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Abstract

The use of Hilbert curves to visualiza massive vector of data is
revisited following previous authors. The Hilbert curve mapping pre-
serves locality and makes meaningful representation of the data. We
call such visualization as Hilbert plots. The combination of a Hilbert
plot with its Fourier transform allows to identify patterns in the un-
derlying data sequence. The use of different granularity representation
also allows to identify periodic intervals within the data. Data from
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different sources are presented: periodic, aperiodic, logistic map and
1/2-Ising model. A real data example from the study of heartbeat
data is also discussed.

1 Introduction

A typical trait in many fields of science is the existence of a large amount
of data resulting either from experimental measurements or from some other
sources such as computer simulations. An archetypical example is that of a
long time series, where the whole data set can be thought as a very large
vector. Many combinatorial, statistical, informational theory tools among
others have been developed to recognize or discover peculiar features in such
data vectors. Common tasks can involve exploring regularities, extracting
periodic intervals, asserting ”randomness”, among others. In spite of the
availability of such powerful quantitative tools, the need of displaying the
whole set of values in a meaningful way becomes relevant. The visual in-
spection of the data can help in identifying peculiarities and in discovering
structures from where hypothesis can be advanced or decisions can be made,
as to which tools are the most convenient to be applied to the actual data
series. In a general setting, the one dimensional sequence is to long to make
sense writing down all values of the string. The local inspection of the string
of values can be useful in some contexts, but it has the serious shortcom-
ing that the overall picture of the data can be missed. In local exploration,
although features occurring in short periods can be identified, the logical ar-
rangement of such features over the whole dataset can remain hidden to the
observer. Previous authors have used the good locality preserving qualities
of Hilbert curve for the purposes of data visualization in general [1] and in
the context of DNA analysis [2]. Following such ideas, in this contribution we
show the use of the Hilbert curve for displaying data vectors in a meaningful
way for synthetic and real life data relevant to physics. We call such repre-
sentation Hilbert plots and they display the whole of the data vector in a two
dimensional (2D) plot that does not hinder the inspection of local intervals
if needed. Furthermore, it will be shown that Hilbert plots combined with
its Fourier transform, can be powerful enough to carry out some of the uses
we have listed above to be expected from data visualization.

If we are seeking for some kind of optimality in visualizing datasets,
neighborhood preserving and clustering are two good criteria for a large
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number of applications. Among the different one-to-one mapping between
n-dimensional and one-dimensional (1D) spaces, Hilbert curve has the best
neighborhood preserving properties [3, 4, 5]. It is a special case of space fill-
ing mapping known as Peano curves, that allows to map a 1D sequence into
a multidimensional space and viceversa. The use of Hilbert curve has been
extensively studied and used in a wide range of applications [6, 7, 8, 2, 9].

The display of one dimensional data series as 2D “images” is not new. A
’logical’ approach would be the sequential partition of the data sequence in
equal segments of values in order to build a display matrix using shades of
gray or any other coloring scheme. Such approach has the serious drawback
that far apart values in the original series, will end up close in the two
dimensional plot, giving rise to false neighbors. The artificial creation of
false neighborhoods could lead to unfounded conclusions from the visual
inspection of the plot. As serious as the former problem, the visualization
devised in such a way, do not have nice clustering properties, and a substring
of equal values will be displayed as a single line with the same color, hard to
distinguish in a large array.

The remainder of the article is organized as follows. In section 2 some
notation and preliminary notions will be introduced. Granularity will be de-
fined, as well as the dilation factor as a measure of locality preservation. The
row scan will be described. In section 3 we define the Hilbert curve construc-
tion, and analyze some of its properties. Hilbert plots will then be defined.
In section 4 we discuss the use of Hilbert plots for visualizing pure periodic
data and interleaved periodic sequences; aperiodic data as those resulting
from fixed morphism (such as Thue-Morse and Fibonacci sequences); data
from the binary partition of non-linear maps such as the logistic map; and
finally, data from the 1/2-Ising model with first neighborhood interactions.
Conclusions follow.

