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Abstract

In order to predict the turbulent transport in magnetic fusion experiments,
global (i.e., full-torus) gyrokinetic simulations are often carried out. In this
context, one frequently encounters situations in which the plasma temperature
varies by large factors across the radial simulation domain. In grid-based Eu-
lerian codes, this enforces the use of a very large number of grid points in the
two-dimensional velocity space, and, thus, an enormous computational effort.
To minimize the computational requirements, one may employ block-structured
grids, adapted to the radial changes of the temperature. As the block-structured
grids rely on a general approach, they can be applied to different Eulerian gy-
rokinetic implementations. In this paper, we explain the construction and im-
plementation of such grids in the gyrokinetic code GENE, F. Jenko et al. (2000),
and present corresponding simulation results.
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1. Introduction

Plasma microturbulence is responsible for causing strong outward transport
of heat and particles in fusion experiments, making a thorough understanding
of it of paramount importance to the development of future nuclear fusion re-
actors. Gyrokinetics has been shown to be an appropriate model to simulate
microturbulence in magnetically confined core plasmas [1, 2]. In spite of a re-
duction from six to five dimensions and a removal of irrelevant space-time scales
compared to the full kinetic description, gyrokinetic simulations are still compu-
tationally expensive. For example, an estimated grid for the future large-scale
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fusion experiment ITER [3] simulations contains around ten billion grid points!.
Furthermore, recent studies indicate that, depending on the temperature and
density profiles, simulations may require a significantly higher number of grid
points, even up to a trillion. This amount of degrees of freedom is, in contrast
to other applications, computationally prohibitively expensive for already fully
parallelized gyrokinetic simulations, imposing the need for methods that allow
reducing considerably the number of grid points without a significant loss of
accuracy.

In this paper, we discuss the use of block-structured grids in the Eule-
rian gyrokinetic code GENE (Gyrokinetic Electromagnetic Numerical Exper-
iment) [4, 5, 6], resulting in a significant reduction in the number of grid points
and, thus, an improvement in the performance of radially extended gyrokinetic
simulations, while at the same time maintaining accuracy. Furthermore, the
design and development of block-structured grids integrate smoothly in the ex-
isting implementation, since the block-structured grids use primarily the same
routines as the regular grids, after certain adaptations.

GENE solves a set of nonlinear integro-differential equations (coupled to
Maxwell’s equations) for the particle distribution functions in a five-dimensional
position-velocity phase space. GENE is based on the method of lines, discretiz-
ing phase space and time separately. The time stepping follows a fourth-order
explicit Runge-Kutta method. GENE’s implementation includes several well-
established techniques addressing the mathematical model to reduce the com-
putational demands. First, a § f-splitting is applied where the fluctuating part
is considered small with respect to the equilibrium part. Furthermore, a field-
aligned coordinate system is employed to exploit the strong anisotropy of turbu-
lent fluctuations in the directions parallel and perpendicular to the background
magnetic field 7, 8]. Finally, the spatial grid is adapted to the background mag-
netic field. Details on the mathematical model and implementation are given
in [9, 10, 11].

In GENE;, there are two main operation modes, local and global, each of them
with its own requirements on computational grids. In the local simulations [12],
the computational domain follows the magnetic field line, and its radial size
is small compared to the fusion device size. Here, the radial variation of the
temperature and density profiles can be neglected. In this case, the two spatial
directions perpendicular to the background magnetic field are treated using
efficient spectral methods, whereas the third spatial direction — parallel to the
background magnetic field — and the velocity space directions are discretized
via finite difference methods.

In the global operation mode, however, where the radial changes of the
plasma parameters are of interest, neglecting the radial temperature and density
profiles is no longer possible, because the grid length in radial direction may

INumber of grid points in each direction: n_spec = 2, nx0 = 2048, nky0 = 32, nz0 = 24,
nv0 = 96, nw0 = 32. The computational grid does not resolve electron spatial scales. The
coordinate system is described in Section 3.



extend up to the full machine size. Furthermore, the different types of boundary
conditions that are employed in the radial direction prohibit the use of spectral
methods in this dimension. Hence, finite element interpolation techniques are
required to perform the gyro-averaging and construct the field solver. Regarding
the computational grids in the global simulations, the straightforward approach
is to extend the equidistant regular grids of the local simulations to the full radial
range. This leads to a significant increase in the number of degrees of freedom
in the velocity space, and makes certain global simulations computationally
prohibitively expensive (details on velocity space resolution are available in [13,
14, 15, 16]). A method to alleviate this issue is by coupling multiple local
simulations (cf., for example, the gyrokinetic codes TRINITY and TGYRO [17,
18]). However, as soon as the turbulence correlation length approaches the scale
lengths of the background density and temperature profiles, global simulations
are necessary.

The block-structured grids introduced in this paper address the problem
of reducing the computational demands of grids in the global operation mode
of GENE. We adapt the block-structured grids to the Maxwellian background
particle distribution function, which depends on the temperature profile. The
resulting computational grids are accurate and have considerably less nodes in
the velocity space in comparison to the original regular grids. They also allow
the reuse of a large amount of regular grid-specific code in GENE.

The rest of the paper is structured as follows. In Section 2, we introduce
the governing equations solved in GENE, which are relevant for the grid con-
struction. Section 3 presents the initial equidistant grids used in GENE, as
well as the block-structured grids that can be deduced from them. Further, in
Section 4, we explain the implementation of the proposed grids. The results are
presented in Section 5. Finally, we summarize the contribution of this work in
Section 6.

2. The gyrokinetic system of equations

This section intends to provide a brief introduction to gyrokinetic theory
and an overview of the system of equations which is solved in gyrokinetic codes
like GENE. Generally, hot and dilute plasmas cannot be treated as fluids since
they do not thermalize at such low collisionalities and kinetic effects have to be
retained. The theoretical framework of choice is hence given by the Boltzmann
equation or — in the collisionless limit — by the Vlasov equation. Here, a
distribution function Fy(x,v,t) of a species s (electrons and fully ionized ions)
in a six-dimensional space is propagated in time via
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ot
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where ¢ is the charge of the species s, E and B are the electric and magnetic
fields, respectively. These fields are computed consistently from the Maxwell
equations, which, when formulated in the nonrelativistic limit for the electric



and magnetic potentials ¢ and A, take the form
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where Coulomb gauge is used, ng, us are the density, and velocity of the species
s, Eq. (2) and (3) being moments of the distribution function Fj.

