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Abstract

Quantum impurity solvers have a broad range of applications in theoretical studies of

strongly correlated electron systems. Especially, they play a key role in dynamical mean-

field theory calculations of correlated lattice models and realistic materials. Therefore,

the development and implementation of efficient quantum impurity solvers is an impor-

tant task. In this paper, we present an open source interacting quantum impurity solver

toolkit (dubbed iQIST). This package contains several highly optimized quantum impu-

rity solvers which are based on the hybridization expansion continuous-time quantum

Monte Carlo algorithm, as well as some essential pre- and post-processing tools. We

first introduce the basic principle of continuous-time quantum Monte Carlo algorithm

and then discuss the implementation details and optimization strategies. The software

framework, major features, and installation procedure for iQIST are also explained. Fi-

nally, several simple tutorials are presented in order to demonstrate the usage and power

of iQIST.
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PROGRAM SUMMARY

Program title: iQIST

Catalogue identifier: TO BE DONE

Program summary URL: TO BE DONE

Program obtainable from: CPC Program Library, Queens University, Belfast, N. Ireland

Licensing provisions: GNU General Public Licence 3.0

No. of lines in distributed program, including test data, etc.: 218579 lines

No. of bytes in distributed program, including test data, etc.: 4613734.4 bytes

Distribution format: tar.gz

Programming language: Fortran 90 and Python

Computer: Desktop PC, laptop, high performance computing cluster

Operating system: Unix, Linux, Mac OS X, Windows

Has the code been vectorised or parallelized?: Yes, it is parallelized by MPI and OpenMP

RAM: Depends on the complexity of the problem

Classification: 7.3

External routines/libraries used: BLAS, LAPACK

Nature of problem: Quantum impurity models were originally proposed to describe mag-

netic impurities in metallic hosts. In these models, the Coulomb interaction acts between

electrons occupying the orbitals of the impurity atom. Electrons can hop between the

impurity and the host, and in an action formulation, this hopping is described by a time-

dependent hybridization function. Nowadays quantum impurity model have a broad

range of applications, from the description of heavy fermion systems, and Kondo insu-

lators, to quantum dots in nano-science. They also play an important role as auxiliary

problems in dynamical mean-field theory and its diagrammatic extensions [1-3], where an

interacting lattice model is mapped onto a quantum impurity model in a self-consistent

manner. Thus, the accurate and efficient solution of quantum impurity models becomes

an essential task.

Solution method: The quantum impurity model can be solved by the numerically exact

continuous-time quantum Monte Carlo method, which is the most efficient and powerful

impurity solver for finite temperature simulations. In the iQIST software package, we im-

plemented the hybridization expansion version of continuous-time quantum Monte Carlo
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algorithm. Both the segment representation and general matrix formalism are supported.

The key idea of this algorithm is to expand the partition function diagrammatically in

powers of the impurity-bath hybridization, and to stochastically sample these diagrams

to all relevant orders using the Metropolis Monte Carlo algorithm. For a detailed review

of the continuous-time quantum Monte Carlo algorithms, please refer to [4].

Running time: Depends on the complexity of the problem
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1. Introduction

In this paper we present iQIST (abbreviation for ‘interacting quantum impurity

solver toolkit’), an open source project for recently developed hybridization expansion

continuous-time quantum Monte Carlo impurity solvers [1] and corresponding pre- and

post-processing tools.

Dynamical mean-field theory (DMFT) [2, 3] and its cluster extensions [4] play an

important role in contemporary studies of correlated electron systems. The broad appli-

cations of this technique range from the study of Mott-Hubbard metal-insulator transi-

tions [5], unconventional superconductivity in Cu- and Fe-based superconductors [6–9],

and non-Fermi liquid behaviors in multi-orbital systems [10–13], to the investigation

of anomalous transport properties of transition metal oxides [14]. For many of these

applications, DMFT is the currently most powerful and reliable (sometimes the only)

technique available and has in many cases produced new physical insights. Furthermore,

the combination of ab initio calculation methods (such as density function theory) with

DMFT [3] allows to capture the subtle electronic properties of realistic correlated mate-

rials, including those of partially filled 3d- and 4d-electron transition metal oxides, where

lattice, spin and orbital degrees of freedom are coupled [14].

The key idea of DMFT is to map the original correlated lattice model onto a quantum

impurity model whose mean-field bath is determined self-consistently [2–4]. Thus, the

central task of a DMFT simulation becomes the numerical solution of a quantum impurity

problem. During the past several decades, many methods have been developed and

tested as impurity solvers, including the exact diagonalization (ED) [15], equation of

motion (EOM) [16], Hubbard-I approximation (HIA) [17], iterative perturbation theory

(IPT) [18], non-crossing approximation (NCA) [19], fluctuation-exchange approximation

(FLEX) [20], and quantum Monte Carlo (QMC) [21, 22], etc. Among the methods listed

above, the QMC method has several very important advantages, which makes it so far

the most flexible and widely used impurity solver. First, it is based on the imaginary

time action, in which the infinite bath has been integrated out. Second, it can treat

arbitrary couplings, and can thus be applied to all kinds of phases including the metallic

phase, insulating state, and phases with spontaneous symmetry breaking. Third, the

QMC method is numerically exact with a “controlled” numerical error. In other words,
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by increasing the computational effort the numerical error of the QMC simulation can

be systematically reduced. For these reasons, the QMC algorithm is considered as the

method of choice for many applications.

Several QMC impurity solvers have been developed in the past three decades. An

important innovation was the Hirsch-Fye QMC (HF-QMC) impurity solver [21, 22], in

which the time axis is divided into small time steps and the interaction term in the

Hamiltonian is decoupled on each time step by means of a discrete Hubbard-Stratonovich

auxiliary field. HF-QMC has been widely used in the DMFT context [2–4], but is limited

by the discretization on the time axis and also by the form of the electronic interactions

(usually only density-density interactions can be efficiently treated). Recently, a new class

of more powerful and versatile QMC impurity solvers, continuous-time quantum Monte

Carlo (CT-QMC) algorithms, have been invented [1, 23–27]. In the CT-QMC impurity

solvers, the partition function of the quantum impurity problem is diagrammatically

expanded, and then the diagrammatic expansion series is evaluated by stochastic Monte

Carlo sampling. The continuous-time nature of the algorithm means that operators

can be placed at any arbitrary position on the imaginary time interval, so that time

discretization errors can be completely avoided. Depending on how the diagrammatic

expansion is performed, the CT-QMC approach can be further divided into interaction

expansion (or weak coupling) CT-QMC (CT-INT) [23], auxiliary field CT-QMC (CT-

AUX) [24], and hybridization expansion (or strong coupling) CT-QMC (CT-HYB) [25–

27].

At present, CT-HYB is the most popular and powerful impurity solver, since it can

be used to solve multi-orbital impurity models with general interactions at low temper-

ature [1]. In single-site DMFT calculations, the computational efficiency of CT-HYB is

much higher than that of CT-INT, CT-AUX, and HF-QMC, especially when the interac-

tions are intermediate or strong. However, in order to solve more complicated quantum

impurity models (for example, five-band or seven-band impurity model with general

interactions and spin-orbital coupling) efficiently, further improvements of the CT-HYB

impurity solvers are needed. In recent years many tricks and optimizations have been ex-

plored and implemented to increase the efficiency and accuracy of the original CT-HYB

algorithm, such as the truncation approximation [27], Krylov subspace iteration [28],
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orthogonal polynomial representation [29–31], PS quantum number [32], lazy trace eval-

uation [33], skip-list technique [33], matrix product state implementation [34], and sliding

window sampling scheme [34], etc. As the state-of-the-art CT-HYB impurity solvers be-

come more and more sophisticated and specialized, it is not easy anymore to master all

their facets and build one’s implementations from scratch. Hence, we believe that it is a

good time to provide a CT-HYB software package for the DMFT community such that

researchers can focus more on the physics problems, instead of spending much time on

(re-)implementing in-house codes. In fact, there are some valuable efforts in this direc-

tion, such as TRIQS [35], ALPS [36, 37], W2DYNAMICS [32], DMFT W2K [27, 38],

etc. The present implementation of the CT-HYB impurity solvers is a useful comple-

ment to the existing codes. The open source iQIST software package contains several

well-implemented and thoroughly tested modern CT-HYB impurity solvers, and the cor-

responding pre- and post-processing tools. We hope the release of iQIST can promote

the quick development of this research field.

The rest of this paper is organized as follows: In Sec. 2, the basic theory of quantum

impurity models, CT-QMC algorithms, and its hybridization expansion version are briefly

introduced. The measurements of several important physical observables are presented.

In Sec. 3, the implementation details of iQIST are discussed. Most of the optimization

tricks and strategies implemented in iQIST, including dynamical truncation, lazy trace

evaluation, sparse matrix technique, PS quantum number, and subspace algorithms,

etc., are reviewed. These methods ensure the high efficiency of iQIST. In Sec. 4, we first

present an overview on the software architecture and component framework. Then the

main features of the iQIST software package, including the CT-HYB impurity solvers,

the atomic eigenvalue solver, and the other auxiliary tools are presented. The compiling

and installation procedures, and the basic usage of iQIST are introduced in Sec. 5.

