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Abstract: We discuss all-to-all quark propagator techniques in two (related) contexts within Lattice

QCD: the computation of closed quark propagators, and applications to the so-called “eye diagrams”

appearing in the computation of non-leptonic kaon decay amplitudes. Combinations of low-mode

averaging and diluted stochastic volume sources that yield optimal signal-to-noise ratios for the latter

problem are developed. We also apply a recently proposed probing algorithm to compute directly the

diagonal of the inverse Dirac operator, and compare its performance with that of stochastic methods.

At fixed computational cost the two procedures yield comparable signal-to-noise ratios, but probing

has practical advantages which make it a promising tool for a wide range of applications in Lattice

QCD.
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1 Introduction

The computation of the diagonal of the inverse of a large, sparse matrix is a demanding com-
putational task. One context where this problem has to be faced is the study of the low-energy
dynamics of strongly interacting elementary particles within Quantum Chromodynamics, us-
ing the Lattice QCD (LQCD) approach. In LQCD hadronic properties such as particle masses
and matrix elements can be computed from first principles in terms of Euclidean correlation
functions. The latter are expectation values, computed within the path-integral formulation
of Quantum Field Theory, of products of composite operators, made up from quark and gluon
fields. After integration over the quark fields, the correlation functions are expressed as traces
over products of quark propagators and constant spin, color, and flavor matrices. Quark
propagators are in turn computed by inverting the lattice Dirac operator D, which within the
lattice approach is a large, sparse, complex matrix of typical dimension in the 106-109 range.

In many applications of interest, some of the quark propagators are closed — i.e. they start
and end at the same spacetime position — leading to the problem of computing the diagonal
(in spacetime components) of D−1. This occurs e.g. in the computation of flavor singlet
hadron masses such as mη or mη′ ; in the study of multi-hadron states; in the computation of
the strangeness content of the nucleon or the pion-nucleon-sigma term σπN ; or in the study of
weak decays of flavored mesons, that we will specifically address in this work. The construction
of closed propagators by means of simple lattice techniques usually implicates huge statistical
noise, since it is impossible to sum over space at the insertion point of the operator that gives
rise to the quark loop. This brings the need of sophisticated computational techniques.

The inversion of the lattice Dirac operator D proceeds by solving linear systems of the
form

DΦ = η, (1)

where η a source vector. In its simplest form, η is taken to be a point source, i.e.1

η(x′) = δx′y . (2)

This implies that the solution of eq. (1) yields a “one-to-all” propagator: the quark propagator
D−1(x, y) ≡ S(x, y) from a single point y to any other point x of the lattice, which corresponds
to just one column (or row) of the full propagator matrix. In typical simulations of LQCD,
solving eq. (1) to machine precision for all source positions is beyond the capabilities of even the
most powerful supercomputers due to the large dimension of D. Therefore, the computation
of the full propagator matrix or the inverse diagonal poses a huge computational challenge.

Stochastic volume sources (SVS) [1, 2] have been long used as a means to access the full
propagator matrix by replacing it with a stochastic estimate such that the entries for all lattice
points are available. These stochastic “all-to-all” propagators have been successfully applied
in a number of different contexts (see e.g. Refs. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), but usually
a large computational effort and an appropriately chosen dilution scheme are required in order
to sufficiently reduce the intrinsic stochastic noise.

In this work we apply a recently proposed “probing” algorithm [14] to the problem of
approximating the diagonal entries of a matrix inverse to LQCD computations, and compare
it to the use of SVS. In the probing method the linear system of eq. (1) is solved for specially
designed probing vectors η which are constructed by coloring the graph associated with the

1For simplicity, color, spin, and flavor indices are suppressed.
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Dirac operator D, and which exploit the sparsity pattern of the inverse matrix.2 In addition,
we incorporate probing and SVS into the framework of low-mode averaging (LMA) [16, 17].
In the latter the Dirac propagator S is split into a contribution Sl composed of the Nlow

lowest-lying eigenmodes, which are treated exactly, and its orthogonal complement Sh. In
the original formulation of LMA, the contribution Sh is computed by means of point sources,
whereas here we apply the two aforementioned all-to-all propagator techniques for this task.

Our main target application for this setup lies within a long-term project to study the
role of the charm quark in the ∆I = 1/2 rule for non-leptonic kaon decay [18, 19, 20]. More
specifically, we will consider the severe signal-to-noise ratio arising in the computation of “eye
diagrams” (penguin contractions), that appear as contributions to K → π transition ampli-
tudes mediated by the ∆S = 1 weak effective Hamiltonian. In this context, both probing
and SVS can be applied to the closed quark propagators appearing in eye diagrams, which
are the main source of statistical noise. SVS will also be applied to propagators connect-
ing four-fermion operators and interpolating meson operators, which are also connected to
large statistical fluctuations. Physics applications are discussed in a companion paper [21];
preliminary results of our study were also presented in Ref. [22].

The numerical work we present is carried out on quenched ensembles, and small or only
moderately large lattices. The latest are however suitable enough for our present physics
goals, as discussed in [21], while the smallest lattices will be mostly used for checking technical
issues only indirectly related to physics. It has to be stressed that immediate applications of
these techniques are intended in an environment where overlap fermions are employed; the
numerically expensive character of the latter would make the use of larger lattices rapidly
forbidding. Direct comparison with recent works similarly addressing all-to-all techniques
(see e.g. [23, 24, 25, 26, 27]) are not straightforward.

The use of quenched configurations deserves some specific remarks. Using them is again
sufficient for the purpose of our immediate intended applications [21], and avoids the need
to set up a mixed-action approach in case an overlap valence sector is used in combination
with dynamical configurations obtained e.g. using Wilson sea fermions. It is however worth
noting that, based on our knowledge of the Dirac spectrum for low values of quark masses,
quenched ensembles are expected to be worst-case scenarios for some of the variance issues we
are addressing. In particular, the width of the gap in the Dirac spectrum for computations
in the ε-regime (see [21] for details) is expected to be controlled by the parameter Nf + |ν|,
where Nf is the number of light dynamical flavours and ν is the topological charge of the
configuration.3 The case Nf = 0 is thus the one where the overlap Dirac operator is expected
to be worse-conditioned. Furthermore, it is also the case where wavefunction properties may
have a largest impact on the variance of fermionic observables [28]. We thus expect that
qualitative observations on quenched ensembles will hold for more realistic simulations where
Nf = 2(+1)(+1) dynamical flavours are employed.

The outline of this paper is as follows: in section 2 we review concepts of all-to-all propa-
gator techniques. This comprises stochastic volume sources, the novel probing algorithm and
low-mode averaging. In section 3 we apply probing and SVS to the computation of traces of
quark loop propagators (section 3.1) which are the usual building blocks of e.g. flavor singlet
two-point functions. Moreover, we combine both SVS and probing with low-mode averaging
(section 3.2), and discuss its application to the study of the ∆I = 1/2 rule. Section 4 contains

2An alternative algorithm, based on domain decomposition techniques, has been proposed by the same
authors in Ref. [15].