2 Preliminaries

Consider a sequence of values organized in a one dimensional string Σ of
length n = |Σ|. Each value σi will be indexed by i, giving its position in the
string from left to right (Figure 1a). The distance between two positions i
and j in the string will be the absolute value of the difference between their
indexes |i−j|. A substring of length l and starting at index i will be denoted
by σi;l (≡ σiσi+1 . . . σi+l−1).
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In what follows it will be important to define granularity over a sequence
Σ. The l-granularity representation of string Σ, is the mean approximation
over substrings of length l. If a partition of the string Σ into non overlapping
substrings σi;l is performed, then for each substring a mean value can be
calculated:

σl
i =

1

l

l−1∑

j=0

σi+j , (1)

and the following substitution is made (Figure 1b)

σi;l −→ σi;l, (2)

where

σi;l = σl
iσ

l
iσ

l
i . . . σ

l
i (3)

is the mean approximation of the original substring.
1-granularity representation of the sequence is, by construction, equal to

the original Σ, which will also be called the faithful representation. For
l > 1, the l-granularity of a sequence gives a coarser view of Σ. For a
periodic sequence of period p, the lp-granularity representation of Σ (l a
natural number) will result in a constant vector with components having the
mean value over the periodic unit.

The simplest possible mapping of a string to a two dimensional (2D) array
is to fix a length ymax and scan the sequence left to right, making a row
break at every multiple of ymax as shown in figure 2a. The value σi will be
mapped to the array position given by (i mod ymax, i+ ⌊i/ymax⌋) , where
⌊x⌋ is the largest integer less or equal to x. If two neighboring values σi,
σi+1 are not split by a row break (i mod ymax 6= 0), they will be nearest
neighbors in the 2D mapping. Yet, from figure 2a, it is clearly seen that
from the four nearest neighbors of any interior point in the 2D mapping only
two of them will actually be consecutive values in the original Σ sequence,
while the other two (from the row above and below) can be far away in the
Σ sequence. A slight improvement to avoid the loss of locality at the row
boundaries can be achieved by the scan shown in figure 2b, but the loss of
locality from the above and below row remains a problem.

In any scan scheme, some loss of locality is unavoidable. In the 1D se-
quence each σi will have two nearest neighbors, while in the 2D mapping, for
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any interior point, a coordination of four neighbors is achieved. So at least
half of the nearest neighbors of σi in the 2D mapping will not correspond
to nearest neighbors in the 1D sequence. One will hope that all neighbors
will still be close enough to the σi in the Σ string, and some meaningful
clustering of close values is then achieved in the 2D mapping.

A useful magnitude for measuring locality is the square-to-linear ratio or
dilation factor defined as [3]:

Γ(i, j) =
d2m

|i− j|
=

|m(i)−m(j)|

|i− j|
(4)

for a pair of points index i, j and the mapping function m : I → I2 which
maps the Σ string to the unit square.

For each coordination distance r = |i − j| in the Σ string, the mean
neighbor distance dm in the 2D array is calculated from all interior points.
The slower dm scales with increasing |i − j| value, the better the locality
preserving property of the mapping [3]. If the dm vs |i− j| curve lies below
the dm = |i− j| law we can consider the mapping to preserve locality fairly
enough.

Figure 3a shows that for the row scan, dm scales with |i− j| worse than
dm = |i− j| curve. More importantly, the large dispersion of values around
the mean value for each |i− j|, witness the fact that large variations in local
neighborhood happens in this mapping. The same conclusion can be drawn
from the dilation factor plot of Figure 3b. An almost constant behavior for
Γ(i, j) is observed around 60.

The locality behavior we are searching for, is met (as best as possible) by
the mapping known as Hilbert curve [3], which will be explained in the next
section.

3 The Hilbert plot

Hilbert curve can be defined by a recursive algorithm. In two dimensions,
the general idea is to divide, at step k, the unit square in four quadrants, and
in each quadrant place a scaled down copy of the curve drawn in step k − 1,
in specified orientations. For each curve an entry and exit point is defined.
Curves in adjacent quadrants are joined by exit to entry points.

Let us numerate, starting from the lower left quadrant, all quadrants in
clockwise direction (Figure 4a). In the case of the Hilbert curve, in step k,
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the curve drawn in step k − 1 is scaled down by 1/2 and placed as it is in
quadrant 2 and 3, while in quadrant 1 and 4, the curve is vertically flipped
and rotated +90o (counterclockwise) and −90o, respectively (Figure 4a).

Step by step, the algorithm is the following (we closely follow [10]):

1. At step 1, the unit square contains the staple like curve depicted in
Figure 4b1.

2. From step k to k + 1 the curve at step k is scaled down by a factor of
two and four copies are placed in each quadrant as already described
above (Figure 4b2).