Section 6 shows several simple applications of iQIST, ranging from self-consistent single-

site DMFT calculation to one-shot post-processing calculation. These examples serve

as introductory tutorials. Finally, a short summary is given in Sec. 7 and the future

development plans for the iQIST project are outlined as well.
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2. Basic theory and methods

In this section, we will present the basic principles of CT-QMC impurity solvers,

with an emphasis on the hybridization expansion technique. For detailed derivations

and explanations, please refer to Ref. [1].

2.1. Quantum impurity model

The multi-orbital Anderson impurity model (AIM) can be written as Himp = Hloc +

Hbath +Hhyb, where

Hloc =
∑
αβ

Eαβd
†
αdβ +

∑
αβγδ

Uαβγδd
†
αd
†
βdγdδ, (1a)

Hhyb =
∑
kαβ

V αβk c†kαdβ + h.c., (1b)

Hbath =
∑
kα

εkαc
†
kαckα. (1c)

In Eq. (1), Greek letters in the subscripts denote a combined spin-orbital index, the

operator d†α (dα) is creating (annihilating) an electron with index α on the impurity

site, while c†kα (ckα) is the creation (annihilation) operator for conduction band (bath)

electron with spin-orbital index α and momentum k. The first term in Hloc is the general

form of the impurity single particle term with impurity level splitting and inter-orbital

hybridization. This term can be built by crystal field (CF) splitting and/or spin-orbit

coupling (SOC), etc. The second term in Hloc is the Coulomb interaction term which

can be parameterized by intra(inter)-band Coulomb interactions U (U ′) and Hund’s rule

coupling J or Slater integral parameters F k. The hybridization term Hhyb describes

the process of electrons hopping from the impurity site to the environment and back.

Hbath describes the non-interacting bath. This Anderson impurity model is solved self-

consistently in the DMFT calculations [2, 3].

2.2. Principles of continuous-time quantum Monte Carlo algorithm

We first split the full Hamiltonian Himp into two separate parts, Himp = H1 + H2,

then treat H2 as a perturbation term, and expand the partition function Z = Tre−βH

in powers of H2,

Z =

∞∑
n=0

∫ β

0

· · ·
∫ β

τn−1

ω(Cn), (2)
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with

ω(Cn) = dτ1 · · · dτnTr
{
e−βH1 [−H2(τn)] · · · [−H2(τ1)]

}
, (3)

where H2(τ) is defined in the interaction picture with H2(τ) = eτH1H2e
−τH1 . Each term

in Eq. (2) can be regarded as a diagram or configuration (labelled by C), and ω(Cn) is the

diagrammatic weight of a specific order-n configuration. Next we use a stochastic Monte

Carlo algorithm to sample the terms of this series. In the CT-INT and CT-AUX impurity

solvers [23, 24], the interaction term is the perturbation term, namely, H2 = Hint, while

H2 = Hhyb is chosen for the CT-HYB impurity solver [25]. In the intermediate and

strong interaction region, CT-HYB is much more efficient than CT-INT and CT-AUX.

This is also the main reason that we only implemented the CT-HYB impurity solvers in

the iQIST software package.

2.3. Hybridization expansion

In the hybridization expansion algorithm, due to fact that H1 does not mix the

impurity and bath states, the trace in Eq. (3) can be written as Tr = TrdTrc. As a

result, we can split the weight of each configuration as

ω(Cn) = ωd(Cn)ωc(Cn)

n∏
i=1

dτi. (4)

ωd(Cn) is the trace over impurity operators (Trd), ωc(Cn) is the trace over bath operators

(Trc). Further, since Wick’s theorem is applicable for the ωc(Cn) part, we can represent

it as a determinant of a matrix ZbathM−1 with Zbath = Trce
−βHbath and (M−1)ij =

∆(τi − τj). The ωd(Cn) part can be expressed using the segment representation when

[nα, Hloc] = 0 [25]. However, if this condition is not fulfilled, we have to calculate the trace

explicitly, which is called the general matrix algorithm [26, 27]. The explicit calculation

of the trace for a large multi-orbital AIM with general interactions is computationally

expensive. Many tricks and strategies have been implemented in the iQIST software

package to address this challenge. Please refer to Sec. 3 for more details.

In this package, we used importance sampling and the Metropolis algorithm to eval-

uate Eq. (2). The following four local update procedures, with which the ergodicity of

Monte Carlo algorithm is guaranteed, are used to generate the Markov chain:

• Insert a pair of creation and annihilation operators in the time interval [0, β).
8



• Remove a pair of creation and annihilation operators from the current configura-

tion.

• Select a creation operator randomly and shift its position in the time interval [0, β).

• Select an annihilation operator randomly and shift its position in the time interval

[0, β).

In the Monte Carlo simulations, sometimes the system can be trapped in some (for

example symmetry-broken) state. In order to avoid unphysical trapping, we also consider

the following two global updates:

• Swap the operators of randomly selected spin up and spin down flavors.

• Swap the creation and annihilation operators globally.

2.4. Physical observables

Many physical observables are measured in our CT-HYB impurity solvers. Here we

provide a list of them.

Single-particle Green’s function G(τ)

The most important observable is the single-particle Green’s function G(τ), which is

measured using the elements of the matrix M,

G(τ) =

〈
1

β

∑
ij

δ−(τ, τi − τj)Mji

〉
, (5)

with

δ−(τ, τ ′) =

δ(τ − τ
′), τ ′ > 0,

−δ(τ − τ ′ + β), τ ′ < 0.

(6)

Note that in the iQIST software package, the low-frequency Matsubara Green’s function

G(iωn) is also measured directly, instead of being calculated from G(τ) using Fourier

transformation.

Two-particle correlation function χαβ(τa, τb, τc, τd)

The two-particle correlation functions are often used to construct lattice susceptibili-

ties within DMFT and diagrammatic extensions of DMFT. However, the measurements of
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two-particle correlation functions are a nontrivial task [39] as it is very time-consuming to

obtain good quality data, and most of the previous publications in this field are restricted

to measurements of two-particle correlation functions in one-band models. Thanks to

the development of efficient CT-HYB algorithms, the calculation of two-particle correla-

tion functions for multi-orbital impurity models now becomes affordable [29–31]. In the

iQIST software package, we implemented the measurement for the two-particle correla-

tion function χαβ(τa, τb, τc, τd), which is defined as follows:

χαβ(τa, τb, τc, τd) = 〈cα(τa)c†α(τb)cβ(τc)c
†
β(τd)〉. (7)

Due to memory restrictions, the actual measurement is performed in frequency space,

for which we use the following definition of the Fourier transform:

χαβ(ω, ω′, ν) =
1

β

∫ β

0

dτa

∫ β

0

dτb

∫ β

0

dτc

∫ β

0

dτd

× χαβ(τa, τb, τc, τd)e
i(ω+ν)τae−iωτbe−iω

′τce−i(ω
′+ν)τd . (8)

where ω and ω′ [≡ (2n+ 1)πβ] are fermionic frequencies, and ν is bosonic (≡ 2nπ/β).

Local irreducible vertex functions Γαβ(ω, ω′, ν)

From the two-particle correlation function χαβ(ω, ω′, ν), the local irreducible vertex

function Γαβ(ω, ω′, ν) can be calculated easily, via the Bethe-Salpeter equation [30, 31,

40]:

Γαβ(ω, ω′, ν) =
χαβ(ω, ω′, ν)− β[Gα(ω + ν)Gβ(ω′)δν,0 −Gα(ω + ν)Gβ(ω′)δαβδωω′ ]

Gα(ω + ν)Gα(ω)Gβ(ω′)Gβ(ω′ + ν)
.

(9)

The G(iωn) and Γαβ(ω, ω′, ν) are essential inputs for the diagrammatic extensions of

DMFT, such as the dual fermions (DF) [41] and dynamical vertex approximation (DΓA)

[42] codes.

Impurity self-energy function Σ(iωn)

The self-energy Σ(iωn) is calculated using Dyson’s equation

Σ(iωn) = G−1
0 (iωn)−G−1(iωn), (10)

or measured using the so-called improved estimator [30, 31]. Note that in the current

implementation the latter approach only works when the segment representation is used.

Histogram of the perturbation expansion order
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We record the histogram of the perturbation expansion order k, which can be used

to evaluate the kinetic energy via Eq. (15) below.

Occupation number and double occupation number

The orbital occupation number 〈nα〉 and double occupation number 〈nαnβ〉 are mea-

sured. From them we can calculate for example the charge fluctuation
√
〈N2〉 − 〈N〉2,

where N is the total occupation number:

N =
∑
α

nα. (11)

Spin-spin correlation function

For a system with spin rotational symmetry, the expression for the spin-spin correla-

tion function reads

χss(τ) = 〈Sz(τ)Sz(0)〉, (12)

where Sz = n↑ − n↓. From it we can calculate the effective magnetic moment:

µeff =

∫ β

0

dτχss(τ). (13)

Orbital-orbital correlation function

The expression for the orbital-orbital correlation function reads

χnnαβ(τ) = 〈nα(τ)nβ(0)〉. (14)

Kinetic energy

In DMFT, the expression for the kinetic energy of the lattice model reads

Ekin = − 1

β
〈k〉, (15)

where k is the perturbation expansion order.

