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Jamming in Hierarchical Networks
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We study the Biroli-Mezard model for lattice glasses on a number of hierarchical networks. These
networks combine certain lattice-like features with a recursive structure that makes them suitable
for exact renormalization group studies and provide an alternative to the mean-field approach.
In our numerical simulations here, we first explore their equilibrium properties with the Wang-
Landau algorithm. Then, we investigate their dynamical behavior using a grand-canonical annealing
algorithm. We find that the dynamics readily falls out of equilibrium and jams in many of our
networks with certain constraints on the neighborhood occupation imposed by the Biroli-Mezard
model, even in cases where exact results indicate that no ideal glass transition exists. But while we
find that time-scales for the jams diverge, our simulations can not ascertain such a divergence for
a packing fraction distinctly above random close packing. In cases where we allow hopping in our
dynamical simulations, the jams on these networks generally disappear.

I. INTRODUCTION

The jamming transition, as discussed by Liu and Nagel
in 1998 [1], for example, has been the focus of intense
study [2, 3]. A granular disordered system for increas-
ing density can reach a jammed state at which a finite
yield stress develops, or at least extremely long relax-
ation times ensue, similar to the emerging sluggish be-
havior observed when the viscosity of a cooled glassy liq-
uid seemingly diverges. Thus, a jamming transition may
be induced in various ways, such as by increasing density,
decreasing temperature, or/and reducing shear stress [3].
Below the jamming transition, the system stays in long-
lived meta-stable states, and its progression to its cor-
responding equilibrium state entails an extremely slow,
non-Debye relaxation [4–6]. Jamming transitions have
been observed in various types of systems, such as gran-
ular media [7], molecular glasses [8, 9], colloids [10], emul-
sions [11], foams [12, 13], etc [3, 6]. These systems can
behave like stiff solids at a high density with low tem-
perature and small perturbations. In these transitional
processes, the systems can self-organize their own struc-
ture to avoid large fluctuations [12] and to reach a quasi-
stable jammed state, characterized by an extremely slow
evolution to the unjammed equilibrium state. The prop-
erties of those quasi-stable non-equilibrium states as well
as their corresponding equilibrium state is the main focus
of this paper.

The properties of the jamming transition have been
studied extensively [2, 3, 7], but we still lack an essen-
tial understanding of the physics underlying the jammed
state. Theoretical progress has been much slower than
the accumulation of experimental discoveries. One of the
reasons is the scarcity of theoretical microscopic models
to capture the complex jamming process [14, 15]. In re-
cent years, a lattice glass model proposed by Biroli and
Mezard (BM) [16] has been shown as a simple but ade-
quate means to study the jamming process. It is simple
because the model follows specific dynamical rules which
are elementary to implement in both simulations and an-
alytical work. In distinction to kinetically constrained

models such as that due to Kob and Andersen [17], in
which particles are blocked from leaving a position un-
less certain neighborhood conditions are satisfied, BM
embeds geometric frustration merely by preventing the
neighborhood of any particles to consist of more than l
other particles. Beyond that, it proceeds purely thermo-
dynamically. The phase diagram can be reduced to just
one (or both) of two control parameters, chemical poten-
tial and temperature. Either is sufficient to reproduce
a jamming transition which is similar to that observed
in off-lattice systems [16]. Using this model in a mean-
field network (i.e., a regular random graph), Krzakala et

al. find jammed states in Monte Carlo simulations and
a genuine thermodynamical phase transition (ideal glass
transition) in its mean-field analytical solutions [14]. In
other words, the jammed state coincides with an under-
lying equilibrium state that possesses a phase transition
to a glassy state. That raises the prospect that this glass
transition might be the reason for the onset of jamming.
The evidence for such a connection thus far is based on
mean-field models [14, 16, 18], as such a transition is hard
to ascertain for finite-dimensional lattice glasses. Yet, it
remains unclear whether mean-field solutions in disor-
dered systems can provide an adequate conception for
real-world behavior.

