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Abstract

We introduce turboEELS, an implementation of the Liouville-Lanczos approach
to linearized time-dependent density-functional theory, designed to simulate
electron energy loss and inelastic X-ray scattering spectra in periodic solids.
turboEELS is open-source software distributed under the terms of the GPL as a
component of Quantum ESPRESSO. As with other components, turboEELS
is optimized to run on a variety of different platforms, from laptops to mas-
sively parallel architectures, using native mathematical libraries (LAPACK and
FFTW) and a hierarchy of custom parallelization layers built on top of MPI.
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Distribution format: tar.gz

Programming language: Fortran 95

Computer: Any computer architecture

Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS’s

Classification: 7.2

External routines: turboEELS is a tightly integrated component of the Quantum

ESPRESSO distribution and requires the standard libraries linked by it: BLAS, LA-

PACK, FFTW, MPI.

Nature of problem: Calculation of the electron energy loss and inelastic X-ray scatter-

ing spectra of periodic solids.

Solution method: The charge-density susceptibility of a periodic system is expressed

in terms of the resolvent of its Liouvillian superoperator within time-dependent den-

sity functional perturbation theory. It is calculated using non-Hermitian or pseudo-

Hermitian variants of the Lanczos recursion scheme, whose implementation does not

require the calculation of any virtual states. Pseudopotentials (both norm-conserving

and ultrasoft) are used in conjunction with plane-wave basis sets and periodic bound-

ary conditions. Relativistic effects (spin-orbit coupling) can be included in calcula-

tions.

Restrictions: Linear-response regime. Adiabatic exchange-correlation kernels only.

No hybrid functionals. Collinear spin-polarized formalism is not supported, only non-

collinear spin-polarized case can be used. Spin-orbit coupling cannot be used with

ultrasoft pseudopotentials. No magnetism. No Hubbard U formalism. No PAW pseu-

dopotentials.

Unusual features: No virtual orbitals are used, nor even calculated. A single Lanczos

recursion gives access to the whole spectrum at fixed transferred momentum.

Additional comments: The distribution file of this program can be downloaded from

the Quantum ESPRESSO website: http://www.quantum-espresso.org/, and the de-

velopment version of this program can be downloaded via SVN from the QE-forge

website: http://qe-forge.org/gf/project/q-e/ .

Running time: From a few minutes for elemental bulk systems with a few atoms in the

primitive unit cell on serial machines up to many hours on multiple processors for com-

plex systems (e.g., surfaces with high Miller indices) with dozens or hundreds of atoms.

1. Introduction

Electron energy loss (EEL) and inelastic X-ray scattering (IXS) spectro-
scopies are two experimental techniques that probe collective (plasmon-like)
and single-particle charge excitations [1, 2] in extended systems. Nowadays,
EEL experiments with transmission electron microscopes allow one to reach
an extremely high spatial resolution of ∼ 0.1 nm and an energy resolution of
typically 1 eV, which can be reduced down to ∼ 0.1 eV if an electron-beam
monochromator is used [3, 4, 5]. The EEL and IXS cross sections are directly
related to the imaginary part of the inverse of the dielectric function, and thus
many electronic properties of the probed materials can be determined. On the
theoretical side, time-dependent (TD) density functional theory (DFT) [6, 7, 8]
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is the state-of-the-art method that allows one to gain access to collective and
single-particle excitations, resulting in an optimal compromise between compu-
tational cost and accuracy [9].

In the “conventional” TDDFT approach to EEL and IXS spectroscopies, the
information about plasmon and single-particle excitations is obtained from the
poles of the charge-density susceptibility, by first computing the independent-
electron susceptibility and solving then a Dyson-like screening equation for the
full response function. However, such an approach has several drawbacks: i) the
calculation of the independent-electron susceptibility requires the knowledge of
numerous empty states, which are hardly available for systems larger than a
few handfuls of independent atoms; ii) the solution of the Dyson-like screen-
ing equation requires multiple time-consuming inversions and multiplications of
large matrices; and iii) the first two steps must be repeated for every value of
frequency one is interested in, making it difficult to study extended frequency
ranges.

Recently a new technique was proposed to overcome these drawbacks, based
on linearized TDDFT (Time-Dependent Density Functional Perturbation The-
ory, TDDFpT) [10, 11, 12, 13], and inspired by the Liouville-Lanczos (LL)
approach to optical spectroscopies in molecular systems, which is in turn the
extension to the dynamical regime of time-independent density-functional per-
turbation theory (DFPT) [14, 15]. The distinctive feature of the new approach
is that it allows for the full spectrum of a periodic solid to be computed over
a broad frequency range, with a computational effort that is only a few times
larger than that needed by a single ground-state DFT or static DFPT calcula-
tion at any given finite transferred momentum.

In this paper we introduce a computer code, named turboEELS, which im-
plements the LL approach to EEL and IXS spectroscopies within TDDFpT.
turboEELS has a similar structure as the turboTDDFT code used to compute
absorption spectra in molecular systems [16, 17], and these two codes share in-
deed a large number of routines (in addition, turboEELS also leverages a certain
number of solid-state specific routines from the ph.x component of Quantum
ESPRESSO). turboEELS is distributed under the terms of the GPL license
[18], as a component of the Quantum ESPRESSO suite of open-source codes
based on plane-wave basis sets, pseudopotentials, and using periodic boundary
conditions [19].

