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We present a new approach to a classical problem in statistical physics: estimating the parti-
tion function and other thermodynamic quantities of the ferromagnetic Ising model. Markov chain
Monte Carlo methods for this problem have been well-studied, although an algorithm that is truly
practical remains elusive. Our approach takes advantage of the fact that, for a fixed bond strength,
studying the ferromagnetic Ising model is a question of counting particular subgraphs of a given
graph. We combine graph theory and heuristic sampling to determine coefficients that are inde-
pendent of temperature and that, once obtained, can be used to determine the partition function
and to compute physical quantities such as mean energy, mean magnetic moment, specific heat, and
magnetic susceptibility.
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I. INTRODUCTION

Computing thermodynamic quantities of the ferromag-
netic Ising model has been a fundamental problem in sta-
tistical physics since the early 20th century [1], where the
demonstration of the model’s phase transition served as
the first rigorous proof that small changes at an atomic
scale can lead to large, observable changes [2]. Singular-
ities in the thermodynamic quantities indicate the crit-
ical temperature at which the phase transition occurs.
The partition function Z of the Ising model and its par-
tial derivatives determine these quantities. While Z has
been found exactly in special cases [3, 4], there is unlikely
to exist an efficient method of finding Z in general [5].
Therefore, the task of estimating Z has drawn significant
effort from the physics and computer science communi-
ties [6]. However, an algorithm that is truly practical has
yet to be found. In this paper, we present a new heuris-
tic sampling approach with the goal of solving real-world
instances quickly.
The classical approach to this problem is to sample

from the Gibbs distribution using a Markov chain [5, 7,
8]. Ideally, the algorithm will require only a polynomial
number of samples to estimate Z at a particular tem-
perature, but even then this process must be repeated
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for each temperature of interest. In contrast, each run
of our heuristic sampling algorithm, Acycle, estimates
certain coefficients that are independent of temperature.
Once obtained, these coefficients can be used to com-
pute Z, mean energy, mean magnetization, specific heat,
and magnetic susceptibility at all temperatures by simply
evaluating polynomials with these coefficients.
For a fixed bond strength, computing Z is equivalent

to counting subgraphs of a graph G. Let xk,e denote
the number of subgraphs of G with 2k odd vertices and
e edges. Using the high-temperature expansion, we can
write Z and its derivatives as polynomials whose coef-
ficients come from the set of xk,e. For each k, Acycle

generates a search tree whose leaves are the set of sub-
graphs with 2k odd vertices, and then implements the
stratified sampling method of Chen [9] to estimate the
xk,e. In the absence of an applied field, the problem of
estimating Z reduces to estimating x0,e for all e. As will
become clear, it is simple to restrict Acycle to subgraphs
with no odd-degree vertices, which significantly reduces
the complexity of the algorithm in this special case.

II. DEFINITIONS AND TERMINOLOGY

In this section, we introduce important notions from
statistical physics and graph theory.

A. Ising Model

Given a graph G = (V,E) with |V | = n and |E| = m,
a spin configuration σ = σ(G) is an assignment of spins
in {+1,−1} to the elements of V . The energy of σ is
given by the Hamiltonian

H(σ) = −J
∑

(x,y)∈E

σxσy −B
∑

x∈V

σx,
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where J is the interaction energy (bond strength) and
B is the external magnetic field. In this paper we re-
strict the ferromagnetic case, fixing J = 1.To model the
physical reality of a ferromagnet, the probability assigned
to state σ is given by the Gibbs distribution, defined as
e−βH(σ)/Z, where β = (kBT )

−1 is proportional to inverse
temperature and kB is Boltzmann’s constant. The nor-
malizing constant Z =

∑

σ exp(−βH(σ)) is also called
the partition function.
Following the notation of [5], let λ = tanh(βJ) and µ =

tanh(βB). The high-temperature expansion is defined
by Z = AZ ′, where A = (2 cosh(βB))n cosh(βJ)m is an
easily computed constant, and