In this paper, we propose to use the lattice glass model
BM on hierarchical networks [19], which are networks
with a fixed, lattice-like geometry. They combine a finite-
dimensional lattice backbone with a hierarchy of small-
world links that in themselves impose a high degree of
geometric frustration despite of their regular pattern. In
fact, the recursive nature of the pattern can ultimately
provide analytical solution via the renormalization group
(RG), positioning these networks as sufficiently simple to
solve as well as sufficiently lattice-like to become an al-
ternative to mean-field solutions [20]. Unlike mean-field
models, our network is dominated by many small loops
that are also the hallmark of lattice systems. Our goal is
to find (1) whether the lattice glass model leads to jam-
ming state in hierarchical networks, (2) whether there is
an ideal glass transition underlying the jamming transi-
tion, and (3) whether the local dynamics affect the jam-
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ming process. To our knowledge, these questions have
not been studied in any small-world systems. Our results
can contribute new insights to understand jamming.
We find that BM in these networks can jam, even when

there is certifiably no equilibrium transition; the geomet-
ric frustration that derives from the incommensurability
among the small-world links is sufficient in many cases
to affect jamming. In fact, jamming is most pronounced
for fully exclusive neighborhoods (l = 0). It disappears
for more disordered neighborhoods (l = 1), at least for
our non-regular networks, where the allowance of l = 1
neighbor to be occupied seems to provide the “lubrica-
tion” that averts jams. However, the packing fractions
at which time-scales diverge is virtually indistinguishable
from random close packing within the accuracy of our
simulations.
Mean-field calculations of BM in Ref. [18] predict a

kinetic transition for dynamic rules based on nearest-
neighbor hopping. In our simulations, we find that such
hopping, in addition to the particle exchange with a bath,
can affect a dramatic change in the dynamic behavior and
eliminated jamming in all cases we consider.
This paper is organized as follows. In Sec. II, we de-

scribe the model, the networks, and out numerical sim-
ulations. In Sec. III we discuss the results of our simu-
lations for each network. In Sec. IV we conclude with a
few summary remarks and an outlook for future work.

II. MODEL & METHODS

In this section, we describe the model and the networks
on which we will study its behavior. To benchmark the
equilibrium properties of the model on those networks,
we implement a multi-canonical algorithm due to Wang
and Landau [21, 22]. We further need a grand-canonical
annealing algorithm to study the dynamics of the lattice
glass model on those networks.

A. Lattice glass model

The lattice glass model as defined by Biroli and Mezard
(BM) [16] considers a system of particles on a lattice of N
sites. Each site can carry either xi = 0 or xi = 1 particle,
and the occupation is restricted by a hard, local “density
constraint”: any occupied site (xi = 1) can have at most
l occupied neighbors, where l could range locally from 0
to the total number of its neighbor-sites. In this model,
the jamming is defined thermodynamically by rejecting
the configurations violating the density constraint. Here,
we focus on global density constraints of l = 0 (com-
pletely excluded neighborhood occupation) and l = 1 as
the most generic cases. The system can be described by
the grand canonical partition function

Z(µ) =
∑

allowed {xi}

exp

[

µ
N
∑

i=1

xi

]

, (1)

where the sum is over all the allowed configurations {xi}.
Here, µ is the reduced chemical potential, where we have
chosen units such that the temperature is kBT = 1/β =

1, and
∑N

i=1
xi is the total number of particles in a spe-

cific configuration.
From the grand canonical partition function in Eq. (1),

we can obtain the thermodynamic observables we in-
tend to measure, such as the Landau free energy density
w(µ), the packing fraction ρ(µ), and the entropy density
s [ρ(µ)], as defined in the following equations:

w(µ) = − 1

N
lnZ, (2)

ρ(µ) =
1

N

〈

N
∑

i=1

xi

〉

µ

=
1

N

∂ lnZ

∂µ
,

s(µ) =
1

N

(

1− µ
∂

∂µ

)

lnZ.

