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Abstract

We discuss the usage and applicability of deflation methods for the overlap lattice Dirac operator,
focussing on calculating the eigenvalues using a method similar to the eigCG algorithm used
for other Dirac operators. The overlap operator, which contains several theoretical advantages
over other formulations of lattice Quantum Chromodynamics, is more computationally expensive
because it requires the computation of the matrix sign function. The principle change made
compared to deflation methods for other formulations of lattice QCD is that it is necessary for
best performance to tune the accuracy of the matrix sign function as the computation proceeds. We
present two possible relaxation strategies, one which provides a rigorous bound for the eigenvalues
but seems to be too conservative in practice, and a second which is less conservative but, while its
stability is not guaranteed, seems to work well in practice.

We adapt the original eigCG algorithm for two of the preferred inversion algorithms for overlap
fermions, GMRESR(relCG) and GMRESR(relSUMR). Before deflation, the rate of convergence
of these routines in terms of iterations is similar, but, since the Shifted Unitary Minimal Residual
(SUMR) algorithm only requires one call to the matrix sign function compared to the two calls
required for Conjugate Gradient (CG), SUMR is usually preferred for single inversions of the
Dirac operator. We construct bounds for the required accuracy of the matrix sign function during
the eigenvalue calculation. For the SUMR algorithm, we use the standard Galerkin projection
to perform the deflation; while for the CG algorithm, we are able to use a considerably superior
spectral pre-conditioner. The superior performance of the spectral preconditioner, and its need
for less accurate eigenvalues, almost erodes SUMR’s advantage over CG as an inversion algorithm.

We see factor of three gains for the inversion algorithm from the deflation on our small test
lattices; we expect larger gains over the undeflated algorithms in realistic simulations on larger
lattices and with smaller masses. There is, however, a significant cost in the eigenvalue calculation
because we cannot relax the accuracy of the matrix sign function as aggressively when calculating
the eigenvalues as we do while performing the inversions. This set-up cost is, however, more than
compensated for the gain in the deflation if enough right hand sides are required.

Keywords: Chiral fermions, Lattice QCD
PACS: 11.30.Rd, 11.15.Ha

1. Introduction

The approximate and spontaneously broken chiral symmetry is important in Quantum Chro-
modynamics (QCD), the theory which describes the strong nuclear force, as it determines (to a
large extent) the mass spectrum of the lightest hadrons. It also protects the effective Lagrangian
describing the hadrons from picking up an additional mass renormalisation, which, in principle,
will be sensitive to the ultra-violet cut-off. When simulating QCD numerically on a discrete space
time lattice [1], it is therefore advisable to break chiral symmetry as lightly as possible. While it
is possible to remove the additive mass renormalisation by tuning the quark mass, this tuning is
unlikely to be perfectly realised, creating a small error; the worse the chiral symmetry breaking,
the harder it is to control this error. Equally, an action which violates chiral symmetry has many
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additional operators in the effective Lagrangian, making the analysis of some observables more
challenging.

The difficulty is that simulating lattice QCD with an exact Ginsparg-Wilson chiral symmetry [2,
3, 4] (the closest to the continuum chiral symmetry achievable on the lattice given the Nielsen-
Ninomoya theorem [5]) is expensive. The simplest practical and known lattice Dirac operator with
exact1 chiral symmetry is the overlap operator, [6, 7, 8, 9]

aD[µ] =
1

2
(1 + µ+ (1− µ)γ5sign(K)), (1)

where sign(K) is the matrix sign function, µ/(1 − µ) is proportional to the bare fermion mass,
and we will call the Hermitian operator K the kernel of the matrix sign function. There is a great
deal of freedom while choosing K – the constraints are that we require that D has the correct
continuum limit (as the lattice spacing a goes to zero), no fermion doublers, and is local. A
convenient choice is the Wilson Dirac operator,

aKxy = γ5

[

δxy − κ

4
∑

µ=1

((1 − γµ)δy,x+aµ̂Uµ(x) + (1 + γµ)δy,x−aµ̂U
†
µ(y))

]

(2)

with κ = 1
8−2m for m a real parameter in the range 0 . m < 2, and where Uµ(x) is the gauge

connection, an SU(3) matrix on every link of the lattice (we choose to use κ = 0.19, which has
good locality properties for the Dirac operator). γµ (µ = 1, . . . , 5) are the standard Hermitian
form of the anti-commuting Dirac γ-matrices, which satisfy γ2µ = 1.

It is easy to show that the massless overlap Dirac operator satisfies the Ginsparg-Wilson relation

D[0]γ5(1 − 2aD[0]) + γ5D[0] = 0, (3)

which reduces to γ5D[0] + D[0]γ5 = 0, the equation that permits chiral symmetry, in the naive
continuum limit (a → 0). The overlap Dirac operator is also γ5-Hermitian, D[µ]† = γ5D[µ]γ5,
which guarantees that the eigenvalues of the Dirac operator are either real or come in complex
conjugate pairs. This also means that γ5D is Hermitian, and we shall call this the Hermitian Dirac
operator. Given that γ5sign(K) is unitary, the real eigenvalues of the massless operator are either
at zero or 1, and the eigenvalues lie on a circle in the complex plane of radius 1/2 centred at 1/2.
Furthermore, since the squared Hermitian Dirac operator commutes with γ5, [γ5, D

†D] = 0, we
see the eigenvalues of this operator must be degenerate, and can be expressed as exact eigenvectors
of γ5 which we may denote as ψ+i and ψ−i, and, except when the corresponding eigenvalues are
at 0 and ±1, the eigenvalues of γ5D occur in ± pairs which are linear combinations of ψ+i and
ψ−i. The eigenvectors of D†D are independent of the mass. Finally, since [D,D†] = 0, the paired
eigenvectors of D (with complex conjugate eigenvalues) are also linear combinations of ψ+i and
ψ−i. As D is a normal operator (being shifted unitary), its left and right eigenvectors are the
same, and its eigenvectors are orthogonal.

The difficulties with using overlap fermions are due to the matrix sign function, and these are
both algorithmic and concern the large computational cost required. The matrix sign function is
defined in terms of a spectral decomposition,

sign(K) =
∑

i

ψ̃iψ̃
†
i sign(λ̃i), (4)

where ψ̃i and λ̃i are the eigenvectors and eigenvalues of K. In practice, one simulates the matrix
sign function by deflating the smallest eigenvectors of K, and then use some approximation to

1The overlap operator gives an exact chiral symmetry. However, in practice, we do not render the matrix sign
function within the overlap operator to a perfect precision, which breaks chiral symmetry. It can, however, be
approximated to an arbitrary precision controlled by the accuracy of the approximation to the matrix sign function
and the precision of the floating point arithmetic on the computer. The amount of explicit chiral symmetry breaking
can therefore be controlled, and the systematic error from this approximation reduced so that it is insignificant.
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cover the rest of the eigenvalue spectrum. Various methods have been proposed for the approxi-
mation: polynomial approximations [10], rational approximations [11], an approach based on the
Lanczos algorithm [12] and continued fractions, which are most easily expressed in terms of a five
dimensional representation [13, 14, 15, 16]. One may also use the approximation for the bulk of the
eigenvalue spectrum without the deflation of the small eigenvectors giving a continuous function
of K where the matrix sign function breaks down for small eigenvalues of K [17, 18, 19, 20] which,
although it loses the exact chiral symmetry, still maintains a very good chiral symmetry, and
tends to be quicker and removes various algorithmic difficulties associated with the discontinuity
in the matrix sign function [21, 22, 23, 24, 25, 26, 27]. In this work, we shall use deflation and
the optimum Zolotarev rational approximation [11, 28], allowing us to control the accuracy of the
matrix sign function, and therefore the breaking of chiral symmetry, with the only restriction on
the accuracy being the numerical precision of the computer. In practical applications, since the
kernel eigenvectors only need to be calculated once for each gauge field configuration, the cost of
calculating these eigenvectors (for example by using a polynomial preconditioned restarted Arnoldi
algorithm [29, 30]) is negligible. However, we need not always use the full accuracy matrix sign
function during the computation, and, since low accuracy estimations of the matrix sign function
are considerably faster to compute, it is advantageous to relax the accuracy for almost all calls to
the overlap operator while still maintaining the full accuracy of the final result.