3. The curve is made continuous by joining the exit point of the curve in
the first (respectively the second and third) quadrant with the entry
point of the curve in the second (respectively the third and fourth)
quadrant. The entry (exit) point of the new curve is the entry (exit)
point of the copy placed in the first (fourth) quadrant (Figure 4b2)

The recursive iteration of the above algorithm yields, at each step, a finer
grained Hilbert curve Hc(k) over the unit square (Figure 4c). At step k, the
Hilbert curve covers 4k points in the square grid as a 2k × 2k array.

The Hilbert mapping Σ ⊗ Hc(k), will associate to every index i of the
sequence Σ a point (x, y) over a square grid, such that the (x, y) will have
the value σi. The mapping m : i −→ (x, y) will be done according to the
path described by the Hilbert curve Hc(k) of order ⌈log4 |Σ|⌉, where ⌈x⌉ is
the smaller integer larger than x. We will call such mapping a Hilbert plot
of Σ. Several efficient algorithms have been reported to find the point in the
Hilbert mapping from the index i, and viceversa (see for example [11]).

Compared to the row scan, the Hilbert curve mapping has a dm scaling
with |i−j| below the dm = |i−j| line, showing a much better locality preserv-
ing property (Figure 5). Furthermore, the dispersion of values around the
mean for each |i−j|, is significantly smaller (in relative terms). In correspon-
dence with such behavior, the mean dilation factor is an order of magnitude
below the one found for the row scan. Bauman [3] has demonstrated that
for the Hilbert curve a upper bound for the dilation factor of 6 is achieved,
which is considered almost optimal among all similar space filling curves.

From the construction of Figure 4b, it can be seen that locality is mostly
broken at the quadrants boundaries, specially between the first and fourth
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quadrant, special care must be taken when observing data across the quad-
rant lines.

In the next section the Hilbert plot will be used to visualize data from
different sources.

4 Hilbert curve visualization of 1D data sets

4.1 Periodic sequences

We start by considering the periodic pattern resulting from the repetition
of the binary string ·10·. Figure 6 shows the Hilbert plot of such sequences
for two lengths. A clear checkerboard pattern appears and it is preserved at
any order. The Hilbert plot fits our intuitive idea of how such alternating
sequence should look. Periodicity is clear from the plot. One must be cau-
tious not to push the 2D interpretation to far. Connectivity in the original
sequence is sequential, while the Hilbert plot suggest connectivity of simi-
lar values through the diagonals, this connectivity does not happen in the
sequence.

Not all periodic sequences give rise to easily identifiable patterns in the
Hilbert plot. Figure 7a shows the Hilbert plot of the binary periodic pattern
·1001·. It is not immediately clear that such pattern corresponds to a periodic
structure. The difficulty to identify a pattern is further emphasized if we
consider the periodic sequence ·1100· of the same length (Figure 7c). Both
sequences are equivalent upon an odd cyclic shift and yet, their Hilbert plot
looks different to a point, where the relation between both sequences can not
be derived just by comparing both plots. If instead of looking at the Hilbert
plot, we perform a Fourier transform of both arrays, the similarity between
both sequences can be inferred from the similarity of their highly symmetric
Fourier pattern (Figure 7b and d). It is clear, from both Fourier maps, that
the sequence shows some sort of order. The Fourier patterns are each self
similar and both exhibit a four fold symmetry axis and four mirrors, two
cutting the image in quadrants and two along the diagonals. The overall
symmetry of the patterns belongs to the 4mm point group [12].

In any case the periodic nature of both sequences can be revealed if we
look at the 4-granularity representation of both strings (not shown), a solid
color Hilbert plot will emerge corresponding to the homogeneity of the 4-
granularity representation.
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The usefulness of tuning granularity to exhibit periodic behavior in the
data sequence can be seen more clearly when two or more periodic patterns
are interleaved in the sequence. Consider a sequence made from the random
interleaving of ·1001· and ·1101011· periodic ”chunks”. We consider the case
where any periodic interval is not longer than 10−2 the total length of the
sequence. Figure 8 shows the Hilbert plot of Σ at three granularity levels:
the faithful representation, the 4-granularity and the 7-granularity represen-
tation, the last two being the periodicity of the ·1001· and ·1101011· patterns
respectively.