This paper is organized as follows. In Sec. 2 we provide a theoretical
background for the LL approach to EEL and IXS spectroscopies. In Sec. 3
we describe the components of turboEELS which is a part of the Quantum
ESPRESSO distribution. In Sec. 4 we provide the instructions for installing
turboEELS on UNIX systems and discuss various levels of parallelization imple-
mented in it. In Sec. 5 we give an example of the usage of turboEELS for the
calculation of the EEL spectra of diamond. Finally, Sec. 6 contains conclusions
and perspectives for future work.
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2. Theory

2.1. Statement of the problem

Both EEL and IXS spectroscopies probe the electronic structure of the ma-
terials [20]. In an EEL experiment, an electron with wave vector ki and en-

ergy Ei =
h̄2k2

i

2m undergoes an inelastic scattering with the electrons and ions
of the target sample, which modifies the electronic wave vector and energy to
kf = ki −Q and Ef = Ei − h̄dω, where h̄Q and h̄dω are the momentum and
energy transferred to the sample, respectively. Analogously, in an IXS exper-
iment an X-ray photon of energy Ei = h̄ωi and polarization ei is scattered
to a final state of energy Ef = h̄ωf and polarization ef . The corresponding
double-differential cross section reads [1, 2]:

d2σ

dΩdω
= AS(Q, ω), (1)

where S(Q, ω) is the dynamic structure factor (per unit volume) of the target
sample and

AEEL =

(
4πe2

Q2

)2
m2

4π2h̄4

kf
ki
, (2)

AIXS =

(
e2

mc2

)2

(ei · ef )2 ωf

ωi
, (3)

is the probe factor, whose form differs for the two spectroscopies. In the above
expressions, −e and m are the electron charge and mass, respectively, and c is
the speed of light.

According to the fluctuation-dissipation theorem the dynamic structure fac-
tor, which describes charge-density fluctuations in the system, is related to the
imaginary part of the charge-density susceptibility, χ(Q,Q′;ω), which describes
energy dissipation, by the relation [21]:

S(Q, ω) = − h̄
π

Imχ(Q,Q;ω). (4)

The poles of χ(Q,Q;ω) correspond to plasmon frequencies and single-particle
excitations.

In periodic solids the transferred momentum, Q, can be expressed as the
sum of an irreducible component lying inside of the first Brillouin zone (BZ), q,
and a reciprocal lattice vector, G: Q = q + G. The EEL/IXS cross section is
often expressed in terms of the inverse dielectric matrix, ε−1

GG′(q;ω) ≡ ε−1(q +
G,q + G′;ω), defined as [22, 23]:

ε−1(q + G,q + G′;ω) = δGG′ +
4πe2

|q + G|2
χ(q + G,q + G′;ω). (5)

The diagonal elements of the inverse dielectric matrix define the inverse dielec-
tric function, ε−1(Q, ω) ≡ ε−1(q + G,q + G;ω), whose imaginary part is the
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negative of the so-called loss function, and which satisfies the Thomas-Reiche-
Kuhn (or f -sum) rule [24]:

∞∫
0

Im[ε−1(Q, ω)]ω dω = −π
2
ω2
p, (6)

where ωp =
√

4πe2n/m is the Drude plasma frequency, where n is the average
electron density. The dielectric function is defined as the inverse of the inverse
dielectric function, ε(Q, ω) ≡ 1/ε−1(Q, ω) (Note: this is not a matrix inversion).
The information about the real and imaginary parts of ε(Q, ω) can be very
useful for an analysis of the EEL/IXS spectra (i.e. the loss function), because
the loss function, −Im[ε−1(Q, ω)] = Im[ε(Q, ω)]/

(
Re[ε(Q, ω)]2 + Im[ε(Q, ω)]2

)
,

has peaks when Re[ε(Q, ω)] = 0 and Im[ε(Q, ω)] is small. For small Q the
plasmon occurs when Re[ε(Q, ω)] = 0 and it has a positive slope (changes the
sign from negative to positive).

2.2. Quantum Liouville equation for the charge-density susceptibility

As we have seen in the previous section, the EEL/IXS cross section is essen-
tially determined by the diagonal of the charge-density susceptibility, χ(Q,Q;ω).
The latter quantity is the response of the Fourier transform of the charge-density
operator, n̂Q → eiQ·r, to a monochromatic perturbation of same wave vector,
v̂′ext,q = n̂Q. Here and in the following quantum-mechanical operators and
superoperators are denoted by a hat “ˆ”, whereas their coordinate representa-
tion does not have any hat. Here q denotes the irreducible component of Q
and the notation has been chosen so as to emphasize that the response to a
monochromatic perturbation is in general not monochromatic, while conserv-
ing the irreducible component of its wave vector. In particular, the response
of the density matrix to a monochromatic perturbation, v̂′ext,q = n̂Q, can be
labeled by the irreducible component of its wave vector, ρ̂′q, and so can the
response of the Hartree and exchange-correlation (HXC) potential, v̂′HXC,q[ρ̂′q]
(i.e. they result to be the product of a lattice-periodic function times a plane
wave with wave vector q, eiq·r). In terms of ρ̂′q, the relevant matrix element of
the charge-density susceptibility reads:

χ(Q,Q;ω) = Tr
(
n̂†Q ρ̂

′
q

)
. (7)

As it was shown in Refs. [12, 13, 25], the response density matrix satisfies a
superoperator linear equation – the quantum Liouville equation – that can be
symbolically cast as:

(ω − L̂) · ρ̂′q(ω) = [v̂′ext,q, ρ̂
◦], (8)

where the action of the Liouvillian superoperator L̂ onto ρ̂′q is defined as:

L̂ · ρ̂′q ≡ [Ĥ◦, ρ̂′q] + [v̂′HXC,q[ρ̂′q], ρ̂◦], (9)
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and Hartree atomic units (e = m = h̄ = 1) are used henceforth. Here [·, ·]
indicates a quantum commutator, Ĥ◦ and ρ̂◦ are the unperturbed Kohn-Sham
(KS) Hamiltonian and density matrix, respectively. According to the above
considerations, the relevant matrix element of the charge-density susceptibility
can be represented as a suitable off-diagonal matrix element of the resolvent of
the Liouvillian superoperator as:

χ(Q,Q;ω) =
(
n̂Q, (ω − L̂)−1 · [n̂Q, ρ̂◦]

)
. (10)

The essential ingredients for evaluating Eq. (10) are thus an explicit repre-
sentation for the response density matrix and an efficient way of evaluating
off-diagonal matrix elements of the resolvent of linear (super-) operators. The
subsections 2.4 and 2.5 are devoted to these two tasks, respectively. The problem
of computing the charge-density susceptibility (10) is mapped onto the solution
of a set of coupled linearized KS equations in the self-consistent way, as will be
shown in Sec. 2.3.