Z ′ =
∑

X⊆E

λ|E(X)|µ| o(X)| ,

where the sum is taken over all subsets X of the edges
of G. In a slight abuse of notation, we let X also refer
to the graph with vertex-set V and edge-set X . In this
manner, E(X) is the edge-set of X , o(X) is the the set of
odd-degree vertices in X , and all subgraphs in this paper
are spanning and labeled.
Since all graphs have an even number of vertices

of odd degree, Jerrum and Sinclair [5] write Z ′ as a

polynomial in µ2: Z ′ =
∑⌊n/2⌋

k=0 ckµ
2k, where ck =

∑

X : | o(X)|=2k λ
|E(X)| . Notice that we can compute Z ′

for any choice of µ given the values of the ck, making the
ck independent of the magnetic field. However, we wish
to have full temperature-independence, so we write

ck =
m
∑

e=0

xk,eλ
e and Z ′ =

⌊n/2⌋
∑

k=0

m
∑

e=0

xk,eλ
eµ2k, (1)

where xk,e is as defined in the introduction. As we shall
see, Acycle is designed to estimate the xk,e. Thus, Acycle

yields an estimate of Z ′, and hence Z as well, at all tem-
peratures simultaneously.
While Acycle is defined for all graphs G, the graphs

with the most physical significance are the square lat-
tices (grids) with periodic boundary conditions in two
and three dimensions. Therefore, all of the computations
provided in this paper utilize such graphs, and we shall
refer to the s × s square lattice with periodic boundary
conditions simply as the s× s grid.

B. Cycle Bases

We now introduce some elementary algebraic graph
theory which Acycle uses (for more on this topic, see
[10]). The symmetric difference of two subgraphs X1

and X2 of G, written X1 ⊕ X2, is the subgraph of G
that contains precisely those edges in exactly one of X1

and X2. One may consider this operation as addition of
subgraphs over the field F2 = {0, 1}. Notice that an edge

e is in
⊕t

i=1 Xi if and only if e appears in an odd number
of these subgraphs.

Let E0 be the set of even subgraphs, those subgraphs
with no vertices of odd degree. Since the symmetric dif-
ference of two even subgraphs is again an even subgraph,
we may view E0 as a vector space over F2, called the cycle
space of G. The dimension of the cycle space is m−n+1.
Hence, every set of m− n+ 1 linearly independent even
subgraphs forms a cycle basis C of G. Further, every even
subgraph has a unique representation using the elements
of C, and |E0| = 2m−n+1.

When X ∈ E0, the parity of each vertex in X ⊕ Y is
the same in Y . Now consider a subgraph P of G with
o(P ) = {v1, v2, . . . , v2k}. The set

E0 ⊕ P := {X ⊕ P : X ∈ E0}

is exactly the 2m−n+1 subgraphs whose odd vertices are
o(P ). Therefore, the set of subgraphs with 2k odd ver-
tices, Ek, is

⋃

S E0⊕PS , where the union is over all S ⊆ V
of size 2k and PS is any subgraph with o(P ) = S.

Cycle bases have a long history in combinatorics [11],
and are used both in theory and applications [12]. A
fundamental cycle basis is defined as the cycles in T + e
for each e ∈ E(G) − E(T ), for a spanning tree T of G.
Since spanning trees can be found quickly (see e.g. [13]),
so can fundamental bases. Minimum cycle bases, which
are bases with the fewest total edges, have proven helpful
in practice and can also be found in polynomial time [14].

III. ALGORITHMS

Our main data structure is a search-tree; a rooted tree
in which each node represents a subgraph of G. For each
k, we shall define a search-tree τk whose leaves are pre-
cisely Ek. Our goal is to estimate xk,e, the number of
leaves of τk that have e edges.

Tree search algorithms have a lengthy history in com-
puter science [15]. A classical example of such is an algo-
rithm of Knuth [16] for estimating properties of a back-
track tree. To estimate the number of leaves, for example,
Knuth’s algorithm explores a random path down the tree
from the root, choosing a child uniformly at random at
each step. It then returns the product of the number
of children of each node seen along the path. It is easy
to see that this estimator is unbiased; i.e. the expected
value is the number of leaves.