In the Hilbert plot of the faithful representation different regions can be
identified but the periodic nature of each region is far from being clear. The
Hilbert plot of the 4-granularity representation immediately identifies those
regions with periodicity of the same value as solid blocks, while the corre-
sponding Hilbert plot of the 7-granularity representation shows as one color
blocks the complementary regions corresponding to the ·1101011· periodic
”chunks”. The three plots together allow to infer that the Σ sequence is
formed by intervals of periodicity 4 and 7, and no other intervals are present.
The fact that the periodic intervals of the Σ string show up in the Hilbert
plots as clearly identifiable regions, points to the convenience and importance
of the clustering and locality preserving properties of the Hilbert curve.

4.2 Aperiodic sequences

Next, we will consider aperiodic fully ordered sequences. The Thue-Morse se-
quence and the Fibonacci sequence are non periodic, rule based with entropy
rate equal1 zero [14]. The Thue-Morse sequence is defined by the morphism

tm(0) = 01

tm(1) = 10

while the Fibonacci sequence follows the rule

fb(0) = 01

fb(1) = 0

1Entropy rate, is a length invariant measure of the amount of new information gained
per unit time in a dynamical process [13]
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Starting with a value of 1, the first characters will be
1001011001101001011010011001011001101001100101101
for the Thue-Morse morphism, and
1011010110110101101011011010110110101101011011010
for the Fibonacci sequence.
Figure 9 shows the Hilbert plot for both sequences, together with its

Fourier pattern. Both Hilbert plots show some type of structure, being more
visually prominent in the case of the Thue-Morse sequence. The Fourier
pattern of the Thue-Morse Hilbert plot exhibits self similarity which can be
seen at the 2−1 (quadrants), 2−2 (octant) and 2−3 scales. The symmetry of
the pattern is again 4mm.

The Fourier pattern of the Fibonacci Hilbert plot is also symmetric. In
this case, the pattern has a two fold axis together with two mirror planes
perpendicular to each other and dividing the square into quadrants. The
point group symmetry of the pattern is also 4mm.

4.3 Logistic Map

We now turn to the logistic map [15] given by the equation

xn+1 = 1− rx2
n (5)

A binary generating partition at x = 0 is used to reduce the output
to a binary sequence. Different behaviors are obtained by changing the r
parameter: at r = 1.8, chaotic behavior is observed, with an entropy rate of
h = 0.5828; at r = 1.7499, a strong intermittent point is observed and an
entropy rate of h = 0.2597 is achieved; and at r = 1.40115518 the map is at
the Feigenbaum point, where the entropy rate becomes zero.

Figure 10 shows the Hilbert plot for each r value. Chaotic behavior at
r = 1.8, gives rise to a random looking Hilbert plot (Figure 10a) with no
special feature, the Fourier pattern also fails to show any structure. Visu-
alization of the Hilbert plot for increasing granularity, did not improve the
featureless character of the Hilbert plot. Is hard to appreciate if the Hilbert
plot at the intermittent point shows any pattern, for the faithful represen-
tation of the sequence (Figure 10b), a fact that is not clearly elucidated by
the Fourier pattern. Yet the Hilbert plot of the 3-granularity representation
of the sequence immediately shows, that in fact, the sequence has mostly
a structure compatible with a pattern with a periodicity of 3, interleaved
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with some minor random subsequences, which accounts for the entropy rate
of 0.2597. The inspection of the sequence reveals ·110· as the periodic pat-
tern. At the Feigenbaum point (r = 1.40115518), the Hilbert plot (Figure
10c) clearly shows the emergence of structure, which is also revealed by the
Fourier pattern. The Hilbert plot of the 4-granularity representation almost
shows a checkerboard pattern, a look into the sequence allows to identify two
recurring patterns: ·1110· and ·1010·, yet their repetition is not periodic.

4.4 Ising nearest neighbor model

We also considered the spin-1/2, nearest-neighbor Ising model, the reader
is referred to reference [16] for detailed discussion of the model. For our
purposes, it will be enough to consider three regions: (a) Close neighbor
interaction prevails over the thermal energy, and leads to the ferromagnetic
regime; (b) close neighbor interaction prevails over the thermal energy, and
leads to the antiferromagnetic state; (c) thermal energy is the most important
contribution and the state is paramagnetic.

The Hilbert plot of the three states is shown in figure 11. The black color
corresponds to a spin orientation (up spin) while the white color is then
associated with the opposite direction (down spin). Ferromagnetic state is
characterized by large regions with the same spin orientation (black regions)
corresponding to long intervals of the same spin orientation, typical of such
state. Isolate spin orientation are rare. Care again must be taken, not to
take the interpretation of the Hilbert plot to far away. Although it may seem
that the black regions are connected, the actual 1D sequence does not exhibit
such connectivity as spin runs along a single direction.