For physical applications, we need to invert the overlap operator and, for some observables,
to calculate its eigenvectors. There are two general strategies used to invert the overlap operator.
The first is to invert the five dimensional representation of the matrix sign function [31]; the second
is to use a nested inversion [32, 33]; with an inner inversion to calculate the matrix sign function
and an outer inversion of the overlap operator. It is not yet clear which of these approaches is
superior. In this work, we concentrate on the nested approach.

Two of the most efficient algorithms to invert the overlap operator are Conjugate Gradient (CG)
and Shifted Unitary Minimal Residual (SUMR). The first of these algorithms, which is used for
the Hermitian squared operator D†D, is well known and understood. The second, less well known
option, was originally proposed by Jagels and Reichel [34, 32], and it is specifically designed for
operators such as the overlap operator. In principle, they should require roughly the same number
of iterations to converge (although in practice without preconditioning the convergence of CG
tends to be a little faster, though not by any significant amount). However, since SUMR requires
one call to the matrix sign function per iteration rather than CG’s two, for a single inversion of
the overlap operator SUMR should be the preferred method (although CG tends to be better than
two SUMRs for inverting D†D). The relative performance of CG and SUMR is shown for one
typical configuration in figure 2.

Both of these methods can be improved significantly from the naive inversion algorithm. The
first key idea is to use as low an accuracy as possible for the matrix sign function for the bulk
of the calculation. This can be done firstly by relaxing the accuracy of the matrix sign function
as the inversion progresses [32], and secondly by using a low accuracy inversion of the overlap
operator as a preconditioner for a high accuracy inversion of the overlap operator (giving us three
inversions: the inner calculation of the matrix sign function; the middle inversion – the CG or
SUMR preconditioner, and the outer inversion of the full-accuracy overlap operator) [33]. By
further incorporating mixed precision methods, calling a single precision matrix sign function
when its required accuracy is sufficiently low, this approach can give an order of magnitude gain
over the naive CG and SUMR algorithms.

Further improvements can be made by preconditioning the CG or SUMR algorithm used in
the middle inversion. In general, adding an additional nested inverter does not help much, but
we have found that deflating the lowest overlap eigenvalues can gain up to an additional factor of
five, with a higher gain at smaller quark mass [35] (our results in this work, on a small lattice and
relatively large mass, give a factor of three improvement). Our previous approach was to calculate
the overlap eigenvectors ψi with eigenvalues λi in advance, and then to use them to construct a
preconditioner for the CG inversion. This approach only worked for the CG algorithm, as the
preconditioner spoils the shifted unitary structure of the overlap operator and thus means that
the SUMR algorithm no longer works, and there is an additional set-up cost of calculating the
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overlap eigenvalues. However, we do not need to to calculate the overlap eigenvectors to a high
precision for the preconditioning to be effective, and there are other ways, albeit less robust, for
adapting deflation to SUMR.

Of course, a better approach would be to combine the inversion and eigenvalue calculation. It
has been known how to do this for a general operator for some time (see, for example, [36]), and the
resulting eigCG algorithm is widely used. The purpose of this work is to report on our efforts to
adapt the eigCG approach to overlap fermions; both to create an eigCG inverter and an eigSUMR
inverter. The principle novelty compared to other, simpler, operators is that we need to control
the accuracy of the matrix sign function during the inversion. The optimum relaxation strategy
controlling the accuracy of the matrix sign function during the inversion algorithm differs from
that of the optimum strategy for the eigenvalue calculation. Our main result is to provide bounds
to control the accuracy of the matrix sign function as the eigenvalue calculation proceeds. Our
second result is to confirm that these methods are superior to the undeflated inversions if enough
right hand sides are required. Thirdly, we study the effectiveness and limitations of eigSUMR as
an eigenvalue routine.

Unlike simpler Dirac operators, the additional cost of eigCG or eigSUMR over the deflated
CG or SUMR algorithm is not negligible, because we cannot relax the accuracy of the matrix
sign function as vigorously as we would prefer during the inversion. We are instead forced to
use a relatively high accuracy matrix sign function during the inversions used to calculate the
eigenvectors. However, we do not need a high accuracy estimate of the eigenvectors for the
deflation to be effective, and in general two or three inversions are sufficient to calculate the
eigenvectors to a sufficient accuracy. Although there is some significant set-up cost, the gain from
the deflation more than compensates for this if enough inversions are required (where ‘enough’
depends on the lattice volume and the quark mass).

This article is arranged as follows. In section 2 we review the SUMR inversion algorithm, while
in section 3 we describe the relaxation and preconditioning techniques which are currently used
to accelerate the inversion of the overlap operator. Section 4 discusses deflation of the overlap
inversion, both the methods we have been using to deflate the CG algorithm, and our proposal to
apply deflation to the SUMR algorithm. In section 5 we discuss how the Krylov subspace used to
perform the inversions can also be used to calculate eigenvalues, and we present numerical results
in section 6. We conclude in section 7.

2. The SUMR routine

It has been shown in [34] and introduced to the lattice community in [32] that it is possible to
use a short recurrence to build up the Arnoldi vectors for a Unitary or shifted Unitary system. Both
of these are normal matrices, so the left and right eigenvectors are the same and the eigenvectors
are orthogonal to each other. We consider a a matrix of the form A = ρ+U , where U is an unitary
N ×N matrix and ρ is a real number (implicitly multiplied by the identity operator). The overlap
operator can be reduced to this form with a simple scaling. Now it is clear that the Krylov subspace
for A generated from some vector b is the same as the Krylov subspace for U starting from the
same point. We describe the theory behind the generation of the Krylov subspace for the SUMR
algorithm in appendix Appendix A. The resulting algorithm, which can be used to generate an
orthonormal basis qi, i = 1, 2, . . . n which spans the Krylov subspace {b, Ab,A2b, . . . , An−1b} is
given in algorithm 1. The algorithm requires a second vector, q̃, alongside q which also spans the
Krylov subspace.

It is straightforward to show by induction that in perfect arithmetic, q and q̃ should remain
normalised to 1. However, in practice, we have found q and q̃ can lose their normalisation after a
number of iterations, particularly when the matrix sign function is rendered only approximately,
and this affects our eigenvalue routine. It is therefore necessary to monitor the normalisation
of q, and to restart the algorithm (by normalising q, setting q̃ = q and resetting σ, γ and the
other parameters needed in the SUMR inversion routine in algorithm 2) if ‖q‖ starts growing
significantly larger or smaller than one.
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q0 = q̃0 = b/‖b‖
for j in 0, 1, 2, 3, 4, . . . ; do

u = Uqj

γj = −(q̃j , u)

σj =
√

1− |γj |2

qj+1 =
1

σj
(u+ γj q̃j)

q̃j+1 = σj q̃j + γ∗j qj+1

done.