Atomic state probability

The expression for the atomic state probability is

pΓ = 〈|Γ〉〈Γ|〉, (16)

where Γ is the atomic state.
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3. Implementations and optimizations

In this section, we will focus on the implementation details and discuss the optimiza-

tion tricks adopted in the iQIST software package.

3.1. Development platform

The major part of the iQIST software package was developed with the modern Fortran

90 language. We extensively used advanced language features in the Fortran 2003/2008

standard such as an object oriented programming style (polymorphic, inheritance, and

module, etc.) to improve the readability and re-usability of the source codes. The

compiler is fixed to the Intel Fortran compiler. We can not guarantee that the iQIST

can be compiled successfully with other Fortran compilers. Some auxiliary scripts, pre-

and post-processing tools are written using the Python language and Bash shell scripts.

These scripts and tools act like a glue. They are very flexible and can be easily extended

or adapted to deal with various problems. These Python codes can run properly under

the Python 2.x or 3.x runtime environment.

Since iQIST is a big software development project, we use Git as the version control

system, and the source codes are hosted in a remote server. The developers pull the

source codes from the server into their local machines, and then try to improve them.

Once the modification is completed, the source codes can be pushed back to the server

and merged with the master branch. Then the other developers can access them and use

them immediately to start further developments. The members of our developer team

can access the code repository anywhere and anytime.

3.2. Orthogonal polynomial representation

Boehnke et al. [29] proposed to use Legendre polynomials to improve the measure-

ments of single-particle and two-particle Green’s functions. Thanks to the Legendre

polynomial representation, the numerical noise and memory space needed to store the

Green’s function are greatly reduced.

The imaginary time Green’s function G(τ) is expressed using the Legendre polynomial

Pn(x) defined in [-1,1]:

G(τ) =
1

β

∑
n≤0

√
2n+ 1Pn[x(τ)]Gn, (17)
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where n is the order of Legendre polynomial, Gn is the expansion coefficient, x(τ) maps

τ ∈ [0, β] to x ∈ [−1, 1]:

x(τ) =
2τ

β
− 1. (18)

Using the orthogonality relations of Legendre polynomials, we obtain

Gn =
√

2n+ 1

∫ β

0

dτPn[x(τ)]G(τ). (19)

If we substitute Eq. (5) into Eq. (19), we get

Gn = −
√

2n+ 1

β

〈
k∑
i=1

k∑
j=1

MjiP̃n(τei − τsj )

〉
, (20)

where

P̃n(τ) =

Pn[x(τ)], τ > 0,

−Pn[x(τ + β)], τ < 0,

(21)

and τs and τe denote the positions of creation and annihilation operators on the imagi-

nary time axis, respectively. We can also express the Matsubara Green’s function G(iωn)

using Legendre polynomials:

G(iωm) =
∑
n≤0

TmnGn. (22)

The transformation matrix Tmn is defined as

Tmn = (−1)min+1
√

2n+ 1jn

[
(2m+ 1)π

2

]
, (23)

where jn(z) is the spheric Bessel function. Actually, in the Monte Carlo simulation, only

the expansion coefficients Gn are measured. When the calculation is finished, the final

Green’s function can be evaluated using Eq. (17) and Eq. (22). It is worthwhile to note

that the Tmn do not depend on the inverse temperature β, so that we can calculate and

store the matrix elements beforehand to save computer time.

It is easy to extend this formalism to other orthogonal polynomials. For example, in

the iQIST software package, we not only implemented the Legendre polynomial represen-

tation, but also the Chebyshev polynomial representation. In the Chebyshev polynomial

representation, the imaginary time Green’s function G(τ) is expanded as follows:

G(τ) =
2

β

∑
n≤0

Un[x(τ)]Gn, (24)
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where the Un(x) denote the second kind of Chebyshev polynomials and x ∈ [−1, 1]. The

equation for the expansion coefficients Gn is:

Gn = − 2

πβ

〈
k∑
i=1

k∑
j=1

MjiŨn(τei − τsj )
√

1− x̃(τei − τsj )2

〉
, (25)

where

Ũn(x) =

Un[x(τ)], τ > 0,

−Un[x(τ + β)], τ < 0,

(26)

and

x̃(τ) =

x(τ), τ > 0,

x(τ + β), τ < 0.

(27)

Unfortunately, there is no explicit expression for G(iωn) [like Eq. (22)] in the Chebyshev

polynomial representation.

3.3. Improved estimator for the self-energy function and vertex function

Recently, Hafermann et al. proposed efficient measurement procedures for the self-

energy and vertex functions within the CT-HYB algorithm [30, 31]. In their method,

some higher-order correlation functions (related to the quantities being sought through

the equation of motion) are measured. For the case of density-density interactions, the

segment algorithm is available [25]. Thus, the additional correlators can be obtained

essentially without additional computational cost. When the calculations are completed,

the required self-energy function and vertex function can be evaluated analytically.

The improved estimator for the self-energy function can be expressed in the following

form:

Σab(iωn) =
1

2

∑
ij

G−1
ai (iωn)(Ujb + Ubj)F

j
ib(iωn), (28)

where Uab is the Coulomb interaction matrix element. The expression for the new two-

particle correlator F jab(τ − τ ′) reads

F jab(τ − τ
′) = −〈T da(τ)d†b(τ

′)nj(τ
′)〉, (29)

and F jab(iωn) is its Fourier transform. The actual measurement formula is

F jab(τ − τ
′) = − 1

β

〈
k∑

αβ=1

Mβαδ
−(τ − τ ′, τeα − τsβ)nj(τ

s
β)δa,αδb,β

〉
. (30)
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The measurement formula for the vertex function can be found in the original paper [30,

31]. Note that when the Coulomb interaction is frequency-dependent, Eq. (28) and (30)

should be modified slightly [31]. As one can see, this equation for F jab(τ − τ ′) looks quite

similar to Eq. (5). Thus we use the same method to measure F jab(τ − τ ′) and finally

get the self-energy function via Eq. (28). Here, the matrix element nj(τ
s
β) (one or zero)

denotes whether or not the flavor j is occupied (whether or not a segment is present) at

time τsβ .

This method can be combined with the orthogonal polynomial representation [29] as

introduced in the previous subsection to suppress fluctuations and filter out the Monte

Carlo noise. Using this technique, we can obtain the self-energy and vertex functions

with unprecedented accuracy, which leads to an enhanced stability in the analytical

continuations of those quantities [30].

3.4. Subspaces and symmetry

As mentioned before, for a Hamiltonian Hloc with general interactions the evaluation

of local trace is heavily time-consuming,

ωd(C) = Trloc(T2k+1F2kT2k · · ·F1T1), (31)

where T = e−τHloc is time evolution operator, F is fermionic creation or annihilation

operator, and k is expansion order for the current diagrammatic configuration C. The

straightforward method to evaluate this trace is to insert the complete eigenstates {Γ}

of Hloc into the RHS of Eq. (31), then

ωd(C) =
∑

{Γ1···Γ2k}

〈Γ1|T2k+1|Γ1〉〈Γ1|F2k|Γ2k〉〈Γ2k|T2k|Γ2k〉 · · · 〈Γ2|F1|Γ1〉〈Γ1|T1|Γ1〉. (32)

Thus, we must do 4k+1 matrix-matrix multiplications with the dimension of the Hilbert

space of Hloc. This method is robust but very slow for large multi-orbital impurity model

as the dimension of the matrix is impractically large for 5- and 7-band systems, and the

expansion order k is large as well.

Actually, the matrices of the fermion operators (F -matrix) are very sparse due to

the symmetry of Hloc. We can take advantage of this to speed up the matrix-matrix

multiplications. We exploit the symmetry of Hloc to find some good quantum numbers
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(GQNs) and divide the full Hilbert space of Hloc with very large dimension into much

smaller subspaces labeled by these GQNs [1]. We call such a subspace |α〉 a superstate [27]

which consists of all the nα eigenstates of this subspace, |α〉 = {Γ1,Γ2, · · · ,Γnα}. The

F -matrix element can only be nonzero between pairs of superstates with different values

of GQNs. One fermion operator may bring one initial superstate |α〉 to some other final

superstates |β〉,

F |α〉 = |β〉, (33)

or outside of the full Hilbert space. We have to carefully choose the GQNs to make

sure that for a fixed initial superstate |α〉 and a fixed fermion operator, there is one and

only one final superstate |β〉 if it doesn’t go outside of the full Hilbert space. Given an

arbitrary diagrammatic configuration, starting with a superstate |α1〉, there will be only

one possible evolution path. That is,

|α1〉
F1−→ |α2〉

F2−→ |α3〉
F3−→ |α4〉 · · · |α2k−1〉

F2k−1−−−−→ |α2k〉
F2k−−→ |α1〉. (34)

The path may break at some point because it goes outside of the full Hilbert space or

violates the Pauli principle. For a successful path starting with |α1〉, its contribution to

the local trace is

Trα1
=

∑
{Γα1 ···Γα2k

}

〈Γα1
|T2k+1|Γα1

〉〈Γα1
|F2k|Γα2k

〉〈Γα2k
|T2k|Γα2k

〉 · · ·

〈Γα2 |F1|Γα1〉〈Γα1 |T1|Γα1〉, (35)

where {Γαi} are the eigenstates of subspace αi. Thus, the final local trace should be

ωd(C) =
∑
i

Trαi . (36)

As a result, the original 4k+1 matrix-matrix multiplications with large dimension reduces

to several times 4k + 1 matrix-matrix multiplications with much smaller dimensions,

resulting in a huge speedup.