The antiferromagnetic state exhibits a Hilbert plot where roughly the
same amount of up and down spins are observed in a pepper and salt type
of image. Isolated spins in both directions can be commonly seen.

If compared to the previous states, the Hilbert plot of the disordered state
has a more random looking plot, with small regions of both up and down
spin failing to show any structure. The Fourier pattern of all three states fail
to show any significant structure resulting from the lack of long range order
in all cases.

We further used the Hilbert plot visualization to identify phases in Monte
Carlo simulations of polytypes in layered structures using Ising type models
(not shown). The visualization techniques allowed in al cases the prelimi-
nary identification of the emerging polytypes even when interdispersed with
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shrinking ones. Results will be published elsewhere.

4.5 Real data example

We have been studying the long time correlation of heart activity based on
a previous model forwarded by Peng et al[17]. In their work, heartbeat is
treated as a (possible) correlated signal and it is found, that in large time
scales (24 hours), the existence of certain long correlations could be linked
to the heart condition. As a result of the study, it was also found that the
heartbeat could be possible modeled as a random walk. We have extracted
data from the PhysionBank archives which contains physiologic signals and
related data for use by the biomedical research community, including heart
activity[18]. In figure 12 (Higher resolution images can be found as supple-
mentary files), the Hilbert plot, together with the scatter plot of the data for
a healthy person, a patient with arrhythmia and a patient that suddenly died
of heart attack while monitoring, are shown. The data sets are each above 3
million points and spans around 24 hours of heart activity. A Hilbert curve
is over imposed the plot to aid in following the time flow.

Hilbert plot is able to show difference in all cases, while giving a level of
detail not clearly appreciated in the scatter plot. The healthy person shows
a homogeneous, mostly uniform plot, while in the person with arrhythmia,
a more ”salt and pepper” type of image is seen. The plot is not completely
homogeneous, as the “salt and pepper” seems to be heavier at the first half of
the plot. A single heart event is seen marked by arrow, which was identified
at around 10 hours of monitoring. For the patient that underwent a heart
attack, a first episode happens at around 12 hours of monitoring (pointed
by arrow). In the Hilbert plot we can see details of this first event as dif-
ferent gray levels, which is lost in the scattered plot due to the cluttering
of the points. From this first event the patient recovered, and shortly after
a successive string of heart events, lead to the final stroke. Again, details
within this successive events can be qualitatively be seen in the Hilbert plot,
while is difficult in the scattered plot. Hilbert Plot of the segmented data in
chunks of 106 points, allow to observe even finer details in the heart activity
for 8 hours time span (not shown).

Hilbert plot allows to see in the same plot scale, the overall picture of
the 24 hours, with all heart events and their possible correlation, while not
loosing details due to cluttering of the data points. Hilbert plot Fourier
transform showed peaks revealing the underlying pattern of the heart beats
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(not shown).

5 Conclusions

A definite solution to the visualization of large data series which is completely
satisfactory, remains elusive and is strictly unreachable. This points to the
need of making a good compromise between a visualization that allows the
identification of features and regularities and at the same time, avoids arti-
ficial artifacts. Hilbert plots proves to strike a good balance between both
extremes.

It is important to bare in mind that in observing Hilbert plots and its
Fourier map, one must be careful not to stretch the interpretation of the
visualization to far, and infer conclusions that can be the result of different
topologies from the 1D and 2D spaces, a problem common to any other
visualization. On the other hand, the clustering property of the Hilbert
plot, and its good neighborhood preserving property, makes it useful in the
visualization task. A price must be paid though, it is not easy to imagine
the sequence path in a dense enough Hilbert plot. Yet, one gets, for such
price, the clustering in connected regions of neighboring values in the data
vector. Additionally, the use of granularity representation allows to observe
the data at different levels of detail and to identify periodic or nearly periodic
intervals in a very straightforward manner.

It is important to realize that a single visualization technique proves al-
most impossible to capture all the visual information of the data. The Fourier
map of the Hilbert plots seems to grasp complementary visual information
not easily seen in the Hilbert plot. In particular, it captures the presence of
structure and order, being periodic or aperiodic.