B. Hierarchical networks

In our investigations, we use the Hanoi networks [19].
These are small-world networks with a hierarchical, re-
cursive structure that avoid the usual randomness in-
volved in defining an ensemble of networks. Thus, no
additional averages of such an ensemble are required to
obtain scaling properties in thermodynamical limit from
a finite system size, which reduces the computational ef-
fort. Hanoi networks combine a real-world geometry with
a hierarchy of small-world links, as an instructive inter-
mediary between mean-field and finite-dimensional lat-
tice systems, on which potentially exact results can be
found using the renormalization group [20].
We use three Hanoi networks: HN3 is a network with

a regular degree of 3, while HN5 is a similar network
that possesses many extra links such that vertices have
an exponential arrangement of degrees with an average
degree of 5. HNNP is a similar Hanoi network of average
degree of 4, but which is non-planar. Each of them can
be built on a simple backbone of a 1D lattice. The 1D
backbone hasN = 2k+1 (k = 1, 2, 3, · · ·) sites where each
site is numbered from 0 to N . Any site n, 0 ≤ n ≤ N ,
can be defined by two unique integers i and j,

n(i, j) = 2i−1(2j + 1), (3)

where i, 1 ≤ i ≤ k, denotes the level in the hierarchy
and j, 0 ≤ j < 2k−i, labels consecutive sites within each
hierarchy i. Site n = 0 is defined in the highest level k
or, equivalently, is identified with site n = N for peri-
odic boundary conditions. With this setup, we have a
1D backbone of degree 2 for each site and a well-defined
hierarchy on which we can build long-range links recur-
sively in three different ways: HN3 [19] is constructed
by connecting the neighbor sites n(i, 0) ←→ n(i, 1),
n(i, 2) ←→ n(i, 3), n(i, 4) ←→ n(i, 5), and so on and
so forth. For example, in level i = 1, site n(1, 0) = 1 is
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FIG. 1. An example of the first 14 sites of HN3 on a semi-
infinite line.

FIG. 2. Depiction of HN5 (top) and HNNP (bottom), first
introduced in Ref. [23]. Green-shaded lines in HN5 represent
its difference to HN3, which is at its core (dark lines). While
HN3 and HN5 are planar, HNNP is non-planar.

connected to n(1, 1) = 3; site n(1, 2) = 5 is connected to
n(1, 3) = 7; and so on. A initial section of a HN3 network
is given in Fig. 1. As a result, HN3 is a planar network
of regular degree 3.
HN5 [23], as shown in Fig. 2, is an extension based on

HN3, where each site in level i (i ≥ 2, i.e., all even sites) is
further connected to sites that are 2i−1 sites away in both
directions. For example, for the level i = 2 sites (sites
2, 6, 10, · · ·), site 2 is connected to both site 0 and site 4;
site 6 is connected to sites 4 and 8; etc. The resulting
network remains planar but has a hierarchy-dependent
degree, i.e., 1/2 sites have degree 3, 1/4 have degree 5,
1/8 have degree 7, etc. In the limit of N → ∞, this
network has average degree 5.
HNNP [23], also shown in Fig. 2, is constructed from

the same 1D backbone as HN3 and HN5. However, for
site n in level i with even j, it is connected forwards to
site (n + 3 × 2i−1); while site n in level i with odd j is
connected backwards to site (n− 3× 2i−1). Level 1 and
level 2 sites have degree 3, and level 3, 4, 5, · · · sites have
degree 5, 7, 9, · · ·. The HNNP has an average degree of 4
and is non-planar.

C. Wang-Landau Sampling

Wang-Landau sampling [21] is a multi-canonical
method to numerically determine the entire density of
states gn within a single simulation. This method is
based on the fact that a random walk in the configura-
tion space with a probability proportional to the inverse
of the density of states with occupation n, 0 ≤ n ≤ N ,
enforces a flat histogram in gn over all n. Based on this
fact, Wang-Landau sampling keeps modifying the esti-
mated density of states in the random walks over all pos-
sible configurations and can make the density of states
converge to the true value. The update procedure is:

1. Initially, set all unknown density of states {gn =
1} and the histogram {Hn = 0} for all occupa-
tions n, initiate the modification factor f = e1 ≈
2.71828 . . . ;

2. Randomly pick a site i; if it is empty (occu-
pied), add (remove) a particle with a probability

of min
[

1, gn
gn+1

]

(min
[

1, gn
gn−1

]

) while obeying the

rule of the hard local density constraint on having
at most l occupied nearest neighbors of site i;

3. Randomly pick one occupied site and one empty
site; transfer a particle from the occupied site to
the empty, if the density constraint is not violated;