In our codes, we implemented several GQNs schemes for different types of local Hamil-

tonians Hloc, as summarized in Table 1. For Hloc without SOC, we have two choices:

(1) with Slater parameterized Coulomb interaction matrix, we use the total occupation

number N , the z component of total spin Sz as GQNs; (2) with Kanamori parameterized
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Table 1: The GQNs supports for various types of local Hamiltonians Hloc.

GQNs Kanamori-U Slater-U SOC

N,Sz Yes Yes No

N,Sz, PS Yes No No

N, Jz Yes Yes Yes

N Yes Yes Yes

Table 2: The total number of subspaces N , maximum and mean dimensions of subspaces for different

GQNs schemes and multi-orbital models.

2-band 3-band 5-band 7-band

GQNs N/max/mean N/max/mean N/max/mean N/max/mean

N,Sz 9/4/1.78 16/9/4.00 36/100/28.44 64/1225/256.00

N,Sz, PS 14/2/1.14 44/3/1.45 352/10/2.91 2368/35/6.92

N, Jz - 26/5/2.46 96/37/10.67 246/327/66.60

N 5/6/3.20 7/20/9.14 11/252/93.09 15/3432/1092.27

Coulomb interaction matrix, besides N and Sz, we can use another powerful GQN, the

so-called PS number [32]. It is defined as,

PS =

Norb∑
α=1

(nα↑ − nα↓)2 × 2α, (37)

where α is the orbital index, {↑, ↓} is spin index, nα↑ and nα↓ are the orbital occupancy

numbers. The PS number labels the occupation number basis with the same singly

occupied orbitals. With its help, the dimensions of the subspaces become very small,

such that we can treat 5-band Kanamori parameterized interaction systems efficiently

without any approximations. For Hloc with SOC, we can use the total occupancy number

N and the z component of total angular momentum Jz as GQNs. We summarize the total

number of subspaces, maximum and mean dimensions of subspaces for different GQNs

schemes and multi-orbital impurity models in Table. 2. Obviously, using these GQNs can

largely reduce the dimension of the F -matrix, and make accurate DMFT calculations for

complex electronic systems (such as the d- and f -electron materials) possible.
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3.5. Truncation approximation

As discussed in Sec. 3.4, although we have used GQNs to split the full Hilbert space

with very large dimension into blocks with smaller dimensions [for cases such as 7-band

systems with GQNs (N , Jz) and 5-band systems with GQN (N)], the dimensions of

some blocks are still too large and the number of blocks is too high, so that it is still very

expensive to evaluate the local trace. K. Haule proposed in Ref. [27] to discard some

high-energy states because they are rarely visited. For example, for 7-band system with

only 1 electron (like Ce metal), only states with occupancy N = 0, 1, 2 will be frequently

visited, and states with occupancy N > 2 can be truncated completely to reduce the large

Hilbert space to a very small one. Of course, this truncation approximation may cause

some bias because a frequently visited state may be accessed via an infrequently visited

state. Therefore, one should be cautious when adopting the truncation approximation,

and for example run some convergence tests.

Currently, we adopted two truncation schemes in our codes. The first scheme relies

on the cut-off of the occupation number. We just keep those states whose occupation

numbers are close to the nominal valence and skip the other states, as shown in the

above Ce metal example. This scheme is quite robust if the charge fluctuations are small

enough, such as in the case of a Mott insulating phase. Another scheme is to dynamically

truncate the states with very low probability based on statistics which is recorded during

the Monte Carlo sampling. This scheme is not very stable, so one needs to use it with

caution.

3.6. Lazy trace evaluation

The diagrammatic Monte Carlo sampling algorithm consists of the following steps:

(1) Propose an update for the current diagrammatic configuration. (2) Calculate the

acceptance probability p according to the Metropolis-Hasting algorithm,

p = min

(
1,
A′

A

∣∣∣∣ωcω′c
∣∣∣∣ ∣∣∣∣ωdω′d

∣∣∣∣) , (38)

where, A is the proposal probability for the current update and A′ for the inverse update,

ωc and ω′c are the determinants for the new and old configurations, respectively, and

ωd and ω′d are the local traces for the new and old configurations, respectively. (3)
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Generate a random number r. If p > r, the proposed update is accepted, otherwise it is

rejected. (4) Update the current diagrammatic configuration if the proposed update is

accepted. It turns out that for CT-HYB, p is usually low (1% ∼ 20%), especially in the

low temperature region. On the other hand, the calculation of p involves a costly local

trace evaluation. To avoid wasting computation time when the acceptance probability is

very low, in the subspace algorithm, we implemented the so-called lazy trace evaluation

proposed in Ref. [33].

The basic idea of the lazy trace evaluation is simple. For the proposed Monte Carlo

move, we first generate a random number r. Then, instead of calculating the local trace

from scratch to determine p, we calculate bounds for |Trloc|,

|ωd| = |Trloc| ≤
∑
i

|Tri| ≤
∑
i

Bi, (39)

where Bi ≥ |Tri|. Bi is a product of some chosen matrix norms of T and F matrices:

Bi = C ‖T2k+1‖ ‖F2k‖ ‖T2k‖ · · · ‖F1‖ ‖T1‖ ≥ |Tr(T2k+1F2kT2k · · ·F1T1)| , (40)

where C is a parameter depending on the specific type of matrix norm, and ‖·‖ denotes

a matrix norm. If Tri′ denotes the exact traces of some subspaces, then we have∣∣∣∣∣|Trloc| −
∑
i′

|Tri′ |

∣∣∣∣∣ ≤∑
i 6=i′

Bi. (41)

Thus, we can determine the upper pmax and lower pmin bounds of p as

pmax = R

∑
i′

|Tri′ |+
∑
i 6=i′

Bi

 ,

pmin = R

∑
i′

|Tri′ | −
∑
i 6=i′

Bi

 ,

(42)

where R = A′

A

∣∣∣ωcω′c ∣∣∣ ∣∣∣ 1
ω′d

∣∣∣. If r > pmax, we reject this move immediately. If r < pmin,

we accept the move and calculate the determinant and local trace from scratch. If

pmin < r < pmax, we refine the bounds by calculating the local trace of one more subspace

Tri until we can reject or accept the move. The calculation of these bounds involves only

simple linear algebra calculations of matrix norms which cost little computation time,

and one refining operation involves only one subspace trace evaluation. On average, it

saves a lot of computation time, as confirmed by our benchmarks.
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Figure 1: Illustration of the divide-and-conquer algorithm. The imaginary time interval [0, β) is split

into four parts with equal length by vertical dashed lines. The open (filled) circles mean creation

(annihilation) operators. The color is used to distinguish different flavors. It shows that a creation

operator is inserted into the B part, while a annihilation operator is inserted into the D part.

3.7. Divide-and-conquer and sparse matrix tricks

The Monte Carlo updates, such as inserting (removing) a pair of creation and anni-

hilation operators, usually modify the diagrammatic configuration locally. Based on this

fact, we implemented a divide-and-conquer algorithm to speed up the trace evaluation.

As illustrated in Fig. 1, we divide the imaginary time interval [0, β) into a few parts with

equal length. For each part, there will be zero or nonzero fermion operators, and we

save their matrix products when evaluating the local trace in the beginning. In the next

Monte Carlo sampling, we first determine which parts may be modified or influenced,

and then for these parts we recalculate the matrix products from scratch and save them

again. For the unchanged parts, we will leave them alone. Finally, we will multiply the

contributions of all parts to obtain the final local trace. By using this divide-and-conquer

trick, we can avoid redundant computations and speed up the calculation of the accep-

tance probability p. This trick can be combined with the GQNs algorithm and lazy trace

evaluation to achieve a further speedup.

If direct matrix-matrix multiplications are used when evaluating the local trace, the

F -matrix must be very sparse. Thus, we can convert them into sparse matrices in
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compressed sparse row (CSR) format, and then the sparse matrix multiplication can be

applied to obtain a significant speedup.

3.8. Random number generators

Fast, reliable, and long period pseudo-random number generators are a key factor

for Monte Carlo simulations. Currently, the most popular random number generator

is the Mersenne Twister which was developed by Matsumoto and Nishimura [43]. Its

name derives from the fact that its period length is chosen to be a Mersenne prime. In

the iQIST software package, we implemented the commonly used version of Mersenne

Twister, MT19937. It has a very long period of 219937 − 1.