Algorithm 1: The modified Arnoldi algorithm to generate an orthonormal Krylov basis q for
a unitary operator U .

This construction of the Krylov subspace can be used to create a short-recurrence inversion
algorithm for a shifted unitary matrix which is effectively an efficient representation of the GMRES
algorithm, with the important improvement that there is no need to store all the q vectors [34];
this approach has been called SUMR in [32]. Experience has taught us that SUMR requires
only slightly more iterations than the unpreconditioned conjugate gradient (CG) algorithm to
converge; but it has the advantage that it only requires one call to the matrix sign function per
iteration rather than two for CGNE, so that unpreconditioned SUMR is almost twice as fast as
unpreconditioned CGNE for a single inversion of the overlap operator (i.e. a computation of the
propagator).

The full SUMR algorithm for an initial guess x0 is given in algorithm 2.
As with CG, the SUMR algorithm can be trivially be adapted to give a multi-shift solver.

However, given that it is impossible to combine this with the various preconditioning methods
discussed below, it is not clear that it would be beneficial to do so unless a large number of
inversions at various distinct low masses are required.

3. Relaxation and GMRESR preconditioning for overlap fermions

There are two principle approaches for inverting the overlap operator; firstly to use a nested
four dimensional (4D) approach, with an inner and outer inversion [32, 33, 35], and secondly to
express the overlap operator in terms of a five dimensional (5D) operator, and invert that 5D
operator [13, 14, 15, 16, 31]. To our knowledge, the optimum 4D approach and the optimum
5D approach have not been compared. In [31], a 5D inversion routine was compared against a
sub-optimum 4D method (which used relaxation, but not GMRESR or deflation), and while the
5D inverter was shown to be superior to the relaxed 4D CG inverter by a factor of 3-4; the relaxed
4D deflated GMRESR routine shows an even bigger gain over that routine [33, 35]. We therefore
still consider it an open question whether the nested 4D or 5D approach is superior. It may well
depend on the computer architecture used.

The previous state of the art method for the nested inversion routine was developed in [32, 33,
35]. There are three steps: relaxation, GMRESR preconditioning, and deflation of the inversion
(which should not be confused with the deflation of the matrix sign function which accelerates the
calculation of the sign function: they are separate steps using separate sets of eigenvectors), which
is an entirely. The key is to ensure that we do not have to evaluate the matrix sign function to a
high accuracy during the inversion. A low accuracy approximation to the matrix sign function is
considerably faster to evaluate than a high accuracy approximation to the matrix sign function.
The accuracy of the matrix sign function can be measured in various ways. The accuracy of the
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r̃ = b−Ax0; δ = ‖r̃‖;x = x0; ϕ̂ =
1

δ
; τ̂ =

δ

ρ

ω = 0; qold = 0; p = 0;ϕ = 0; s = 0; q =
r̃

δ
; q̃ = q

λ = 0; r′ = 0; r = 1; γ = 1; c = 1;σ = 1

for j in 0, 1, 2, 3, . . .

r′′ = r

u = Uq

γ = (q̃, u)

σ =
√

1− |γ|2
α = γδ

γ = −γ
r′ = αϕ+ sζ/ρ

r̂ = αϕ̂+ c†ζ/ρ

c† =
r̂

√

|r̂|2 + σ2

s = − σ
√

|r̂|2 + σ2

r = sσ − cr̂

τ = −cτ̂
τ̂ = sτ̂

η = τ/r

κ = r′/r′′

ωold = ω

ω = αp+ κ(qold − ω)

p = p+ λ(qold − ωold)

x = x+ η(q − ω)

δ = σδ

ϕ = sγ†/δ − cϕ̂

λ =
ϕ

r

ϕ̂ = sϕ̂+ c†γ†/δ

qold = q

q = (γq̃ + u)/σ

q̃ = σq̃ + γ†q

done.

Algorithm 2: The SUMR inversion routine. (q̃, u) ≡ q̃†u represents the inner product of two
complex vectors.
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approximation to the sign function is defined as

η′′ = max
b∈‖b‖=1

b†s̃2b− 1, (5)

where s̃ is our approximation to the matrix sign function and the maximum is over all vectors b
normalised to 1. This is impossible to measure practically, so one usually estimates it using

η′ =
b†s̃2b

b†b
− 1, (6)

for one particular choice of b. The accuracy can also be controlled by tuning the approximation
used to represent the matrix sign function. For example, the Zolotarev rational approximation for
a real variable x,

ǫ(x) =

NZ
∑

i=1

ωZ
i x

x2 + σZ
i

, (7)

produces an |ǫ| which oscillates between 1+∆ and 1−∆ for a given range a < |x| < b. a and b are
fixed as soon as we have selectedK: b2 is the largest eigenvalue of K2, while a2 is the largest of the
small eigenvalues of K2 used in the deflation of the matrix sign function. NZ is the order of the
rational approximation, and the coefficients ωZ and σZ , as well as the error ∆, can be expressed
as functions of NZ , a and b in terms of Jacobi elliptic functions [11, 28, 37]. The accuracy of the
matrix sign function, η, is therefore ∆ or the error in the inversion of x2+σZ

i , whichever is larger.
∆ can be controlled by varying the order of NZ . In general, NZ ∼ 20 allows the matrix sign
function to be calculated to double precision accuracy. The accuracy of the matrix sign function
can be controlled accurately by varying NZ and the accuracy of the inversion of x2 + σZ

i .
We define the residual vector for the inversion x = A−1b as

r = Ax− b, (8)

and write ξ = ‖r‖. Here A represents either the Dirac operator for SUMR or D†D for CG. The
question then becomes how accurate do we need η in order that ξ is smaller than our desired
tolerance (i.e. so that the errors from the inaccuracy of the calculation of the propagator are
negligible compared to the other errors affecting our result)? We do not need to maintain a high
η0 for the whole outer iteration to invert A. We need to start with an accurate matrix sign function,
but can gradually reduce the accuracy as the inversion progresses. The optimal relaxation strategy
depends on the inversion routine. In a Krylov subspace method, an approximation to the residual
is calculated at every step. If the matrix A is not exactly calculated, then this residual will diverge
from the true residual by an increasing amount. The true residual ||b − Axk|| can be compared
against the computed residual ||rk||, leading to the inequality

||b−Axk|| ≤ ||rk − (b−Axk)||+ ||rk||. (9)

The goal is to control the residual gap, ||rk − (b−Axk)||, so that it remains less than the required
accuracy of the inversion; otherwise the true residual will stabilise at a value close to the gap. At
the jth step of the inversion, we compute the matrix sign function to an accuracy ηj .

For the CG algorithm, with the iteration step,

qj−1 = Apj−1rj = rj−1 − αj−1qj−1

xj = xj−1 + αj−1pj−1

pj = rj +
γj
γj−1

pj−1, (10)

a sensible relaxation strategy is to compute the sign function in the CG algorithm to an accuracy
ǫA‖b‖

√
ζ, where ζ =

∑

i ‖ri‖−2. This means that we want to choose ηj = ǫA‖b‖
√
ζ, where ǫA is

the desired relative accuracy of the outer inversion [32, 33].
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In minimal residual algorithms, including SUMR, the relaxation strategy is ηj = ǫA‖b‖/‖rj‖ [32,
33]. We call the relaxed algorithms relCG and relSUMR respectively.

