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ABSTRACT 

The role of viscous forces coupled with Brownian forces in momentum – conserving 

computer simulations is studied here in the context of their contribution to the total average 

pressure of a simple fluid as derived from the virial theorem, in comparison with the 

contribution of the conservative force to the total pressure. The specific mesoscopic model 

used is the one known as dissipative particle dynamics, although our conclusions apply to 

similar models that obey the fluctuation – dissipation theorem for short range interactions 

and have velocity – dependent viscous forces. We find that the average contribution of the 

random and dissipative forces to the pressure is negligible for long simulations, provided 

these forces are appropriately coupled and when the finite time step used in the integration 

of the equation of motion is not too small. Finally, we study the properties of the fluid when 

the random force is made equal to zero and find that the system freezes as a result of the 

competition of the dissipative and conservative forces. 

Keywords: viscous forces, stochastic forces, fluctuation – dissipation theorem, dissipative 

particle dynamics. 
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INTRODUCTION 

Current research in soft matter systems requires of increasingly sophisticated computational 

tools to solve accurately models with large number of particles and complex interactions in 

the shortest possible time, so that the predictions can be used to interpret experimental trends, 

test effective theories and design new materials [1]. There are important reasons that have 

made of computer simulations the successful tools that they are today, among which are the 

fact that the interactions in many – body systems can be solved almost exactly, while most 

analytical theories must rely on approximations [2]. Additionally, one has total control over 

the thermodynamic and physicochemical conditions of the simulations, which is hardly 

achieved in most experiments. One of the most successful techniques used in the past decade 

or so for the modeling of complex fluids at the coarse – grained level is the so called 

dissipative particle dynamics (DPD) method [3, 4]. The model consists of three different 

types of forces that act between pairs of particles, namely a conservative force which is 

responsible for the thermodynamic properties of the fluid, and dissipative and random forces 

that are coupled in a way that keeps the temperature constant [4]. The forces are central and 

obey Newton´s third law, which leads to the local and global conservation of momentum. 

This aspect of DPD is very useful when modeling situations where hydrodynamic modes 

may play a leading role [5] because such modes are conserved, which is not necessarily the 

case when other types of dynamics with viscous and Brownian forces are used [6].   

DPD has shown to be successful for the study of the properties of polymer blends [7], 

complex fluids under confined geometries [8], systems of biological [9] or industrial [10] 

interests, and for the prediction of properties of fluids under the influence of external stimuli 

such as steady flow [11], pH [12], or temperature [13]. In view of the numerous examples 
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where DPD has been used to predict correctly the behavior of soft matter systems it is 

important to review some of the assumptions of the model. The purpose of this work is to 

determine quantitatively the extent to which the viscous and stochastic forces in DPD perturb 

the dynamics of the system through their contribution to the total pressure of the fluid via the 

virial theorem, in comparison with the contribution of the conservative force. This has not 

yet been tested explicitly and a quantitative understanding of this aspect is necessary before 

a fully satisfactory knowledge of DPD can be achieved.  

THE DPD MODEL  

The statistical mechanical basis of DPD was laid out in the work of Español and Warren [4]; 

following the original proponents of DPD [3] they modeled the dissipative force (𝑭𝒊𝒋
𝑫) and 

the random force (𝑭𝒊𝒋
𝑹) as  

𝑭𝒊𝒋
𝑫 =  −𝛾𝜔𝐷(𝑟𝑖𝑗)[�̂�𝒊𝒋 ∙  𝒗𝒊𝒋]�̂�𝒊𝒋    (1) 

𝑭𝒊𝒋
𝑹 =  𝜎𝜔𝑅(𝑟𝑖𝑗)𝜉𝑖𝑗�̂�𝒊𝒋      (2) 

where rij = ri − rj, rij = |rij|, �̂�𝒊𝒋 = rij/rij; rij is the relative position vector between particles i and 

j,  𝜎 is the noise amplitude, 𝛾 is the viscous force amplitude and vij = vi − vj is the relative 

velocity between the particles, with 𝜉𝑖𝑗 =  𝜉𝑗𝑖  being random numbers with Gaussian 

distribution between 0 and 1, and unit variance. These numbers obey the following relations 

[14]:  

〈𝜉𝑖𝑗(𝑡)〉 = 0      (3) 