4. Update the Hn and gn of the current state, i.e., set
{Hn = Hn + 1} and {gn = gn × f};

5. Repeat steps 2 to 4 until the sampling reaches a
nearly flat histogram for the Hn, then update the
modification factor f =

√
f and reset {Hn = 0};

6. Stop if f ≤ 1 + 10−8.

Our procedure mostly follows the standard procedure of
Wang-Landau sampling [21], except for step 3. Its pur-
pose is to facilitate the random walk to explore phase
space more broadly and to expedite convergence.
Wang-Landau sampling has been proved as an effec-

tive method to find the density of states [21, 24, 25].
In our study, it can find convergence for system size of
up to N ∼ 103 within a reasonably computational cost.
From the density of states, we can calculate the equilib-
rium thermodynamical properties for the corresponding
system sizes.

D. Grand-Canonical Annealing

In parallel to the equilibrium properties provided by
Wang-Landau sampling, we also implement a form of
simulated annealing [26] to explore the dynamics of the
model and the possibility of jamming, in a process that
is similar to an experiment. Simulated annealing used in
this study follows the standard procedure [27]. The cor-
responding experiment is exchanging particles between
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the network and a reservoir of particles with (dimension-
less) chemical potential µ. In our study, the annealing
speed is not controlled by decreasing temperature (which
we set to β = 1) but by increasing the chemical potential.
The annealing algorithm is:

1. Initially, start with chemical potential µ0 = 0 ;

2. Randomly pick a site n; if it is empty (occu-
pied), add (remove) a particle with a probability
of min [1, exp(µ)] (min [1, exp(−µ)]) while obeying
the rule of the hard local density constraint on hav-
ing at most l occupied nearest neighbors of n;

3. If hopping is allowed, randomly pick one site; only
if it is occupied, randomly pick one of its empty
neighbor(s) and displace the particle if the density
constraint remains satisfied;

4. Increase µ by dµ every 1 Monte Carlo sweep (N
random updates), where dµ/dt (in time-units of
dt = 1) is the annealing schedule and dµ≪ 1;

5. Repeat steps 2 to 4 until µ reaches a certain (large)
chemical potential.

Following the procedure above, the simulated annealing
can reveal whether or not a jamming transition occurs
in the process. Besides that, we can test the effect of
local dynamics [14, 28] by adding a local hopping ran-
dom walk (step 3), i.e., a particle can transfer any of
its empty neighboring sites as long as the constraint re-
mains satisfied. The results are shown and explained in
the following section.

III. RESULTS

To assess the properties of jamming, we first have to
benchmark our systems with the corresponding equilib-
rium behaviors. After that, we discuss the dynamic simu-
lations with the annealing algorithm in reference to these
equilibrium benchmarks.

A. Equilibrium Properties

Wang-Landau sampling, as described in Sec. II C, is
ideally suited for our purpose, since it provides access
directly to the density of states gn as a function of oc-
cupation number n, which yields the partition function
as

Z(µ) =

nmax
∑

n=0

gne
nµ. (4)

All thermodynamic quantities in the equilibrium can
be obtained numerically by summation of the formal
derivates of Z(µ), such as those in Eqs. (2), over all per-
missible occupation numbers 0 ≤ n ≤ nmax < N . (For
all nmax < n ≤ N it is gn = 0.)

TABLE I. Closest packing fractions ρCP found by Wang-
Landau sampling. The values for l = 0 have been previously
obtained with exact RG, the one for HNNP being unique,
with every second, odd site occupied. For l = 1, we also
predict exact fractions with nontrivial entropy densities, see
Fig. 3.

Network l = 0 l = 1

HN3 3/8 [20] 9/16

HN5 1/3 [20] 1/2

HNNP 1/2 1/2
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FIG. 3. Density of states from Wang-Landau sampling at
N = 1024. The green dash-dot vertical line are showing the
closest packing fractions (as shown in Table I) for each system.
Note that only for HNNP at l = 0 there is a unique, crystalline
ground state.