Finally, the availability of modern computer tools allows to use any vi-
sualization in a dynamical manner, making it possible to fully exploit the
strength of a particular representation. In the case of the Hilbert plots, for
example, the difficulties in associating a particular point of the 2D representa-
tion with its index in the data sequence, can be easily solved. Other facilities
such as zooming, image segmentation and simultaneous display of different
granularity representation, among others, can also be easily implemented by
software.
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6 Availability

Software used for the Hilbert plots shown is freely available upon request
from the authors.
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(a)
...

(b)
i i+1 i+3i+2

i i i i

i= i i+1 i+3i+2+ + +

4

Figure 1: A data sequence as a vector (a) of values σi indexed from left to
right. (b) The mean value approximation of 4-granularity is constructed by
a sliding window of length 4, where each non-overlapping partition σi;4 is
substituted by a constant subsequence of the same length and value σi.

(a) (b)

Figure 2: Mapping of the data vector σ1;n to a 2D array. (a) Row scan from
left to right with breaks at fixed size. (b) Row scan with interleaved reverse
scan directions.
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Figure 3: Locality preserving property of the row scan. (a) Mean neighbor
distance dm as a function of sequence distance |i− j|. The error bars corre-
spond to the standard deviation showing a large dispersion of values for all
dm values. (b) The mean dilation factor Γ has an almost constant behavior
with sequence distance |i− j|. A Γ value of around 60 is attained.
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(a) (b)

(c) 43

Figure 4: Space filling Hilbert curve. (a) At any step k, the unit square is
divided in quadrants and in each quadrant scaled down copies of the curve
drawn at step k − 1 are drawn in different orientation. (b) Hilbert curve of
order 1 is a staple like figure. At step 2 the staple like curve of order 1 is
drawn at each quadrant according to the rule depicted in (a). Exit points
from quadrant 1, 2 and 3 are linked with entry points in quadrants 2, 3 and
4, respectively, to make a continuous curve. (c) Hilbert curve of order 3 and
4.
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(b)
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Figure 5: Locality preserving property of the Hilbert curve (a) Mean neighbor
distance dm as a function of sequence distance |i− j|. The scaling law is well
below the dm = |i − j| curve which can be considered evidence of good
neighbor preserving. The error bars correspond to the standard deviation.
(b) The mean dilation factor Γ behavior as a function of |i− j|.

(a) (b)

Figure 6: The Hilbert plot for the ·10· periodic pattern, a sequence length
of (a) 45 = (1024) and (b) 47(= 16384) was taken.
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Figure 7: The Hilbert plot and corresponding Fourier map for the (a) ·1001·
and (c) ·1100· periodic patterns. The Fourier map for both sequences are
displayed in (c) and (d), respectively. For both sequences a length of 47(=
16384) was taken for the Hilbert Plot, the Fourier map was done with a
sequence of length 49(= 262144).
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(a)

(b)

(c)

Figure 8: Hilbert plot of a random interleaved sequence of ·1001· and
·1101011· periodic intervals. (a) Faithful representation; (b) 4-granularity
representation, solid blocks corresponds to the ·1001· intervals; (c) 7-
granularity, solid blocks corresponds to the ·1101011· intervals. The length
of the sequence was taken as 47(= 16384) for the Hilbert plot.
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Figure 9: Hilbert plot of the (a) Thue-Morse and (c) Fibonacci sequences.
The Fourier pattern of the Thue Morse sequence (b) is highly symmetric and
self similar, while for the Fibonacci sequence (d), a two fold symmetry is ob-
served. For both sequences a length of 47(= 16384) was taken for the Hilbert
Plot, the Fourier map was done with a sequence of length 49(= 262144).
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Figure 10: Hilbert plot (i) and the corresponding (ii) Fourier map for the lo-
gistic map at (a) r=1.8 (in the chaotic region); (b) r=1.7499 (an intermittent
point) and; (c) the Feigenbaum point (with vanishing entropy rate). The (iii)
column shows the Hilbert plot for (b) 3-granularity representation of the in-
termittent point and, (c) the 4-granularity representation of the Feigenbaum
point.
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(a) (b) (c)

Figure 11: Hilbert plot of the 1/2-Ising nearest neighbor model in the (a)
ferromagnetic, (b) antiferromagnetic and (c), paramagnetic state.

Figure 12: Hilbert plot (above) and scatter plot (below) of real electrocardio-
gram of a (a) healthy person, (b) patient with supraventricular arrhythmia
and (c), patient with severe heart condition leading to sudden death. All
data corresponds to a 24 hour time span, 1 second resolution. the number
of points in each plot is above 3 106. Over imposed Hilbert curve aids in
following the flow of data. See text for details.
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