We note that our numerical experience is that it is not possible to completely relax the accuracy
of the matrix sign function since if it is allowed to become very inaccurate then the eigenvalue
solver no longer converges; but instead we should ensure that the approximation to the matrix
sign function remains better than some minimal accuracy. This minimal bound ought to be tuned
for each ensemble; we found that an accuracy of 10−2 was effective on the ensembles we used.

The second strategy is to use a low accuracy inversion of the overlap operator as a pre-
conditioner for a high accuracy inversion of the overlap operator. Because the required accuracy
of the matrix sign function depends on the required accuracy for the outer inversion, this means
that the bulk of the time, which is spent in the pre-conditioner, only requires a very low accuracy
matrix sign function. We therefore now have three inversions in the system: An outer inversion
of A, with a middle inversion of A used as a pre-conditioner for the outer inversion, and the inner
inversion required for the matrix sign function. The preferred routine for the outer inversion is
GMRES, since this does not require a constant pre-conditioner, and since we only require three or
four iteration steps for this routine, the cost of storing all the Arnoldi vectors is relatively small.
We therefore use algorithm 3 [33]: C and U are here arrays of vectors; c, r, u and x vectors, β and

x = 0; r = b;C = 0;U = 0; i = 0

while ||r|| > ǫ||b||; do

solve Au = r to relative accuracy η̃

compute c with ||Au− c|| < ǫ||b||||u||/||r||
for j in 1, 2, . . . , i; do

β = (C[j], c)

c = c− βC[j]

u = u− βU [j]

done

c = c/||c||
u = u/||c||
C[i+ 1] = c

U [i+ 1] = u

α = (c, r)

x = x+ αu

r = r − αc

i = i+ 1

done (11)

Algorithm 3: The GMRESR algorithm for overlap fermions

α scalars, i an integer. A represents the overlap operator. ǫ is the accuracy to which we require
the inversion, and η̃ is the accuracy of the pre-conditioner, which can (and should) be tuned to
optimise the inversion. This can be used whether we use CG or SUMR to invert the overlap
operator, and we call the resultant algorithms GMRESR(relCG) and GMRESR(relSUMR)2. In

2GMRESR refers to an algorithm suggested in [38], where a GMRES inversion was used as a pre-conditioner
for a second GMRES algorithm as an alternative to restarting. We have replaced the preconditioner with either a
CG or SUMR inversion.
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our numerical tests, we have neglected the additional application of the overlap operator needed
to convert the CG algorithm into a CGNE algorithm directly comparable with SUMR.

This approach can easily be combined with a mixed precision calculation: if the matrix sign
function is required to a worse accuracy than ∼ 2−24 ∼ 10−7 (in practice, the tolerance needs
to be a little larger than this, and to find the optimal value requires some tuning), one can use
a single precision representation of the matrix sign function; while if it needs to be better than
this one uses the double precision matrix sign function. This allows the bulk of the work to be
performed in single precision, giving approximately a factor of two gain over the fully double
precision algorithm.

The combination of GMRESR preconditioning, relaxation and mixed precision tends to give a
factor of ten-fifteen gain over the original unimproved algorithm.

4. Deflation

Further improvements are possible by preconditioning the relCG or relSUMR pre-conditioners.
In [35], it was proposed to do so by building a pre-conditioner from the eigenvectors of H = γ5D
(see also [39, 40, 41] for variations on this approach).

Suppose that we have calculated approximations to the n smallest eigenvectors ofH2, ψ1, ψ2, . . . , ψn,
with eigenvalues λ1, λ2, . . . , λn. The accuracy of the eigenvectors is measured using the residual

ri = H2ψ − (ψi, H
2ψi)

(ψi, ψi)
ψi. (12)

We label the Ritz estimate of the eigenvalue as (ψi, H
2ψi)/(ψi, ψi) = µi, where ψ now represents

a guess of the eigenvector. It is possible to construct a preconditioner for the CG algorithm
using eigenvectors calculated with a fairly low accuracy (how low an accuracy depends on how the
eigenvectors are calculated and the simulation parameters). We build up a spectral pre-conditioner

Ĥ−1 = 1 +
∑

i

|ψi〉〈ψi|
(

c√
µi

− 1

)

, (13)

used on both the left and the right of H2, where c is a constant chosen to be somewhere in

the bulk of the eigenvalue spectrum of H (we use c =
√
3
2 ). If the eigenvectors were exact, this

would project the smallest eigenvalues of Ĥ−1H2Ĥ−1 to c, and it would be equivalent to a full
deflation algorithm, albeit with a little more cost as we have to repeatedly apply the eigenvector
projection. There is no need to calculate the eigenvectors accurately, and our experience is that a
relative residual, ‖ri‖/µi, of around 10−1 for the eigenvectors is usually good enough to obtain the
optimal convergence rate (although our results in this study seem to suggest that it does not even
need to be as good as this). If there are a number of small eigenvalues of H separated from the
rest of the spectrum, this simple trick may accelerate the inversion a great deal, and improvements
in the inversion algorithm of a factor of three or four are not uncommon, with better results with
smaller masses; of course, this has to be offset against the cost of calculating the eigenvectors
in the first place. The disadvantage with deflation methods occur on larger lattices, where since
the density of small eigenvalues increases, the number of eigenvectors needed to have the same
effect also increases. This is as much of a problem for the required memory to store the additional
eigenvectors as computational time.

The deflated CGNE algorithm can be constructed in the standard way. For a zero initial guess,
algorithm 4 is used to find the solution x to Hx − b = r∞ = 0. This is more stable and robust
than the Galerkin deflation algorithm which is commonly used [36, 42, 43]. In particular, the
Galerkin algorithm tends to only improve the convergence rate of the algorithm up to the point
where the inversion residual is comparable to the accuracy of the eigenvectors, while this method
maintains a result as good as full deflation even for very low accuracy eigenvectors. The reason
that this algorithm is not generally used in QCD applications is because of the cost of applying the
preconditioner, which needs to be applied on every application of the operator H2; however, for
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r0 = p0 = Ĥ−1b;x0 = 0

for j in 1, 2, 3, . . .until ‖rj‖ < ‖b‖ǫ; do
z = Ĥ−1H2Ĥ−1pj−1

αj =
(rj−1, rj−1)

(rj−1, z)

rj = rj−1 − αjz

xj = xj−1 + αjpj−1

βj =
(rj , rj)

(rj−1, rj−1)

pj = rj + βjpj−1

done

x = HĤ−1xj (14)

Algorithm 4: The preconditioned CGNE algorithm.

overlap fermions, the additional cost of the pre-conditioner is negligible compared to that of the
matrix sign function, so we may as well use the more robust method. This also has a disadvantage
when using the same Krylov subspace to calculate or improve the eigenvectors, as we shall do
below, since the Krylov subspace generated is that of the preconditioned operator rather than the
operator we want. We found that this was not significant in practice if we use the eigenvectors
for deflation, since only a very low accuracy of eigenvectors is required for the full effect of the
deflation. However, it does mean that it is impractical to combine this inversion routine with a
precise computation of the eigenvalues if they are needed for purposes other than deflation.