In Fig. 3, we plot the density of states as a function of
the packing fraction, both obtained with Wang-Landau.
It becomes apparent that each model has a simple ra-
tional value for its optimal (µ → ∞) “random” close
packing fraction ρCP = nmax/N . This corresponds to
a random packing in the sense that it has a nontrivial
entropy density due to geometric disorder (imposed by
the lack of translational invariance in the lattice), except
for HNNP at l = 0, which has a unique “crystalline”
packing of every odd site being occupied. While these
values for ρCP have been previously obtained with RG
for l = 0 [20], the simulations predict also strikingly sim-
ple but nontrivial values for l = 1, where exact RG is
likely not possible. These values are listed in Table I.
Wang-Landau sampling converges within a reasonable

time for system sizes smaller than N ≈ 2000 but fails
to converge for larger system size. There may be two
reasons for the lack of convergence: (1) the density of
states is not symmetric as a function of packing fraction,
and this asymmetry requires Wang-Landau to sample the
whole configuration space, which increases the computa-
tional cost dramatically especially for large system sizes;
(2) the lower the density of states of the closest packed
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FIG. 4. Convergence to the thermodynamic limit for finite
system sizes for the example of HN3 with l = 1 using Wang-
Landau sampling. The figures are for the density of states
(left) and the packing fraction (right). The equilibrium pack-
ing fraction ρ(µ) as a function of chemical potential µ is cal-
culated from the density of states according to Eq. (2); it
approaches the closest packing fraction ρCP for 1/µ → 0.
The convergence for other systems is similar or better.
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FIG. 5. Plot of the error in the finite-size packing fraction
in Wang-Landau sampling, |ρWL − ρRG|, as a function of 1/µ
near close packing (µ → ∞) in HN3 at l = 0. Here, RG result
ρRG(µ) from Ref. [20] at system size N = 2500 is taken as the
exact, thermodynamic packing fraction. Relative to ρRG(µ),
the finite-size packing fraction, ρWL(µ), at N = 2k with k =
8, 9, 10 already exhibit quite small and rapidly diminishing
corrections.

state, the harder it is for Monte Carlo sampling to find
its closest packing state because of the hard-density con-
straint. Although Wang-Landau sampling fails for large
system sizes, the results of system size N = 1024 can
still offer an insight to the equilibrium state because the
density of states and the packing fraction exhibit only
small finite-size corrections for increasing N . For exam-
ple, the convergence of HN3 with l = 0 is shown in Fig.4.
Other networks with l = 0, 1 have similar or even better
convergence.

We can further demonstrate the quality of the Wang-
Landau simulations, and appraise their residual finite-
size effects, by comparison with exact results obtained
with the renormalization group (RG) for l = 0 on

HN3 [20]. In Fig. 5, we compare the results for the pack-
ing fraction ρ(µ) as a function of the chemical potential
for Wang-Landau sampling on networks with N = 2k

sites, k = 8 ∼ 10, with those from the exact RG after
500 iterations, corresponding to a system of N = 2500

sites. Despite the much smaller sizes of the Wang-Landau
simulation, its results are barely distinguishable from the
exact result, affirming the Wang-Landau sampling results
as good references for our dynamic simulations, with neg-
ligible finite-size effects.

B. Dynamic Properties

The dynamic simulations of the BM on our networks
uses the grand canonical partition function controlled by
a chemical potential µ that mimics the experimental sit-
uation in a complex fluid or colloid, where particles are
pumped into the larger system (the reservoir) and can
enter the field-of-view through open boundaries inside a
smaller window. For example, this could correspond to
a 2d slice of a 3d colloidal bath used in colloidal tracking
experiments [29]. Since our particles are not energeti-
cally coupled and merely obey hard excluded volume con-
straints, temperature is irrelevant and we can set β = 1,
making the chemical potential dimensionless, βµ → µ.
As we increase µ, the system is more likely to accept more
particles and increase the packing fraction ρ(µ). When
µ is small (or negative), the reservoir and the network
readily reach an equilibrium state with a certain packing
fraction. However, when µ is large, the equilibrium state
defined by the partition function has a packing fraction
close to the close packing ρCP . Because of the density
constraint and the disorder imposed by the hierarchical
network geometry, the system enters into a jam at a den-
sity far from equilibrium packing. As in experiments,
this jammed state remains for an extremely long time,
even when µ is further increased. The ultimate packing
fraction ρ∗ that the systems gets stuck at, in fact, is ever
further from random close packing, the faster the quench
in µ is executed, where dµ

dt
is the quench rate. In this,

our results closely resemble those reported in Ref. [14].