3See e.g. [28, 29] and references therein.
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a summary of our findings as well as some concluding remarks.4

2 All-to-all propagator techniques

For a given gauge field, the propagator S(x, y) from lattice site y to x is obtained as the
solution of the linear system∑

z

∑
c,γ

Dac
αγ(x, z)Scbγβ(z, y) = δαβδ

abδxy , (3)

where Latin indices are used to label color and Greek letters denote spinor components. Using
point sources amounts to solving the linear system for one particular choice of y. Altogether
12 inversions must be performed for a single spacetime point: one for each of the 4× 3 spin-
color combinations. This yields a single column (or row) of the propagator matrix. Thanks to
translational invariance a large class of correlation functions can be defined in terms of these
one-to-all propagators.

To illustrate the appearance of closed propagators with a simple example, consider the
generic structure for a two-point function of quark bilinear operators projected to zero spatial
momentum, viz.

Cab(t) =
∑
~x,~y

〈
ψ̄(x)T aΓψ(x) ψ̄(y)T bΓ′ψ(y)

〉
, (4)

where t = x0 − y0, T a,b are U(Nf) flavor generators, Γ(′) are spin matrices, and spin, flavor,
and color indices are contracted inside bilinears.5 After performing the Wick contractions this
can be written as

Cab(t) =
∑
~x,~y

{〈
tr {S(x, x)ΓT a} tr

{
S(y, y)Γ′T b

}〉
G

−
〈

tr
{
γ5S(x, y)†γ5ΓT aS(x, y)Γ′T b

}〉
G

}
, (5)

where traces are taken over spin, color, and flavor indices, and 〈〉G indicates average over
gauge configurations taken with the effective action including the determinant of the massive
Dirac operator. The second term is usually referred to as “connected” contribution, while the
first term, that survives only when T a = T b = 1, is called “disconnected” contribution. Thus,
whenever the disconnected contribution is required (as e.g. in the study of the properties of η′

mesons), all spacetime-diagonal entries of the propagator matrix are needed. In the following
several all-to-all propagator techniques are reviewed which allow, in particular, to tackle the
computation of closed propagators.

2.1 Stochastic volume sources

In the stochastic approach, an ensemble of Nr random vectors,
{
η(r)(x0, ~x)|r = 1, . . . , Nr

}
, is

generated for each gauge configuration. These Nr “hits” are created by assigning independent
random numbers to all components of the source vector, i.e. to all lattice sites, color and

4During the preparation of this work, a related study appeared in Ref. [24], where probing techniques are
also applied within the context of LQCD, and a purposely adapted variation dubbed “hierarchical probing”
has been proposed.

5In eqs. (4,5) quark fields and propagators carry flavor indices.
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Dirac indices. Each random number is drawn from a distribution which is symmetric about
zero in the hit limit Nr →∞, i.e.

〈ηaα(x0, ~x)〉src ≡ lim
Nr→∞

1

Nr

Nr∑
r=1

(
η(r)
)a
α
(x0, ~x) = 0. (6)

In addition, the sources have to satisfy the orthonormality condition〈
ηaα(~x, x0)(η†)bβ(~y, y0)

〉
src

= δx0y0δ~x~yδαβδ
ab. (7)

Solving the linear system of eq. (1) for each of the Nr source vectors yields a set of solution
vectors (

Φ(r)
)a
α
(x) =

∑
z

∑
c,γ

Sacαγ(x, z)
(
η(r)
)c
γ
(z). (8)

Eventually, the estimate of the entire propagator is defined as the stochastic average (“hit
average”) over the product between solution and random source vectors〈

Φa
α(x)(η†)bβ(y)

〉
src

=
∑
z

∑
c,γ

Sacαγ(x, z) δzyδγβδ
cb

= Sabαβ(x, y). (9)

In general, elements of ZN are very effective [1, 2] in realizing the condition of eq. (7). In
this work we follow Foster and Michael [5] and draw separate elements of Z2 for the real and
imaginary parts of the source vector, i.e.(

η(r)
)a
α

(x) ∈ Z2 ⊗ Z2 =

{
1√
2

(±1± i)
}
. (10)

Experience shows that a random source vector, which is distributed over the entire space-
time lattice, usually leads to a poor signal for hadronic correlation functions. An essential
step towards a significant reduction of the introduced intrinsic stochastic noise is taken by
restricting the support of the source vector to individual timeslices, spacetime points, Dirac
or color components. This technique is referred to as dilution [8], and amounts to breaking
up a single vector into Nd vectors, each consisting of fewer non-zero random numbers Zi. It
can be illustrated as follows



η

Z1

Z2

Z3

...

ZNd


−→



η1

Z1

0

0
...

0





η2

0

Z2

0
...

0





η3

0

0

Z3

...

0


. . .



ηNd

0

0

0
...

ZNd


.

Thus, the variance of the estimated inverse matrix can be decreased by increasing either Nr or
Nd, i.e. by enlarging the number of hits or by a higher degree of dilution respectively. In many
applications (see e.g. Refs. [8, 31]) it has been found that dilution outperforms the application
of multiple hits. However, for a fixed number of inversions the approach and dilution scheme
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leading to an optimal variance reduction has to be determined for the correlation function at
hand [30].

In particular, time-dilution is widely used in the computation of hadronic properties [5, 7,
8]. In this scheme the non-zero components of random source vectors are restricted to single
timeslices, i.e.

η(~x, t) =

Nt−1∑
j=0

ηj(~x, t), ηj(~x, t) = 0 if t 6= j. (11)

For the computation of connected diagrams (see section 3), time dilution is an indispensable
tool for obtaining well behaved signals [8].

2.2 Probing

The probing method explored here has been developed by Tang and Saad [14], and approx-
imates the diagonal of the inverse matrix S denoted by D(D−1) = D(S). The method is
designed for sparse matrices whose inverse has a strong decaying behavior — that is, the
values of the off-diagonal inverse matrix entries are required to fall off rapidly when moving
away from the main diagonal. The target diagonal is approximated or “probed” by means
of matrix-vector multiplications. The associated so-called probing vectors are generated by
a procedure of graph coloring. A form of graph coloring has been originally exploited to
evaluate sparse Jacobian and Hessian matrices [32, 33, 34, 35]. Unlike first attempts based on
random number vectors [36], the kind of probing vectors considered in this algorithm is able
to exploit the sparsity pattern of S.

Given a set of s probing vectors vi, i.e. Vs := {v1, v2, . . . , vs} ∈ RN×s, s ∈ N, the diagonal
of the inverse of the N ×N dimensional Dirac operator can be approximated as [14]

D(S) ≈ D(SVsV
T
s )D−1(VsV

T
s ), (12)

where the notation D(M) refers to a matrix which has the same diagonal as the square
matrix M , and zeroes in all off-diagonal entries; and D−1(M) is its inverse. An intuitive
understanding of eq. (12) follows by noting that the approximation would be exact in the
limit s = N when VN is a unitary matrix, because this implies VsV

T
s = V T

N VN = 1. More
formally, the method is based on the proposition proven in Ref. [36], whereby eq. (12) holds
exactly if each i-th row of Vs is orthogonal to all those rows j of Vs for which the (ij)-th entry
of S is non-vanishing. Whereas orthogonality is required for the rows of Vs, the columns do
not have to satisfy this property.