For our application, we want the number of leaves of
τk of a certain type (with e edges). We achieve this via
Chen’s generalization of Knuth’s algorithm, which was
originally introduced to reduce the variance of the esti-
mator. Since Chen’s work lies at the heart of our ap-
proach, we take the next section to explain it in further
detail. In Section III B, we describe Acycle. In [17], we
present an alternative to Acycle, which is related to [5].
This approach, which we call Aedge, may be more appro-
priate in the presence of an external field, but is outper-
formed by Acycle when B = 0.
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A. Stratified Sampling

We describe in Algorithm 1 a simplified version of the
stratified sampling algorithm introduced by Chen [9]. Let
τ be a search tree and choose a stratifier for τ — a way of
partitioning the nodes into sets called strata.1 For each
stratum α, Algorithm 1 produces a representative sα ∈ α
and a weight wα, which is an unbiased estimate of the
number of nodes in α.
For Algorithm 1, let Q1 and Q2 be queues. Each node

s of τ has a weight w, and we write (s, w) to represent
this pair. The input is the root r of τ , a method for
determining the children of a node in τ , and the stratifier.
The output is the set of (sα, wα). If the algorithm never
encounters an element of α, it returns (∅, 0) for α.

ALGORITHM 1: Chen’s Algorithm

initialize: Q1 = {(r, 1)}, Q2 = {}, i = 0.
while i < number of levels in τ do

while Q1 6= ∅ do

output the first element (s,w) of Q1

for each child t of s in τ do

if Q2 contains an element (u,wu) in the same stra-
tum as t then

update wu = w +wu

w. prob. w/wu replace (u,wu) with (t, wu) in Q2

else

add (t, w) to Q2

pop (s, w) off of Q1

set Q1 = Q2 and reset Q2 = ∅
i++

B. Cycle-Addition Algorithm

Let S ⊆ V of size 2k and recall that PS is any subgraph
of G with o(P ) = S. Let C = {C1, C2, . . . , Cm−n+1} be
a cycle basis of G. Define τ(C, PS) as the search-tree
determined by the following rules:

1. PS is the root of τ(C, PS), and

2. each node X at level 0 ≤ i < m − n + 1 has two
children: X ⊕ Ci−1 and X .

Now τk is the tree with artificial root node R whose
(

n
2k

)

children correspond to the roots of τ(C, PS), one for each
distinct subset of size 2k.
In order to implement Algorithm 1, we define the strat-

ifier for each τ(C, PS) by: the nodes X and Y in τ(C, PS)
belong to the same stratum if and only if X and Y are
in the same level of τ(C, PS), and |E(X)| = |E(Y )|.

1In general, the stratifier must satisfy a few technical conditions.
However, as long as we require each strata to contain nodes from a
single level of τ , we are guaranteed that these conditions are met.

G C1 C2 C3

PS

⊕C1

⊕C2 ⊕C2

⊕C3 ⊕C3 ⊕C3 ⊕C3

1

1 1

2 2

2 2 4

FIG. 1

The inputs to Acycle are a graph G, an integer k in
[0, n/2], and an integer N . The output of each of the N
runs of Algorithm 1, as a subroutine of Acycle, is a set of
(sα, wα) pairs. Consider a representative sα that is a leaf
node in the tree τ(C, PS), and suppose sα has e edges.
Then

(

n
2k

)

wα is our estimate of xk,e, since each sample

represents all
(

n
2k

)

choices of S.

ALGORITHM 2: Acycle

Choose a cycle basis C of G
for j ∈ [1, N ] do

Choose S ⊆ V with |S| = 2k
Find PS

Run Algorithm 1 on τ (C, PS)

for e ∈ [0, m] do
Let α be the stratum corresponding to the bottom level

of τ (C, PS) and e edges, and output
(

n
2k

)

times the average
of the N estimates of wα as xk,e

Figure 1 shows an example of Acycle with k = 2, S =
V (G), N = 1, and G, PS , C = {C1, C2, C3}, and τ(C, PS)
as depicted. The graphs bounded by solid circles are the
strata representatives, and their weights are in bold just
above. The solid edges of τ(C, PS) connect the nodes seen
by Acycle. The output is x2,2 = 2, x2,3 = 4, x2,6 = 2,
and x2,e = 0 for e ∈ {0, 1, 4, 5}.