2.3. Bloch functions and coordinate representation of (response) operators

In periodic solids the unperturbed KS orbitals, which satisfy the ground-
state KS equations, have a Bloch form: ϕ◦n,k(r) = eik·r u◦n,k(r), where n is a
band index, k is a point in BZ, and u◦n,k(r) is a lattice-periodic function. The
response KS orbitals corresponding to each monochromatic q component of the
perturbing potential, v̂′ext,q, read: ϕ̃′n,k+q(r, ω) = ei(k+q)·rũ′n,k+q(r, ω), where
ũ′n,k+q(r, ω) is the lattice-periodic response orbital. The response and perturb-

ing potentials in the coordinate representation read as ṽ′q(r, ω) = eiq·r ṽ′q(r, ω),
where ṽ′q(r, ω) is the lattice-periodic part of the potential. Here and below, Ro-
man letters in formulas indicate lattice-periodic parts of Bloch functions, and
tildes “˜” indicate Fourier transforms of functions in the frequency domain.

It can be demonstrated that the lattice-periodic response orbitals, ũ′n,k+q(r, ω),
satisfy the linearized and Fourier transformed KS equations [10]:

(Ĥ◦k+q − ε◦n,k − ω) ũ′n,k+q(r, ω) + P̂k+q
c ṽ′HXC,q(r, ω) u◦n,k(r)

= −P̂k+q
c ṽ′ext,q(r, ω) u◦n,k(r), (11)

where ε◦n,k are the ground-state KS energies, ṽ′ext,q(r, ω) = eiG·r is the lattice-
periodic part of the external perturbing potential ṽ′ext,q(r, ω), and ṽ′HXC,q is the
lattice-periodic q component of the HXC response potential, which reads:

ṽ′HXC,q(r, ω) =

∫
κ(r, r′) ñ′q(r′, ω) e−iq·(r−r

′)dr′, (12)

where κ(r, r′) = 1/|r− r′|+κXC(r, r′), κXC(r, r′) is the XC kernel [26], which in
the adiabatic DFT approximation adopted in this paper is independent of fre-
quency, and ñ′q(r, ω) is the lattice-periodic q component of the response charge-
density. In practice, the response XC potential is computed in the real space,
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whereas the response Hartree potential is computed in the reciprocal space as:

ṽ′H,q(r, ω) = 4π
∑
G

ñ′q(G, ω)

|q + G|2
eiG·r. (13)

In Eq. (11), as well as in the rest of this paper, quantum-mechanical operators
having a wave vector subscript (such as Ĥ◦k+q) or superscript (such as P̂k+q

c )
operate on lattice-periodic functions, and they are defined in terms of their
coordinate representations as:

H◦(r, r′) =
∑
k

eik·(r−r
′) H◦k(r, r′) , (14)

Pc(r, r
′) =

∑
k

eik·(r−r
′)Pk

c (r, r′), (15)

where the projector onto the conduction manifold, Pk
c (r, r′), can be expressed

in terms of the lattice-periodic parts of the unperturbed Bloch functions as:

Pk
c (r, r′) = δ(r− r′)−

occ∑
n

u◦n,k(r) u◦ ∗n,k(r′), (16)

where the sum extends over all the occupied bands. Thus, in Eq. (11) no empty
states are needed to determine the response orbitals, much in the same way like
in static density functional perturbation theory (DFPT) [14, 15].

The monochromatic q component of the response density matrix in the co-
ordinate representation reads:

ρ̃′q(r, r′;ω) = 2
∑
n,k

(
ϕ̃′n,k+q(r, ω)ϕ◦ ∗n,k(r′) + ϕ◦ ∗n,k(r) ϕ̃′ ∗n,−k−q(r′,−ω)

)
= 2

∑
n,k

(
eiq·r ũ′n,k+q(r, ω) u◦ ∗n,k(r′) eik·(r−r

′)

+ eiq·r
′
u◦ ∗n,k(r) ũ′ ∗n,−k−q(r′,−ω) e−ik·(r−r

′)
)
, (17)

where the factor of 2 is due to spin degeneracy. Hence, the response charge-
density, which is a diagonal of the response density matrix, ñ′q(r, ω) = ρ̃′q(r, r;ω),
reads:

ñ′q(r, ω) = eiq·r ñ′q(r, ω), (18)

where ñ′q(r, ω) is the lattice-periodic charge-density, which reads:

ñ′q(r, ω) = 2
∑
n,k

u◦ ∗n,k(r)
(

ũ′n,k+q(r, ω) + ũ′ ∗n,−k−q(r,−ω)
)
. (19)

The antiresonant contribution to the response density matrix (17) satisfies the
equation:

(Ĥ◦k+q − ε◦n,k + ω) ũ′ ∗n,−k−q(r,−ω) + P̂k+q
c ṽ′HXC,q(r, ω) u◦n,k(r)

= −P̂k+q
c ṽ′ext,q(r, ω) u◦n,k(r), (20)
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which can be obtained from Eq. (11) by complex conjugation and simple ma-
nipulations deriving from time-reversal invariance of the unperturbed system
[u◦n,k(r) = u◦ ∗n,−k(r)] and the reality of the perturbing and HXC response poten-
tials (ṽ′ext,q(r, ω) = ṽ′ ∗ext,−q(r,−ω) and ṽ′HXC,q(r, ω) = ṽ′ ∗HXC,−q(r,−ω), respec-
tively). The set of coupled KS equations (11) and (20) represent the quantum
Liouville equation (8).