1. Results for HN3

The equilibrium packing fraction and entropy from
Wang-Landau sampling as well as the dynamic results
from simulated annealing for HN3 are shown in Fig. 6.
Based on the analytical results by Boettcher et al. [20],
we can confidently conclude that there is no phase tran-
sition in HN3 with l = 0. Yet, the dynamic simulations
indicate that the system jams nonetheless. The system
jams even further from equilibrium for the case of l = 1.
Here, RG results have not been obtained so far and it is
not clear whether there is a thermodynamic phase tran-
sition. The equilibrium results from Wang-Landau sam-
pling (at N = 210) seem to suggest a singularity near
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FIG. 6. Reduced packing fraction and entropy density for
HN3 from Wang-Landau sampling and Simulated Annealing.
(a)&(b) are for l = 0, and (c) &(d) are for l = 1. The black
solid lines represent the equilibrium properties from Wang-
Landau sampling with N = 1024. The dotted lines are from
simulated annealing with N = 32, 768, run at different an-
nealing schedules with dµ = 0.001/2j for j = 0, . . . , 8, from
top to bottom. Wang-Landau sampling provides the entropy
density via Eq. (2), as shown in (b) and (d), which is difficult
to obtain from other Monte Carlo methods. For both, l = 0
and 1, we find a non-zero entropy density for random close
packing at µ → ∞.
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FIG. 7. Scaling of the dynamically reached packing fraction
ρ∗(dµ) as a function of the annealing rate dµ for different
system sizes N of HN3. (a) For l = 0, the dashed lines are for
systems sizes N = 2k with k = 7, . . . ,10, 12, 14 and 15, from
bottom to top. All data sets (except for the smallest sizes,
N = 128, . . . , 1024) collapse onto the top line with a slope of
0.34± 0.01, which is obtained from a fit using the data of the
largest system size N = 32, 768. (b) For l = 1, the data sets
converge even faster towards power-law scaling. The dashed
lines are for system sizes of N = 2k with k = 5, . . . , 8, 10, 12,
14 and 15, from bottom to top. All but the first 3 sets collapse
onto a line of slope 0.19 ± 0.01, which is obtained from a fit
for N = 32, 768. Error bars are about of the size of each data
point or smaller, indicating a relative error of less than 3%.
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FIG. 8. Results of simulated annealing with hopping for HN3.
For both (a) and (b), the figure consists of one solid line for
the equilibrium result obtained with Wang-Landau sampling
and 9 dotted lines obtained with simulated annealing at rates
dµ = 0.001/2j for j = 0, . . . , 8. For HN3 with l = 0 and l =
1, the system equilibrates for nearly all annealing schedules,
collapsing the data onto the equilibrium line. Only for HN3
with l = 1, small deviations from equilibrium are observed for
annealing schedules dµ & 10−5.

1/µ ≈ 0.06 where the entropy density jumps noticeably
and ρ(µ) ≡ ρCP for all larger µ. Either RG or results for
bigger systems may be needed to confirm whether there
is phase transition or not.
The possible jamming transitions for both l = 0 and 1,

revealed by the dynamic annealing simulations in Fig. 6
(a) and (c), are further supported by a power law decay
of the residual packing fractions, ρCP −ρ∗(dµ), as a func-
tion of the annealing rate, dµ. Here, we set the jammed
packing fraction, obtained at µ → ∞ after annealing at
rate dµ, as ρ∗(dµ) = ρ(µ → ∞; dµ), where dµ/dt → dµ
when measured in units of dt=̂1 sweep. Note that at
these system sizes (N = 32, 768), even the weakest jam
is of order ρCP − ρ∗(dµ) ≈ 0.001 and, thus, still consists
of a sizable number (& 30) of frustrated particles.
As shown in Fig. 7, a linear fit of the data on a double-