Because of the high dimensionality, this set of equations is very expensive to
simulate. However, since the gyration of charged particles in highly magnetized
plasmas is typically much faster than the dynamics of interest, a reduced 5D
description can be employed where the exact orbit information is erased and
effectively only gyrorings are considered. Mathematically, this can be achieved
by introducing gyroaverages, A(X) = % $d A(X +1r(6)), along the gyrophase
6 and applying proper near-identity (Lie) transformations, for details, see [1, 19].
This yields a full-F five-dimensional gyrokinetic equation per species s:
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with the gyrocenter coordinate X, the velocity component parallel to the mag-
netic field v, and the magnetic moment y = mv? /2B. In the electrostatic
limit (for the sake of simplicity) and taking only the first order terms in the
gyrokinetic expansion, their time evolutions are given by
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Here, By denotes the modulus of the magnetic field vector Bg, by = By/By
the corresponding unit vector, BSH = b - B{ the parallel component of Bfj =
By +V x (Bov/€s), and Qs = ¢sBo/msc is the gyrofrequency of species s
with mass mg. Furthermore, three characteristic drift terms appear: the E x B
velocity vg = BL(Q)BO x V¢, the gradient-B drift vyp, = ﬁBo x V By, and

the curvature drift velocity v, = % (V xbg),.

In so-called § f-codes like GENE, the gyrokinetic Vlasov equation is further
simplified by splitting the full distribution function into a local Maxwellian
background Fp, and a fluctuating part fi4 (see [20, 21]), which, according to
the gyrokinetic ordering (see [1]), is by one order smaller than Fy, (f15/Fos ~ €).

The local equilibrium distribution function Fys depends on the density ng(x)



and temperature Tg(x) radial profiles, and is given by
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With this choice, the inherent problem motivating this work becomes obvious.
The velocity space structures follow the thermal velocity vr(x) = \/2Ts(x)/ms
and are hence typically large in the plasma core and small close to the edge.
These various scales need to be resolved in the corresponding numerical grids.
Here, moments of the equilibrium distribution function may help to define the
minimum extent of the velocity space boxes. For instance, an accuracy limit
may be set up to which the velocity space integration of Fys(z) should match
the original density profile ns(z). However, some safety factor should be taken
into account in order to accommodate contributions from the fluctuation part.
At this point, it should be emphasized that this problem is not specific to d f-
codes but is met in all grid-based models like full-F' gyrokinetic or even kinetic
codes due to the underlying physics issue.

In the implementation to be considered in the following, the d f code GENE,
some further optimizations of the underlying equations are performed. First,
only the lowest order nonlinearity, the so-called E' x B nonlinearity is retained.
Some higher order terms like the parallel nonlinearity can be switched on for
testing but are usually found to be insignificant, see, e.g., [22]. Second, curvilin-
ear field-aligned coordinates are used to exploit the high anisotropy of plasma
turbulence and avoid some derivatives along the magnetic field lines. Since the
details are not of direct relevance for the following discussion, the reader is re-
ferred to, e.g., [9, 10, 11] for the final version of the resulting system equation
that furthermore includes collisions and electromagnetic effects.

3. Computational grids for gyrokinetic simulations

3.1. Regular computational grids

Fluctuations in gyrokinetic simulations are of a strongly anisotropic char-
acter, where parallel correlation lengths exceed the perpendicular lengths by
several orders of magnitude. Therefore, field-aligned coordinates are employed
for the positional space in GENE and other plasma simulation codes, which
reduces the number of grid points compared to conventional grids. General in-
formation about field-aligned coordinates is available in [23], and details on the
grid geometries implemented in GENE are provided in [8].

We use (z,y,z) symbols for the field-aligned spatial coordinates, where z
is the radial coordinate or the flux surface label, y the binormal coordinate
or field line label on a given flux surface, and z the parallel coordinate. The
boundary conditions determine the discretization applied to the different di-
rections. For instance, periodic boundary conditions in the y direction allow
switching to the Fourier representation of this coordinate and using fast spec-
tral methods. The parallel direction z is quasi-periodic (f(z,ky,z + L,) =



f(x, ky, z) exp [-2mingq(x)j], where g(z) is the safety factor, ny — an inte-
ger fraction of the toroidal turn for which the periodicity is assumed, and
ky = jky min gives the toroidal mode number). A finite difference method on an
equidistant grid is employed for this coordinate. A finite difference scheme is
also applied to the radial coordinate x, due to the Dirichlet boundary condition
used in the global simulations.

The complex curvilinear coordinate system in the position space is reflected
by the metric coefficients and Jacobian, which appear in the computation of
the derivatives and integrals of the gyrokinetic Vlasov-Maxwell equations. The
logical or computational grid for the coordinates (z,y, z) is nevertheless a simple
rectangular mesh with constant mesh step-sizes in all directions.

In the two-dimensional velocity space, we use the parallel velocity v and
the magnetic moment p as coordinates. An equidistant grid is used for the
discretization of the parallel velocity coordinate. For the p direction, however,
no derivatives have to be taken into account in collisionless plasma simulations,
see Eq. (5). Only integrations are performed along this coordinate in order to
compute the electromagnetic fields and for diagnostic purposes. Hence, for effi-
ciency, Gauss-Laguerre knots are employed for the magnetic moment coordinate
discretization.

The information on the default or regular grids in GENE is summarized in
Table 1.