The Mersenne Twister is a bit slow by today’s standards. So in 2006, a variant

of Mersenne Twister, the SIMD-oriented Fast Mersenne Twister (SFMT) was intro-

duced [44]. It was designed to be fast when it runs on 128-bit SIMD. It is almost twice

as fast as the original Mersenne Twister and has better statistics properties. We also

implemented it in the iQIST software package, and use it as the default random number

generator.

3.9. Parallelization

All of the CT-HYB impurity solvers in the iQIST software package are parallelized by

MPI. The strategy is very simple. In the beginning, we launch n processes simultaneously.

The master process is responsible for reading input data and configuration parameters,

and broadcasts them among the child processes. And then each child process will perform

Monte Carlo samplings and measure physical observables independently. After all the

processes finish their jobs, the master process will collect the measured quantities from

all the processes and average them to obtain the final results. Apart from that, no

additional inter-process communication is needed. Thus, we can anticipate that the

parallel efficiency will be very good, and near linear speedups are possible, as long as

the number of thermalization steps is small compared to the total number of Monte

Carlo steps. In practical calculations, we usually fix the number of Monte Carlo steps

Nsweep done by each process, and launch as many processes as possible. Given that the

number of processes is Nproc, then the total number of Monte Carlo samplings should
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System Layer

Service Layer

Component Layer

Interface Layer

MPI OpenMP Math Library

CSSL CSML

GARDENIA LAVENDER PANSY

FORTRAN/PYTHON API

Operating System

Figure 2: The hierarchical structure of the iQIST software package. Note that in the component layer,

not all of the components are listed due to space limitations. See the main text for detailed explanations.

be NprocNsweep. Naturally, the more processes we use, the more accurate data we can

obtain.

For some specific tasks, such as the measurement of two-particle quantities, fine-

grained parallelism is necessary. Thus, we further parallelized them with the OpenMP

multi-thread technology. So, in order to attain ideal speedup, we have to carefully choose

suitable numbers of MPI processes and OpenMP threads.

4. Features

In this section, we will introduce the software architecture and component framework

of iQIST. The major features of its components are presented in detail.

4.1. Software architecture

To solve a quantum impurity model is not a straightforward job. Besides the necessary

quantum impurity solvers, we need some auxiliary programs or tools. The iQIST is an all-
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Figure 3: Schematic picture for the iQIST’s components. Components on the LHS are the CT-HYB

solvers, JASMINE is the atomic eigenvalue solver, DAISY is a HF-QMC solver, and HIBISCUS contains the

other pre- and post-processing tools.

in-one software package, which can be used to solve a broad range of quantum impurity

problems. It is a collection of various codes and scripts whose core components contain

about 120000 lines of code.

The software architecture of iQIST is slightly involved. In Fig. 2, we use a layer

model to illustrate it. The bottom layer is the operating system (OS). In principle,

the iQIST is OS-independent. It can run properly on top of Unix/Linux, Mac OS X,

FreeBSD, and Windows. The second layer is the system layer, which contains highly

optimized linear algebra math libraries (such as BLAS and LAPACK) and parallelism

supports (such as MPI and OpenMP). The third layer is the service layer. In this
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layer, we implemented some commonly used modules and subroutines. They are called

common service subroutine library (CSSL) and common service module library (CSML),

respectively. They provide a useful interface between the system layer and the component

layer and facilitate the development of core components. The features of CSSL and CSML

include basic data structures (stack and linked list), random number generators, sparse

matrix manipulations, linear algebra operations, string processing, linear interpolation,

numerical integration, fast Fourier transformation (FFT), etc.

The core part of iQIST is in the fourth layer – the component layer – which con-

tains various impurity solvers and auxiliary tools as shown in Fig. 3. At present, iQIST

contains ten different components. They are AZALEA, GARDENIA, NARCISSUS, BEGONIA,

LAVENDER, PANSY, MANJUSHAKA, DAISY, JASMINE, and HIBISCUS. Here, AZALEA, GARDENIA,

NARCISSUS, BEGONIA, LAVENDER, PANSY, and MANJUSHAKA are all CT-HYB impurity solver

components (as shown in the LHS of Fig. 3), and DAISY is a HF-QMC impurity solver

component. JASMINE is an atomic eigenvalue solver. HIBISCUS is a collection of several

pre- and post-processing tools, including the maximum entropy method, stochastic ana-

lytical continuation, Padé approximation, and Kramers-Kronig transformation, etc. For

more details about these components, please consult the following sections.

The top layer is the interface layer or user layer. On the one hand, we can execute

iQIST’s components directly as usual. On the other hand, we can also invoke iQIST’s

components from other languages. The role of iQIST’s components becomes a library

or subroutine. To achieve this goal, in the interface layer, we offer the Fortran/Python

language bindings for most of the iQIST components, so that we can develop our own

codes on top of iQIST and consider it as a computational engine in black box.

4.2. CT-HYB impurity solvers

As mentioned before, the iQIST software package contains seven CT-HYB impurity

solvers (as schematically shown in Fig. 3). In this subsection, in order to help the users to

choose a suitable CT-HYB impurity solver, we briefly discuss their main features, pros,

and cons. The main results are also summarized in Tab. 3-6 for a quick query.

When the Coulomb interaction term in the local Hamiltonian Hloc is of density-

density type, Hloc becomes a diagonal matrix in the occupation number basis. In this

24



Table 3: The models supported by various CT-HYB impurity solvers in the iQIST software package. In

this and the following tables, the CT-HYB impurity solvers are abbreviated using the first capital letter

of their names. For example, A denotes the AZALEA component.

Models CT-HYB

Density-density interaction A, G, N, B, L, P, M

General Coulomb interaction (Slater or Kanamori schemes) B, L, P, M

Spin-orbit coupling interaction B, L, P, M

Crystal field splitting A, G, N, B, L, P, M

Hubbard-Holstein model N

Frequency-dependent (retarded) interaction N

Table 4: The measurement tricks used by various CT-HYB impurity solvers in the iQIST software

package.

Measurement tricks CT-HYB

Orthogonal polynomial representation (Legendre and Chebyshev types) G, N, L, M

Improved estimator for self-energy and vertex functions G, N

case, the CT-HYB impurity solver is extremely efficient if the so-called segment pic-

ture (or segment representation) [1, 25] is adopted. Thus, we implemented the segment

algorithm in the AZALEA, GARDENIA, and NARCISSUS components.

In the AZALEA component, we only implemented the basic segment algorithm and very

limited physical observables are measured. It is the simplest and the most efficient code.

In fact, it is the development prototype of the other CT-HYB components, and usually

used to test some experimental features. In the GARDENIA component, we add more

features on the basis of the AZALEA component. For example, we can use the orthogonal

polynomial technique to improve the numerical accuracy and suppress stochastic noise in

the Green’s function [29]. The self-energy function can be measured with the improved

estimator method [30, 31]. More single-particle and two-particle correlation functions are

measured. Though GARDENIA is much more powerful than AZALEA, it is a bit less efficient.

The features of the NARCISSUS component are almost the same as those of the GARDENIA

component. In addition, it can be used to deal with dynamically screened interactions [9,
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Table 5: The trace evaluation algorithms supported by various CT-HYB impurity solvers in the iQIST

software package.

Trace algorithms CT-HYB

Segment representation algorithm A, G, N

Divide-and-conquer algorithm B, L, P, M

Sparse matrix multiplication B, L

Good quantum numbers P, M

Skip-lists trick M

Lazy trace evaluation M

Dynamical truncation approximation M

45]. In other words, the Coulomb interaction U need not to be a static value any

more, but can be frequency-dependent. Thus, it is used for example in extended-DMFT

calculations [46]. Note that since the Hubbard-Holstein model can be mapped in DMFT

onto a dynamical Anderson impurity model [47], it can be solved using the NARCISSUS

component as well.

When the local Hamiltonian Hloc contains general Coulomb interaction terms, there

is no simple expression for the ωd(Cn) and the segment representation is not applicable

any more. At that time, the general matrix formulation [26, 27], which is implemented

in the BEGONIA, LAVENDER, PANSY, and MANJUSHAKA components, should be used. Each

of these components has its own features and targets specific systems.

In the BEGONIA component, we implemented the direct matrix-matrix multiplications

algorithm. We adopted the divide-and-conquer scheme and sparse matrix technique to

speed up the calculation. This component can be used to deal with impurity models with

up to 3 bands with fairly good efficiency. However, it is not suitable for 5- and 7-band

systems. In the LAVENDER component, we implemented all the same algorithms as in the

BEGONIA component. Besides, we implemented the orthogonal polynomial representation

to improve the measurement quality of physical quantities. Some two-particle quantities

are also measured. This component should also only be used to conduct calculations

for 1 ∼ 3 bands systems. But it can produce measurements of very high quality with

small additional cost. In the PANSY component, we exploited the symmetries of Hloc
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Table 6: The observables measured by various CT-HYB impurity solvers in the iQIST software package.