2.4. Standard batch representation of operators

Equations (11), (17) and (20) show that the response of the charge-density
of a periodic solid to a perturbation of wave vector Q is uniquely determined
by the two sets of response orbitals {ũ′n,k+q(r, ω)} and {ũ′ ∗n,−k−q(r,−ω)}. Note
that n and k are running indices, whereas q is fixed. It is convenient to consider
a linear combination of these functions, defined as

qn,k+q(r) =
1

2

(
ũ′n,k+q(r, ω) + ũ′ ∗n,−k−q(r,−ω)

)
, (21)

pn,k+q(r) =
1

2

(
ũ′n,k+q(r, ω)− ũ′ ∗n,−k−q(r,−ω)

)
. (22)

The two sets of response orbitals qq = {qn,k+q} and pq = {pn,k+q} are called,
respectively, the upper and lower components of the standard batch representa-

tion (SBR) [13, 25] of the response density matrix supervector: ρ̂′q
SBR−−−→ {qq,pq}

[16]. In the SBR the set of Eqs. (11) and (20) can be cast into the compact
form: (

ωÎ − L̂q

)( qq

pq

)
=

(
0

yq

)
, (23)

where Î is the unit matrix, and the Liouvillian L̂q has the block form [13, 25]:

L̂q =

(
0 D̂q

D̂q + K̂q 0

)
, (24)

where D̂q and K̂q superoperators are defined by their action on batches,

D̂qqq =
{

(Ĥ◦k+q − ε◦n,k) qn,k+q(r)
}
, (25)

K̂qqq =
{

P̂k+q
c ṽ′HXC,q(r) u◦n,k(r)

}
, (26)

and ṽ′HXC,q is given by Eq. (12), and the lattice-periodic response charge-density
reads (see Eq. (19)):

ñ′q(r) = 4
∑
n,k

u◦ ∗n,k(r) qn,k+q(r), (27)

and
yq = {P̂k+q

c ṽ′ext,q(r) u◦n,k(r)}. (28)
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According to the above equations, operating with the Liouvillian on a test su-
pervector essentially requires a calculation of the response HXC potential, its
application to each valence KS orbital, as well as the operation of the unper-
turbed Hamiltonian onto twice the number of valence KS states.

The SBR of the charge-density operator reads: n̂Q
SBR−−−→

{
{P̂k+q

c eiG·r u◦n,k}, 0
}

,
and hence the SBR of the charge-density susceptibility, Eq. (10), reads:

χ(Q,Q;ω) =
({
{P̂k+q

c eiG·r u◦n,k}, 0
}
,
{

qq,pq

})
, (29)

where
{

qq,pq

}
is the solution of the quantum Liouville equation in the SBR (23).

In practice, the charge-density susceptibility (29) is computed using the Lanczos
recursion algorithm, which is briefly discussed in the next subsection.

2.5. Lanczos recursion algorithm
From Eq. (10) it is seen that in order to compute the charge-density sus-

ceptibility, χ(Q,Q;ω), one needs to evaluate the off-diagonal matrix element
of the resolvent of the Liouvillian, (ω − L̂q)−1. A straightforward inversion of
such a matrix for big systems in plane-wave framework is a formidable task.
However, there exists an efficient recursive algorithm, so-called Lanczos algo-
rithm, which does not rely on the inversion of the matrices, but a recursive
evaluation of an off-diagonal matrix element as in Eq. (10) [27]. We will briefly
review two flavors of the Lanczos algorithm which can be used to compute the
charge-density susceptibility, namely, non-Hermitian Lanczos biorthogonaliza-
tion algorithm [13, 16, 25], and pseudo-Hermitian Lanczos algorithm [17, 28, 29].
A detailed description of the algorithms can be found in the corresponding ref-
erences.

In the non-Hermitian Lanczos biorthogonalization algorithm, by starting
from the initial pair of Lanczos vectors u1 = v1 = {0, yq} (see Eq. (28)), two
coupled Lanczos chains are generated (because there are two coupled KS equa-
tions, resonant and antiresonant [10]) by recursively applying L̂q and L̂†q to the
previous Lanczos chain vectors, ui and vi [10, 13]. A pair of biorthogonal ba-
sis sets of increasing dimension are thus recursively constructed, {ui} and {vi},
where i = 1,M , and M being the number of Lanczos iterations, and the Lanczos
coefficients, βi and γi, are thus generated form a sparse M -dimensional tridiag-
onal matrix, MTq, which is nothing but an oblique projection of the Liouvillian

onto such biorthogonal bases:
(
MTq

)
ij

= (ui, L̂qvj).

The pseudo-Hermitian Lanczos algorithm is two times faster than the non-
Hermitian Lanczos biorthogonalization algorithm, because the former algorithm
requires twice as less operations (action of the Liouvillian, L̂q, on the Lanczos
vectors) [17]. The main idea is to define a metric of the linear space, which
redefines the scalar products, and thus allows one to use a generalized Hermitian
Lanczos algorithm. As a result of the use of this algorithm one also generates
the tridiagonal matrix MTq.

After a generation of the tridiagonal matrix, MTq, the charge-density sus-
ceptibility (see Eqs. (10) and (29)) can be computed as [10]:

χ(Q,Q;ω) '
(
Mzq, (ω

MI − MTq)−1 · Me1

)
, (30)
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where MI is the M -dimensional unit matrix, Me1 = {1, 0, . . . , 0} is the M -
dimensional unit vector, and Mzq = (z1,q, z2,q, . . . , zM,q) is the M -dimensional
array whose coefficients zj,q are computed on-the-fly of the Lanczos recursion
and defined as:

zj,q =
(
{{P̂k+q

c eiG·r u◦n,k(r)}, 0}, vj
)
. (31)

In practice, the right-hand side of Eq. (30) is computed by solving, for any given
value of frequency, ω, the equation:(

ωMI − MTq
)
Mxq = Me1, (32)

and calculating the scalar product afterwards:

χ(Q,Q;ω) =
(
Mzq,

M xq
)
, (33)

which are both extremely inexpensive operations from the computational point
of view. This allows one to study a wide frequency range for EEL and IXS. The
convergence of the EEL/IXS spectra with respect to the number of Lanczos
iterations, M , can be sped up by making use of the extrapolation technique for
the Lanczos coefficients, which is described in detail in Refs. [13, 16].