Table 1: GENE global version coordinates

symbol  name space type discretization

T radial direction position-configuration  equidistant

Y, ky binormal direction  position-Fourier equidistant

z parallel direction position-configuration  equidistant

| parallel velocity velocity-configuration  equidistant

o magnetic moment velocity-configuration  Gauss-Laguerre

3.2. Block-structured computational grids

In plasma simulations, block-structured grids are often used in the con-
text of adaptive mesh refinement. An example of this approach for a Vlasov
two-dimensional simulation (1D+1V — positional and velocity coordinates) is
provided in [24], while another example implementing Particle-In-Cell (PIC)
simulations is described in [25]. Locally refined block-structured grids are also
applied in fluid plasma simulations, see [26, 27]. Other types of block-structured
grids include the multiple connected blocks of grids in the logical computational
domain, where each block corresponds to a physical simulation subdomain. An
example of this type of grids for edge plasma simulations is described in [28].
The block-structured grids described in this paper are related to overlapping or
overset grids [29, 30], because the data-exchange between blocks in these grids
is done through interpolation in the overlapping region. The overset grids are
often used to represent complex geometries and discretize regions with different



physical properties. In our case, the geometric shape of the simulation domain
in the velocity space is not of interest. However, one should carefully choose the
range and resolution for the velocity directions, depending on the temperature
at the given radial distance.

This subsection describes the rationale for the construction of block-structu-
red grids. We are interested in the fluctuating part of the distribution function,
which typically has a structure similar to the equilibrium distribution func-
tion (6). For this reason, we use the Maxwellian distribution as the main factor
that influences the shape and resolution of the grid.

The grid is built independently in different subspaces. We start with the
radial distance z and parallel velocity v| subspace. To obtain the distribution
function only in this subspace, we marginalize out (discard) all perpendicular
velocity v components by integrating the full Maxwellian over the v, and
v, variables. This leads to

27T (x)

mvﬁ

Fy (z,v)) = n(z) T )

exp (7)

Note that in the last equation, without loss of generality, we omitted the species
index s. The subgrids in the parallel velocity v) — radial distance = subspace
can be constructed separately for different species.

The distribution function in the radial distance xz and in the perpendicular
velocity v subspace is obtained similarly

m m (v? 2T v? y
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In the five-dimensional gyrokinetic space, however, we work with the magnetic
moment rather than with separate perpendicular velocity components:

2 2
m(vlr—FvLy)

p= 5B : (9)

The distribution function in the x and p plane takes the form of an exponential
distribution

Fa(o, ) = o) s exp |~ | = o, (10)
with the rate A = B/T(x).

The dependence of the background distribution functions (7) and (10) on
the radial distance is transmitted via the density and temperature profiles n(x)
and T'(z). These profiles can be analytically generated or measurements can be
taken directly from a fusion device, e.g., see in Figure 1 the electron temperature
and density profiles of a particular “Tokamak & Configuration Variable” (TCV)
discharge described in [31]. In the figure, the radial distance is shown in the
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Figure 1: TCV electron temperature (top) and densities (bottom) profiles. The radial distance
is shown in the minor radius units, the temperature and density values are shown in units
relative to the reference values Tror and n,of taken at the reference radial distance (2 e = 0.5).

minor radius units, the temperature and density values are shown relative to
the reference values T, and n.et taken at the reference radial distance, which
in the particular example is xof = 0.5.

In the numerical simulations, we cannot take the full parallel velocity range
from —oo to oo and the magnetic moment from 0 to co. We thus restrict
our parallel velocity direction to the range [—1v, 1v] and the magnetic moment
direction to [0,1w]. The lengths of the ranges 1v and 1w are chosen based on
experience and usually are bigger than 99% confidence intervals of the respective
distribution functions. The confidence intervals of 99% can be considered as
good starting values if good ranges are unknown.

In the local simulations, the temperatures and densities are fixed and taken
from the profiles at the radial surface being studied. Therefore, to compute the
confidence intervals, we only need the univariate distributions resulting from (7)
and (10) at the fixed radial position.

For the global simulations, we cannot ignore the temperature and density



dependence on the radial distance. Figure 2 shows the distribution functions
with corresponding contours of a 99% confidence interval for the v —z and 1 —
subspaces. The confidence intervals and corresponding contours do not depend
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Figure 2: Background distribution functions in v — « and p — x subspaces with corresponding
confidence interval contours of 99%.

on the density profile, but on the temperature profile and radial variation in
the magnetic field strength. It can be observed that the lengths of the parallel
velocity and magnetic moment ranges vary strongly with the radial distance. For
the global regular grids described in the previous subsection, the natural choice
for 1v and 1w are the biggest ranges that correspond to the highest temperature
of the whole simulation domain. The resulting grid has a lot of nodes that have
negligible contribution to the simulation results.

We use the block-structured approximation (see the solid line in Figure 3)
of the confidence interval contour to cut away nodes having a low equilibrium
probability value from the initial regular grid. The resulting grids (shown in
Figure 3) will be referred to, in the following, as the first type of block-structured
grids.

The number of points that can be neglected depends on the given profile.
The reduction of the grid nodes for one of the TCV profile linear simulation
examples is displayed in Table 2. The second column (“regular”) of the table
provides the number of points in the full regular grid. The third column (“BS 1”)
shows how many points are left in the first type block-structured grid with six
blocks. From the third column we observe that around 62% of the points from
the regular grid are left in the final block-structured grid of the first type.
Even if we cut away approximately half of the simulation domain in the y — =
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Figure 3: The first type of block-structured grids in v — z and p — x subspaces with confidence
interval 99% and six blocks. The dash-lines show the contours of the simulation domain and
the solid lines are approximations of these contours.

subspace, the achieved node reduction in this subspace is only around 23%. This
happens because in the p — 2 subspace the nodes are already located optimally
for integrating exponential form functions in accordance to the corresponding
distribution (10). As a result, most of the points are located close to the p =0
axis, and neglecting a big area far from the axis does not lead to a significant
reduction in the number of computational nodes.