Physical observables CT-HYB

Single-particle Green’s function G(τ) A, G, N, B, L, P, M

Single-particle Green’s function G(iωn) A, G, N, B, L, P, M

Two-particle correlation function χ(ω, ω′, ν) G, N, L, M

Local irreducible vertex function Γ(ω, ω′, ν) G, N, L, M

Pair susceptibility Γpp(ω, ω′, ν) G, N, L, M

Self-energy function Σ(iωn) A, G, N, B, L, P, M

Histogram of perturbation expansion order A, G, N, B, L, P, M

Kinetic and potential energies A, G, N, B, L, P, M

(Double) occupation numbers, magnetic moment A, G, N, B, L, P, M

Atomic state probability A, G, N, B, L, P, M

Spin-spin correlation function G, N

Orbital-orbital correlation function G, N

Autocorrelation function and autocorrelation time G, N, L, M

and applied the GQNs trick to accelerate the evaluation of local trace. This algorithm

is general and doesn’t depend on any details of the GQNs, so it can support all the

GQNs schemes which fulfill the conditions discussed in Sec. 3.4. We also adopted the

divide-and-conquer algorithm to speed it up further. This component can be used to

study various impurity models ranging from 1-band to 5-band with fairly good efficiency.

However, it is still not suitable for 7-band models. In the MANJUSHAKA component, we

implemented all the same algorithms as the PANSY component. Besides, we implemented

the lazy trace evaluation [33] to speed up the Monte Carlo sampling process. It can

gain quite high efficiency, and is extremely useful in the low temperature region. We

also implemented a smart algorithm to truncate some high-energy states dynamically

in the Hilbert space of Hloc to speed up the trace evaluation further. This algorithm

is very important and efficient (in many situations it is necessary) for dealing with 7-

band systems. We implemented the orthogonal polynomial representation to improve the

measurements of key observables as well. By using all of these tricks, the computational
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efficiency of the MANJUSHAKA component for multi-orbital impurity models with general

Coulomb interaction is very high. We believe that it can be used to study most quantum

impurity systems ranging from 1-band to 7-band.

4.3. Atomic eigenvalue solver

When the Coulomb interaction is general in the local Hamiltonian Hloc, as discussed

above, we have to diagonalize Hloc in advance to obtain its eigenvalues, eigenvectors, and

the F -matrix. In general, the local Hamiltonian is defined as

Hloc = Hint +Hcf +Hsoc, (43)

where Hint means the Coulomb interaction term, Hcf the CF splitting term, and Hsoc

the SOC interaction. The JASMINE component is used to solve this Hamiltonian and

generate necessary inputs for some CT-HYB impurity solvers (i.e., BEGONIA, LAVENDER,

PANSY, and MANJUSHAKA components).

The JASMINE component will build Hloc in the Fock representation at first. For the

Coulomb interaction term Hint, both Kanamori parameterized and Slater parameterized

forms are supported. In other words, we can use U and J , or Slater integrals F k to define

the Coulomb interaction matrix as we wish. For the CF splitting term Hcf, both diagonal

and non-diagonal elements are accepted. The SOC term Hsoc is defined as follows,

Hsoc = λ
∑
i

~li ·~si, (44)

where λ is the strength of the SOC. Note that the SOC term can only be activated for

the 3-, 5-, and 7-band systems.

Next, the JASMINE component will diagonalize Hloc to get all eigenvalues and eigen-

vectors. There are two running modes for JASMINE. (1) It diagonalizes Hloc in the full

Hilbert space directly to obtain the eigenvalues Eα and eigenvectors Γα, then the F -

matrix is built from the eigenvectors,

(Fi)α,β = 〈Γα|Fi|Γβ〉, (45)

where i is the flavor index. The eigenvalues and F -matrix will be fed into the BEGONIA

and LAVENDER components as necessary input data. (2) It diagonalizes each subspace of
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Hloc according to the selected GQNs. Currently, four GQNs schemes for various types

of Hloc are supported, which are summarized in Table 1. JASMINE also builds indices to

record the evolution sequence depicted in Eq. (33). According to the indices, it builds

the F -matrix between two different subspaces. The eigenvalues, the indices, and the F -

matrix will be collected and written into an external file (atom.cix), which will be read

by the PANSY and MANJUSHAKA components.

Apart from this, the JASMINE component will also generate the matrix elements of

some physical operators, such as ~L2, Lz, ~S
2, Sz, ~J2, and Jz, etc. They can be used

by the other post-processing codes to analyze the averaged expectation value of these

operators.

4.4. Auxiliary tools

In the HIBISCUS component, many auxiliary tools are provided to deal with the

output data of the CT-HYB impurity solvers. Here we briefly describe some of these

tools:

Maximum entropy method

In the Monte Carlo community, the maximum entropy method [48] is often used to

extract the spectral function A(ω) from the imaginary time Green’s function G(τ). Thus,

in the HIBISCUS component, we implemented the standard maximum entropy algorithm.

In the Extended-DMFT calculations, sometimes we have to perform an analytical contin-

uation for the retarded interaction function U(iν) to obtain U(ν) [49]. So we developed

a modified version of the maximum entropy method to enable this calculation.

Stochastic analytical continuation

An alternative way to extract A(ω) from G(τ) is the stochastic analytical continua-

tion [50]. Unlike the maximum entropy method, the stochastic analytical continuation

does not depend on any a priori parameters. It has been argued that the stochastic

analytical continuation can produce more accurate spectral functions with more subtle

structures. In the HIBISCUS component, we also implemented the stochastic analytical

continuation which can be viewed as a useful complementary procedure to the maximum

entropy method. Since the stochastic analytical continuation is computationally much

heavier than the maximum entropy method, we parallelized it with MPI and OpenMP.

Kramers-Kronig transformation
29



Once the analytical continuation is finished, we can obtain the spectral function A(ω)

and the imaginary part of the real-frequency Green’s function =G(ω),

A(ω) = −=G(ω)

π
. (46)

From the well-known Kramers-Kronig transformation, the real part of G(ω) can be de-

termined as well:

<G(ω) = − 1

π

∫ ∞
−∞

dω′
=G(ω)

ω − ω′
. (47)

In the HIBISCUS component, we offer a utility program to do this job.

Analytical continuation for the self-energy function: Padé approximation

To calculate real physical quantities, such as the optical conductivity, Seebeck coef-

ficient, electrical resistivity, etc., the self-energy function on the real axis is an essential

input. With the Padé approximation [51], we can convert the self-energy function from

the Matsubara frequency to the real frequency axis. We implemented the Padé approxi-

mation for Σ(iωn) in the HIBISCUS component.

Analytical continuation for the self-energy function: Gaussian polynomial fitting

The calculated results for the self-energy function on the real axis using the Padé

approximation strongly depend on the numerical accuracy of the input self-energy data.

However, the CT-HYB/DMFT calculations usually yield a Matsubara self-energy func-

tion with significant noise [52]. In this case, the Padé approximation does not work so

well. To overcome this problem, K. Haule et al. [38] suggested to split the Matsubara self-

energy function into a low-frequency part and a high-frequency tail. The low-frequency

part is fitted by some sort of model functions which depends on whether the system is

metallic or insulating, and the high-frequency part is fitted by modified Gaussian poly-

nomials. It was shown that their trick works quite well even when the original self-energy

function is noisy, and is superior to the Padé approximation in most cases. Thus, in the

HIBISCUS component, we also implemented this algorithm. It has broad applications in

the context of LDA + DMFT calculations [3].

4.5. Application programming interface

We can not only execute the components of the iQIST software package directly, but

also invoke them from external programs. To achieve this, we provide simple application
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programming interfaces (APIs) for most of the components in the iQIST software package

for the Fortran and Python languages. With these well-defined and easy-to-use APIs,

one can easily set up, start, and stop the CT-HYB impurity solvers. For example, one

can use the following Python script fragment to start the CT-HYB impurity solver:

from mpi4py import MPI # import mpi support

from pyiqist import api as ctqmc # import python api for iQIST

...

comm = MPI.COMM_WORLD # get the mpi communicator

ctqmc.init_ctqmc(comm.rank, comm.size) # init. ctqmc impurity solver

ctqmc.exec_ctqmc(1) # exec. ctqmc impurity solver

ctqmc.stop_ctqmc() # stop ctqmc impurity solver

When the computations are finished, one can also collect and analyze the calculated

results with Python scripts. Using these APIs, we have more freedom to design and

implement very complex computational procedures. Please see Sec. 6.4 for more details.

5. Installation and usage

In this section, we will explain how to install and use the iQIST software package.

5.1. Get iQIST

The iQIST is an open source free software package. We release it under the GNU

General Public Licence 3.0 (GPL). The readers who are interested in it can write a letter

to the authors to request an electronic copy of the newest version of iQIST, or they can

download it directly from the public code repository:

http://bitbucket.org/huangli712/iqist.