The probing method amounts to finding a suitable set Vs of probing vectors vi, with s� N ,
that effectively recovers the spacetime-diagonal entries of the matrix S. To this end, the s
columns of Vs have to be constructed in such a way that D(S) is minimally contaminated
by contributions from off-diagonal elements of S via the matrix-vector multiplication SVs.
While contributions from elements far away from the diagonal are expected to be small due
to the assumed decay law, contributions to S(x, x) from sites close to x will be non-negligible,
and have to be suppressed by properly choosing the zero entries in the probing vectors. For
instance, having a probing vector v = [1 0 . . . 0 1 0 . . . 0 1 0 . . . 0]T , the i-th ’1’ is responsible
for retrieving the i-th element of the diagonal of the inverse, while the other non-zero entries
will pick up off-diagonal contributions, of which only small ones should be kept. One thus has
to find an efficient way of obtaining maximal separations between non-zero entries in terms
of lattice distance.
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Algorithm 1: Greedy Multicoloring Algorithm

Data: Adjacency graph corresponding to a N ×N matrix
Result: Colors assigned to the vertices of the graph
Initialization:
for j=1 to N do

Set Color(j) = 0
end
for j=1 to N do

Set Color(j) = min{ k > 0 | k 6= Color(l) ∀l ∈ Adjacent(j) }
end

The actual procedure to determine the probing vectors is based on standard graph theory
(see e.g. Ref. [37]). Assuming that elements of S decay in entries which are far away from the
positions of the non-zero elements of D, the small entries of S can be dropped. This leaves
a sparse matrix Sε. In the context of probing this corresponds to dropping the elements of
S(i, j) whose vertices i and j are farther apart than the distance p in the graph of D. The
distance p is defined as the number of links connecting the two vertices i and j. Then, the
sparsity pattern of Sε can be approximated by the sparsity pattern of some power p of D. For
a strong decay behavior this yields Sε ≈ S for small p.

In other words, since the propagator (or, more in general, the inverse) has some decay
property, it can be approximated by a matrix that has strictly zero components when the
distance to the diagonal is beyond a certain threshold. The inverse of such a matrix would be
some approximate Dirac operator (the form of which depends on how many lines of non-zero
components parallel to the inverse diagonal are allowed), and the resulting structure provides
a choice for the probing vectors by constructing them such that the procedure would be exact
if Sε would be exact.6

The starting point in constructing the set of probing vectors is to assign colors to the
adjacency graph associated with Sε by means of the Greedy Multicoloring Algorithm (see e.g.
Ref. [37]). The latter requires that no adjacent (p = 1), next-to adjacent (p = 2), next-to-next
adjacent (p = 3), etc. vertices have the same color. This is summarized in Algorithm 1.

After having colored the adjacency graph, the probing matrix Vs = {v1, v2, . . . , vs} is
derived from the colored graph according to

(Vs)
jk =

{
1, if Color(j) = k,

0, otherwise.
(13)

The total number of probing vectors s is equivalent to the number of colors used during
the coloring process, i.e. s = max{k}. Following the procedure of eq. (13), each row of
Vs will contain a single non-zero entry and the diagonal of VsV

T
s is filled with ones. Thus,

D(VsV
T
s ) = D−1(VsV

T
s ) = 1.

In order to illustrate the above steps, Figure 1 shows a three-dimensional example where
the vertices of the adjacency graph have been colored for four vertices in each direction.
Boundary conditions are neglected in the plot. Distance-p coloring proceeds by assuming
that vertices connected via p links (dotted lines) differ in their assigned colors. Consequently,

6For a deeper understanding and discussion of relating the sparsity pattern with the notion of off-diagonal
decay, see the original paper of Ref. [14] and references therein.

7



Figure 1: Coloring a 3-dimensional mesh for p = 2 with no boundary conditions. The coloring
is done starting in the left, front corner of the bottom plane. Then, moving from front to
back, left to right and finally bottom to top.

for p = 1 all nearest-neighbors must have different colors, and the total number of required
colors is s = 2. In Figure 1 we have set p = 2 — i.e. vertices which can be connected via
one or two links must have different colors, which leads to s = 11 colors. According to the
assignment directive of eq. (13), the resulting probing matrices with a single non-zero entry
in each row are given, respectively, by

V2 =



1 0
0 1
1 0
...

...
1 0
0 1


, V11 =



1 0 0 . . . 0
0 1 0 · · · 0
0 0 1 · · · 0
1 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 1


. (14)

The columns of the probing matrix serve as source vectors for solving the usual linear system

Dxi = vi, −→ xi = D−1vi. (15)

The inversions yield a set of s solution vectors Xs := {x1, x2, . . . , xs} := SεVs. Having
D−1(VsV

T
s ) = 1, the expression of eq. (12) implies an approximation of the inverse diagonal

of the form

D(Sε) ≈ D(XsV
T
s ). (16)

Compared to the exact computation of the inverse diagonal, the probing method significantly
reduces the computational effort by solving only s linear equations with s� N . The inversions
can be done with any standard iterative solver.

When applying the probing method to the lattice Dirac operator, the coloring is performed
in space and time coordinates only, i.e. the internal spin and color structure (which is not
sparse) is not considered in the coloring procedure. As in the standard point source approach,

8



Algorithm 2: Algorithm to probe the diagonal of the Dirac operator

Data: Lattice Dirac operator D, matrix of dimension N × 12
Result: Approximation of the inverse diagonal D(D−1

ε ) = D(Sε)
Initialization:
for any p do

Color the vertices of the N ×N adjacency graph in space and time coordinates; no
coloring in spin nor color indices. Apply boundary conditions.
Construct probing matrix Vs = {v1, v2, . . . , vs} following the assignment of eq. (13),
viz. (Vs)

jk = 112×12 if Color(j) = k, or 0 otherwise
for i=1 to s do

for l=1 to 12 do
Solve linear system of eq. (15) for each spin-color index l using a Krylov
subspace method of choice.

end
Construct xi

end
Construct Xs := {x1, x2, . . . , xs}
Compute D(D−1

ε ) = D(XsV
T
s )

Set D(S) := D(Sε) = D(D−1
ε )

end

p=1 p=2 p=3 p=4 p=5

84 2 22 36 117 175
164 2 23 36 121 175

32 x 163 2 22 37 123 173
48 x 243 2 23 35 122 176
64 x 323 2 23 36 120 174

Table 1: Number of colors required for coloring with distance p for different lattice sizes of the
4-dimensional LQCD setup.

the non-zero entries of Vs represent a unit matrix in spin-color space, i.e. 1 = 112×12. Con-
sequently, the computation of xi involves twelve separate inversions — one for each of the
twelve spin-color combinations. Algorithm 2 summarizes the probing algorithm used for ap-
proximating the diagonal of the inverse lattice Dirac operator. The number of colors s needed
for a given p is essentially insensitive to the volume, as can be seen in Table 1.