2.6. Extensions of the Liouville-Lanczos approach

The LL formalism presented above has been generalized in several ways:
i) metallic systems; ii) explicit account of symmetry for k-point sampling; iii)
relativistic effects (spin-orbit coupling). A detailed discussion about these ex-
tensions can be found in Ref. [11], and here we discuss briefly only about the
basic concepts.

An extension of the LL approach to metals is based on the use of the smear-
ing techniques introduced in the static case for lattice-dynamical calculations
[30]. In metals, electronic levels crossing the Fermi level do not have integer
occupancy (0 or 1), thus smearing techniques must be used to describe the elec-
tronic states and allow them to have partial occupancy (between 0 and 1). The
LL approach can still have the same form as for non-metallic systems but the
following modifications: i) the projector on empty states, P̂k+q

c , is redefined
in a different way, and ii) a fractional occupancy of electronic states should be
allowed for, by introducing a suitable weight in sums over k points and band
indices. An interested reader can find a detailed discussion in the indicated
references.

The CPU time and memory requirements of the LL calculation can be very
significantly reduced by employing a symmetry of the system. The space group
of the crystal contains such operations as lattice translations and rotations that
leave the crystal unchanged. By using these symmetry operations it is possible
to reduce the number of k points and use only those which are in the irreducible
wedge of BZ. However, in the case of EEL/IXS the symmetry of the system is re-
duced by the external monochromatic perturbation with a wave vector Q. This
fact must be taken into account, and thus one can consider k points inequivalent
to each other according to the small group of Q.
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For heavy-atom elements relativistic effects become important and thus must
be taken into account for an accurate description of the EEL/IXS spectra. The
LL approach has been extended to a treatment of the spin-orbit coupling effect,
in a self-consistent way. In this case, instead of the scalar KS orbitals there are
two-component spinors, and hence the number of electronic states in the calcula-
tion is doubled. Instead of solving non-relativistic linear-response KS equations
for scalar KS orbitals in combination with non- or semi-relativistic pseudopo-
tentials, one has to solve Pauli-type linear-response KS equations for spinors
and use fully relativistic pseudopotentials. An example of the application of the
relativistic LL approach is semimetallic bismuth [11, 31].

3. Description of software components

The turboEELS code is designed as a module of the Quantum ESPRESSO
distribution [19]. It resides in a self contained directory TDDFPT under the
root directory of the Quantum ESPRESSO tree, which contains also the
turboTDDFT code in its two flavors (Lanczos and Davidson [17]) for the calcu-
lation of the absorption spectra. The turboEELS code is tightly integrated in
the turboTDDFT code and uses many of its routines. When the turboEELS code
is installed (see Sec. 4.1), the bin/ directory in the Quantum ESPRESSO
root contains links to the executables turbo eels.x (the main program) and
turbo spectrum.x (a post-processing tool). The code turbo eels.x performs
a Lanczos recursion to obtain Lanczos coefficients βi and γi, and zi coeffi-
cients (see Sec. 2.5), and to thus construct a tridiagonal matrix MTq, while
turbo spectrum.x uses this matrix to calculate the charge-density susceptibil-
ity, χ(Q,Q;ω), according to Eqs. (32) and (33).

3.1. Ground-state calculation

In order to compute the EEL/IXS spectra of a system, a standard ground-
state DFT calculation has to be performed first, yielding the KS orbitals,
u◦n,k(r), energies, ε◦n,k, for all occupied levels, and the ground-state charge-
density, n◦(r). The information thus obtained is then used as input for the
linear-response calculation with the turboEELS code. This ground-state calcu-
lation is performed by the pw.x code, which is one of the key components of the
Quantum ESPRESSO package. In Appendix B a sample input file for pw.x is
shown for the case of diamond. After successful completion of the ground-state
calculation, the pw.x code writes the ground-state KS orbitals, energies, and
charge-density to disk, together with all relevant information about the system,
like geometry, pseudopotentials, etc. This data is used by the turboEELS code
which reads all this data at program start. Therefore, it is not necessary to
redefine the system under study in the input file of turbo eels.x.

3.2. Linear-response TDDFT calculation

The linear-response calculation is done using the turbo eels.x code, which
performs the Lanczos recursion of Sec. 2.5 for a given transferred momentum,
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Q. This is by far the most time consuming step of the calculation. In Appendix
B a sample input file for turbo eels.x is shown for the case of diamond. A list
of all input variables of turbo eels.x is given in Table A.1 of Appendix A. The
integer input variable itermax sets up the number of Lanczos iterations, and so
determines the dimension M of the tridiagonal matrix, MTq (see Sec. 2.5). In
fact, one can check whether the number of iterations is sufficient to achieve an
adequately converged spectrum only at the post-processing level (see Sec. 3.3).
It is possible to add more iterations to an existing calculation by restarting
the turbo eels.x code, setting the parameter restart=.true. and increasing
itermax. The strings defined in the input variables prefix and outdir identify
the system data on disk and must correspond to files created by the pw.x code.

The input variables q1, q2, and q3 are the three Cartesian components of
the transferred momentum, Q, specified in units of 2π/a, where a is the lattice
parameter specified in the ground-state calculation by pw.x. For each Q a
separate Lanczos recursion is needed.

The calculation of the charge-density susceptibility, χ(Q,Q;ω), which is used
to obtain the loss function, −Im[ε−1(Q, ω)], can be performed at different levels
of theory, which are specified in the input using the parameter approximation.
This parameter can take the following values: i) “TDDFT” - Time-Dependent
Local Density Approximation (TDLDA) or Time-Dependent Generalized Gra-
dient Approximation (TDGGA), depending on the XC functional; ii) “IPA”
- the independent particle approximation, which implies neglecting the inter-
action superoperator, K̂q, in Eq. (24) (no Hartree and XC terms); and iii)
“RPA with CLFE” - Random Phase Approximation (RPA) with Crystal Local
Field Effects (CLFE) (describing an inhomogeneity of the system), which im-
plies neglecting the response XC potential and leaving only the response Hartree
potential.