〈𝜉𝑖𝑗(𝑡)𝜉𝑘𝑙(𝑡′)〉 = (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)𝛿(𝑡 − 𝑡′).    (4) 

 

The weight functions 𝜔𝐷
 and 𝜔𝑅

 must be related as  
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𝜔𝐷(𝑟𝑖𝑗) = [𝜔𝑅(𝑟𝑖𝑗)]2,                          (5) 

while the constants in equations (1) and (2) must obey the equality 

𝑘𝐵𝑇 =
𝜎2

2𝛾
       (6) 

for the equilibrium probability distribution function of DPD to be the canonical distribution 

function [4]; 𝑘𝐵  is the Boltzmann’s constant and T the absolute temperature. Although there 

is in principle no restriction on the spatial dependence of the functions in equations (1) and 

(2), as long as equations (5) and (6) are obeyed, it is customary to choose them only for 

computational convenience as equal to:  

𝜔𝑅(𝑟𝑖𝑗) = 𝑚𝑎𝑥 {(1 −
𝑟𝑖𝑗

𝑟𝑐
) , 0}.     (7) 

In addition to the viscous and random forces presented in equations (1) and (2), respectively, 

there is a conservative force in the DPD model, given by the following equation:  

𝑭𝒊𝒋
𝑪 =  𝑎𝑖𝑗 (1 −

𝑟𝑖𝑗

𝑟𝑐
) �̂�𝒊𝒋,      (8) 

with all three forces (equations (1), (2), (8)) becoming zero when  𝑟𝑖𝑗 >  𝑟𝑐. The factor 𝑎𝑖𝑗 in 

equation (8) represents the strength of the conservative force between particles i and j, and 

accounts for all the thermodynamic properties of a pure DPD fluid [14]. Equation (8) 

represents the local excluded volume interactions of the fluid, see Fig. 1, and although it 

allows for particle – particle overlap, this does not occur in practice because the factor aij in 

equation (8) is proportional to kBT/rc, which is very large (~ 78 for coarse – graining degree 

equal to 3, in reduced DPD units) and the overlapping of particles is therefore 

thermodynamically unfavorable [15].     
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Figure 1. Schematic representation of the magnitude of the conservative DPD force (FC). The image 

on the left represents a coarse – graining degree equal to three water molecules per DPD bead, while 

the one on the right is the spatial dependence of such force for a simple homogeneous fluid, see 

equation (8).  

The physical meaning of the viscous and Brownian forces is similar to that in other types of 

dynamics with dissipative forces such as Langevin [16] or Brownian dynamics [17], with the 

important exception that, by definition, equations (1) and (2) obey explicitly Newton’s third 

law of motion, whereas that is not the case with other comparable models [6]. Figure 2 

illustrates schematically the competition and cooperation between the forces given by 

equations (1) and (2).  

 

Figure 2. The left image represents the viscous force (FD) acting in the collision of two DPD particles 

with relative velocity v while the right image is a schematic representation of the Brownian motion 

(FR) between any two particles, at a given temperature T. The circles are the DPD beads, which in the 

present work represent the volume of three water molecules. Provided here only for illustrative 

purposes. See text for details.  
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If the forces defined in equations (1) and (2) are coupled so that equations (5) and (6) are 

fulfilled, then the DPD system is assured to evolve to an equilibrium state with probability 

distribution defined by a fixed particle number (N), at the given volume (V) and temperature 

(T), i.e. by the canonical distribution function [4]. Additionally, all three forces (equations 

(1), (2) and (8)), have short range, which allows one to use large finite time steps when 

solving the equation of motion of the particles in numerical simulations. This fact, coupled 

with the coarse – graining procedure involved in the calculation of the conservative force 

parameter between any pair of particles i and j, aij (see equation (8)), make of DPD a 

mesoscopic scale model. There is a well – established algorithm to obtain these conservative 

force parameters [14] for molecules with specific chemical structure. Also, their dependence 

with temperature has been developed and tested successfully for the prediction of the 

interfacial tension and scaling properties of binary mixtures of immiscible fluids [13], but 

those topics are beyond the scope of the present work. 