The probing method, on the other hand, has potential shortcomings. While increasing
the distance p yields a higher precision, the computational cost increases rapidly with p, and
soon becomes prohibitively expensive. Besides, the choice of the appropriate p which ensures
a desired accuracy is not known a priori. In particular, if a certain p does not yield a required
accuracy, an increase of p can not reuse previous computations since its probing vectors are
not related to the previous ones.

As mentioned in the introduction, during the preparation of this work a promising version
of probing, that aims at taking into account more structural details of lattice Dirac operators,
has been proposed in Ref. [24]. This so-called “hierarchical probing’ elegantly allows to reuse
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the computations of prior choices of p, and furthermore hints at smaller variances for fixed
cost. This comes at the price of a significant increase in the complexity of the algorithm, with
respect to the one we are considering here.

2.3 Low-mode averaging

In the spectral representation the quark propagator can be written as

S(x, y) =
1

V

N∑
i=1

vi(x)⊗ v†i (y)

λi +m
, (17)

where m is the quark mass and λi and vi are eigenvalues and eigenmodes of the Dirac operator,
respectively, viz.

Dvi = λivi . (18)

We will assume the normalization
∑

x |vi(x)|2 = V , where V is the four-volume. The structure
of the low-lying spectrum of the Dirac operator is determined by the physics of spontaneous
symmetry breaking of QCD chiral symmetry. In particular, the spectral density around zero
does not vanish in infinite volume; and in a finite volume there are arbitrarily small eigenvalues
with typical spacings determined by the value of the chiral condensate. For small values of
m, modes with very small eigenvalues will have a huge weight in the spectral decomposition
of eq. (17), which can induce very large statistical fluctuations in correlation functions if their
associated wavefunctions are not sampled accurately.

Low-mode averaging (LMA) [16, 17] aims at tackling this problem by treating the Nlow

lowest eigenmodes exactly, while separating them from the higher modes by truncating the
sum over eigenmodes. The quark propagator is thus split into a “low-part” Sl and the “high-
part” Sh, viz.

S(x, y) = Sl(x, y) + Sh(x, y)

=
1

V

Nlow∑
i=1

vi(x)⊗ v†i (y)

λi +m
+ Sh(x, y). (19)

The high-part lives in the orthogonal complement of the subspace spanned by the Nlow lowest
modes — inverting eq. (19)

Sh(x, y) =
(
1− 1

V

Nlow∑
i=1

vi(x)⊗ v†i (y)
)
S(x, y). (20)

Splitting the quark propagator into high- and low-mode propagators results in a formal split-
ting of the correlation function as well — for instance, the two-point function in eq. (5) can
be immediately seen to decompose in contributions C ll, Chl, Chh, where superscripts denote
the number of low-mode and high-mode propagators, respectively. Albeit not being physi-
cal observables, the individual terms can be treated independently in order to improve their
statistical signal (taking advantage of symmetries, increasing Nlow etc.). For instance, trans-
lational invariance can be exploited to average over the spacetime entries of the low-modes,
which are known exactly, whenever two instances of Sl meet at the same location.

In a straightforward version of LMA, the number Nlow of modes that are treated exactly
can be increased until the signal-to-noise ratio in the relevant correlation functions is brought

10



under control. In this setup, the contribution C ll to a two-point function will be known at
all spacetime points, but the contribution Chl (and, obviously, also Chh) will be known for a
fixed position of one of the operators only. Alternatively, a relatively low value of Nlow can
be taken, after which low modes are used as sources to compute extended propagators. More
precisely, by taking Γvi as the source (where Γ is some spin matrix specifying the desired
two-fermion operator insertion), and by restricting the vector to the timeslice t = tf , the
solution of the inversion is

Sext,Γ
i (x; y0) =

( a
L

)3∑
~y

Sh(x, ~y; tf )Γvi(~y; tf ). (21)

An implicit average over the spacial coordinate ~y is thus automatically performed. This
strategy has been found to be advantageous in terms of computational cost at fixed signal-to-
noise ratio for various two- and three-point functions in Refs. [16, 17].

2.4 Hybrid approach

A hybrid approach as proposed e.g. in Ref. [8] is the straightforward combination of LMA
with other all-to-all propagator techniques. In the original LMA formulation, the high-part
Sh of the decomposed propagator is computed by means of standard point source inversions
— or, where possible, put into extended propagators, as explained above. Here, all-to-all
techniques in form of stochastic volume sources or probing are applied to compute the or-
thogonal complement, such that, in particular, the computation of closed quark loops at all
spacetime points can be tackled. In the next section we will explore this hybrid strategy for
two- and three-point functions relevant for light-meson physics, using SVS and probing for
the estimation of Sh.

3 Applications

3.1 Closed propagators

In this section we will focus on exploring the accuracy of SVS and probing methods for
computing closed quark propagators. To that purpose, we will consider expectation values of
quark bilinears,

− 〈ψ̄Γψ〉 =
∑
x

〈tr {S(x, x)Γ}〉 ≡ TrΓ[S(x, x)]. (22)

Due to the spacetime symmetries of the regularized theory, all expectation values have to
vanish after the average over gauge configurations is taken, except in the case Γ = 1, which
provides the bare quark condensate. The amplitude of the fluctuations around zero will
provide a measure of sampling noise.

We have performed our computations on dynamical gauge configurations with Nf = 2
flavors of dynamical O(a)-improved Wilson fermions, generated using the deflation-accelerated
DD-HMC algorithm [38].7 The latter combines domain-decomposition (DD) methods [37]
with the Hybrid Monte Carlo (HMC) algorithm [40] and the Sexton-Weingarten multiple-
time integration scheme [41]. The inversions of the Wilson-Dirac operator are performed
using a Schwarz-preconditioned generalized conjugate residual (SAP+GCR) algorithm [42].
Two lattices sizes are considered, at fixed lattice spacing given by β = 5.30: an 84-lattice (with

7The code is available at http://luscher.web.cern.ch/luscher/DD-HMC/index.html.
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Figure 2: Value of the quantity ∆Γ in eq. (23) for Γ = 1, γ5, γ0γ5, γ3γ5 (in clockwise order
starting from the left upper corner). Red (solid) bars correspond to the probing method for
p = 2, . . . , 7, whereas the results of the stochastic technique are denoted by blue (dashed)
bars. A value of zero corresponds to the exact solution.

light quark mass given by the hopping parameter κ = 0.13625) and a 164-lattice (κ = 0.13620).
The ensembles consist of 150 and 100 thermalized configurations, respectively; in both cases
the configurations are separated by 100 HMC trajectories of length τ = 1/2. Volume-filling
stochastic sources are diluted in space (even-odd), spin and color but not in time. We will
quote results for Γ = 1, γ5, γ0γ5, γ3γ5.