One can choose which flavor of the Lanczos algorithm to use (see Sec. 2.5).
By setting pseudo hermitian=.true., the pseudo-Hermitian Lanczos algorithm
will be used, otherwise the non-Hermitian Lanczos biorthogonalization algo-
rithm will be used. It is recommended to use the former, because it is two times
faster.

During the execution of the turbo eels.x code, a file named
prefix.beta gamma z.dat will be written to the outdir directory. This file
contains the Lanczos coefficients βi and γi, and zi coefficients needed for the
post-processing calculation. One can use this information for the analysis of the
behavior of these coefficients.

3.3. Post-processing spectrum calculation

Once the tridiagonal matrix, MTq, is constructed from the Lanczos coeffi-
cients, one can compute the charge-density susceptibility according to Eqs. (32)
and (33). This task is performed by the turbo spectrum.x program as a post-
processing step, which requires negligible amount of the CPU time with respect
to turbo eels.x. This is so because solving a linear matrix equation (32) and
computing a scalar product (33) are two fast operations, which can be performed
efficiently using BLAS and LAPACK libraries.
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The code turbo spectrum.x is used also for the calculation of the absorption
spectra computed with turboTDDFT. In order to distinguish the different appli-
cations, it is necessary to set eels=.true. in the input for turbo spectrum.x.
The labels prefix and outdir identify the system on disk and must correspond
to files created by the turbo eels.x code.

In Appendix B a sample input file for turbo spectrum.x is shown for the
case of diamond. A list of input variables for the turbo spectrum.x program
is given in Table A.2 of Appendix A.

In practice, when solving Eq. (32), a small imaginary part η is added to
the frequency argument, ω → ω + iη, so as to regularize the charge-density
susceptibility χ(Q,Q;ω) [13, 25]. Setting η to a non-zero value amounts to
broadening each individual spectral line or, alternatively, to convoluting the
charge-density susceptibility with a Lorentzian. The parameter η is defined
with the keyword epsil. The EEL/IXS spectra can be computed in any energy
range specified by the keywords start and end, with a step of energy given
by the increment parameter, all this being specified in Rydberg (units=0) or
electronvolt (units=1) units.

The convergence of the spectrum in the desired energy range can be checked
by varying the number of Lanczos coefficients used. This number is set by
the input keywords itermax0 and itermax. If no extrapolation of Lanczos
coefficients is used (extrapolation=’no’), then itermax=itermax0. These
variables can take values up to the number of iterations which have been calcu-
lated with the turbo eels.x code. For a given number of Lanczos iterations,
it is possible to improve the convergence of the computed spectra by extrap-
olating the coefficients [16]. Such an extrapolation can either be bi-constant
(extrapolation=’osc’) or constant (extrapolation=’constant’) [16]. In
this case, the input variable itermax0 indicates the number of exact coeffi-
cients to be read from file, while itermax is set to a value which can be chosen
arbitrarily large without any significant computational cost. Such an extrapo-
lation procedure amounts to increasing the dimension of the tridiagonal matrix,
MTq.

The turbo spectrum.x program generates two files, namely,
prefix.plot chi.dat which contains real and imaginary parts of the charge-
density susceptibility, χ(Q,Q;ω), for each value of the frequency ω, and
prefix.plot eps.dat which contains real and imaginary parts of the dielec-
tric function and its inverse (see Sec. 2.1).

The turbo spectrum.x program will check the f -sum rule according to
Eq. (6). However, in order to obtain a meaningful result, a convergence with
respect to the frequency range of integration must be checked by the start and
end parameters (the former being equal to zero, and the later being increased
systematically until the convergence). In the LL approach to TDDFpT, the
f -sum rule is satisfied exactly for any number of Lanczos iterations when local
pseudopotentials are used [25]. However, a violation of the f -sum rule is present
when non-local pseudopotentials are used.
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4. Installation instructions and parallelization of the code

4.1. Installation instructions

The turboEELS program is distributed as source code, like the other compo-
nents of the Quantum ESPRESSO distribution. The installation procedure
is the same for all modules in the Quantum ESPRESSO package. Quantum
ESPRESSO and turboEELS make use of GNU autotools. The TDDFPT reposi-
tory, which contains the source turboEELS code (and turboTDDFT code), must
be residing within the Quantum ESPRESSO tree. The code is compiled with
the following commands from within the Quantum ESPRESSO tree:

./configure

make pw

make tddfpt

Here, the first step sets up the environment (compilers, libraries, etc.). The
second step compiles the pw.x code and creates a link to this executable in
the bin/ repository of the Quantum ESPRESSO tree. In the third step,
the turboEELS codes (turbo eels.x and turbo spectrum.x) are compiled, to-
gether with the turboTDDFT codes (turbo lanczos.x and turbo davidson.x).
Links to all these executables are created in the bin/ directory of the Quantum
ESPRESSO tree. Further detailed installation instructions can be found in the
documentation that comes with the Quantum ESPRESSO distribution.

The turboEELS code is tightly bound to the pw.x code (residing in PW), to
the ph.x code (residing in PHonon), and to the turboTDDFT code.

4.2. Parallelization

Like the other components of the Quantum ESPRESSO package, the
turboEELS code is optimized to run on a variety of different platforms, from
laptops to massively parallel architectures. The parallelization of the turboEELS
code is achieved by using the message-passing paradigm and calls to standard
Message Passing Interface (MPI) libraries [32]. High performance on massively
parallel architectures is achieved by distributing both data and computations in
a hierarchical way across processors. The turboEELS code supports two levels
of parallelization: i) a plane-wave parallelization, which is implemented by dis-
tributing real- and reciprocal-space grids across the processors, and ii) a k points
parallelization, which is implemented by dividing all processors into pools, each
taking care of one or more k points. The Fast Fourier Transforms (FFT’s),
which are used for transformations from real space to reciprocal space and vice
versa, are also efficiently parallelized among processors.