However, the spectral preconditioner cannot be used for SUMR since it breaks the unitary
structure of the operator. We must therefore find some alternative. The Galerkin algorithm uses
some orthonormal subspace constructed from N (when N is much smaller than the size of the
matrix A) vectors vi which are bundled together in the matrix V to project the initial guess of
the inversion out of the subspace. So given an initial guess x̃0, the new initial vector used for the
inversion algorithm is given by

x0 = x̃0 + V
1

V †AV
V †(b−Ax̃0). (15)

This has been applied to the SUMR and other routines for overlap fermions in [44], though without
using the optimum relaxation and preconditioning strategies.

For SUMR, we have used a slightly modified form of this approach. In this case, we are
interested in the inversion of the Dirac operator D, however it is more convenient to use the
eigenvectors of the Hermitian operator γ5D. The non-zero eigenvalues of the overlap Dirac operator
come in complex conjugate pairs. Given that D†D = H2 commutes with γ5 and [D,D†] = 0, the
eigenvectors of D†D come in pairs of opposite chirality, the eigenvectors of γ5D come in pairs with
eigenvalues of opposite sign. Each of these sets of eigenvector pairs are linear combinations of each
other; so if an eigenvector pair of γ5D is {ψ+, ψ−}, then the the corresponding eigenvector pair of
D is a linear combination of these two vectors. There is no difference, then, in constructing the
starting vector from a linear combination of the n lowest eigenvectors of γ5D rather than a linear
combination of the eigenvectors of D. Given an orthonormal set of approximate eigenvectors ψi

of γ5D, we first of all construct a new basis ψ′ = Y ψ for unitary Y where (ψ′
i, γ5Dψ

′
j) is diagonal.

This is always possible for a Hermitian operator, since (ψi, γ5Dψj) would also be Hermitian and
Y would just contain the eigenvectors of this n× n matrix.
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We then construct the starting vector for the SUMR algorithm

x0 =
∑

j

αjψ
′
j , (16)

where αj is chosen to minimise the norm of the residual

r′ = b−
N
∑

j=1

αjDψ
′
j , (17)

which is the same as minimising the norm of

r = γ5b−
∑

j

αjγ5Dψ
′
j (18)

so

‖r‖2 = (b, b) +
∑

j

[

|αj |2(Dψ′
j , Dψ

′
j)− (b,Dψ′

j)αj − (Dψ′
j , b)α

†
j

]

, (19)

where † applied to a scalar indicates complex conjugation. The residual is minimised for

αj =
(Dψ′

j , b)

(Dψ′
j , Dψ

′
j)
. (20)

This procedure will obviously work for any set of vectors ψ′
j , not just the eigenvectors.

If ψ′
j were an exact eigenvector of D, this is equivalent to exact deflation; we project the low

lying eigenvectors out of the initial residual vector. However, for approximate eigenvectors of D,
we may still obtain a similar speed up of the inversion up to the accuracy of the eigenvectors. This
is similar to the Galerkin projection (for an initial guess x̃ = 0, it is equivalent to the Galerkin
projection where A = D†D with a right hand side D†b), but avoids the need to invert V †AV for
each right hand side.

Unlike the spectral decomposition, this method only improves the convergence of the SUMR
algorithm up to the accuracy of the eigenvectors. For example, if we switch off GMRESR pre-
conditioning, the residual is plotted against the iteration count and number of calls to the Wilson
operator in figure 1, on a 83×32 lattice, both for the original undeflated algorithm and the deflated
algorithm. It can be seen that the rate of convergence with respect to the number of iterations
rate of the algorithm initially improves, but then reverts to the convergence of the undeflated
system. In terms of the iteration count, there is no real difference whether we use deflation or
not. However, there is a small improvement in the number of calls to the kernel operator. This
is because the initial steps of the inversion are when the most accurate matrix sign function is
required. Fewer accurate calls to the matrix sign function are required, so the overall cost in
the routine is reduced a little. However, the gain is still much smaller than we would usually
desire from a deflation algorithm. This picture can be improved by improving the accuracy of the
eigenvectors.

This problem is averted when we use GMRESR preconditioning. We only need solve the
preconditioner for the GMRES algorithm (the middle inversion) to a low accuracy. This means that
while calculating the preconditioner, we remain in the regime where the projection is advantageous.

5. Calculation of Eigenvalues

The main challenge with deflation is the calculation of the eigenvalues. One can, of course,
use a previous calculation of the eigenvalues, using, for example, an implicitly restarted Lanczos
method, or a CG minimisation of the Ritz functional. An alternative is to use the Krylov subspace
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Figure 1: The convergence in terms of the number of iterations of the inversion and the number of Wilson operator
calls (counting a double precision Wilson operator as two calls) of the a) undeflated SUMR routine; b) deflated
SUMR routine, with 30 overlap eigenvalues calculated with residuals below 10−3 on a 83 × 32 dynamical overlap
lattice.
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generated for an inversion to calculate the eigenvalues. This has previously been adapted for the
CG algorithm for non-overlap fermions in [36]; the resulting algorithm was called eigCG.

Suppose that we want to construct n eigenvalues {ψ1, ψ2, ψ3, . . .}. The basic idea is to construct
a basis of vectors v from the CG residuals, {vi, vj , . . .} and the matrix Mij = (Dvi, Dvj). After m
iterations, one diagonalisesM using some unitary operator U , so U †MU = Λ where Λ is diagonal
and sorted so that its smallest element has the smallest index. The eigenvalues of M form an
estimate of the eigenvalues of D†D while the vectors v′ = Uv form estimates of the eigenvectors.
We then construct a new set of v vectors with the first n elements being the first n elements of v′,
and the remaining m−n elements being built up from the next residuals of the CG inversion, after
re-orthogonalising v if necessary (although in practice it is quicker and more robust to initially
calculate M with the unorthogonalised v and manipulate M to simulate the orthogonalising of
the eigenvectors). Until the first eigenvector-restart (when we calculate the eigenvectors of M),
the method is equivalent to the Lanczos method (given that D†D is Hermitian); and, as long as
the orthogonality of the CG residuals does not break down the convergence of the eigenvectors
continues to follow that of the un-restarted Lanczos behaviour throughout the CG inversion. When
we complete the initial inversion, we resume the inversion against the next input vector, deflating
those eigenvectors already calculated to the desired accuracy, with the first n elements of the new
v taken from our best estimates of the eigenvectors. Once all the eigenvalues are calculated to the
desired accuracy, one switches off the eigenvalue part of the routine, and continues with a simple
deflated CG.

There is, of course, a small cost for eigCG over a standard CG inversion, but it is not large (ne-
glecting, for the moment, the effects of relaxation and preconditioning). Most of the manipulations
of the small matrix M , including finding its eigenvectors and eigenvalues, are negligible compared
with the computations involving the full-sized matrix (such as the Dirac operator and spinor al-
gebra). One needs a few additional matrix vector products to build up M and to re-orthogonalise
v, and a few vector manipulations to reconstruct v′. For overlap fermions, this cost (if we exclude
relaxation) is entirely negligible compared against the cost of the matrix sign function. We are re-
quired to store the vectors vD = {Dv1, Dv2, Dv3 . . .} as well as v = {v1, v2, v3 . . .} during the sim-
ulation. This allows us to easily measure the residual of the eigenvector, rv = γ5Dv− (v, γ5Dv)v,
without having to apply any additional matrix vector products.