logarithmic scale at the largest systems is nearly perfect,
justifying the assumption that the time-scales 1/dµ for
the existence of the jam diverge asymptotically with a
power law for ρ → ρCP . For HN3 at l = 0, the slope is
0.34±0.01 with coefficient of determination R2 = 0.9975,
while for l = 1 the slope is 0.19± 0.01 with R2 = 0.9997,
in both cases indicating a dramatic increase of time-
scales.
We also test the effect of introducing local hopping,

implemented as suggested in step 3 of the algorithm in
Sec. IID, which has not been addressed in Refs. [14, 28].
The results shown in Fig. 8 indicate a substantial dif-
ference from the simulation without hopping. For HN3
with l = 0, the jamming transition disappears even for
the fastest annealing schedule, dµ = 10−3. For HN3 with
l = 1, the jamming transition can be eliminated at least
for an annealing schedule of dµ ≈ 10−5 or slower.
Besides the Hanoi networks, we have repeated the an-

nealing simulations on random regular graphs, following
Krzakala et al. [14]. On those graphs, BM with a hop-
ping dynamics can reach a much denser state than with
a varying chemical potential alone, which is similar to
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FIG. 9. Reduced packing fraction and entropy density for
HN5 from Wang-Landau sampling and Simulated Annealing.
(a)&(b) are for l = 0, and (c) &(d) are for l = 1. The black
solid lines represent the equilibrium properties from Wang-
Landau sampling with N = 1024. The dotted lines are from
simulated annealing with N = 32, 768, run at different an-
nealing schedules with dµ = 0.001/2j for j = 0, . . . , 8, from
top to bottom. As in Fig. 6, Wang-Landau sampling provides
the entropy density via Eq. (2), as shown in (b) and (d).

what Rivoire et al. [18] argue. But because of the enor-
mous computational cost, we can only test dµ to as small
as ∼ 10−6 for system sizes at most as large as ∼ 105.
No results are obtained to conclude that the jamming
transition disappears entirely for some smaller dµ, and
we suspect that the behavior instead may resemble the
mean-field predictions of Rivoire et al. [18].

2. Results for HN5

The case in HN5 is different from that in HN3. Note
that HN5, unlike HN3 and most finite-dimensional lat-
tices or the random graphs studied in Ref. [14], is not
a regular network but has an exponential degree distri-
bution. In HN5 for both, l = 0 and l = 1, as shown
in Fig. 9, the equilibrium behavior obtained from Wang-
Landau sampling is smooth and there is no indication of a
phase transition. Annealing reveals a jamming transition
and a power law decay similar to that in HN3 in the dy-
namic simulations only for l = 0. For l = 1, surprisingly,
there is no jamming transition. The simulations with
different annealing schedules equilibrate easily and col-
lapse with the curves from Wang-Landau sampling. This
suggests that the combination of heterogeneity in neigh-
borhood sizes together with the possibility to have one
occupied neighbor “lubricates” the system sufficiently to
avert jams. Correspondingly, the results from Wang-
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FIG. 10. Scaling of the dynamically reached packing fraction
ρ∗(dµ) as a function of the annealing rate dµ for different
system sizes N of HN5 for l = 0, the dashed lines are for
systems sizes N = 2k with k = 8, 10, 12, and 14. All data sets
collapse onto the black solid line with a slope of 0.31 ± 0.01
with R2 = 0.9989, which is obtained from a fit using the data
of the largest system size N = 16, 384. Error bars are about
of the size of each data point or smaller, indicating a relative
error of less than 3%.

Landau converge rapidly even for larger system sizes. As
for HN3, permitting a local hopping dynamics unjams
the system also for HN5 with l = 0.

3. Results for HNNP

HNNP provides an interesting alternative among the
networks we are considering here. Unlike HN3 and HN5,
HNNP is a nonplanar network, but like HN5 it has an ex-
ponential distribution of degrees with an average degree
of 4. Most importantly, HNNP at l = 0 possesses a “crys-
talline” optimal packing that is unique, see Fig. 11(b),
and consists of every second site along the line being oc-
cupied, i.e., those sites that uniformly have the lowest
degree of 3. Therefore, it provides the opportunity to
explore the potential for a first-order transition from a
jammed state into the ground state, as was observed for
lattice glasses in Ref. [16]. In this case, RG can be ap-
plied to obtain ρ(µ) in equilibrium exactly.
Indeed, we find a weakly jammed state in HNNP with