THE VIRIAL THEOREM IN THE DPD MODEL  

One of the most frequently used routes to calculate the equation of state of complex fluids 

with computer simulations is the so – called virial theorem method [2]. The pressure is 

obtained from  

𝑃 = 𝜌𝑘𝐵𝑇 +
1

3𝑉
〈∑ �⃗�𝑖𝑗 ∙ 𝑟𝑖𝑗𝑗>𝑖 〉,     (9) 

where  is the number density, �⃗�𝑖𝑗 is the sum of forces (1), (2) and (8), and the brackets 

represent the time average. The first term in the right – hand side of equation (9) is the kinetic 

energy contribution to the total pressure, which is just the ideal gas contribution. The second 

term in the right – hand side of equation (9) is the so – called “excess pressure” [2], which 
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contains all the effects of the non – ideal interactions. Essentially all works on DPD use only 

the conservative force when calculating the pressure of the fluid through equation (9), 

assuming that the dissipative and random forces do not contribute. When that is the case 

Groot and Warren [14] have shown that a pure DPD fluid obeys the following equation of 

state:  

𝑃 = 𝜌𝑘𝐵𝑇 + 𝛼𝑎𝜌2 ,       (10) 

which is valid for 𝜌 > 2,  is a constant found numerically to be 𝛼 = 0.101 ± 0.001, and a 

is the value of the conservative force constant, see equation (8) [14]. However, when the 

thermostat (dissipative and random) forces were included in the calculation of the pressure 

via equation (9), Groot and Warren [14] found differences of about 0.7 % with respect to the 

case when only the conservative force was considered in (9), without providing reasons for 

this admittedly small but measurable difference. Here we provide mathematical and 

computational arguments to determine when one can use only conservative forces when 

using equation (9) for the calculation of the pressure. 

Let us start by considering the contribution of the random force, equation (2), to the pressure 

in equation (9). Using the fact that the weight function 𝜔𝑅(𝑟𝑖𝑗), equation (7), has an upper 

bound equal to 1 and is never negative, and that the maximum correlation length between 

any two given particles is rij
max = rc one can write the virial contribution of the random force 

as follows 

0 ≤ 〈∑ �⃗⃗⃗�𝒊𝒋
𝑹 ∙ 𝑟𝑖𝑗𝑗>𝑖 〉 ≤

𝜎𝑟𝑐

4𝑡𝑇𝑜𝑡
∑ ∫ 𝑑𝑡𝜉𝑖𝑗(𝑡)

𝑡𝑇𝑜𝑡

0𝑗>𝑖       (11) 

where 𝑡𝑇𝑜𝑡 is the total simulation time. For a sufficiently large value of 𝑡𝑇𝑜𝑡, and using the 

properties of the random numbers 𝜉𝑖𝑗 given by equations (3) and (4) the integral in the 
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inequality (11) can be made as small as needed, and we arrive at conclusion that the Brownian 

force does not contribute to the total pressure of the system, given by equation (9). For the 

evaluation of the contribution of the dissipative force, equation (1), to the pressure it is 

important to emphasize that this force depends on the relative velocity between the pair of 

particles colliding. Then, its contribution to the pressure can be written as  

〈∑ �⃗⃗⃗�𝒊𝒋
𝑫 ∙ 𝑟𝑖𝑗𝑗>𝑖 〉 = −

𝛾

𝑡𝑇𝑜𝑡
∑ ∫ 𝑑𝑟𝑖𝑗

𝑟𝑖𝑗(𝑡𝑇𝑜𝑡)

𝑟𝑖𝑗(0)𝑗>𝑖 𝜔𝐷(𝑟𝑖𝑗)𝑟𝑖𝑗,    (12) 

which also tends to zero as the simulation time 𝑡𝑇𝑜𝑡 is increased because the integral in 

equation (12) is bound since the system of particles is a condensed fluid phase; recall from 

equations (5) and (7) that 𝜔𝐷(𝑟𝑖𝑗) = (1 − 𝑟𝑖𝑗 𝑟𝐶⁄ )
2
, for 𝑟𝑖𝑗 ≤ 𝑟𝐶. However, it is crucial to 

have a dissipative force that not only depends on the relative velocity between colliding 

particles, but that transfers the energy dissipated in such collisions to Brownian motion so 

that the kinetic energy is not lost, otherwise the system would eventually freeze. Hence the 

conditions given by equations (5) and (6) are indispensable for the negligible contribution to 

the total pressure of the dissipative and random forces in DPD for sufficiently long 

simulations.  