In the gyrokinetic simulations, the execution time of one time step is pro-
portional to the number of grid points in the v and u directions. This means
that the simulation run time (for the same number of time steps) in the previous
example can be reduced to the theoretical value of 62%.
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Table 2: Number of nodes in different grids for TCV profile simulations.

space type gBrlSd ltype BS O
regular 6 blocks 6 blocks

radial direction nx0 512 223+33+38+4-564-874+75  223+33+384-564-87+75
binormal direction nky0 1 1 1
parallel direction nz0 16 16 16
parallel velocity nvO 92 92,76,60,48,40,34 34
magnetic moment nwO 64 64,58,49,39,34,28 64,58,49,39,34,28
v|| — x subspace 47104 34022 (72%) 17408 (37%)
1 — x subspace 32768 25290 (77%) 25290 (77%)
full space 3014656 1864760 (62%) 859860 (29%)

To further reduce the number of points, we perform another improvement
to yield our second type of block-structured grids, labeled “BS 2” in Table 2:
in addition to adjusting the ranges of the parallel velocity direction v to the
temperature profile, we consider different v resolutions.

The equilibrium distribution in the v — x subspace takes the form of a
Gaussian bell curve. The actual shape of this curve depends on the temperature:
for example, in high temperature regions the bell is wide with a rather flat
peak, while in low temperature regions the bell is narrow with a sharp peak, as
illustrated in Figure 2 (top). This fact is used to construct regular grids for local
simulations, where the v — z subgrids have long v ranges, but low resolutions
in the high temperature regions, and short v ranges, but high resolutions in the
low temperature regions. A proper resolution for the local simulations is gained
automatically by fixing the number of v points and varying only the v range
according to the equilibrium distribution. The global regular grid is constructed
by choosing the maximum v range and resolution, as shown in Figure 4.

0.9 0.9 T T T T T
0.8 |- - 0.8 |- .
0.7 — 0.7 .
0.6 - B 0.6 |- B
8 0.5 B 8 0.5 B
0.4 |- - 0.4 B
0.3 | - 0.3 B
0.2 |- — 0.2 | .

0.1 - - - - - 0.1 L L L L L
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 4: An example of two local grids (left) and resulting regular grid (right) in the v — z
subspace.

There are less restrictions for the block-structured grids compared to the
regular ones, because the resolution can be adjusted in each block. An example

11



of a second type of block-structured grids for the TCV profile is shown in Fig-
ure 5, where the fixed number of v points in each block simplifies the domain
decomposition for parallel computing (see Section 4).
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Figure 5: The second type of block-structured grids in v|| —  subspace with confidence interval
99% and six blocks. The dash-line shows the contour of the simulation domain and the solid
line is an approximation of this contours.

Further insight into the rationale behind the construction of the block-
structured grids of the second type can be obtained by looking at the parallel
velocity coordinate scaled by the thermal velocity v)/vr(z), then, to obtain a
well-resolved grid, we would have to keep the same resolution of this quantity
at all radial positions. The block-structured grid of the first type (cf. Figure 3
(top)) has a good range in v direction, but the resolution of v /vr(x) is getting
coarser in the upper blocks. Fixing the number of v| points in each block, the
way it is done in the block-structured grid of the second type, yields approxi-
mately the same resolution of v)/vr(z) in all blocks.

This second type of constructing block-structured grids can also be applied
to the u — x subspace, which is part of our future work. It is technically more
challenging, due to the gyrokinetic averaging and the more complex arrangement
of grid points in the p direction. Furthermore, when a non-uniform temperature
profile is used, the thermal gyro-radius, which characterizes the scale length of
the drift wave turbulence, can vary significantly. Due to these variations, the
radial and binormal coordinates demand finer resolutions in the lower tempera-
ture regions. This problem can also be addressed by choosing the resolution of
the z and y grids in each block of the block-structured grid. The adjustment of
the discretization in the radial direction is also part of our future work.
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The reduction in the number of grid points for the second type block-
structured grid is demonstrated in Table 1 column “BS 2”. In this example,
we removed more than 2/3 of all nodes.

Another important aspect in the construction of block-structured grids is
choosing the v and p ranges (1v and 1w), structure and number of blocks.

When proper values for 1v and 1w are known from the regular grid simu-
lations, we can assign these values to a reference point z,er (usually located in
the middle of the x range) to compute the confidence levels that correspond to
the intervals [—1v, 1v] and [0, 1w] for the background distribution at @,e¢. Then
we use these confidence levels to find the contours of subdomains in the v — z
and p — x subspaces, see the dash-lines in Figures 3 and 5. By applying this
procedure we usually obtain confidence levels more than 99%. If suitable values
of 1v and 1w are not available, we directly choose confidence intervals around
99% as starting values to find the contours of the subdomains.

After we compute the contour of the domain, we approximate it by blocks.
We ensure that the blocked approximation covers a larger area than the contour
itself (see, for example, the solid lines in Figures 3 and 5). During the approxi-
mation procedure we minimize the difference between the probabilities of finding
a plasma particle within the domain enclosed by the blocked approximation and
the original contour.

To choose an optimal number of blocks in our grids, we look at how the
number of grid points depends on the number of blocks. An example of such a
dependence for the TCV profiles and the reference regular grid with nx0 = 512,
nv0 = 92, and nw0 = 64 is shown in Figure 6. The number of grid points in
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Figure 6: Dependence of the number of grid points on the number of blocks. The solid
line corresponds to the second type block-structured grid in v — x subspace, the dot-line
corresponds to the first type in p — @ subspace and second type in v| — = subspace combined
block-structured grid.

comparison to the reference grid, which corresponds to a block-structured grid
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with one block, is indicated in ratios in the figure. In this example, the second
type of block-structured grid was used for the v — x subspace and the first
type for the u — = subspace. From the plot, we see that the number of grid
points no longer changes after six (seven) blocks. This means it does not make
sense to take a higher number of blocks, because it does not reduce the total
number of points in the grid. Furthermore, a higher number of blocks would
lead to additional computational overhead on the block boundaries. For this
particular example and with our current implementation, five to six blocks was
the optimal choice.

The default finite difference scheme for the first order derivative computa-
tions in GENE is of the fourth order and provided in the “in” row in Table 3.
This scheme can still be applied to the inner block nodes in the block-structured

Table 3: Fourth order finite difference scheme for first order derivatives. Node types: in inner
node, nby first boundary node, nby second boundary node.

node derivative fz(z;)Az = > ar f(zk)

t accuracy
YPe  a;—3 aj—2 aj-1  a;  Qiy1  Giy2 Qi3 Git4

i 1 _8 8 1 4

in 12 12 12 12 O(Az?)