For overlap fermions, since the eigenvalues of D†D come in degenerate pairs, it is useful to
separate these pairs to improve the stability of the algorithm. We do this by in place of Mij =
(Dvi, Dvj) using Mij = (Dvi, Dvj) + 2µδ(vi, γ5Dvj), where 0 < δ ≪ 1 is a tuned small constant.
ThisMij remains Hermitian and positive definite (if the eigenvalues of D†D are λ2i , then λ

2
i > 4µ2

so the smallest eigenvalues of D†D + 2µδγ5D are 4µ2(1 − δ), but its eigenvectors will be the
eigenvectors of γ5D rather than an randommixture of the eigenvector pairs ofD†D. The eigenvalue
pairs ofM will be separated by 4µδǫ|λ|; which avoids the danger of the Lanczos algorithm missing
one of a pair of degenerate eigenvectors (This, of course, does not help resolving degenerate zero
eigenvalues). In a CG algorithm, one applies γ5Dγ5Dp; to allow a splitting of the eigenvalue pairs
requires that we store γ5Dp instead. Indeed, we have used both p and γ5Dp as separate v vectors.
This, of course, destroys the natural orthogonality of the residual vectors.

Our principle interest is to create an eigSUMR algorithm for overlap fermions. The construction
follows the same principles as the eigCG algorithm, and the crucial part of the algorithm, the
generation of the subspace, can be summarised in algorithm 5 for the first inversion. We seek to
find the first n eigenvalues to an accuracy ǫv and use a maximum subspace size m > n. Algorithm
5 can be used either as a stand-alone eigenvalue routine or incorporated into a SUMR inverter.
As long as we do not need to recalculate vD = Dv (which may be necessary if a low accuracy sign
function is used) or relax the accuracy of the matrix sign function the additional overhead on top
of the SUMR inversion is negligible.

We have explicitly re-orthonormalised the v vectors for each calculation of the eigenvectors.
This is necessary because we find that the orthogonalisation of the vectors in the SUMR can be
quickly lost, especially when we use a low accuracy computation of the matrix sign function. To
improve stability and speed, we have done so using a LDU decomposition. This allows us to avoid
necessary additional spinor operations, which are both costly and a source for the propagation of
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q0 = q̃0 = b/‖b‖
v = 0;vD = 0; k = 0

for j in 0, 1, 2, 3, 4, . . . ; do

u = Uqj ;

vk = qj ;

vDk =
(1− µ)

2
u+

(1 + µ)

2
qj

k = k + 1

if (k == m); then

Recalculate the eigenvalues following algorithm 6.

end if

γj = −(q̃j , u);σj =
√

1− |γj |2

qj+1 =
1

σj
(u+ γj q̃j)

q̃j+1 = σj q̃j + γ∗j qj+1

done

Recalculate the eigenvalues following algorithm 6.

done

Algorithm 5: The eigSUMR eigenvalue routine, where U = γ5sign(K).

Construct Eij = (vi, vj)

Perform the LDU decomposition on E, giving an upper triangular matrix U

and a lower triangular matrix L = U †

Construct Mij = (vDi , v
D
j ) + 2µδ(vi, γ5v

D
j )

Find the unitary matrix V which diagonalises L−1MU−1

v0,...n−1 = (V UTv)0,...n−1

vD0,...n−1 = (V UTvD)0,...n−1

k = n

for i in 0, 1, . . . , n− 1; do

rv,i = vDi − vi(vi, γ5v
D
i )

done

Algorithm 6: The recalculation of the eigenvalues in the eigSUMR routine.
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rounding errors. Our method is equivalent to the Gram-Schmidt algorithm. The matrix Eij =

(vi, vj) is decomposed as E = LD̃U , where L is lower triangular, D̃ is diagonal and U is upper

triangular.3 In our case, since E is Hermitian and positive definite, D̃ is just the identity matrix
and L = U † (the LDU decomposition reduces to the Cholesky decomposition).

After each restart of the Krylov subspace (i.e. each new right hand side), we repeated the
diagonalisation procedure in algorithm 6 using a basis constructed from the previous three sets of
computed eigenvectors (i.e. the eigenvectors as they were calculated at the end of the inversion,
the eigenvectors from the inversion before that, and the eigenvectors outputed from the inversion
before that). In principle, the largest contributions of the errors to the approximate eigenvectors
come from the next highest eigenvectors. Each guess of the eigenvectors thus contains those
vectors we want, plus the next highest eigenvectors plus some additional noise. By performing
this diagonalisation, we hoped to remove the next highest eigenvectors from our present guesses.
This gave a small performance gain in the computation of the eigenvectors at a negligible additional
cost.

5.1. Relaxation

The question remains as to what is the optimal strategy for controlling the accuracy of the
matrix sign function. The accuracy is determined by how good the approximation of vD = Dv is.
In the routine above, we assumed that the matrix sign function was calculated to infinite accuracy.
This is in practice impossible. Instead, we use an approximate matrix sign function s̃ (with s the
exact sign function) which leads to an approximate Dirac operator D̃ and an approximate ṽD. We
can write,

ṽD = vD + δ, (21)

and our goal is to keep ‖δ‖ sufficiently small so that it has no significant effect on the estimate
of the eigenvalue or the residual. Our experience is that using too low an accuracy for vD can
be disastrous: the estimate of the eigenvalues of M rapidly diverges from the true eigenvalue
spectrum, and the residual of the eigenvectors correspondingly grows worse with each restart.
While we wish to relax the matrix sign function as much as possible, we cannot relax it too much.

The first question is how we can measure ‖δ‖; and unfortunately a direct measurement requires
an application of the matrix sign function and is therefore expensive. It is, however, possible to
get a quick order of magnitude estimate by using

(v, γ5ṽ
D) = (v, γ5v

D) + (v, γ5δ). (22)

(v, γ5v
D) is an estimate of the eigenvalue of γ5D, and this quantity is real. Therefore, the imaginary

part of (v, γ5ṽ
D), only comes from the imaginary part of (v, γ5δ), ℑ(v, γ5δ). We can write (v, γ5δ) =

‖v‖‖δ‖ cosθeiφ, in which case

|ℑ(v, γ5ṽD)|‖v‖‖δ‖| cos θ sinφ| = ‖δ‖| cos θ sinφ|, (23)

given that ‖v‖ = 1.

An additional estimate of the error in vD is to consider the vector v̂′ = 2
vD− 1+µ

2
v

1−µ
. In exact

arithmetic, this should be γ5signv, so ‖v̂′‖2 should be one. The inaccuracy of vD can be thus be
estimated by the deviation

‖v̂′‖2 − 1 =
4δ2

(1− µ)2
− ((δ, v) + (v, δ))

1 + µ

1 − µ
. (24)

3For the general LDU decomposition, we use the convention that D̃ii, the elements of D̃ satisfy |D̃ii| = 1 while

Lii = U
†
ii
.
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(δ, vD) = 0, and given that vD − µv = rv , where µ is the Ritz estimate of the eigenvalue and rv

the residual of the eigenvector, we find that (δ, v) ∼ (δ, rv)/|µ| ∼ 2‖δ‖‖rv‖ cos θ′ cosφ′/µ, where
θ′ and φ′ parametrise the angle between δ and rv. We write

γ =
1− µ2

4
(‖v̂′‖2 − 1)

β =
(1 + µ2)rv

2|µ|
α =cos θ′ cosφ′, (25)

so

γ = ‖δ‖2 − ‖δ‖βα, (26)

which gives

‖δ‖ =
1

2
βα ± 1

2

√

β2α2 + 4γ, (27)

where we can cheaply measure γ and β (at least to a reasonable accuracy), while α is in the range
−1 ≤ α ≤ 1. Note that we require ‖δ‖ > 0 and ‖δ‖ =