To test (11) and (12) we have performed canonical – ensemble DPD simulations of a simple 

fluid made up of monomeric, identical particles using a conservative force constant aij = 78.3, 

see equation (8), with dissipative and random force constants equal to  = 4.5 and  = 3, 

respectively (see equations (1) and (2)) so that kBT = 1, as stated in equation (6), unless stated 

otherwise. The equation of motion is solved numerically using an adapted form of the 

velocity – Verlet algorithm [18], for different choices of time step, in cubic boxes of various 

lengths and particle number so that the density could be fixed at three different values,  = 
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3, 4 and 5. Periodic boundary conditions were imposed on all faces of the simulation box. 

We use reduced DPD units throughout this work, unless stated otherwise. 

In Fig. 3 we show the evolution with time of the three DPD virial contributions to the pressure 

of a liquid made up of 3000 particles in a cubic box with side length equal L* = 10 and 

periodic boundary conditions, for three different choices of the time step used in the 

integration of the equation of motion. Fig. 3(a) corresponds to the random force virial and 

Fig. 3(b) is the one corresponding to the dissipative force; both are shown to decrease to zero 

as the time of the simulation is increased, as fully expected from (11) and (12), respectively. 

However, while the contribution of the dissipative force to the virial decays monotonically 

as the number of time steps is increased, the random force contribution is somewhat noisy 

because of its very definition, see equation (2), but it quickly becomes negligible. The 

dissipative force contribution to the virial takes somewhat longer to decay, especially for 

small time steps. This feature may lead to artifacts in the calculation of the pressure if the 

total simulation time is not sufficiently long, or if the time step is not big enough. For 

comparison we have included in Fig. 3(c) the contribution of the conservative force to the 

virial for the same system, where we observe that a constant value is reached at long 

simulation time. At the smallest integration time step (Δ𝑡 = 0.0001), the conservative force 

contribution to the virial takes longer to reach its equilibrium value, as expected. 
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Fig. 3 (a) The virial contribution of the random and (b) dissipative forces to the pressure, see equation 

(9) for a DPD simple fluid as a function of time, for three choices of the integration time step. (c) The 

virial contribution of the conservative force with constant aij = 78.3. The fluid is made up of 3000 

identical particles in a cubic box with volume V=10×10×10. All axes are shown in reduced DPD 

units.  

 

We have carried out simulations with increasing values of the volume of the box while 

keeping the density constant (*=3.0) to check that these general trends do not depend 

strongly on finite size effects. In Fig. 4 we show the virial contribution of the three different 

types of DPD forces to the virial for four different volumes of the cubic simulation box, fixing 

the integration time step at the largest value shown in Fig. 3, namely t=0.01. All average 

virial contributions converge quickly to their equilibrium values as the box volume increases. 

Comparison of Fig. 4 with Fig. 3 shows that the influence of finite size effects is much weaker 

than the choice of time step on the average contribution of the DPD forces to the virial 

theorem, which is not surprising since the forces are short ranged. Figs. 4(a) and 4(b) show 
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also that the average virial contribution to the pressure from the random and dissipative 

forces, respectively, is essentially zero for long simulations, as shown in Figs. 3(a) and 3(b) 

when t =0.01. 

 

Fig. 4 Effect of the size of the simulation box in the virial contribution of the (a) random, (b) 

dissipative and (c) conservative forces to the pressure, see equation (9) for a DPD fluid as a function 

of time, for four values of the volume of the cubic box with side length L*. The conservative force 

constant is aij = 78.3. The fluid density is kept equal to * = 3 and the integration time step was chose 

as t=0.01 in all cases. All quantities are shown in reduced DPD units.  