In order to measure the quality of the approximation to S(x, x) with respect to the exact
solution, we introduce the quantity

∆Γ ≡ TrΓ[S(x, x)]exact − TrΓ[S(x, x)]method. (23)

While this observable is too expensive for 164 lattices, we have been able to measure it in our
84 lattices by consecutively putting point sources on all spacetime locations of the lattice. Here
“method” refers either to the stochastic volume source technique or the probing approach.
The closer ∆Γ gets to zero, the better the exact result will be approximated. Results for ∆Γ

as a function of the computational cost are shown in Figure 2.

Our findings can be summarized by the following observations:

• For both techniques, the approximation of the exact solution has a comparable accuracy
in all cases. In the case Γ = 1 (the only non-vanishing case after gauge average), one
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can furthermore study the deviation from the expectation value, and see that it is very
small. This is likely due to the fact that the bare expectation value 〈ψ̄ψ〉 is completely
dominated by an ultraviolet divergence inversely proportional to the third power of the
lattice spacing, which is essentially insensitive to the fluctuations that affect signal-to-
noise ratios in other quantities, and are mostly encoded in off-diagonal spin entries.

• For p = 2, 3 probing and SVS yield comparable errors at comparable cost, whereas as
soon as p ≥ 4 the deviation from the exact results is considerably smaller for the probing
method. Furthermore, the errors of the SVS procedure tend to saturate for numbers of
inversions at which an increase of p still improves the accuracy of probing.

• A choice of p ≥ 6 approximates the exact solution to a degree of accuracy much higher
than the one provided by SVS. However, the computational cost involved might be
prohibitive in many practical applications. The difference between the two methods is
quite dependent on the operator insertion considered; observable-specific studies will
thus be needed, in general.

The plots illustrate as well the shortcoming of having little freedom in tuning the cost of
the probing procedure, exemplified by the large increase of computational effort in the steps
p = 3→ p = 4 or p = 5→ p = 6.

In the case of the 164 lattice, the computation of exact propagators is too costly, and we
limit ourselves to compare the results from probing and SVS. This is summarized in Figure 3.
Small deviations from zero in the cases Γ = γ5, γ3γ5 can probably be ascribed to incomplete
thermalization of these runs. In this case it is clear that the error is almost immediately
dominated by gauge noise, and there is no appreciable difference between the precision of the
two techniques. Thus, increasing the number of inversions on each gauge configuration by
either augmenting p or the number of hits Nr is not expected to reduce the variance until
significantly higher statistics are achieved.

Using the same lattices and setup, we have also explored the behavior of the disconnected
contribution to the two-point correlation function in eq. (5). In this case we again observe that
the dominant source of fluctuations is the gauge noise. This suggests that the main priority in
a study of e.g. singlet meson masses should be a high-statistics computation, before variance
reduction techniques aimed at closed propagators acquire a relevant role. As an illustration,
Fig. 4 shows results for the disconnected contribution to the two-point function of the zeroth
component of the singlet axial current in our 164 lattice.

3.2 Eye diagrams for K → π

In this section the propagator techniques are applied to an ongoing project to study the role
of the charm quark in the explanation of the ∆I = 1/2 rule [18, 19, 20]. Our physics results
are presented in a companion paper [21]; preliminary results from this study have also been
reported in Ref. [22].

Our strategy is to keep the charm quark as an active degree of freedom in the ∆S = 1
effective weak Hamiltonian for K → ππ decays, and study the charm quark mass mc depen-
dence of the low-energy constants that control physical amplitudes within a chiral effective
description of the decays. The advantage of employing the effective description is that the
physics can be addressed by computing K → π transition amplitudes, which avoids some
of the difficulties of dealing directly with K → ππ transitions in Euclidean spacetime. By
studying the unphysical GIM limit mc = mu, where the charm has the same mass as the up
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Figure 3: Traces of closed loop propagators for the 164 lattice as a function of computational
cost. Red (solid) bars correspond to the probing method for p = 2, . . . , 5. The results of the
stochastic technique are denoted by blue (dashed) bars.

quark, intrinsic low-energy effects can be isolated; then by taking the charm mass towards
its physical value mc � mu the impact of having a large mass difference can be understood.
Overlap fermions are used in the lattice computation, since preserving an exact chiral sym-
metry is crucial in order to avoid complicated renormalization problems. A more detailed
description of this strategy can be found in Refs. [18, 19].

K → π amplitudes are extracted from the large Euclidean time behavior of three-point
correlation functions of ∆S = 1 operators with kaon and pion interpolating operators, for
which left-handed currents are chosen.8 In the GIM limit, this only leads to Wick contractions
which do not involve closed quark propagators (commonly dubbed “eight diagrams”). The
main technical difficulty when moving to mc 6= mu is the appearance of additional contractions
in the form of so-called “eye diagrams” or “penguin contractions”, depicted in Figure 5. The

8This avoids technical complications related to exact zero modes of the lattice Dirac operator.
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4.5 Probing Propagator techniques
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Figure 4.15: Trace over a closed loop propagator with insertion of γ0γ5. The red (solid) bars
correspond to the probing method for p = 1, . . . ,7 (smaller volume) and p = 2, . . . ,5 (larger
volume). The results of the stochastic technique are denoted by the blue (dashed) bars. For
the small volume also the exact solution is shown. The exact result is indicated by the black
(solid) line with its error range constrained by the black (dashed) lines.
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(b) Full two-point function

Figure 4.16: Full flavor singlet two-point function (right) and its disconnected part (left) with
double insertion of γ0γ5 for the volume with 164 lattice points. The red (solid) bars correspond
to the values of the probing method with p = 4. The results of the stochastic technique with
comparable computational cost are denoted by the blue (dashed) bars.

Euclidean time is an arbitrary choice, the above procedure can be repeated for all directions.
That is, it is averaged over all four space-time directions. As usual also translational symmetry
in time is implied. The latter symmetry allows to sum over the times x0, y0 while keeping the
relative time difference t = �x0 − y0� fixed.