1 _8 8 _ 1 Av]™
bny 2 12 12 12 O(Az*) + O =
bn 1 _8 8 _1 Aw

2 12 12 12 12

grids. However, due to the misalignment of the grid nodes in the second type
block-structured grids (see Figure 5) the block boundaries have to be treated
separately. This does not allow applying a finite difference scheme directly on
the nodes close to the block boundary. The simplest way to solve this prob-
lem is to interpolate the distribution function at locations that are aligned with
the adjacent block points, in order that derivatives can be easily computed on
the boundaries of the neighboring block, see Figure 7. The stencil values that
are multiplied with the interpolated values are shown in gray in Table 3. The
application of the standard stencil on the interpolated values leads to errors of
order O(Avj"/Az) in the computations of the first order derivatives, where Az
and Av) are the mesh sizes in the radial and parallel velocity directions. We
can consider this inaccuracy as an m — 1 order error, where m is the order of
the interpolation (the inaccuracy of the interpolation is O(v|")) along the v
coordinate lines. For example, in the case of linear interpolation (second order),
we get an error O(AU% /Ax), which corresponds to the first order approximation
of the block boundary conditions. For the results provided in Section 5, we used
the fourth order m = 4 polynomial interpolation scheme provided in Table 4.

4. Implementation of block-structured grids

One major requirement for new grids in GENE is the ability to easily port
code — already written or under development — for the regular grids. For
the presented block-structured grids, the simulation code inside grid blocks is
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Figure 7: First order derivative finite difference stencil computations schemes for block inner
nodes (left) and block boundary nodes (right).

Table 4: Fourth order polynomial interpolation coefficients for nodes outside the block.
function value f(v; + Av1) or f(vit1 — Av2)Avy & 35 by f(vg)
a = Avi/Av| and 8 = Avz /Ay
bi_1 b; bit1 bita

~LaB(1 +B) 8(1+) a(1+92) ~1aB(1 +a)

the same as for the regular grids, modifications being required only on the
boundaries of the blocks.

For the block-structured grids of the first type, we only have to consider the
block boundaries that do not have neighboring nodes in adjacent blocks, and
set the Dirichlet boundary condition for the distribution function to zero, see
Figure 8 (left).

The situation changes for the block-structured grids of the second type. Now
we have to interpolate in order to compute the first order radial derivatives close
to the boundary. For this purpose, we introduce virtual or ghost grids in each
block, which are prolongations of the neighboring block meshes. This is shown
in Figure 8 (right). The values in a ghost block are interpolated as soon as a
main block is updated. Consequently, when we have to compute the derivatives
on the boundary, the interpolated values are already available.

The points of the ghost grids are not computationally equivalent to the
points of the real grid, because the evolution of the distribution function is
not computed at these points and they are used just to safe the interpolated
values. The ghost grids can only slightly increase the memory requirements of
the block-structured grids, for instance, in the case of 6 blocks in Figure 6 the
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Figure 8: Fragments of the block-structured grids. Left figure: block-structured grid of the
first type, right figure: of the second type, with ghost grids in the middle block.

number of points in the ghost grids is around 3% compared to the total number
of the real grid points.

The domain decomposition in the x — v subspace for the distributed memory
parallelization is simple for the regular grids. We decompose the domain into
subdomains with approximately the same number of grid nodes, by dividing
the x and v|| ranges by a specified number of processes in these directions. An
example with three subdivisions in both directions is shown in Figure 9 (top).
The same approach is applied for the block-structured grids in the v direction,
where we subdivide the v range of each block into equal parts. For the block-
structured grids of the first type, however, we choose different locations for the
grid boundaries of the processes in the z direction, to balance the number of grid
points and, thus, of computational workload in each subdomain (see Figure 9
(bottom-left)). If such grids are also used in other directions, the number of grid
nodes has to be balanced in the subspace spanned over these directions rather
than on the plane, like in our example. This readjustment is not necessary
for the block-structured grids of the second type, because in the latter case we
preserve the number of points for each radial distance position. Therefore, the
locations of the boundaries of the subdomains in the x direction is like that of
the regular grids (see Figure 9 (bottom-right)).

From the previous examples, it is easy to see that exchange procedures in
the v direction are the same for all the discussed types of grids. Their im-
plementation is standard: we first send to the left neighbor and receive from
the right neighbor, and then send to the right and receive from the left. The
situation changes for the exchange in the = direction. Now, beside the stan-
dard bottom-up or vertical exchange, we have to perform additional exchanges
on the block boundaries, which are denoted by the side exchanges in Figure 9
(bottom). For the block-structured grids of the second type, the values sent
on the block boundaries are not the actual values in the grid nodes, but the
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Figure 9: Examples of the domain decomposition in the z — v)| subspace for different grid
types. Top figure: regular grid, bottom-left figure: first type block-structured grid, bottom-
right figure: second type block-structured grid.

interpolated values from the ghost grids. If we do not have enough points in the
process subdomain to interpolate some of the values, we send only the part of
the interpolation sum that can be computed, while the other part is computed
by the neighboring process. The receiving process has just to sum up these parts
to get the correct interpolation value. The side exchanges can potentially be
done by overlapping computations with communications once the main vertical
exchange is done.

The complex implementation of the exchange and interpolation routines is
hidden in a specially developed data-structure for block-structured grids. Each
process has a copy of this data-structure, which holds not only distribution func-
tion values at each grid point in the subdomain, but also information about the
local topology of the grid and the ghost grids, and synchronization information
such as the processes involved in the communication and the order of exchange
routines.
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5. Results

While in the long term we focus on nonlinear gyrokinetic simulations (see
Subsection 5.2), linear simulations still play an important role as a benchmark
and are crucial for development, because they are computationally considerably
less expensive than the equivalent nonlinear simulations. Furthermore, com-
pared to nonlinear runs, linear simulations have clear stopping criteria: a linear
simulation finishes when the measured linear growth rate and frequency of the
dominant fluctuation mode have reached a certain prescribed precision.