5. Benchmarking

We now proceed to the validation of the turboEELS code by calculating the
loss function in bulk diamond. We will make a comparison with Ref. [33], where
a theoretical study (using the conventional TDDFT approach) is confronted
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(a) (b)

Figure 1: Loss function of diamond atQ = 0.15 Å−1 along the [100] direction. (a) Convergence
with respect to the number of Lanczos iterations, and effect of the extrapolation technique,
using a 14 × 14 × 14 Monkhorst-Pack k point mesh. (b) Convergence with respect to the size
of the k point mesh, for 1000 Lanczos iterations using extrapolation technique. Curves have
been shifted vertically for clarity.

with the experimental EEL spectra. Our purpose here is not to analyze the
EEL spectra of diamond or to achieve a remarkable agreement with experi-
ment, but to demonstrate the correctness of our implementation of turboEELS
by comparing the computed EEL spectrum with the one obtained using a con-
ventional TDDFT approach, and to show the convergence behavior of the EEL
spectra when using the LL approach to EEL/IXS.

We have chosen the parameters of our calculations as close as possible to
those of Ref. [33] in order to simplify the comparison. We have used the exper-
imental lattice parameter of 3.57 Å [34], and used the local density approxima-
tion (LDA) with the Perdew-Zunger parametrization of the electron-gas data
[35]. A norm-conserving pseudopotential was employed from the Quantum
ESPRESSO database [36], and we have used a kinetic-energy cutoff of 50 Ry.
The first BZ has been sampled with a 14 × 14 × 14 Monkhorst-Pack (MP) k-
point mesh [37], resulting in 280 k-points in the irreducible wedge of BZ for the
ground-state calculation, and 2940 k-points in the irreducible wedge of BZ for
the small group of Q for the linear-response TDDFT calculation. We have used
a Lorentzian broadening of η = 0.03 Ry for the charge-density susceptibility
(loss function). All these parameters must be specified in the following way as
an input for the calculation, see Appendix B. All the results were obtained at
the TDLDA level, i.e. inlcuding CLFE and XC effects.

Figure 1 shows the convergence of the loss function of diamond with respect
to the number of Lanczos iterations and k points in the BZ, for Q = 0.15 Å−1

along the [100] direction. In Fig. 1(a) it can be seen that after 1000 Lanczos it-
erations the loss function shows spurious wiggles, which disappear by increasing
the number of Lanczos iterations up to 5000. However, the speed of the conver-
gence can be increased by using the extrapolation technique [13, 16]. Indeed,
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(a) (b)

Figure 2: (a) Comparison of the loss function of diamond for Q = 0.15 Å−1 along the [100]
direction calculated using the Liouville-Lanczos (LL) approach, with experiment and with
previous calculations [33]. (b) Loss function calculated using the LL approach for various
transferred momenta Q along [100] ranging from 0.1 Å−1 to 1.7 Å−1 with a step 0.1 Å−1.

convergence can be reached after 1000 Lanczos iterations when the extrapola-
tion of Lanczos coefficients is used (up to 20000 in this case). In Fig. 1(b) one
can see that the convergence of the loss function with respect to the number of
k points (size of the MP mesh) is reached for the 14× 14× 14 MP mesh.

In Fig. 2 we compare our result obtained using the LL approach to EEL/IXS
with those obtained using the conventional TDDFT approach based on the so-
lution of the Dyson-like equation and with experiment [33], for Q = 0.15 Å−1

along the [100] direction. The agreement between the LL approach and previous
theoretical calculations is excellent, which validates the LL approach. It has the
same level of accuracy as the conventional TDDFT approach, but requires much
smaller computational cost. The agreement between theory and experiment is
remarkable, though there are some small deviations. In Fig. 2(a), the plasmon
peak is around at 35 eV, the peak due to interband transitions is around 22 eV.
The shoulders at 28 eV and 32 eV are not seen in the experimental spectrum
due to the large broadening, but are resolved in the theoretical spectrum. Fig-
ure 2(b) shows the loss function of diamond for various transferred momenta Q
along the [100] direction ranging from 0.1 Å−1 to 1.7 Å−1 with a step 0.1 Å−1.
One can see a strong dispersion of the plasmon peak and its damping due to
entrance in the electron-hole continuum, a weak dispersion of the peak at 22 eV
due to interband transitions and its fast damping, and an appearance of the new
peak at Q = 0.8 Å−1 around at 26 eV which also shows a weak dispersion. A
detailed analysis of the loss function of diamond and its dispersion along various
directions can be found in Ref. [33].

From the knowledge of the real and imaginary parts of the inverse dielectric
function for a given transferred momentum, ε−1(Q, ω), we have computed the
real and imaginary parts of the dielectric function, ε(Q, ω), as explained in
Sec. 2.1. The result is illustrated in Fig. 3. As can be seen, the plasmon at
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Figure 3: Real and imaginary parts of the inverse dielectric function (a) and the dielectric
function (b) for Q = 0.15 Å−1 along the [100] direction calculated using the Liouville-Lanczos
(LL) approach.

∼ 35 eV occurs when Re[ε(Q, ω)] is almost zero and changes its sign with a
positive slope, and Im[ε(Q, ω)] is very small. The strongest peak in Im[ε(Q, ω)]
occurs at ∼ 11 eV, which is due to interband transitions, and occuring when
Re[ε(Q, ω)] = 0 and changes its sign with a negative slope. And the peak in the
loss function −Im[ε−1(Q, ω)] at ∼ 22 eV is indeed due to interband transitions,
because there is also a weak peak in Im[ε(Q, ω)] around the same frequency.
A detailed discussion about the origin of the peaks in the EEL spectrum of
diamond can be found in Ref. [33].

