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We propose a new implementation of the replica-exchange method (REM) in which replicas follow
a pre-planned route in temperature space instead of a random walk. Our method satisfies the
detailed balance condition in the proposed route. The method forces tunneling events between
the highest and lowest temperatures to happen with an almost constant period. The number of
tunneling counts is proportional to that of the random-walk REM multiplied by the square root of
moving distance in temperature space. We applied this new implementation to two kinds of REM
and compared the results with those of the conventional random-walk REM. The test system was
a two-dimensional Ising model, and our new method reproduced the results of the conventional
random-walk REM and could adjust the tunneling counts by two times or more than that of the
random-walk REM by replica-exchange attempt frequency.
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INTRODUCTION

The enhancement of configurational sampling ensures accuracy and efficiency of molecular dynamics (MD) or Monte
Carlo (MC) simulations. Replica-exchange method (REM)[1–4] (or parallel tempering) is a popular way to improve
efficiency of configurational sampling (for reviews, see, e.g., Refs.[5, 6]). This method achieves a random walk in
temperature space and allows the system to overcome energy barriers between local-minimum free energy states. The
number of tunneling events[7, 8] is defined to be the number of times where the simulation visits from the lowest
temperature through the highest temperature and back to the lowest temperature (hereafter, we refer to this number
as tunneling counts). The tunneling count is a measure of configurational sampling efficiency: the more tunneling
counts are obtained with a fixed number of simulation steps, the better the sampling is. However, as the number of
replicas increases, tunneling events require more steps by random walk. This is a difficulty for large systems because
they require many replicas in general.

In the Metropolis criterion with pseudo random numbers, randomness prevents the design of a trajectory in tem-
perature space. Moreover, the moving distance by a random walk is proportional to the square root of the number
of trials. Therefore, previous improvements of tunneling count and efficiency in the REM was fulfilled by approaches
such as the temperature selection[9–12], attempts of non-neighboring pairs, and increase of acceptance probabilities.
An example is all-paring method, which tries all combinations of temperature pairs[13, 14]. Another example is Gibbs
sampling heat-bath replica-exchange method[15]. Other examples are to employ the global balance condition such
as replica permutation method[16] with Suwa-Todo algorithm[17] and all possible pair exchange[18]. These methods
reported higher tunneling counts than the conventional REM. However, a production of an equilibrium state without
random walk leads to another possibility of an improved REM, which enables a simulation to determine a trajectory
of replicas in a temperature space. In fact, some of special manipulation of state changes without the detailed balance
condition shows a rapid convergence for thermal equilibrium[19, 20]. Based on Chaotic Boltzmann machine[21, 22],
we have also proposed the deterministic replica-exchange method (DETREM)[23], which performs replica exchange
based on a differential equation without pseudo random numbers. This method produced the same efficiency as the
conventional REM.

Recently, Spill et al. showed that a planned route trip in only one randomly selected replica during a simulation
showed an improvement compared with the conventional REM[24]. We can generalize this idea so that planned
route for all replicas will realize the maximum efficiency with wide configurational sampling, and we here propose the
designed-walk replica-exchange method (DEWREM) by even-odd sequential replica exchange.

http://arxiv.org/abs/1501.00772v3
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METHODS

We now give the details of our methods. We prepare M non-interacting replicas at M different temperatures. Let
the label i (=1, · · · , M) stand for the replica index and label m (=1, · · · , M) for the temperature index. We represent

the state of the entire system of M replicas by X =
{

x
[1]
m(1), · · · , x

[M ]
m(M)

}

, where x
[i]
m =

{

q[i], p[i]
}

m
are the set of

coordinates q[i] and momenta p[i] of particles in replica i (at temperature Tm). The probability weight factor for state
X is given by a product of Boltzmann factors:

WREM(X) =

M
∏

i=1

exp [−βm(i)H(q[i], p[i])], (1)

where βm(= 1/kBTm) is the inverse temperature andH(q, p) is the Hamiltonian of the system. We consider exchanging
a pair of replicas i and j corresponding to temperatures Tm and Tn, respectively:

X =
{

· · · , x[i]
m , · · · , x[j]

n , · · ·
}

→ X ′ =
{

· · · , x[j]′

m , · · · , x[i]′

n , · · ·
}

, (2)

where x
[i]′

n ≡
{

q[i], p[i]
′

}

n
, x

[j]′

m ≡
{

q[j], p[j]
′

}

m
, and p[j]

′

=
√

Tm

Tn

p[j], p[i]
′

=
√

Tn

Tm

p[i] [4].