5.2. Build iQIST

In order to build and install iQIST sucessfully, a Fortran 90 compiler (MPI-enabled),

BLAS, and LAPACK linear algebra libraries are necessary. The components in iQIST

can be successfully compiled using a recent Intel Fortran compiler. Most of the MPI

implementations, such as MPICH, MVAPICH, OpenMPI and Intel MPI are compatible
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with iQIST. As for the BLAS implementation, we strongly recommend OpenBLAS. For

the LAPACK, the Intel Math Kernel Library is undoubtedly a good candidate. Of course,

it is also possible to use the linear algebra library provided by the operating system, for

example, the vecLib Framework in the Mac OS X system. Some post-processing scripts

contained in the HIBISCUS component are developed using Python. In order to execute

these scripts or use the Python binding for iQIST, one should ensure that Python 2.x

or 3.x is installed. Furthermore, the latest numpy, scipy, and f2py packages are also

necessary.

The downloaded iQIST software package is likely a compressed file with zip or tar.gz

suffix. One should uncompress it at first:

$ tar xvfz iqist.tar.gz

where $ is the command line prompt. Then go to the iqist/src/build directory (in the

following we just assume the top directory for iQIST software package is iqist) and edit

the make.sys file to configure the compiling environment. One must set up the Fortran

compiler, BLAS and LAPACK libraries manually:

$ cd iqist/src/build

$ editor make.sys

Once the compiling environment is configured, please type the following command in the

current directory (iqist/src/build) to compile iQIST:

$ make all

After a few minutes (depending on the performance of compiling platform), if there are

no error messages, all of the iQIST components are successfully compiled.

Note that what you obtain are a few standalone applications. You can execute them

in the terminal directly. If you want to compile them to a library, please edit the make.sys

file again to active the API and MPY flags, and then re-compile the iQIST:

$ editor make.sys

$ make clean (this step is optional)

$ make lib
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At this time the libctqmc.a is generated. Then you can link it with your own Fortran

programs. If you want to generate the Python binding for iQIST, please change the

current directory to iqist/src/api:

$ cd ../api

and then use the following command to build pyiqist.so which is a valid Python module:

$ make pyiqist

5.3. Setup iQIST

Here we assume that the iQIST is built properly. Next we have to do one more step

to finalize the installation. Please go to the iqist/bin directory and run the setup.sh:

$ cd iqist/bin

$ ./setup.sh

If everything is OK, all of the executable programs, libraries, scripts, and Python modules

will be collected and copied into the iqist/bin directory. Please add this directory into

the system environment variables PATH and PYTHONPATH. Now the iQIST is ready

for use.

5.4. Use iQIST

(i) At first, since there are several CT-HYB impurity solvers in the package and their

features and efficiencies are somewhat different, it is the user’s responsibility to choose

suitable CT-HYB components to deal with the impurity problem at hand. (ii) Second,

the iQIST is in essence a computational engine, so the users have to prepare scripts or

programs to execute the selected CT-HYB impurity solver directly or to call it using

the APIs. For example, if the users want to conduct CT-HYB/DMFT calculations, they

must implement the DMFT self-consistent equation by themselves (The iQIST software

package also provide a mini DMFT self-consistent engine for the Hubbard model on the

Bethe lattice). (iii) Third, an important task is to prepare proper input data for the

selected CT-HYB impurity solver. The optional input for the CT-HYB impurity solver

is the hybridization function [∆(iωn)], impurity level (Eαβ), interaction parameters (U ,

J , and µ), etc. If the users do not feed these data to the impurity solver, it will use the
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default settings automatically. Specifically, if the Coulomb interaction matrix is general,

one should use the JASMINE component to diagonalize the local atomic problem at first

to generate the necessary eigenvalues and eigenvectors. (iv) Fourth, execute the CT-

HYB impurity solver. (v) Finally, when the calculations are finished, one can use the

tools contained in the HIBISCUS component to post-process the output data, such as the

imaginary-time Green’s function G(τ), Matsubara self-energy function Σ(iωn), and other

physical observables. For more details, please refer to the user manual of iQIST.

6. Examples

In the last few years, the iQIST software package has been successfully used in

many projects, such as the study of the pressure-driven orbital-selective Mott metal-

insulator transition in cubic CoO [53], the metal-insulator transition in a three-band

Hubbard model with or without SOC [54, 55], the non-Fermi-liquid behavior in cubic

phase BaRuO3 [56], dynamical screening effects in the electronic structure of the strongly

correlated metal SrVO3 and local two-particle vertex functions [57], the electronic exci-

tation spectra of the five-orbital Anderson impurity model [58], an extended dynamical

mean-field study of the 2D/3D Hubbard model with long range interactions [49], elec-

tronic structures of the topological crystalline Kondo insulators YbB6 and YbB12 [59],

and superconducting instabilities of a multi-orbital system with strong SOC (doped

Sr2IrO4) [60, 61], etc. In order to illustrate the basic usage of the iQIST software pack-

age, we describe here several easily repeatable and simple applications of it. The testing

platform is a Macbook laptop (CPU: Intel Core i7 2.3 GHz, Memory: 8 GB DDR3). We

compile the iQIST software package using Intel Fortran Compiler 13.0.0 and the linear

algebra library is Intel MKL.

6.1. Single-band Hubbard model

Here we consider the simplest case – the single-band half-filled Hubbard model on the

Bethe lattice. The model parameters are: Coulomb interaction U = 6.0, chemical po-

tential µ = 3.0, system temperature T = 0.1, hopping parameter t = 0.5. As mentioned

before, we have implemented the DMFT self-consistency condition for the Bethe lattice

(∆ = t2G) [2], so we use iQIST to solve this model directly. The input file is as follows:
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Figure 4: Imaginary part of the impurity Green’s function =G(iωn) of the single-band Hubbard model

solved by DMFT. The model parameters are U = 6.0, µ = 3.0, β = 10.0, t = 0.5.

# file name: solver.ctqmc.in

isscf = 2 ! control the running mode, self-consistent calculation

isbin = 1 ! control the running mode, no data binning

Uc = 6.0 ! Coulomb interaction

mune = 3.0 ! chemical potential

beta = 10.0 ! inversion of temperature

Note that the filename for the input file must be solver.ctqmc.in. Anything after the #

or ! character will be considered as comments and be skipped completely. Blank lines

or even a blank solver.ctqmc.in file is valid. We choose the ‘key = value’ or ‘key : value’

format to set up the computational parameters. We do not need to set up all of the

computational parameters in the solver.ctqmc.in file. They all have default values. As

for the detailed explanations for the file format of solver.ctqmc.in and accurate definitions
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of all input parameters, please refer to the corresponding user manual encapsulated in

the iQIST software package.

Now we choose the AZALEA component to solve this model. In order to reduce the

numerical noise, 4 MPI processes are used:

$ mpiexec -n 4 iqist/bin/azalea.x

it takes about 2 minutes to complete this task. The calculated impurity Green’s function

(stored in the solver.grn.dat file), which exhibits clear insulating behavior, is shown in

Fig. 4. Finally, we should emphasize that the GARDENIA and NARCISSUS components are

also applicable. The only thing we have to do is use gardenia.x or narcissus.x to replace

azalea.x in the above command.

6.2. Multiband Hubbard model with general Coulomb interaction

Next we consider a two-band Hubbard model with rotationally invariant interaction

on the Bethe lattice. The model parameters are: Coulomb interaction U = 6.0, Hund’s

exchange J = 1.0, chemical potential µ = 6.5, system temperature T = 0.1, hopping

parameter t = 0.5.

Since the interaction term is not of density-density type anymore, we have to use

the general matrix version of the CT-HYB impurity solver, i.e., the BEGONIA, LAVANDER,

PANSY, or MANJUSHAKA component to solve it. The atom.cix file which contains the

eigenvalues and eigenvectors of local atomic problem, are nessary for these impurity

solvers. So we have to generate the atom.cix file using the JASMINE component at first.

The input file for the JASMINE must be atom.config.in. The required atom.config.in file

is as follows:

# file name: atom.config.in

nband : 2 # number of bands

norbs : 4 # number of orbitals (include spin index)

ncfgs : 16 # number of atomic configurations (= 2**norbs)

nmini : 0 # minmum occupancy

nmaxi : 4 # maximum occupancy

Uc : 6.00 # intraorbital Coulomb interaction
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Figure 5: Imaginary part of the impurity Green’s function =G(iωn) of the two-band Hubbard model

solved by DMFT. The model parameters are U = 6.0, Jz = Js = Jp = 1.0, µ = 6.5, β = 10.0, t = 0.5.

Uv : 4.00 # interorbital Coulomb interaction

Jz : 1.00 # z component of Hund’s exchange interaction

Js : 1.00 # spin-flip

Jp : 1.00 # pair-hopping

We execute the JASMINE code in the command line:

$ iqist/bin/jasmine.x (the jasmine code is not parallelized)

The key output files is atom.cix. Please do not modify it manually.

Here we select the BEGOINA component to solve this model. The corresponding input

file looks as follows:

# file name: solver.ctqmc.in

isscf : 2 ! control the running mode, self-consistent calculation
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isbin : 1 ! control the running mode, no data binning

nband : 2 ! number of bands

norbs : 4 ! number of orbitals (include spin index)

ncfgs : 16 ! number of atomic configurations (= 2**norbs)

mune : 6.50 ! chemical potential for half-filling case

beta : 10.0 ! inversion of temperature

You can see that in the solver.ctqmc.in file, the parameters for the Coulomb interaction

and Hund’s exchange interaction are absent. This is because the information about the

local interaction has been included in the atom.cix file already.