√
γ when β = 0, which means we should

take the positive root of the solution when γ > 0. This means that we can establish bounds on
‖δ‖.

max(0,−1

2
β +

1

2

√

β2 + 4γ) ≤ ‖δ‖ ≤ 1

2
β +

1

2

√

β2 + 4γ) (28)

These results will therefore give two different estimates of ‖δ‖. Neither of these quantities are
ideal; the first just gives a minimum bound on δ, while the second bound depends on our estimate
of ‖rv‖, which can deviate significantly from the true value if ‖δ‖ is too large. However, they each
give us some estimate of the error without having to continually apply a high accuracy matrix sign
function. We may thus keep track of these estimates of δ, and recalculate vD to a high accuracy
when one of them indicates that ‖δ‖ might have risen sufficiently close to ǫδ, our maximum allowed
tolerance for δ (where the precise meaning of ‘sufficiently’ has to be judged by experience). In an
eigSUMR routine, we may also measure the accuracy of ṽD more indirectly through the difference
between the computed and exact residuals from the inversion (the exact residual is calculated
when we restart the pre-conditioner in an GMRESR routine).

The residual of the estimate of the eigenvector is defined (in exact arithmetic) as

rvtrue = γ5Dv − v(v, γ5Dv) = γ5v
D − v(v, γ5v

D). (29)

In practice in inexact arithmetic, we will have

rv = rvtrue + γ5δ − v(v, γ5δ), (30)

which gives

‖rv‖2 = ‖rvtrue‖2 + (rvtrue, (1− vv†)γ5δ) + ((1 − vv†)γ5δ, r
v
true) + (δ, (1− vv†)δ). (31)

The residual gap, g, is the difference between ‖rv‖2 and ‖rvtrue‖2, and we want to keep this below
ǫ2, where ǫ is the desired accuracy for the eigenvector. We have

g ≤ 2‖rvtrue‖‖δ‖+ ‖δ‖2 < ǫ2. (32)

This bound gives

‖δ‖ <
√

ǫ2 + ‖rvtrue‖2 − ‖rvtrue‖. (33)
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During each update of the eigenvectors, we know that

vi →(UV )ijvj

ṽDi →(UV )ij ṽ
D
j = (UV )ijv

D
j + (UV )ijδ

D
j , (34)

where δDj is either the previously calculated error from the previous eigenvector-restart if vj is one
of the vectors held back from the previous iteration, or due to the inaccuracy of the matrix sign
function as we generate the new Krylov subspace. Thus, neglecting any error on (UV ) due to the
fact that they have been calculated using ṽD rather than vD, the new δi satisfies the bound

‖δi‖ <
m
∑

j=1

|(UV )ij |‖δDj ‖. (35)

This means that to avoid having to recalculate vD during the iteration, we may compute the
matrix sign function to an accuracy

‖δDj ‖ <

√

ǫ2 + ‖rvtrue,0‖2 − ‖rvtrue,0‖
(m− n)kmaxn<j≤m,i<n′ |(UV )ij |

, (36)

where k is the expected number of iterations required for the eigenvector routine to converge, or
between high accuracy recalculations of vD, and ‖rvtrue,0‖ is the residual of the best converged
eigenvector (we may use the computed residual rather than the true residual here, as the dif-
ference between the two will not be significant enough to affect anything). maxij |(UV )ij | may
be estimated from the previous eigenvector-restarts; the general trend in the long-term is that
once the eigenvectors start to converge this quantity decreases as the iteration proceeds, as may
be expected since it provides the correction to the ever-improving eigenvector. However, it can
fluctuate significantly from one iteration to the next, and for this reason we took the average
value from the previous ten eigenvalue calculations, which worked well in practice. Of course, this
estimate is conservative, and in practice we relaxed it by assuming that the additional errors δDj
will not all add together coherently. It is more likely that the effects of δDj will partially cancel

each other out. We assume that the effects of these vectors on the error on vD will resemble a
random walk, suggesting that need only scale the accuracy of the matrix sign function according
to the inverse square root of the number of vectors rather than the inverse of the number of vec-
tors. After the initial few calculations, even this proved to be too conservative since most values
of |UV | were several orders of magnitude smaller than the maximum value which only affected a
different eigenvector each time. Therefore, we scaled the bound by the square root of the number
of eigenvectors to simulate that only one of these eigenvectors was affected.

‖δDj ‖ <
χ
√

ǫ2 + ‖rvtrue,0‖2 − ‖rvtrue,0‖
√

(m− n)kmaxn′<j≤m,i<n |(UV )ij |
(37)

χ =

{

1 First two diagonalisations√
n Subsequent diagonalisations

.

This is the expression we have used in our simulations. While, unlike (36), it is not guaranteed
to avoid large errors in the eigenvectors, it nonetheless seems to work well. When using SUMR,
it is advisable to recalculate vD after the completion of the eigenvector calculation to avoid errors
entering the calculation of the residual during deflation.

It is also possible to reduce the accuracy of ǫ as the algorithm proceeds; starting with a high
value of ǫ and gradually reducing it to the desired precision. We need to explicitly recalculate vD

every k iterations to maintain accuracy, and there is no cost if we adjust ǫ before this recalculation.
Finally, we note that δDj may be measured when we apply the matrix sign function to vj . If
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u = s̃v, then

u =sv + γ5δ
D

‖u‖2
‖v‖2 − 1 =

‖δD‖2 + (v, sγ5δ
D) + (δD, γ5sv)

‖v‖2 . 2‖δD‖, (38)

where in the last step we have used the normalisation ‖v‖ = 1.
When using the algorithm as a stand-alone eigenvalue solver, we may freely use the bound

(37), adjusting the accuracy of the matrix sign function after each eigenvector-restart. When
incorporating this into a relaxed GMRESR(SUMR) routine, there are problems because this bound
is not the same bound as used in the inversion. There are several possibilities:

• Only incorporate those q vectors where the calculation of the sign function satisfies the
bound (37) into the Krylov subspace, at the cost of a slower calculation of the eigenvectors;

• Relax the inversion routine as normal, including all the eigenvectors, at the cost of having
to recalculate vD to a high accuracy when we construct the eigenvectors;

• Relax the inversion routine according to the maximum of the two bounds for the accuracy
of the matrix sign function, at the cost of having a slower inversion routine.

In the numerical simulation presented here, we applied the third of these strategies. This
significantly increases the cost of the initial inversions which are used to calculate the eigenvalues;
however it means that we are able to use larger subspaces to calculate the eigenvalues so that
they converge better; and our experience is that only three or four inversions are sufficient to have
the smallest eigenvectors converge to the accuracy which gives the optimum rate of improvement
for the inversions. Our experience of the first strategy on smaller test lattices showed that the
eigenvectors did not converge, as only three or four additional vectors were used for each call to the
GMRESR preconditioner to improve the already estimated eigenvectors: not enough to make any
serious progress. This approach therefore offered no real gain over the undeflated GMRES(SUMR)
routine as the eigenvectors were never of a sufficient accuracy to substantially accelerate the
inversion. The second of these strategies is obviously inferior, as we would be calculating the
matrix sign function twice, once to a high accuracy, per eigenvector. However, whichever strategy
we use, there is a cost to the initial inversions used to calculate the eigenvectors. However, once we
have calculated enough eigenvectors to a good enough accuracy, we can switch off the eigenvector
calculation and use the optimum inversion relaxation strategy. Given a typical number of right
hand sides, the gain from the deflation far outweighs these additional costs. It is necessary to
recalculate vD after k calls to the eigenvector routine, where k can be tuned to give the best
performance.