 

The balance between the dissipative force and the random force make of the DPD thermostat 

one of the most stable ones, particularly for applications to non – equilibrium simulations 

[19]. Most DPD works assume that the strength of the frictional and Brownian forces is small 

enough so that they have negligible influence on the dynamics of the system, but this has not 

been explored. To determine the extent to which the strength of the frictional and random 

forces introduces artifacts into the equilibrium value of the pressure we have carried out 
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simulations with various values of  (amplitude of the stochastic force) and  (strength of the 

viscous force), while keeping the relation between them fixed, as dictated by the fluctuation 

– dissipation theorem, i. e., 𝜎2 2𝛾 = 𝑘𝐵𝑇⁄ . The contribution of the three forces to the virial 

for these cases at the same density (*=3) can be found in Fig. 5, and because equation (6) 

is always fulfilled the temperature in all cases is equal to one, in reduced units. The case with 

=1 and =0.5 corresponds to a fluid with very little viscosity and Brownian motion, while 

that with =4 and =8 models a very viscous fluid with many Brownian collisions between 

the particles. In Fig. 5(a) one notices that the least viscous fluid takes longer to reach a 

vanishing contribution of the random force to the virial, because the thermostat is too weak 

to act quickly and requires of many collisions between the particles. In such case, if one were 

to run simulations in blocks of, say, 104 time steps as is usually done, there would be a small 

but finite artificial contribution to the total pressure arising from the random force. For the 

more viscous types of fluids seen in Fig. 5(a) this is not a problem and the system quickly 

arrives at the equilibrium. In Fig. 5(b) we show the contribution of the dissipative force to 

the virial for the same cases seen in Fig. 5(a); although in all cases the contribution of the 

dissipative force to the virial decays quickly to zero, the case with =1 and =0.5 is the one 

with the smallest contribution, precisely because  is so small. However, the largest influence 

of the various values of the strength of the random and dissipative forces is found in the 

conservative force contribution to the virial, which is the most important one since it is the 

one used for the calculation of the pressure of the fluid, and it is shown in Fig. 5(c). The 

contribution of what may be called the weakest thermostat (=1, =0.5) takes the longest to 

arrive at the equilibrium state; in fact, even after 105 time steps it has not yet done so. 

Increasing the “strength” of the thermostat improves the ability of the fluid to reach 
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equilibrium, and in those cases the calculation of the pressure would be free from these 

artifacts, for sufficiently long simulations. The results shown in Fig. 5 underscore the 

importance of the careful assessment of the role of viscous and stochastic forces in numerical 

simulations.  

 

Fig. 5 Effect of varying the strength of the random () and dissipative () forces in the virial 

contribution of the (a) random, (b) dissipative and (c) conservative forces to the pressure, see equation 

(9) for a DPD fluid as a function of time. In all cases equation (6) is obeyed, thus the temperature is 

always T*=1. The conservative force constant is aij = 78.3. The fluid density is kept equal to * = 3 

and the integration time step was chose as t=0.001 in all cases. All quantities are shown in reduced 

DPD units.  

To further illustrate the importance of the fluctuation – dissipation theorem in DPD we 

performed simulations where the random force was set equal to zero at the beginning of the 

simulation and the system was allowed to evolve to a state where all the particles’ positions 

where eventually frozen, yielding an exceedingly small value of the kinetic energy, and 

therefore of the temperature.  
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Fig. 6 (a) Comparison between the average virial contribution of the conservative force for a simple 

DPD fluid obtained with and without the random force in the system, the latter was done by setting 

=0, for three different values of the density. (b) Average contribution of the dissipative force to the 

virial when there is no random force, for the same densities as in (a). The dotted lines are the best fits 

for the long time tail of the curves to the function exp(-t/); see text for details. The integration time 

step was set to t=0.01 in all cases. Axes are shown in reduced DPD units.  

Fig. 6(a) displays the average value of the virial contribution of the conservative force for 

systems of particles at various densities where the random force was set initially to zero, 

compared with the equivalent cases where the random force obeys the fluctuation – 

dissipation theorem, see equations (5) and (6). As the figure shows, a constant value of the 

virial contribution is achieved, with the value of the frozen system being larger than the one 

with non - zero kinetic energy. This is to be expected since the virial theorem establishes that: 