In Figure 2a, we show the output of many runs of
Acycle on a 4× 4 grid for k ∈ [0, 4], and use this output
(and that for k ∈ [5, 8]) with Equation 1 to get Figure 2a,
using four values of λ. While the ck are log-concave [5],
the xk,e may not be.
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FIG. 2: (Color online)

C. No external field

In the absence of an external field, we only need to run
Acycle for k = 0. This represents a huge time savings in
comparison to the case B 6= 0, as then we need to run
Acycle for all k ∈ [0, n/2]. Furthermore, we must choose
S = ∅, which eliminates this step from the algorithm.

D. Details

The algorithm Acycle is really a class of algorithms,
each corresponding to the choice of cycle basis, the order
of the subgraphs in the basis, the subsets S, and the roots
PS . We briefly discuss these choices here and elaborate
further in [17].

The choice of cycle basis is central to the performance
of Acycle. Experimentally, minimum cycle bases have
outperformed fundamental and random cycle bases in
terms of overall speed and variance. However, it remains
an interesting open problem to determine the optimal
basis for Acycle.

As for the choice of S, we know that k = 0 implies
S = ∅. But for k > 0, we must choose S.2 We would like
every subset of V (G) of size 2k to appear as S at least
once. However, when k is near n/4,

(

n
2k

)

is exponentially

large in n.3 So instead we are forced to select a reasonable
number of such subsets that work well in Acycle.

Once S = {v1, v2, . . . , v2k} is chosen, we must find PS .
One such method is to use a spanning tree T of G to

create PS =
⊕k

i=1 P2i−1,2i, where P2i−1,2i is the path
from v2i−1 to v2i in T .

2Except ifG itself is even, in which case there is no choice for k = n/2
either.

3Ideally, we would partition the subsets of V (G) into isomorphism
classes {Vi}

t
i=1 and choose a representative for class Vi to act as S

in |Vi|N/
( n
2k

)

instances. However, the number of such classes can
also be exponentially large.

IV. PERFORMANCE

A. Convergence

In Section V, we show how to get unbiased estimates
of Z ′ from our unbiased estimates of the xk,e. To eval-
uate the efficiency of the algorithm, we need to know
how many samples (N) we need to be reasonably confi-
dent about our estimate of Z ′. The answer depends on
the relative variance of our estimate of Z ′.4 As heuristic
sampling methods are relatively new, there are not many
tools for computing the variance of these algorithms. Ex-
perimentally, such methods have been shown to work well
in practice, but a robust theoretical foundation is lack-
ing [15, 18]. Therefore, analyzing the variance for this
problem remains an important open question which de-
serves further study.
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FIG. 3: (Color online)

In our simulations, we find that although Acycle is
temperature independent, the variance is not. Figure 3a
shows the relative sample variance of our estimate of Z ′

as a function of temperature, for a 4 × 4 grid with no
external field. The highest sample variance occurs at
the critical temperature, β−1 ≈ 2.269. However, even
at the critical temperature, our estimate of Z ′ converges
quickly. Figure 4 presents six separate runs of Acycle

with B = 0, and shows the convergence to Z ′ for each
run as a function of the number of samples. The exact
value of Z ′ is displayed as the straight black line.