4.5.2 Application to Eye-diagrams

In order to study the utility of the probing method in the context of revealing the mechanism
behind the ∆I = 1�2 rule, it is applied to the high-mode loop propagator Sh of the Eye-diagram
depicted in Figure 4.17. All other quark lines are constructed by means of low-modes, i.e. by
exact all-to-all propagators. Hence, the resulting errors predominantly originate from the
closed loop propagator. The corresponding expressions for the color-connected and color-

96

Figure 4: Disconnected contribution to the two-point function of the singlet axial current in
our 164 lattice. Results from probing with p = 4 and SVS with the same computational cost
are compared.

corresponding Wick contractions have the form

Ccon
eye (x0 − z0, y0 − z0) = 〈tr {γµP−Ss(z, x)γ0P−Su(x, y)γ0P−Sd(y, z)γµP−Su−c(z, z)}〉G ,

(24)

Cdis
eye(x

0 − z0, y0 − z0) = 〈tr {γµP−Ss(z, x)γ0P−Su(x, y)γ0P−Sd(y, z)} tr {γµP−Su−c(z, z)}〉G ,
(25)

where subscripts in quark propagators refer to quark flavors, P− = (1 − γ5)/2, and Su−c =
Su − Sc. From now on we will assume a kinematics where the light up, down, and strange
quarks are mass-degenerate. We will refer to Ccon

eye and Cdis
eye as “color-connected” and “color-

disconnected”, respectively. In order to extract the physical amplitudes, it is convenient to
define the quantities

E−(x0 − z0, y0 − z0) =
Cdis

eye(x
0 − z0, y0 − z0)− Ccon

eye (x0 − z0, y0 − z0)

C(x0 − z0)C(y0 − z0)
, (26)

E+(x0 − z0, y0 − z0) =
Cdis

eye(x
0 − z0, y0 − z0) + Ccon

eye (x0 − z0, y0 − z0)

C(y0 − z0)C(y0 − z0)
, (27)

where C is a flavor non-singlet two-point function of left-handed currents involving light quarks
with mass m` = mu = md = ms, viz.

C(x0 − y0) = −
〈
tr
{
γ0P−S`(x, y)γ0P−S`(y, x)

}〉
. (28)

Note that the fact that correlation functions only depend on Euclidean time differences is
a consequence of full Poincaré invariance. On the lattice this has to be enforced by suit-
able integrations over space and/or time coordinates at operator insertion points, which is
fully possible only with all-to-all propagators. When the latter are not available, estimators
involving fixed operator locations have to be employed.

It has been known for a long time that eye diagrams suffer from a severe signal-to-noise
problem when the four-fermion operator insertion is set to a fixed spacetime position z. Inte-
gration over ~z is expected to result in a variance reduction proportional to the spatial volume,
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Figure 5: Eye diagram occurring in K → π transitions.

but it requires constructing (the difference of) up and charm closed propagators for all points
in space. This adds up to the already high computational effort required by overlap fermions,
resulting in a very demanding setup, the feasibility of which relies on developing an optimal
methodology.

A straightforward possibility is to apply LMA, cf. section 2.3. This will result in a splitting
of the three-point functions into a total of sixteen contributions, since each of the four quark
lines in Figure 5 are split into Sl + Sh. They can be collectively labeled as

Ceye = C llll + Chlll + Chhll + Chhhl + Chhhh , (29)

with Chlll and Chhhl containing four different contributions and Chhll containing six different
contributions. Whenever only low-mode propagators meet at z, it will be possible to integrate
over space at z, thus averaging a significant fraction of the contributions involving large
fluctuations. This was indeed shown in Ref. [19, 43] to have a large variance reduction effect
in the case of eight diagrams, where however the signal-to-noise problem is less severe. Indeed,
preliminary studies revealed that LMA alone, in the form employed in Ref. [19], is not enough
to obtain a signal for eye diagrams [44]. Here we will study the hybrid strategy of combining
LMA and SVS and/or probing (in closed propagator contributions) for the estimation of the
high-mode part of quark propagators, and devise optimal methods for variance reduction.

3.2.1 LMA + SVS

In this section we will combine LMA with diluted SVS in order to compute the high-mode
propagators Sh. In the case of eye diagrams two different types of propagators are involved.
On the one hand, there are the loop propagators which start and end at the same lattice site,
such that the space-diagonal elements of the propagator matrix are required; on the other
hand, there are propagators connecting different spacetime locations outside the loop. In the
following the latter will be referred to as leg propagators. Since from the computational point
of view the structure of loop and leg propagators is very different, different dilution schemes
can in principle be chosen for each of them, in order to optimize the total signal.

Computations are carried out with overlap fermions [46, 47], generated with the Wilson
plaquette action at β = 5.8485. The latter corresponds to a lattice spacing given in terms of
the Sommer parameter r0 ≈ 0.5 fm by a/r0 ' 0.237 [48]. The Neuberger-Dirac operator is
constructed and inverted using the techniques described in Ref. [49]. In order to compare the
computational cost of dilution schemes, they are tuned by fixing the least common multiple
number of inversions, i.e. the number of inversions is identical for all stochastic results. This
requires balancing dilution and hit number — the lesser diluted, the higher the number of
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Figure 6: Comparison of dilution schemes for the high-mode leg propagator. Dilution schemes
are combinations of time, spin (s), color (c) and even-odd (eo) dilution. As a benchmark the
result of computing the leg propagator via an extended propagator is shown. Shown is the
value of this specific contribution to the diagram (in lattice units) as a function of the number
of configurations taken for the gauge average.

hits. Time dilution is applied by default in all cases. We will also compare the results from
SVS with those from LMA making optimal use of extended propagators, cf. section 2.3.

Dilution schemes We will first discuss results obtained with 220 quenched configurations
on a volume V a−4 = 164, with light quark mass am` = 0.02 and charm mass amc = 0.04.
We will focus on the two particular contributions to eye diagrams shown in the left panels of
Figures 6,7. These are suitable benchmark cases, since three of the four involved propagators
are constructed out of low-modes and are thus exact all-to-all propagators. Only a single
high-mode propagator has to be estimated stochastically, and for this reason the introduced
intrinsic stochastic noise in different dilution schemes can be compared directly. The right
panels of Figures 6,7 show the absolute error (of the value at t = x0 − z0 = 10a for suitable
chosen and fixed y0 − z0) times the square root of the number of configurations in the gauge
average.

For the leg propagator dilution in spin+color turns out to be favorable, followed by spin+
color+even-odd and even-odd only. Except for dilution in spin only, the use of stochastic
volume sources is at least as good as the use of extended propagators. This is remarkable,
since the finding implies that a single stochastic all-to-all propagator in the legs reaches the
same accuracy as an “exact” extended propagator. The computational effort of the stochastic
technique is significantly higher, though.

Regarding the loop propagator, dilution in spin or even-odd dilution seem to be advan-
tageous. Most importantly, thanks to being able to average over the coordinate of the loop
origin, the noise can be reduced substantially by combining LMA with SVS for arbitrary
dilution schemes. A crucial finding is that identical random source vectors have to be used
for the stochastic estimation of both the up and charm quark loop, in order to avoid artificial
stochastic noise in the u− c difference, cf. eqs. (24,25); otherwise no signal is observed.
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Figure 7: Comparison of dilution schemes for the high-mode loop propagator. Dilution
schemes are combinations of time, spin (s), color (c) and even-odd (eo) dilution. For com-
parison the result of computing the loop propagator via a standard point source is shown
(extended propagators are not applicable here). Shown is the value of this specific contribu-
tion to the diagram (in lattice units) as a function of the number of configurations taken for
the gauge average.

