channelFoam LES solver was modified
slightly to run with constant viscosity, and param-
eters were set to match the finest channel simu-
lations using 1283 hexahedral cells. OpenFOAM
used for the tentative velocity a biconjugate gra-
dient [28] solver with a diagonal incomplete-LU
preconditioner. For the pressure a conjugate gra-
dient solver was used with a diagonal incomplete
Cholesky preconditioner. The CDP solver was set
up with the same hexahedral mesh as OpenFOAM,
using no model for the LES subgrid viscosity. The
linear solvers used by CDP were very similar to
those used by Oasis, with a Jacobi preconditioned
biconjugate gradient solver for the tentative veloc-
ity and a generalized minimum residual method
[33] with the hypre algebraic multigrid precondi-
tioner. Depending on traffic on Abel, both CDP
and channelFoam required approximately 1.4-1.7
seconds real time per timestep, which is very close
to the speed obtained by Oasis. For both CDP and
OpenFOAM speed was strongly dominated by the
Krylov solvers and both showed the same type of
weak scaling as Oasis on the Abel supercomputer.
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Figure 10: Mean velocity in x-direction normalized by uτ
as a function of scaled distance to the wall y+. Dotted and
dashed curves are computed with Oasis using respectively
6 · 643 and 6 · 1283 computational cells. The black curve is
the reference solution from MKM.
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