5.1. Linear simulations

The linear instabilities can be calculated using either initial value simulations
or eigenvalue computations. Details on the comparison of the two types are
available in [32]. In this subsection, we provide results for the linear simulations
implemented as an initial value problem.

To check the correctness and estimate the quality of the implementation
of the block-structured grids, we compare the computed growth rate (v) and
frequency (w) of the block-structured grids of the first and second type with
values obtained from a regular fine-resolution reference grid.

Results of linear simulations for three different grids for the TCV electron
profiles are demonstrated in Table 5, where nv0 is the number of v points,
and w are the growth rate and frequency of the dominant fluctuation mode,
respectively, steps is the number of time steps until the results converge, At the
cost in seconds of one time step, time the total simulation time, and speedup
is the speedup in time of block-structured grids in comparison to the regular
reference grid. The number of grid nodes in the other four directions besides v

Table 5: TCV linear simulations results (growth rate, frequency, number of steps, time step
cost, total simulation time, and speedup) of three types of grid: regular, first and second type
of block-structured grids. Values of nv0 in the “BS 1” column correspond to the number of
grid points in the parallel velocity direction in each block for the first type of block-structured
grids.

grid type
regular BS 1 BS 2
5 blocks 5 blocks
nv0 96 96, 78, 50, 40, 36 36
y 0.371 0.371 0.357
w -0.056 -0.056 -0.050
steps 35359 35359 7779
At (s) 0.808 0.521 0.390
time (s) 28577 18415 3035
speedup - 1.6 9.4

was fixed for all the three types of grids (nx0,nky0,nz0,nw0) = (128,1,16,64)
and the toroidal mode number was fixed to k, = 0.3.
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From the “regular” and “BS 1” columns in Table 5, we observe that the
results (v and w) of the block-structured grid of the first type are identical with
those of the fine regular grid for at least three digits after the decimal point.
Furthermore, without losing precision, we gain a speedup of 1.6 in computa-
tional time. Similar observations were made for other linear simulations that
we tested. This suggests that, for linear simulations, adjusting the v range to
the background distribution function, like in our block-structured grids, leads
to results of the same precision as those of regular grids of the same resolution.

Adjusting not only the v range, but also the resolution, yields significantly
faster simulations, but with some accuracy penalty, which depends on the partic-
ular simulation scenario. In the provided example (see Table 5, column “BS 27),
we gain a total speedup of 9.4 for simulations with the block-structured grids
of the second type, while the relative error value of the growth rate (y) is
small, around 3.8% only. Furthermore, it should be taken into account that the
performance results provided in the table are given for the non-optimized block-
structured grids. Performance tuning, which is currently under development, is
expected to yield a cost of approximately 0.303 seconds for a time step and a
total speedup of 12.

Next, it is important to make sure that by increasing the number of v points
(nv0) in the block-structured grid of the second type, we approach the results
of the regular reference grid. Convergence curves of v and w for the block-
structured grids of the second type and regular grids are shown in Figure 10.
All results are shown in ratios (scaled by the values of the reference grid, which

1.05
__Loo o T vy
5 -
=
= 095
3 ~ BS 2 grid
< 0.90 o ’." w BS 2 grld | |
. oo ~ regular grid
. =--m  regular grid
0.85 L L

30 40 50 60 70 80 90 100
nv0

Figure 10: Convergence of v and w for the block structured grids of the second type for
linear simulations with electrons TCV profiles. The solid lines correspond to the growth rate
and frequency of the dominant fluctuation mode for simulations using second type of block-
structured grids (“BS 2”) and the dot-lines correspond to simulations using regular grids.

has nv0 = 96 grid points, which corresponds to an accuracy of three decimal
places), so that they can be easily associated with the relative error. The relative
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error of the frequency (w) in this case can look worse than it is, as its absolute
value is quite close to zero, and frequencies can even cross zero. From the
convergence plots, we observe that the block-structured grid of the second type
yields more accurate results than a regular grid with the same number of v
points, and reaches the reference grid values with nv0 ~ 70 points.

To make a fair comparison between the block-structured grid of the second
type and the regular grid, we have to compare the performance at the nvO when
the convergence for v and w is reached. From Figure 10 we observe that the
results converge at nv0 ~ 70 for the second type block-structured grid and at
nv0 =~ 90 for the regular grid. Furthermore, both grids take approximately
the same number of time steps to converge at the specified nv0O values. The
performance is therefore determined only by the time-step costs; the speedup is
around 90/70 = 1.3, which is less than the speedup of the block-structured grid
of the first type (= 1.6). The reason for this is that at the end of the discussed
linear run, only one dominant mode with a localized pattern is left, which does
not comply with our assumption that the fluctuating part of the distribution
function has a structure similar to the background distribution function. The
fluctuating part of the distribution function on the x — v plane for this example
is shown in Figure 11, where the absolute value of the distribution function is
that in the middle of the parallel direction z and with a minimum magnetic
moment p. In this case, the accuracy of the simulation results depends only on

1
0.8 - 1 M o0.683
0.7 1 0.183
0.6 | 4 B o0.0414

8 05} e 4 Ho.0379
04| 4 Ho.o0153
03| 1 H 0.00334
02 | 1 [H o0.00045

l l l l l 0
—4 -2 0 2 4

Figure 11: Fluctuating part of the distribution function absolute value on the z — v plane for
TCV electrons. In the plot, we use adapted color-maps, to combine the benefits of both linear
and logarithmic color-maps, without suffering from their individual disadvantages. They allow
demonstrating the fluctuation near the zero value of the parallel velocity (similarly to linear
color-maps), and show well the shape of the fluctuating part, without hiding the details close
to the zero parallel velocity (like logarithmic color-maps do).