Moreover, it can be seen that in both cases the expected rate of convergence with increasing
number of configurations taken in the gauge average is observed — i.e. for a large number of

gauge configurations Ncfg the error decreases with
√
Ncfg. This shows that the Monte Carlo

integration is well-behaved and there is no evidence of large fluctuations that may destroy the
average.

Finally, we remark that, while it is possible to choose different dilution schemes for leg
and loop propagators, in practice it is convenient to select the same scheme. In this way,
the loop propagator of the up quark can be reused as an independent stochastic hit for the
leg propagator whenever it is not required for the loop. In terms of computational cost for a
given level of signal, this is advantageous even if the dilution scheme is not optimal in one of
the two cases.

Stochastic noise reduction The level of stochastic noise introduced by SVS can depend
on the details of how random source and solution vectors are arranged in the computation
of a specific contraction. In order to understand this issue in our context, we will study it
in the well-controlled case of eight diagrams, using relatively cheap small-volume runs. The
latter are carried out on a 16× 83 lattice, again at β = 5.8485. Our ensemble consists of 205
quenched configurations. Four stochastic source vectors are diluted in time and spin, while
LMA is implemented with Nlow = 20 low-modes.
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(a) (b)

Figure 8: SVS applied to eight diagrams. Top: Considered contributions (low-mode prop-
agators indicated by solid lines, high-mode propagators are dashed); the different relative
location of high- and low-mode contributions means that the respective propagators appear
in different orderings within spin traces, cf. e.g. Appendix B of [21]. Bottom: Euclidean time
dependence of two color-connected contributions to the correlators. Different methods for the
computation of the two high-mode propagators are compared: point-to-all + extended prop-
agators (blue down-triangles), stochastic estimates for Sh (red squares), and combination of
stochastic and extended propagators (black up-triangles). Shown is the value of this specific
contribution to the diagram (in lattice units) as a function of the number of configurations
taken for the gauge average. The points are slightly displaced for better readability.

The Wick contractions leading to eight diagrams are of the form

Ccon
eight(x

0 − z0, y0 − z0) = 〈tr {γµP−Ss(z, x)γ0P−Su(x, z)γµP−Su(z, y)γ0P−Sd(y, z)}〉G , (30)

Cdis
eight(x

0 − z0, y0 − z0) = 〈tr {γµP−Ss(z, x)γ0P−Su(x, z)} tr {γµP−Su(z, y)γ0P−Sd(y, z)}〉G .
(31)

We then combine them and normalize the results with a suitable product of two-point functions
in the same way as in Eqs. (26,27) We will be specifically interested in exploring contributions
with two high-mode propagators, illustrated by the diagrams in the upper panel of Figure 8(a)
and 8(b). We consider two computational procedures: in the first one, both occurrences of
Sh are estimated stochastically; in the second, the stochastic estimation is combined with
extended propagators. In Figure 8 both are compared with the result of treating contributions
from Sh via extended propagators. For the correlator on the l.h.s., the use of two independent
stochastic estimates yields the same level of accuracy as combining one stochastic or point-to-
all propagator with an additional extended propagator. This is a promising finding, since the
latter is an exact propagator which ensures minimal variance. Thus, using stochastic all-to-all
propagators is competitive with exact techniques based on extended propagators.
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On the contrary, the contribution depicted in Figure 8(b) shows a pathology that occurs
whenever two stochastic source vectors meet at the same lattice location (here the location
of the four-fermion operator insertion). The use of an extended propagator instead of a
second stochastic estimate allows to solve the noise problem by removing one of the random
vectors. Alternatively, γ5-hermiticity may be applied. This allows to interchange the position
of solution and source vector. Consequently, only one random vector remains at the position
of the four-fermion operator insertion. 9

Exploratory physics runs Next we will focus on studying the performance of stochastic
volume sources combined with low-mode averaging. To that purpose we will discuss results
obtained on a 32 × 163 lattice, again at β = 5.8485. This lattice is already large enough to
allow for realistic physics studies. We simulate a light quark mass of amu = 0.02 together
with charm masses of amc = 0.04, 0.2 which, using the value a/r0 ' 0.237 from [48] and
r0 = 0.5 fm, correspond to mπ ≈ 318 MeV and mc ≈ 64 and 318 MeV, respectively. Twenty
low-modes are computed for each of the 120 quenched configurations. Stochastic volume
sources are diluted in time, spin and color.

Out of the sixteen contributions within the LMA setup (cf. eq. (29)), we will study in
more detail a restricted subset, which either contains the main sources of statistical noise in
the computation or are suitable benchmark cases. They will be labeled mix1, mix2, hlhl and
lllh, and are illustrated in Figures 9(a)-9(d). Some of them are actually the sum of various
contributions; a detailed description is provided below. For each of the contributions we will
construct the ratios with products of two-point functions as per eqs. (26,27), and fit them
to plateaux in the region in Euclidean time where the asymptotic behavior is expected to be
dominated by the relevant K → π matrix element.10 The results of these fits are shown in
the lower panel of Figures 9(a)-9(d).

The contribution mix1 contains the three diagrams with three low-mode propagators and
one high-mode propagator, placed in one of the three legs; Figure 9(a) shows one of them. The
data points labeled LMA make use of an extended propagator containing the leg propagator,
which implies that it is possible to average over the position of the four-fermion operator.
Therefore, mix1 serves as a benchmark for the efficiency of LMA+SVS for the leg propaga-
tor, since no improvement is expected when using stochastic estimates instead of the exact
extended propagator. The computations reveal that stochastic all-to-all estimates computed
within our setup lead to a precision comparable to the one obtained with exact extended
propagators.

The contribution mix2, illustrated by the diagram of Figure 9(b), also contains the di-
agram obtained by switching the low-mode propagator to the right-hand side. Again, this
contribution can be used as a benchmark, because the conventional LMA allows to average
over space at the four-fermion operator insertion. Also in this case the combination of LMA
with SVS yields comparable errors.

The diagram in Figure 9(c), instead, is expected to display the advantages of the hybrid

9Recently, the RBC/UKQCD collaboration reported on a similar behavior in the context of computing
direct K → ππ decays [45]. In their case, it is observed that having several random vectors at the four-quark
operator insertion leads to a bad signal-to-noise ratio. The suggested solution consists of switching the source
and sink coordinates of the propagators involved using γ5-hermiticity.