4By the Central Limit Theorem, we need N =
z2δ/2
ǫ2

(

E[(Z′)2]

E2[Z′]
− 1

)

to be within ǫ with probability 1 − δ, where zδ/2 comes from the

normal distribution, and
E[(Z′)2]

E2[Z′]
− 1 is precisely relative variance.
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Z′

Number of Samples

FIG. 4: (Color online)

B. Running time

The number of operations of a single run of Algorithm
1 as a subroutine of Acycle is a function of the number of
strata used in τ(C, PS) and the number of operations per-
formed to process each node in Q1. Recall that our strat-
ifier partitions nodes according to their level in τ(C, PS)
and number of edges. Clearly, each level has at most
m+1 strata. Further, there are m−n+2 levels. Hence,
the number of strata used is at most (m−n+2)(m+1).
For each node in Q1, Acycle examines its two children, so
the total number of nodes of τ(C, PS) used by the subrou-
tine is at most 2(m−n+2)m = O(m2). For each of these
nodes, we take the symmetric difference of two subgraphs
and count the number of edges remaining, each of which
is an O(m) operation. Thus, each run of Algorithm 1
as a subroutine of Acycle terminates after O(m3) opera-
tions. For square lattices in dimension d, the number of
operations is O(d3n3), as m = dn.

C. Implementation

We implemented Acycle in C, using GMP to deal
with the large weights generated by the algorithm. In
Figure 3b, we plot our experimental running times for√
n ×√

n grids against the curve f(n) = 1.25 · 10−14n3,
which matches up well with our bound of O(n3).

Typically, one stores graphs as matrices or lists. How-
ever, we greatly improve the running time of Acycle by
storing each subgraphX as an integer whose bitstring bX
has length m; bX(e) = 1 if and only if e ∈ E(X). Here,
bX⊕Y = bX xor bY , so taking symmetric differences is
quite fast. Further, |E(X)| is simply the number of ones
in the bitstring, which can also be computed quickly.

One may achieve another increase in speed if machine-
level instructions for the operation XOR are used for
large integers. Most modern micro-processors have such
capabilities, as they are used in scientific computing [19].

V. PHYSICAL QUANTITIES

In this section, we show how to use the estimates of
the xk,e to calculate physical quantities. Let f(X) =
f(| o(X)|, |E(X)|) be any function on subgraphsX which
depends only on the number of odd vertices and the
number of edges of X . We can calculate the expected
value of f with respect to the distribution π′(X) =
λ|E(X)|µ| o(X)|/Z ′ from our estimates of the xk,e by

E[f ] =
1

Z ′

⌊n/2⌋
∑

k=0

m
∑

e=0

f(k, e)xk,eλ
eµ2k. (2)

Notice if f is identically 1, Z ′
E[f ] = Z ′, and so we can

approximate Z ′, and hence Z, by simply looking at the
double sum. In Theorem 1, we show that important phys-
ical quantities can also be expressed as E[f ] for suitable
choices of f . The proof of Theorem 1 involves taking par-
tial derivatives of lnZ with respect to β and B following
the method of [5]. As these calculations are tedious but
easy, we leave the details to [17].

Theorem 1. The mean magnetic moment, mean energy,

magnetic susceptibility, and specific heat can each be writ-

ten as sums of expectations of random variables over the

distribution π′.

In Figure 5, we show estimates of mean energy and
specific heat from Acycle with N = 50, 000, 000 on a
16 × 16 grid as a function of β−1. These figures match
those of [20, p. 252] nicely.

ε
n

β−1

(a)

C
nkB

β−1

(b)

FIG. 5: (Color online)

VI. CONCLUSIONS

The algorithm Acycle is a completely new approach
to the problem of estimating Z. To our knowledge it is
the first heuristic sampling method for this problem. For
this reason, it is difficult to compare the running time
of Acycle with the current best-known algorithms, which
are all Markov chain Monte Carlo methods. What is clear
is that Acycle gives us an estimate of Z at all tempera-

tures simultaneously in only O(m3) operations, where the
constant hidden by the big-O notation is small. Bound-
ing the variance of Acycle is an important open problem
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which is necessary to give a real understanding of its ef-
ficiency. However, if the goal is to get some estimate as
fast as possible, Acycle is an excellent choice.

Besides analyzing the variance of Acycle, there are sev-
eral other directions for future work. For example, there
are many choices made in Acycle which could be opti-
mized, such as the choice of cycle basis. These choices
could affect the variance significantly. One might con-
sider other tree-search algorithms and compare their per-
formance with that of Acycle and Aedge. We also plan

to investigate more extensively the connections between
our heuristic method and MCMC methods.
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