the resolution and range of the grid in the area, where the fluctuation part of
the distribution function is localized. In this particular example, it is located
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in the middle of the radial range and it fits into the second block of the block-
structured grid. Therefore, the regular grid and the block-structured grid of
the first type achieve the desired accuracy at a quite low nv0, even though the
lower temperature regions (in the upper part of the radial range) are not well
resolved. The block-structured grid of the second type is designed to achieve a
good resolution for the parallel velocity coordinate at all radial positions. As a
result, in the particular example, it has more grid points than the first type of
the block-structured grids. However, the block-structured grids of the second
type are useful even for this type of linear simulations with a localized dominant
mode. Before running the simulations, the localization pattern of the dominant
mode is unknown. Computationally inexpensive simulations can be performed
to find this pattern, by using the block-structured grid of the second type with a
small number of grid points in the parallel velocity direction, which can achieve
an acceptable precision. To improve these initial results, the simulation can
then be repeated with a carefully chosen regular grid, where the radial distance,
and parallel velocity ranges and resolutions have been appropriately adjusted.
The localized pattern of the dominating mode does not occur in all scenarios.
An example of a fluctuating distribution function with a quite wide radial length
is shown in Figure 12. In this example, we have a two species simulation, where

| | 1
0.8 - 1 ® o0.506
0.7 |- . 0.283
0.6 | = 0.0813
8 05| - 0.0197
0.4 | . 0.00436
0.3 | i 0.00112
02 b i 0.000207
| | | | | 0
-10 -5 0 5 10

Yl

Figure 12: Absolute value of the fluctuating part of the distribution function on the z — v
plane for linear simulations with two species; the fluctuating part is shown for electrons only.

the regular grid resolution is (nx0,nky0,nz0,nv0,nw0) = (256, 1, 16,260, 64)
and the toroidal wave number is k, = 0.3. In Figure 12 the (p,z) are fixed:
the minimum of the magnetic moment and the middle of the parallel direction
— outboard midplane position. To compare the block-structured grid of the
second type with the regular grid, we provide convergence curves for + and
w in Figure 13. In this example, the block-structured grid of the second type
converges (i.e., accuracy three digits after comma) at nv0 =~ 100 and the regular

21



1.00 -'..'—-'*‘ s :.-:.-:—:--:-:.-..-.---
/:---"::?"
7 n"' .".
—~ R P
‘5 0.95 7 ‘:'. ,.-"
= s
fa i
~ 0.90
?2 ‘ — ~ BS 2 grid
0.85 P — wBS2grid |]
' ee vy regular grid
i =2 regular grid
080 HiH | 1
0 20 40 60 80 100 120 140
nv0
1.008 g T T
'_ oo regular grid
1.006 :;_. www o regular grid |
z :
-2 1.004 e
© )
Na) B
3 1.002 ey
?: )
1.000 g T e s e
',.."'.--
0.998 E
100 150 200 250 300 350 400
nv0

Figure 13: Convergence of v and w for the block structured grids of the second type, for the
two species linear simulations.

grid at nv0 ~ 260. This result complies with the construction idea of the block-
structured grid, as described in Subsection 3.2; the block-structured grid of the
second type with nv0 ~ 100 is approximately equivalent to the regular grid with
nv0 ~ 260.

The difference in the accuracy of the results between block-structured and
regular grids with the same number of v grid points becomes even more evident
in the case of nonlinear results, because, in nonlinear global simulations, several
modes can be excited simultaneously and fluctuations are observed almost ev-
erywhere in the selected x — v domain. Therefore, block-structured grids are
especially beneficial for this type of simulations.
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5.2. Nonlinear simulations

For the nonlinear simulations, we used the same TCV electrons profiles as for
the linear runs. In this section, we provide results for the block-structured grids
of the second type in the x — v subspace. As in case of the linear simulations, the
block-structured grids of the first type yield accurate results for the nonlinear
simulations, but the reduction of the grid points is not so high. Therefore, we
decided to focus only on the second type of block-structured grids in future
developments.

In nonlinear simulations, there are numerous observables that could be com-
pared, for example, heat, particle, and momentum fluxes. However, these ob-
servables are usually obtained by integration in the five-dimensional space and
sometimes hide important details. Therefore, we directly compare absolute val-
ues of the fluctuating part of the distribution function in the x — v subspace.
Furthermore, due to the sensitivity to the initial conditions, the comparison of
the nonlinear simulations results is less straightforward than for the linear sim-
ulations. Even small differences in computational grids can lead to significantly
different distribution function values at the same time moment. For this rea-
son, we compare the quasi-stationary features that are reflected in time-averaged
values stemming from reasonably long time intervals, which do not include the
initialization phase. An example of the time-averaged distribution function is
shown in Figure 14.
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Figure 14: Time-averaged fluctuating part of the distribution function absolute value on the
x — v plane for nonlinear simulations of TCV electrons.

In our block-structured grid tests, we compare results of simulations with a
regular reference grid with the number of grid points (nx0,nky0,nz0,nv0,nw0)
= (512,16, 16,40, 64), and with two alternative regular grids, which have the
same number of v grid points as the block-structured grid (nv0 = 18). The
reference grid has a wide range in the v direction and is well-resolved in this
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direction. The first alternative regular grid has a full v range, but a coarse
v) resolution. The second alternative regular grid has a reduced v range, of
the same dimension as the upper block of the block-structured grid, and a fine
v resolution. All these described grids are shown in Figure 15 (for the » — v
projections). In this figure, however, for the sake of visibility, we coarsened the

regular grid block-structured grid
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Figure 15: Examples of four x — v) types of grids used to compare nonlinear results. Actual
grids used in simulations have a finer resolution.

number of points in the x direction (vertical) by a factor of four and in the v
by a factor of two in comparison to the grids we used in our simulations.

The easiest way to compare the results stemming from all four grids is to
produce plots over a line that goes through the maximum values of the time-
averaged distribution function in the x — v subspace. The best choice is the
line spanning the entire = range at a fixed v = 0. In Figure 16, we provide
the plots over lines, where the coordinates (k,, i, z) are fixed: k,, the toroidal
mode number, is zero, p is the minimum value of magnetic moment, and z is
the middle of the parallel direction interval (outboard midplane position). To
produce Figures 14 and 16, we used the time-averaged distribution function on
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Figure 16: Plots over line (fluctuating part of the distribution function with fixed toroidal
mode number k,; = 0) for four different computational grids. The solid line corresponds to
the reference regular grid, the dash-line to the block-structured grid, the dot-line to the first
alternative regular grid, with the wide v range and coarse resolution, and the dash-dot-line
to the second alternative regular grid, with the short v| range and fine resolution.