Finally, we have checked the f -sum rule according to Eq. (6). We have found
that it is satisfied with an extremely small violation of < 1%, which is due to a
non-locality of the pseudopotential used in our calculations [25].

6. Conclusions

We have presented the turboEELS code that implements a Liouville-Lanczos
approach to time-dependent density functional perturbation theory for the com-
putation of EEL and IXS spectra for any finite transferred momentum Q. We
have presented a theoretical description of the approach and its implementation
as part of the Quantum ESPRESSO package.

The turboEELS code has a numerical scalability of the same order as stan-
dard ground-state DFT calculations. It does not require the calculation of empty
electronic states, and a computationally expensive inversion of the dielectric ma-
trix is replaced by a very efficient recursive Lanczos algorithm, which allows us
to compute EEL/IXS spectra in a wide energy range. These advances allow
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us to compute EEL/IXS spectra of complex systems, e.g. high-Miller-index
surfaces.

In the same spirit as the Quantum ESPRESSO project, turboEELS pro-
vides scientists worldwide with a well commented and open-source framework
for implementing their ideas. It is in our best hope that turboEELS can benefit
from the already well established users community of Quantum ESPRESSO
for incorporating new ideas and keep growing in the future. The turboEELS

code is hosted in a community accessible SVN repository [38] and hence, apart
from releases in Quantum ESPRESSO, those who are willing to test the lat-
est experimental implementations are welcome to do so and to contribute with
their feedback.

The turboEELS code can be extended so as to employ hybrid XC functionals
(which are already supported by the turboTDDFT code at k = 0 [17]), which
would allow us to describe excitons and their dispersion [39].
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Appendix A. Input Variables

Card Variable name
Default
Value

Description

lr
in

p
u

t

prefix ’pwscf’
The files generated by the ground state pw.x run should have this

same prefix.

outdir ’./’
Working directory. On start, it should contain the files generated by

a ground state pw.x run.

restart .false.
When set to .true., turbo eels.x will attempt to restart from a pre-

vious interrupted calculation. (see restart step variable).

restart step itermax
The code writes restart files every restart step iterations. Restart

files are automatically written at the end of itermax Lanczos steps.

lr verbosity 1 Verbosity level

lr
c
o
n
tr

o
l

itermax 500 Number of iterations to be performed.

q1, q2, q3 1, 1, 1
Cartesian components of the transferred momentum in units of 2π/a

(where a is the lattice parameter of the unit cell).

approximation ’TDDFT’

A string describing an approximation: ’TDDFT’ - Time-Dependent Lo-

cal Density Approximation or Time-Dependent Generalized Gradient

Approximation (depending on the XC functional used), ’IPA’ - In-

dependent Particle Approximation, ’RPA with CLFE’ - Random Phase

Approximation with Crystal Local Field Effects.

pseudo hermitian .true.
If .true. then the pseudo-Hermitian Lanczos algorithm is used, if
.false. then the non-Hermitian Lanczos biorthogonalization algorithm
is used (which is two times slower).

Table A.1: Input variables for turbo eels.x

19



Card Variable name
Default
Value

Description
lr

in
p

u
t

prefix ’pwscf’ Prefix of the files generated by the previous turbo eels.x run.

outdir ’./’
The directory where the output files produced by the previous

turbo eels.x run are stored.

eels .false.
Must be set to .true. for EELS. EELS-specific operations will be

performed.

itermax0 1000 Number of Lanczos coefficients to be read from the file.

itermax 1000

The total number of Lanczos coefficients that will be considered in

the calculation of the charge-density susceptibility (loss function). If

itermax > itermax0, the Lanczos coefficients in between itermax0+1

and itermax will be extrapolated.

extrapolation ’no’
Sets the extrapolation scheme for Lanczos coefficients. ’osc’ = bi-

constant extrapolation; ’constant’ = constant extrapolation; ’no’ =

no extrapolation.

epsil 0.02 The Lorentzian broadening parameter (in Rydberg units).

units 0 Unit system used. 0: Rydbergs; 1: Electronvolts

start 0.0
The charge-density susceptibility and the loss function are computed

starting from this value. In units set by the units variable.

end 2.5
The charge-density susceptibility and the loss function are computed

up to this value. In units set by the units variable.

increment 0.001
Incremental step used to define the mesh between start and end. In

units set by the units variable.

verbosity 0 This integer variable controls the output verbosity.

Table A.2: Input variables for turbo spectrum.x

Appendix B. Sample input files

Input example 1: Input sample for pw.x

&control

calculation = ’scf’

restart_mode=’from_scratch’,

pseudo_dir = ’./pseudo’,

outdir=’./out’,

prefix=’diamond’

/

&system

ibrav = 2,

celldm(1) = 6.75,

nat = 2,

ntyp = 1,

ecutwfc = 50.0

/
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&electrons

diagonalization=’david’

mixing_mode = ’plain’

mixing_beta = 0.7

conv_thr = 1.0d-12

/

ATOMIC_SPECIES

C 12.011 C.pz-vbc.UPF

ATOMIC_POSITIONS {alat}

C 0.00 0.00 0.00

C 0.25 0.25 0.25

K_POINTS {automatic}

14 14 14 1 1 1

Input example 2: Input sample for turbo eels.x

&lr_input

prefix=’diamond’,

outdir=’./out’,

restart_step = 250,

restart = .false.

/

&lr_control

itermax = 500,

q1 = 0.085,

q2 = 0.000,

q3 = 0.000,

/

Input example 3: Input sample for turbo spectrum.x

&lr_input

prefix=’diamond’,

outdir=’./out’,

eels = .true.

itermax0 = 500

itermax = 20000

extrapolation = "osc"

epsil = 0.03

units = 1

start = 0.0d0

increment = 0.01d0

end = 50.0d0

verbosity = 0

/
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