Here, the transition probability ω(X → X ′) of Metropolis criterion for replica exchange is given by

ω(X → X ′) = min

(

1,
WREM(X ′)

WREM(X)

)

= min(1, exp(−∆)), (3)

where

∆ = ∆m,n = (βn − βm)(E(q[i])− E(q[j])). (4)

Because each replica visits various temperatures followed by the transition probability of Metropolis algorithm, REM
performs a random walk in temperature space.
We now review two REMs, which are based on random walks in temperature space. Without loss of generality, we

can assume that M is an even integer and that T1 < T2 < · · · < TM . The conventional REM[1–4] is performed by
repeating the following two steps:

1. We perform a conventional MD or MC simulation of replica i (= 1, · · · ,M) at temperature Tm (m = 1, · · · ,M)
simultaneously and independently for short steps.

2. Pairs of exchange attempts are selected in replica pairs with neighboring temperatures, for example, for the odd
pairs (T1, T2), (T3, T4),· · · , (TM−1, TM ) or even pairs (T2, T3), (T4, T5),· · · , (TM−2, TM−1).

All the replica pairs thus selected are attempted to be exchanged according to the Metropolis transition probability
in Eqs. (3) and (4) with n = m+ 1.
We repeat Steps 1 and 2 until the end of the simulation. The canonical ensemble at any temperature is reconstructed

by reweighting techniques[25–27].
We next present the deterministic replica-exchange method (DETREM)[23]. Only Step 2 is different from the

conventional REM. At first, we introduce an internal state ym,n as an index of a pair of replicas i and j at temperatures
Tm and Tn, and consider the following differential equation:

dym,m+1

dt
= σm

1

1 + exp(∆m,m+1)
, (5)

where t is a virtual time, ∆m,m+1 is the same as in Eq. (4) with n = m + 1, and the signature σm of the pair of
(Tm, Tm+1) changes to 1 or −1 to control the signature of the change of ym which monotonically increases or decreases.
In Step 2, instead of applying the Metropolis criterion in Eqs. (3) and (4), we solve the differential equation in Eq.
(5) for the internal states ym,m+1 ∈ {−1, 1} for (Tm, Tm+1), where the total number of internal states is M -1 with the
following pairs: (1,2), (2,3), · · · , (M -1,M) for the random-walk DETREM and the pairs: (1,2), (3,4), · · · , (M -1,M)
and (2,3), (4,5), · · · , (M -2,M -1) for designed-walk REM. The replica exchange is done as follows[23]:

if updated ym,m+1 ≷ ±1, then (Tm, Tm+1)→ (Tm+1, Tm),

ym,m+1 ← ym,m+1 ∓ 1, σm ← ∓1.
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For the random-walk DETREM, if ym,m+1 performs exchanges, ym+1,m+2 is not time evolved and ym+2,m+3 is evolved
to avoid the leap exchange of temperature such as from Tm to Tm+2.
Finally, the designed temperature walk can be implemented to both conventional REM and DETREM (and other

REMs) as follows. Namely, the designed-walk replica-exchange method (DEWREM) is performed by repeating the
following steps.
1. We perform a conventional MD or MC simulation of replica i (= 1, · · · ,M) at temperature Tm (m = 1, · · · ,M)

simultaneously and independently for short steps.
2. Replica exchange is attempted for all the odd pairs (T1,T2), (T3,T4), · · · , (TM−1,TM ).
3. Repeat Steps 1 and 2 until all odd pairs perform replica exchange exactly once. Namely, once a pair is exchanged,

the exchanged pair stops exchange attempts and keep performing the simulation in Step 1 with the new temperatures.
Replica exchange attempt in Step 2 is repeated until all the other odd pairs finish exchanges.
4–6. Repeat Steps 1–3 where the odd pairs in Steps 2 and 3 are now replaced by the even pairs (T2,T3), (T4,T5),
· · · , (TM−2,TM−1).
7. The cycle of Steps 1 to 6 is repeated until the number of cycles is M , which is equal to the tunneling count and

all replicas have the initial temperatures.
8. Begin the above cycle of Steps 1–7 with Steps 1 to 3 and Steps 4 to 6 interchanged.