10Note that, while a plateau is expected for the ratio involving the full three-point function, it is not guar-
anteed that the same happens for each of the LMA contributions. On the other hand, in this case the various
contributions do exhibit plateaux (within the relatively large errors still present in the computation), which
allows to average over an interval of time slices in order to reduce the uncertainty.
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(a) mix1 (b) mix2 (c) hlhl (d) lllh

Figure 9: Top: Selection of contributions to eye diagrams within LMA. Low-mode propagators
Sl are denoted by solid lines; high-mode propagators Sh are dashed. Bottom: Fit results for
the considered contributions. The upper (lower) row includes the results of a light (heavy)
charm quark while the columns distinguish the ratios E±. Shown is the value of this specific
contribution to the diagram (in lattice units) as a function of the number of configurations
taken for the gauge average; note the different scales in each plot.

approach. In this case, using LMA in conjunction with point sources does not allow to average
over the four-fermion operator insertion, since two high-mode lines meet at the origin of the
loop such that at least one fixed-position propagator has to attach to it.11 This does not allow
to use the information contained in the all-to-all low-mode propagator in the loop. Indeed
we observe that the variance is reduced significantly when SVS is applied to the high-mode

11In general, extended propagators are not applicable to contractions in which high modes run in the loop,
since in that case there is no way to construct a suitable Dirac equation that provides a product of propagators
integrated over the insertion.
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Figure 10: Monte Carlo history for 120 configurations of the color-connected part of the
contribution to the ratios E± coming from the diagram in Figure 9(d) for amc = 0.04 (left)
and amc = 0.2 (right).

propagators in the legs.

Finally, the diagram in Figure 9(d) is again expected to exhibit a significant decrease in
variance when SVS is applied to the estimation of the high-mode propagator in the loop.
Indeed, we find a remarkable improvement of the noise-to-signal ratio. In particular, for the
heavy charm quark mass the variance is reduced by a factor of 7-8, which turns out to be
decisive to obtain a signal for the total three-point functions.

Another interesting piece of information comes from the Monte Carlo history of the corre-
lation functions. By looking at the fluctuations in the value of a correlator at some fixed value
of Euclidean times a direct impression can be drawn about variance reduction, and about the
presence of large fluctuations that can spoil the good gauge average behavior. In Figure 10 we
show the color-connected part of the contribution to the ratios E± coming from the diagram
in Figure 9(d). The advantage of LMA+SVS compared to LMA alone is clearly visible.

3.2.2 LMA + probing versus LMA + SVS

Now we will consider the hybrid strategy in which the probing approach is used to approxi-
mate the diagonal of the high-mode propagator occurring in the contribution associated with
Figure 9(d). Results will be quoted for the 164 lattice, again at amu = 0.02 and amc = 0.04.
Probing is implemented with p = 2, 3, 4, 5. In this lattice volume this implies a total of
276,432,1452, and 2100 inversions, respectively; the factor of 12 accounting for the internal
spin-color structure is included. Its results are compared to those obtained via stochastic vol-
ume sources. Dilution is applied in time, spin and spacetime (even-odd dilution) which implies
a total of {64, 128, 192, 256, 320, 640, 960} inversions for {1, 2, 3, 4, 5, 10, 15} hits, respectively.

In order to compare the efficiency of both methods, the results at some fixed Euclidean
times are monitored as a function of the number of inversions. The evolution of the computed
values is shown for the color-connected and color-disconnected contributions in Figure 11(a)
and Figure 11(b), respectively. Roughly Nr = 5 hits are required for the signal to converge
in the stochastic approach. Once saturated there is an excellent agreement between the two
techniques, while the errors are comparable at similar computational cost. In the color-
disconnected channel, the choice p = 2 already yields a reliable result. Increasing the number
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Figure 11: Probing (blue diamonds for p = 2, 3, 4, 5) versus SVS (red triangles for Nr =
1, 2, 3, 4, 5, 10, 15 hits) as a function of computational cost. Shown are results for the color-
connected (a) and disconnected (b) contribution associated with the diagram in Figure 9(d)
at fixed Euclidean times y0 = 4a, x0 = 9a (left) and y0 = 4a, x0 = 10a (right).

of inversions is neither justified nor necessary, since the variance only decreases moderately
while the value is stable; gauge noise dominates. In the color-connected sector p = 2 is not
enough to saturate the variance, and p ≥ 3 is required. An important observation is that in
both cases the signal is saturated for p = 3; this is of particular importance since moving from
p = 3 to p = 4 involves a substantial increase in the number of inversions which might turn
out to be prohibitively expensive for many practical applications.

While being comparable at the level of computational cost measured in the number of
inversions, probing has two important advantages from a practical point of view regarding
large-scale simulations. First, it results in a considerable speed-up in the contraction time, i.e.
the time necessary to compute physical observables out of the propagators and appropriately
chosen γ-matrices. Note that contractions make up a non-negligible share of the total compu-
tational time in our framework, due to the large number of vector scalar products involved:
if stochastic sources are used, the loop propagator has to be computed by performing scalar
products of source and solutions vectors, the number of which scales combinatorially with
the number of hits and the number of degrees of freedom involved in the dilution scheme;
while in the case of probing the result is directly contained in just one vector. Furthermore,
and sometimes more relevant, the large memory requirements associated to stochastic esti-
mation (which requires availability of several vectors at any given time) for moderately large
lattices rapidly give rise to a complex storage problem, which is greatly alleviated in the case
of probing. Second, probing implies a substantial reduction in the required disk and memory
space. Both issues are a consequence of the fact that (independently on the value of the
probing parameter p) only a single diagonal is approximated, which can be stored in just one
vector. Therefore, the required memory space and contraction time are reduced to the level
of standard point-to-all propagators such that for the application at hand, for instance, the
overall computing time decreases up to twenty percent.
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4 Summary and conclusions

In this work we have explored a number of all-to-all propagator techniques in Lattice QCD:
low-mode averaging, stochastic volume sources, and probing. Our main aim is to optimize
the signal-to-noise ratio for correlation functions appearing in the computation of non-leptonic
kaon decay amplitudes; this in turn requires a detailed study of the computation of closed
quark propagators. Our study of the probing algorithm for the computation of S(x, x) is the
first application of the latter to Lattice QCD, alongside with Ref. [24], where a more sophis-
ticated version of the algorithm, better adapted to the structure of lattice Dirac operators, is
proposed. We have shown that the use of probing has good potential in physics applications
that require the computation of closed quark propagators; in particular, it can improve the
variance reduction attained by the use of stochastic volume sources.

We have developed a sophisticated hybrid variance reduction strategy combining low-mode
averaging, stochastic volume sources and/or probing to tackle the noise-to-signal problems of
the eye diagrams involved in the computation of K → π transition amplitudes. Estimating
the loop propagator in terms of all-to-all techniques results in a substantial decrease of the
variance compared to the combination of low-mode averaging with point-to-all propagators,
which is instrumental to obtain a well-behaved signal in physics applications. In this specific
case, probing does not result in a larger variance reduction than the one attained by stochastic
methods, but it does have significant practical advantages in the computation of some con-
tributions, resulting in faster contractions of propagators into observables and a significant
decrease in the required storage space. Furthermore, experience with stochastic sources shows
that their efficiency decreases significantly when multiple propagators have to be replaced by
stochastic estimates. Using the probing method to compute the loop propagator reduces
the cases where multiple stochastic propagators are necessary. This can be used to further
improve the signal.

Physics results obtained with the tools developed here are discussed in the companion
paper [21].
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