l = 0, with only a small number of frustrated particles,
as shown in Fig. 11. The results of annealing simulations
also show a power-law decay (Fig 12), consistent with
the approach to a jamming transition. As RG suggest,
and the smooth equilibrium curve for N = 1024 and the
convergence with increasing system sizes affirm, there is
no thermodynamic phase transition in HNNP with l = 0.
Despite the weakness of those jams, we can find no in-
dication that the annealing simulations at any rate dµ
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TABLE II. Summary of the results. For each network, and the allowed neighborhood occupations of l = 0 and l = 1, we list to
potential for a jam in dynamic simulations and the likely existence of an equilibrium glass transition.

l = 0 l = 1

HN3 Jamming transition & no phase transition Jamming transition & uncertain

HN5 Jamming transition & uncertain No jamming transition & no phase transition

HNNP Jamming transition & uncertain No jamming transition& no phase transition
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FIG. 11. Reduced packing fraction and entropy density for
HNNP from Wang-Landau sampling and Simulated Anneal-
ing. (a)&(b) are for l = 0, and (c) &(d) are for l = 1. The
black solid lines represent the equilibrium properties from
Wang-Landau sampling with N = 1024. The dotted lines are
from simulated annealing with N = 16, 384, run at different
annealing schedules with dµ = 0.001/2j for j = 0, . . . , 8, from
top to bottom. As in Figs. 6 and 9, Wang-Landau sampling
provides the entropy density via Eq. (2), as shown in (b) and
(d). Note that in the limit of µ → ∞, HNNP at l = 0 has a
zero entropy which corresponds to a unique ground state. At
l = 1, it attains the same close packing fraction, ρCP = 1

2
,

see Table I, but now at a non-trivial entropy.

can ever decay into the ordered state. Apparently, the
structural disorder, enforced in HNNP through a hetero-
geneous neighborhood degree and the hierarchy of long-
range links, prevents such an explosive transition. The
dominance of such structural elements is further empha-
sized by the fact that HNNP for l = 1 exhibits no jams,
similar to HN5, with which HNNP shares that structure.

IV. CONCLUSIONS

We have examined the Biroli-Mezard lattice glass
model on hierarchical networks, which provide intermedi-
aries between solvable mean-field models and intractable
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FIG. 12. Scaling of the dynamically reached packing fraction
ρ∗(dµ) as a function of the annealing rate dµ for different
system sizes N of HNNP for l = 0, the dashed lines are for
systems sizes N = 2k with k = 8, 10, 12, and 14. All data
sets collapse onto the top line with a slope of 0.23±0.01 with
R2 = 0.9997, which is obtained from a fit using the data of
the largest system size N = 16, 384. Error bars are about of
the size of each data point or smaller, indicating a relative
error of less than 3%.

finite-dimensional systems. These networks exhibit a
lattice-like structure with small loops but also with a
hierarchy of long-range links imposing geometric disor-
der and frustration while preserving a recursive struc-
ture that can be explored with exact methods, in princi-
ple. We observed a rich variety of dynamic behaviors in
our simulations. For instance, we find jamming behavior
on a regular network for which RG has shown that no
equilibrium phase transition exists. However, whether
the dynamic transition occurs at a packing fraction dis-
tinctly above random close packing remains unclear, and
can only be resolved with more detailed RG studies that
are beyond our discussion here.

We have simulated the model on our networks with
a varying chemical potential µ, with and without lo-
cal hopping of particles. Hopping impacted those sim-
ulations in a significant manner, always eliminating any
jams that have existed without hopping. Solutions of the
corresponding mean-field systems would have suggested
that a dynamics driven by hopping (but at fixed particle
number) results in kinetic arrest [18]. Whether canonical



9

simulations with hopping alone, or hopping at different
rates, would change this scenario, we have to leave for
future investigations, as well as the question on whether
a combined method of updates would alter the behavior
observed on lattices and mean-field networks.
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[27] V. Černỳ, Journal of optimization theory and applica-
tions 45, 41 (1985).

[28] G. Biroli and M. Mézard,
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