These eight steps are repeated until the end of the simulation.
The schematic picture of this procedure is shown in Fig. 1. We remark that Step 8, namely, reversing the cycle of

Steps 1–3 and 4–6, is necessary for the detailed balance condition, because the entering states are the same as leaving

states. For example, the state (x
[1]
1 , x

[2]
2 , x

[3]
3 , x

[4
4 ], x

[5]
5 , x

[6]
6 ) is reached from only two states (x

[1]
2 , x

[2]
1 , x

[3]
4 , x

[4]
3 , x

[5]
6 , x

[6]
5 ),

(x
[1]
1 , x

[2]
3 , x

[3]
2 , x

[4]
5 , x

[5]
4 , x

[6]
6 ) only and makes transition to the two states as shown in Fig. 1, where x

[i]
m is the state

of replica i at temperature Tm. This exchange procedure satisfies the detailed balance condition for replica and
temperature pair because the trials of exchange pair

γ
(

i(m)→ i(m+ 1)
)

ω
(

(xi(m)
m , x

i(m+1)
m+1 )→ (x

i(m)
m+1, x

i(m+1)
m )

)

= γ
(

i(m+ 1)→ i(m)
)

ω
(

(x
i(m)
m+1, x

i(m+1)
m )→ (xi(m)

m , x
i(m+1)
m+1 )

)

(6)

is equal in the route as is shown in Fig. 1, where γ(i(m)→ i(m+1)) is the selected probability of the exchange attempt.
Note that for exactly the same conditional probability of odd pair replica exchange, (T1,T2), (T3,T4), · · · , (TM−1,TM ),

∆ is
∑M/2

k=1 (β2k−1− β2k)(E2k −E2k−1), where k = 1, · · · ,M/2. However, because each replica is non-interacting with
other replicas, waiting for other exchanges does not influence the transitions of others.
This sequential exchange achieves one tunneling count when M cycles for each replica are finished. In theory, the

estimated ratio of tunneling count between the odd-even sequential exchange and the conventional random walk is
given by

TCsequential

TCrandom walk
=

Ntrial × PDEW
correction

2M√
Ntrial × PRW

correction

2M

∝
√

Ntrial, (7)

where Ntrial is the number of exchange attempts, PDEW
correction is the correction for waiting for all the replica exchanges

in Steps 3 and 6, and PRW
correction is the correction for the deviation of random-walk probability from the value 1/2.

RESULTS

In order to test the effectiveness of the present methods, we applied them to the 2-dimensional Ising model. The
lattice size in a square lattice was 128 (hence, the number of spins was N = 1282 = 16384). We have performed
conventional random-walk simulation and designed-walk (DEWREM) simulation of both conventional REM and
DETREM. We have also performed a mixed random-walk and designed-walk simulation of DETREM, where we
repeated the two walks alternately. The total number of replicas M was 40 and the temperatures were 1.50, 1.55,
1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.94, 1.98, 2.01, 2.04, 2.07, 2.10, 2.13, 2.16, 2.19, 2.22, 2.25, 2.28, 2.31, 2.34,
2.358, 2.368, 2.38, 2.40, 2.42, 2.44, 2.47, 2.51, 2.57, 2.63 ,2.69, 2.75, 2.82 ,2.90, 3.00, 3.10, and 3.15. Boltzmann
constant kB and coupling constant J were set to 1. Thus, β = 1/kBT = 1/T = β∗, and the potential energy is given
by E(s) = −∑

<i,j> sisj , where si = ±1, and the summation is taken over all the nearest-neighbor pairs in the square
lattice.
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For the conventional random-walk REM and DETREM, replica-exchange attempt was made every 1 MC step. One
MC step here consists of one Metropolis update of spins. The total number of MC steps for all the simulations was
100,000,000. To integrate Eq. (5), we used the fourth-order Runge-Kutta method with virtual time step dt = 1.
For DEWREM, replica-exchange attempt was made every 10, 20, 50, 100, and 150 MC steps in the conventional
REM simulations and every 10, 20, 50, and 100 MC steps in the DETREM simulations (see Table I). The mixed-walk
simulation was performed in which after 4M(= 160) even-odd or odd-even cycles of designed-walk simulations (replica-
exchange attempt was made at every 20 MC steps) were performed, 200,000 MC steps (which roughly corresponds
to 2M cycles) of random-walk simulations (replica-exchange attempt was made at every 1 MC step) were performed,
and then this procedure was repeated. For reweighting analyses[25–28], the total of 10,000 spin state data were taken
with a fixed interval of 1,000 MC steps at each temperature from the REM simulations.
Table I lists the mean tunneling counts in temperature space and energy space per replica for each method, which