Next let’s conduct the calculation using MPI:

$ mpiexec -n 4 iqist/bin/begonia.x

The running time is about 16 minutes. In Fig. 5, the obtained impurity Green’s function

is shown as a reference. In this example, we can use the LAVENDER component as well.

With it we can adopt the orthogonal polynomial algorithm to improve the numerical

accuracy and reduce the data noise.

6.3. Two-particle Green’s function and vertex function

In the previous two examples, DMFT self-consistent calculations are performed. Here

we will show how to use iQIST to perform one-shot calculation to measure the two-

particle Green’s function and vertex function for a given impurity model.

For simplicity, we consider the same model as Sec. 6.1 which was solved using the

AZALEA component already. The converged hybridization function ∆(iωn) is stored in the

solver.hyb.dat file. Please copy it to the current directory and rename it to solver.hyb.in.

Next, we prepare the solver.ctqmc.in file for the CT-HYB impurity solver:

# file name: solver.ctqmc.in

isscf = 1 # control the running mode, one-shot calculation

isbin = 1 # control the running mode, no data binning

isvrt = 8 # calculate two-particle quantities

Uc = 6.0 # Coulomb interaction

mune = 3.0 # chemical potential
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Figure 6: Two-particle quantities of the single-band Hubbard model solved by DMFT. (Top) Two-particle

Green’s function <χ↑↑(ωn, ωn′ , ν = 0). (Bottom) Two-particle vertex function <Γ↑↑(ωn, ωn′ , ν = 0).

The model parameters are U = 6.0, µ = 3.0, β = 10.0, t = 0.5.

beta = 10.0 # inversion of temperature

nbfrq = 1 # number of bosonic frequencies

nffrq = 128 # number of fermionic frequencies

Since we are going to get the two-particle Green’s function χ(ω, ω′, ν) and vertex function

Γ(ω, ω′, ν), the GARDENIA component is the best (the NARCISSUS component is OK, but

it is less efficient than GARDENIA). We then use the following command to invoke it:

$ mpiexec -n 4 iqist/bin/gardenia.x

After about 10 minutes, the calculation is finished. The calculated two-particle quantities
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Figure 7: Imaginary part of the impurity Green’s function =G(iωn) of the single-band Hubbard model

solved by DMFT. The model parameters are µ = U/2, β = 50.0, t = 0.5.

(stored in solver.twop.dat file) are shown in Fig. 6 in which only the real part of the spin-

up-up component is displayed.

6.4. Python API

In the previous examples, we always execute the CT-HYB impurity solver components

directly. However, iQIST provides flexible and powerful APIs for the Fortran and Python

languages. We can use these APIs to develop complex computational programs easily.

In this subsection, we try to use the Python binding of iQIST to build a somewhat com-

plicated DMFT program, and use it to study the classic Mott-Hubbard metal-insulator

transition in the single-band Hubbard model. The model parameters are U = 1.0 ∼ 4.0,

µ = U/2, β = 50.0, t = 0.5.

Here is the full source code of the Python script:
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Figure 8: Histogram of the perturbation expansion order for the single-band Hubbard model solved by

DMFT. The model parameters are µ = U/2, β = 50.0, t = 0.5.

#!/usr/bin/env python

import numpy # import array support

import shutil # import high-level file operation support

from mpi4py import MPI # import mpi support

from u_ctqmc import * # import the writer for solver.ctqmc.in file

from pyiqist import api as ctqmc # import python module for iqist

# get mpi communicator

comm = MPI.COMM_WORLD

# set up the basic parameters and allocate memory
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mfreq = 8193 # number of matsubara frequency points

norbs = 2 # number of orbitals

size_t = mfreq * norbs * norbs

hybf_s = numpy.zeros(size_t, dtype=numpy.complex)

# loop over Coulomb interaction strength: from 1.0 to 4.0

for u in range(1,5):

# build ctqmc input file: solver.ctqmc.in

if comm.rank == 0: # only the master process can do it

p = p_ctqmc_solver(’azalea’) # select impurity solver

p.setp(isscf = 1, isbin = 1) # set up parameters

p.setp(beta = 50.0) # set up parameters

p.setp(Uc = u, mune = u/2.0) # set up parameters

p.write() # write solver.ctqmc.in

del p

comm.Barrier() # mpi barrier

# DMFT self-consistent loop

ctqmc.init_ctqmc(comm.rank, comm.size) # init ctqmc impurity solver

for i in range(20): # number of iterations = 20

ctqmc.exec_ctqmc(i+1) # execute ctqmc impurity solver

grnf = ctqmc.get_grnf(size_t) # get impurity Green’s function

hybf = (0.25*grnf+hybf_s)/2.0 # DMFT self-consistent condition

hybf_s = hybf # update old hybridization function

ctqmc.set_hybf(size_t, hybf) # set up hybridization function

ctqmc.stop_ctqmc() # stop ctqmc impurity solver

comm.Barrier() # mpi barrier

# save calculated results

if comm.rank == 0: # only the master process can do it

shutil.move(’solver.grn.dat’,’solver.grn.dat.’+str(u))
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shutil.move(’solver.hist.dat’,’solver.hist.dat.’+str(u))

In this Python script (dmft.py), the pyiqist module contains the Python binding for

iQIST which is introduced in Sec. 4.5. The u ctqmc module which implements the

p ctqmc solver class is included in the HIBISCUS component and is often used to generate

solver.ctqmc.in file dynamically. The MPI parallelism is fully supported in this script via

the mpi4py module. To run it, please use the following command:

$ mpiexec -n 4 ./dmft.py

It takes about half an hour to finish this job. The calculated results (the solver.grn.dat file

contains the impurity Green’s function, and the solver.hist.dat file contains the histogram

data) are shown in Fig. 7 and Fig. 8, respectively. Clearly, between U = 2.0 and U = 3.0,

a Mott metal-insulator transition induced by electronic interaction occurs. And the

perturbation expansion order of CT-HYB impurity solver decreases with the increment

of interaction strength.

7. Future developments

In this paper, we explained and demonstrated the iQIST software package. iQIST

aims to provide a complete toolkit for solving various quantum impurity systems. At first,

we introduced the basic theory about quantum impurity models and the CT-QMC/CT-

HYB algorithm briefly. And then various optimization tricks and algorithms implemented

in iQIST have been discussed in detail. Following that we reviewed the software archi-

tecture and major features of iQIST. The compiling, setup, and workflow of iQIST were

also illustrated. Finally, several simple examples have been shown to help the readers

master the basic usage of iQIST step by step.

Although proven to be very versatile in applications and efficient in performance, the

iQIST project is still a work in progress and the development will continue. The future

developments of the iQIST project are likely to be along the following directions.

As the study of interacting electronic systems is moving towards treating their cor-

related multi-band nature in a more realistic fashion (5- or 7-bands, SOC included,

competing multi-orbital interactions, etc.), it is important to develop even more efficient

and optimized CT-HYB impurity solvers. An effective way to reduce the average size of
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the matrices used during the calculation is to fully consider the point group symmetry

of the impurity model, which provides more GQNs to the problem. The corresponding

coding work has already been started by some of the authors.

Recent developments in condensed matter theories need to be added into the features

of the iQIST software package. For example, the measurement of entanglement entropy

in realistic correlated fermion systems [62–64] will be considered, with which one will

be able to explore and discovery more symmetry protected topological states and even

interaction-driven topological orders that might exist in nature [65, 66].

The two-particle correlation functions (susceptibilities) contain more information than

the single-particle quantities, but the DMFT formalism is only self-consistent at the

single-particle level. To conduct a calculation which is self-consistent both at the single-

and two-particle levels is the next step in the CT-HYB/DMFT simulations. The DMFT

+ Parquet scheme present in Ref. [60] and [61] is the first step to incorporate correlation

effects at the two-particle level beyond single-site DMFT, but it is only self-consistent at

the two-particle level, and in many occasions only one-shot simulations at the two-particle

level are considered due to numerical difficulties. To be fully self-consistent among single-

and two-particle quantities, one still needs to employ the Schwinger-Dyson equation to

feed the two-particle information back to the single-particle quantities [67, 68]. This will

also be a further development of the iQIST software package.

Instead of using single- and two-particle diagrammatic relations to capture the spatial

correlation effects, one can also develop cluster CT-QMC impurity solvers, such that the

spatial correlations within the cluster can be captured exactly. While in one-band models

and a few two-band models cluster CT-QMC impurity solvers are available [3, 4, 8, 69,

70], generic cluster CT-QMC impurity solvers which take care of both the multi-orbital

interactions within each cluster site and the spatial correlations between the cluster sites

are still missing. This is also an arena for future developments.

In the end, we would like to emphasize that iQIST is an open initiative and the

feedback and contributions from the community are very welcome.
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