〈∑ 𝐹𝑖𝑗
𝐶⃗⃗⃗⃗⃗⃗ ∙ 𝑟𝑖𝑗⃗⃗ ⃗⃗ 〉 = 3𝑉𝑃 − 3𝑉〈𝐾𝐸〉,     (13) 

where V is the volume of the simulation box and 〈𝐾𝐸〉 is the average kinetic energy. Hence, 

for fluids with particles in motion and 〈𝐾𝐸〉 > 0, the right – hand side of equation (13) should 

yield a lower value of the virial as that compared with frozen systems, where 〈𝐾𝐸〉 = 0, in 

agreement with equation (13) and Fig. 6(a). As the density is increased once notices the 

difference between the average virial contribution of the frozen and moving systems becomes 
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smaller, which is due to the reduced degrees of freedom of the particles when the density is 

increased, which in turn reduces the space available for particle displacements and the hence 

the kinetic energy of the particles. Fig. 6(b) shows the behavior of the average virial 

contribution of the dissipative force when the frictional force is set to zero for the same 

densities as in Fig. 6(a). The inertial decay of the motion of the particles that make up the 

fluid is shown to be exponentially decreasing. The fluid’s viscous force is gradually smaller 

because the relative velocity of particles colliding is also decreasing since there is no 

Brownian force to sustain the dissipation. The processes shown in Fig. 6(b) are clearly not 

any more equilibrium states, rather there is “slowing down” of the particles of the fluid whose 

correlations are decaying as 𝑒−𝑡 𝜏⁄ with a characteristic decay time given by 𝜏 = 𝛾𝑟𝐶 𝑎⁄ , where 

a is the conservative force constant (see equation (8)), 𝑟𝐶 is the characteristic DPD length, 

and 𝛾 is the effective strength of the dissipative force. The latter cannot be its equilibrium 

value 𝛾 = 4.5, see equation (1), because if there is no frictional force the fluctuation – 

dissipation theorem ceases to operate in the fluid. Instead, 𝛾 is the amplitude of the effective 

viscosity that the DPD particles experience when they lose their kinetic energy. Therefore 

the relation 𝛾𝑟𝐶 𝑎⁄  can be interpreted as the competition between the viscous force and the 

conservative force as the fluid is frozen. 
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Fig. 7 The characteristic decay time of the average contribution to the virial of the dissipative force, 

obtained from the best fits in Fig. 6(b), as a function of the density. The dotted line is a linear fit. The 

integration time step was t=0.01. The axes are shown in reduced DPD units.  

 

The characteristic time extracted from the fits shown in Fig. 6(b), which we have identified 

as 𝜏 = 𝛾𝑟𝐶 𝑎⁄ , is shown in Fig. 7 as a function of the density of the DPD fluid and is rather 

large because it corresponds to a large effective viscosity 𝛾 that appears as a result of having 

removed the random force. Alternatively, the fluid can be thought of as having a very small 

diffusion – like coefficient, D, behaving as 𝐷~ 1 𝛾~ 1 𝜏⁄⁄ , and according to the trend seen in 

Fig. 7, 𝐷~ 1 𝜌⁄ , which is in agreement with the diffusion coefficient predicted earlier [14, 

20] for a simple DPD fluid with non – zero random force, 𝐷 = 45𝑘𝐵𝑇 2𝜋𝛾𝜌𝑟𝐶
3⁄ . The same 

general conclusions we have reached here can be obtained if one performs the average in 

equation (9) over an ensemble rather than over time, as it is the case when one carries out 

Monte Carlo (MC) simulations [21].   

CONCLUSIONS 
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Coarse – grained simulations that incorporate dissipative forces and Brownian motion like 

DPD have proved to be very successful tools in predicting the behavior of physicochemical 

phenomena in complex fluids. A common route to accomplish a thorough understanding in 

these cases is the detailed knowledge of the equation of state of the model, which requires 

usually the application of the well – known virial theorem for the calculation of the total 

pressure of the system, arising from the forces acting in the system. Here we have shown that 

the dissipation and random forces that make up the DPD model do not contribute to the 

pressure of the system and thereby they can be neglected in the prediction of the 

thermodynamic behavior of complex fluids. However, for this statement to be true the 

viscous force must be proportional to the relative velocity between colliding particles and, 

most importantly, such force must be balanced with the Brownian force according to the 

fluctuation – dissipation theorem. If the latter condition is not met, which occurs for example 

when there is no random force, the fluid will evolved to a frozen state where the dissipative 

force consumes all the available kinetic energy in the system and the particles’ motion decays 

with an effectively decreasing diffusion – like coefficient. Based on these results one can 

conclude that using equation (9) with conservative forces only in equilibrium DPD 

simulations in the canonical ensemble should lead to the correct thermodynamic state as long 

as the fluctuation – dissipation theorem is obeyed by the dissipative and random forces.  
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