is the number of times where the replicas visit from the lowest temperature through the highest temperature and back
to the lowest, and the mean energy at the lowest temperature through the mean energy at the highest temperature
and back to the mean energy at the lowest temperature during the simulation, respectively. The mean tunneling
counts in temperature space per replica of the designed-walk simulations at every 100 MC attempts were about four
times larger than random-walk Metropolis REM and twice larger than random-walk DETEM. On the other hand,
the mean tunneling counts in energy space per replica of the designed-walk simulations at every 100 MC attempts
were about six times larger than random-walk Metropolis REM and twice larger than random-walk DETEM. These
large tunneling counts imply that in designed-walk method all replicas traversed more efficiently in temperature
space, and our design to maximize the tunneling counts for all replicas without random walks was successful. For the
mixed-walk simulation, the maximum tunneling count was about twice larger than that of random-walk DETREM.
The mean tunneling count was almost the same as that of designed-walk DETREM. We next examine physical
quantities obtained from the designed-walk simulations with various replica-exchange attempt frequencies and mixed
walk simulations and compare them to those from the conventional random-walk simulations. Fig. 2(a) and Fig. 2(b)
compare the canonical probability distributions of energy density ǫ = E/N at four temperatures as a function of T and
the average total energy density ǫ as a function of T obtained from the random-walk and designed-walk simulations
of REM and DETREM, for DETREM including the mixed-walk simulation. Most of the probability distributions
of energy density are the same. However, in the DEWREM simulations, the probability distributions with high
frequency replica-exchange attempts at T = 2.25 near the exact critical temperature Tc = 2.269 are deformed slightly
compared to the results of the random-walk simulation. This can also confirm the results of heat capacity as shown
in Fig. 3. Fig. 2(c) and Fig. 2(d) show the average total energy density ǫ = E/N as a function of T from the same
simulations. They were obtained by the reweighting techniques[25–28]. The average total energy densities in all the
simulations are the same.
Fig. 3(a) and Fig. 3(b) show the specific heat C as a function of T during the conventional REM simulations and the

DETREM simulations, respectively. This shows that designed-simulation with shorter replica-exchange interval such
as every 10 and 20 MC steps underestimated the heat capacity near the critical temperature although the transition
point is sufficiently similar to the exact critical temperature at Tc = 2.269. As the intervals of replica-exchange
attempts are longer, the accuracy of heat capacity is higher. Moreover, the combination of the random-walk and
designed walk also increased the accuracy. This suggests that the designed-walk replica-exchange attempts caused
correlation between replicas. The correlation seems to be very strong near the critical temperature. As a result,
the heat capacity is underestimated slightly. However, these physical quantities show that mixed-walk simulation can
increase the accuracy of results and the number of tunneling counts and DEWREM simulation is suited for simulations
with longer replica-exchange time intervals between replica-exchange attempts.

CONCLUSIONS

In this article, we proposed an algorithm by a designed temperature route for replica-exchange methods. The aim for
developing this method was to maximize the tunneling counts. We reproduced the results of conventional REM. Our
designed-walk simulations showed that the tunneling counts increased by at least twice more than the random-walk
simulations. This method also showed that in REM replicas have no interaction among replicas but replica-exchange
trials with artificial orders cause a correlation between replicas. By decreasing the correlations introducing mixed-walk
simulation, using longer- interval replica-exchange trials, or other paring of replicas, this method will be more efficient.
In a future work, we will give the formulation for designed routes for multidimensional replica-exchange method[29],

which is a power tool in massive parallel computing[30–32]. This will be useful for creating another design route for
non-neighboring update for exchanges.
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FIG. 1. An schematic picture of time series of temperature indices in DEWREM with 6 replicas. The left cycle begins with the
temperature exchange of odd index pairs (T1, T2), (T3, T4), and (T5, T6), then tries with even pairs (T2, T3) and (T4, T5). The
right cycle begins with even pairs and next tries odd pairs. They are the reverse cycles of each other and their combination
satisfies the detailed balance condition of replica exchange.

TABLE I. The mean number of tunneling counts per replica.

TC Random walk Designed walk Mixed

T TC Met DETREM Met DETREM DETREM

Interval 1 100 1 100 20 50 100 150 20 50 100 1 & 20

Mean 173 37 178 58 292 197 131 99 231 144 93 293

± SD 10 3 9 5 56 41 27 21 48 30 20 6

E TC Met DETREM Met DETREM DETREM

Interval 1 100 1 100 20 50 100 150 20 50 100 1 & 20

Mean 55 13 55 34 80 79 77 70 81 79 69 75

± SD 5 2 5 4 8 6 7 5 6 6 4 5

T TC, E TC, Interval, SD, and Met stand for tunneling counts in temperature space, tunneling count in energy space, the
number of MC steps between replica-exchange attempts, standard deviation, and REM based on Metropolis criterion,
respectively. The frequency (1 & 20) of Mixed means that it was 1 MC step for random walk REM and 20 MC steps for
designed-walk REM.
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