18 (R/c;) time interval? with 30 — 40 samples at different time steps; for the
comparison, the initialization phase of the simulations in this example takes
around 6 (R/cs). From the plots we observe that, while the results of the
reference regular grid (solid line) match with the results of the block-structured
grid (dash-line), the grid with the wide v range and coarse resolution (dot-line)
matches only in the low x values range (the first peak), and the grid with the
short v and fine resolution (dash-dot-line) gives correct results only for high x
values range (the two last peaks). This demonstrates that the block-structured
grid yields accurate results compared to the reference regular grids with less
computational points.

Furthermore, we compare results for the dominant turbulence component
ky # 0, which drives the transport. To suppress the electron scale instabilities,
a hyper-diffusion was added in the z and y directions. In this case, the regular
reference grid had (nx0,nky0,nz0,nv0,nw0) = (512,16, 16,82, 64) number of
points, whereas the other three grids have nv0 = 34. These simulations yield the
dominant mode with toroidal mode number k, = 0.6. The heat fluxes averaged

2R — major radius, c¢s — ion sound speed
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the computational requirements.

over the time interval of 20 (R/c;) with 40 — 50 samples at different time steps
for all four grids are provided in Table 6. From the table, it can be observed that

Table 6: Heat fluxes in gyro-Bohm units averaged over a time interval of 20 (R/cs) for four
different computational grids.

grid type
1st alternative

regular  block-structured

Qb 1.63

2nd alternative

1.62 1.53 3.70

only the block-structured grid gives results comparable to the reference regular
grid. Additionally, the plots over a line (at fixed v = 0) of the fluctuating part
of the distribution function on the x — v plane are shown in Figure 17. The
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Figure 17: Plots over line (fluctuating part of the distribution function with fixed toroidal
mode number ky = 0.6) for four different computational grids.

blocked-structured grid (result shown in dash-line) has the closest match to the
regular reference grid (result shown in solid-line).

The nonlinear simulations are significantly more expensive computationally
than the linear runs. In order to be able to run physical scenarios in a reasonable
amount of time using the available resources, it is extremely important to reduce

In the aforementioned example, the block-
structured grid has a number of points that is approximately 2.2 times smaller
than that of the corresponding reference regular grid. Theoretically, the speedup
is also around 2.2. In practice, we found that the actual speedup depends on
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the computer architecture and parallelization scheme chosen for the simulations
(we used 32 - 64 CPUs for the presented nonlinear simulations), and can vary
in the range 1.9 — 3.0.

For several other simulation scenarios, we observed that taking a very wide
v range for the high 2 values (low temperature range) can cause numerical
instabilities. With the block-structured grids, the simulation can be stabilized
by restricting this range in the low temperature region.

6. Conclusion

This paper details the application of block-structured grids in the context
of gyrokinetic simulations. In comparison to other similar types of grids, e.g.,
consisting of multiple connected blocks to resolve complex geometries, the focus
of the described block-structured grids is to adjust the mesh resolution and
range of each block in the radial distance — velocity subspace. The exact shape
of the domain boundary in the velocity subspace does not play an important
role. Instead, the main factor determining the structure of the presented grids
is the temperature radial profile, which we use to compute the background
distribution function and then construct the block-structured grids.

Compared to regular grids that are often used in the velocity subspace of Eu-
lerian gyrokinetic codes, block-structured grids possess several beneficial prop-
erties and may significantly reduce the computational requirements without
losing accuracy. First of all, block-structured grids allow removing a substan-
tial number of grid points while keeping good accuracy. Furthermore, the code
for the inner blocks of these grids is equivalent to the already well-established
and tested regular grid implementation; modifications are necessary only on the
boundary.

We proposed two versions of block-structured grids. While the first version
of these grids removes areas and corresponding grid points with the background
distribution function close to zero, the second version additionally adjusts the
parallel velocity coordinate resolution in each block. The first version of the
block-structured grids served as an intermediate test case towards the second
version, because the latter has a higher reduction in the number of grid points.

In the provided examples for the block-structured grids of the second type,
we gained a maximum speedup of 9.4 for the linear runs and of 3.0 for the
nonlinear runs. The reduced number of grid points resulted in a proportionally
smaller one time-step execution, smaller memory footprint, and, for the linear
simulations, smaller number of time steps necessary to reach convergence of the
growth rate and frequency of the dominating mode. The memory footprint is
especially important for the nonlinear runs, which require significantly more
grid points in the radial direction. Despite the fact that the block-structured
grids yielded smaller speedups for the nonlinear simulations than for the linear
ones, the achieved improvement is more valuable, because nonlinear gyrokinetic
simulations are extremely demanding in computational resources. Therefore,
reducing the memory footprint and having three times faster simulations can
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be decisive regarding what kind of simulations can be executed with the pro-
vided computational resources. More specifically, the fluctuating part of the
distribution function is sensitive to the chosen parallel range and resolution in
the nonlinear simulations. For this reason, the alternative regular grids with
the same number of grid points as the block-structured grid were not ade-
quate. On the contrary, the fluctuation shape from the simulations with the
block-structured grid was quite close to the shape from the simulations with the
regular fine-resolution reference grid.

The block-structured grids described in the paper do not worsen the paral-
lelization properties of the original GENE code and should be considered as an
additional improvement, rather than as an alternative to parallelization. The
only additional side communications required are with neighboring processors
in the v direction, which are insignificant in comparison to the main data ex-
change. Furthermore, the load balancing for the second type of block-structured
grids is as simple as for the regular grids.

Future work will address the extension of the second type of block-structured
grids to the whole v — p subspace. Here, several challenges will have to be
met. First of all, the gyro-averaging procedure or integration on the circular
particles trajectories is more difficult when grid points are misaligned in the
radial direction. Furthermore, the arrangement of grid points on boundaries of
grid blocks in the v — p plane is more complex.
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