6. Numerical Results

We tested the algorithm on 83×32 dynamical overlap configurations, generated with a Luscher-
Weisz gauge action [45, 46, 47] at β = 8.15 and a quark mass of µ = 0.03 corresponding to a pion
mass mπa = 0.27(4) (measured via the axial correlator, ∼ 460 MeV) and a lattice spacing of
a = 0.118(1) fm (measured from a string tension of (420 MeV)2). We used one sweep of stout
smearing on the gauge configuration, matching the set up used to generate the ensemble. The
simulations were run on a desktop computer at Seoul National university. We only present results
from a single configuration with zero topological charge, since we did not observe any significant
difference from configuration to configuration; except that the improvement from the deflation was
up to a factor of three better if the Dirac operator had an exact zero mode. We will compare the
eigSUMR, eigCG, GMRESR(relCG) and GMRESR(relSUMR) algorithms. We set k = 25, which
allows us to run five inversions without having to recalculate vD and and the desired accuracy of
the eigenvectors to ǫ = 10−4. The residual of the GMRESR preconditioner was tuned so that the
GMRESR routine should converge in three steps after the eigenvectors were calculated and two
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Figure 2: The convergence in terms of the number of Wilson operator calls (counting a double precision Wilson
operator as two calls) of a) the relaxed SUMR inversion; b) the GMRESR(SUMR) inversion without deflation; c)
the relaxed CG inversion, and d) the GMRESR(CG) inversion algorithm without deflation.

steps while the eigenvectors are being calculated (to allow us to make use of a larger subspace). We
deflated the eleven lowest eigenvectors of the Kernel operator to accelerate the computation of the
matrix sign function (the Wilson operator tends to be well conditioned on a smeared dynamical
overlap configuration, so this was all that was necessary). We tested the algorithm with 15, 30 and
45 overlap eigenvectors. In all the inversions we used a Z2 source vector, b, where each component
of the spinor was equally likely to be ±1. We used different choices of this source vector on our
smaller test lattices, and it made no difference to the results. In all the plots for the inversions,
we show the residual calculated during the CG or eigSUMR routine. For all the data, baring the
issue mentioned in the discussion of 2 below, this does not differ from the true residual by any
noticeable amount. For the GMRESR outer inversion, the true and calculated residuals did not
differ significantly for any of our results.

6.1. GMRESR and relaxation

Figure 2 provides a comparison between the relaxed and GMRES preconditioned CG and
SUMR routines, showing the gain of both the GMRES preconditioning and SUMR over CG. We
generally will use the number of calls to the Wilson operator as a measure of the time for the
inversion. Since the bulk of the cost of each algorithm is in the evaluation of the matrix sign
function, and the cost of that is proportional to the number of times the Kernel operator is called,
this is a reasonable measure to use, and it avoids various machine and run dependent fluctuations
which would occur if we measured the total time. In all our figures, if the kernel operator was
calculated in double precision, it was counted as two calls to the operator; while if it was calculated
in single precision it was counted as one call to the operator. This compensates for the observation
that a double precision Wilson operator is roughly half the speed of the single precision operator.
Figure 2 merely reproduces the results from earlier works. The curvature on the convergence of the
relaxed CG and SUMR iterations is due to the relaxation. If we excluded the relaxation, the plot
would be roughly a straight line, with the same gradient at seen on our plot in the early stages of
the inversion. It can be seen that relaxation gives a vastly superior performance to the unrelaxed
algorithm, and the GMRES algorithm (which we set to use five calls to the preconditioner) is
about a factor of four superior to the relaxed algorithm. Thus, in total, these algorithms already
give an order of magnitude improvement over the naive CG or SUMR algorithms. The small
spikes seen in the GMRES(CG) curve are at the end of of the preconditioning steps. The plot
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Figure 3: The convergence in terms of the number of Wilson operator calls (counting a double precision Wilson
operator as two calls) of the a) undeflated GMRESR(relSUMR) routine; b) deflated GMRESR(deflated relSUMR)
routine, with 30 overlap eigenvalues previously calculated to a high accuracy; c) undeflated GMRESR(relCG)
routine, and d) the deflated GMRESR(deflated relCG) routine with 30 eigenvalues previously calculated.

shows the measured residual; however, because of our aggressive relaxation strategy (we sacrificed
a small amount of accuracy in the middle inversion for speed, since the GMRES inversion will
correct for any small error), the true residual deviates from this by a small amount at the end of
the inversion. The GMRES algorithm then resets the residual to its true value for the next call
to the preconditioner. It can also be seen that SUMR is faster than CG for a single inversion,
though by considerably less than the factor of two we might naively expect. This is partly caused
by SUMR requiring a few more iterations to converge, and partly from the different relaxation
strategies for CG and SUMR.

6.2. Deflation

We now turn to the effects of deflation. For these plots, we calculate and use thirty overlap
eigenvectors during the deflation. We consider what occurs when we vary the number of eigenvec-
tors later. We used five inversions to calculate the eigenvalues, which we label as calculating relCG

or calculating relSUMR, and then ran several inversions without improving the eigenvectors, and
we label these runs as deflated relCG or deflated relSUMR. Figure 3 compares the convergence
of the deflated GMRESR(deflated relSUMR) and GMRESR(deflated relCG) algorithms with the
undeflated algorithms. The plot is of the residual of the inversion against the number of calls to
the kernel of the matrix sign function (given that almost all of the time required for the calculation
is due to the computation of the matrix sign function, and the cost of the matrix sign function is
proportional to the number of times the kernel matrix is called, this will be a good measurement
of the overall cost of the calculation). Figure 4 shows the cost of the initial eigenvector calculation,
plotting the number of kernel operator calls against the residual for those GMRESR(calculating
relSUMR) routines used to calculate the eigenvectors, and comparing it against the undeflated and
fully deflated GMRESR(relSUMR) routines. In figure 5, we do the same thing for the iteration
count of the inversion. Figures 6 and 7 repeat these results for the CG algorithm. There is
some initial cost for the SUMR algorithm during the calculation routines before the eigenvalue
computation. This is to improve the accuracy of vD, which we require to a reasonably accuracy
while constructing the Galerkin projection otherwise the inversion algorithm will not converge to
the correct result. This could have been achieved by keeping the accuracy of vD higher during
the computation of the matrix sign function; however this will slow down the inversion algorithm
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considerably as more expensive matrix sign functions would be needed. We found that a better
balance was achieved by keeping the accuracy of vD at the level needed to improve the eigenvectors,
and have a small additional cost at the start of each inversion.

On the configuration we used to generate these plots, the lowest eigenvectors of γ5D had
eigenvalues of ±0.114, while the twenty ninth and thirtieth eigenvalues were ±0.302. We therefore
expect an approximately 0.302/0.114 = 2.65 gain in the iteration number for the inversion, if
the deflation is successful. In practice, for the CG algorithm we see a gain of 265/98 = 2.70 in
the iteration count (which is close enough to the optimum value), while SUMR gives a gain of
329/165 = 1.99 (which is still far from the expected efficiency). The eigenvector residuals after
five applications of the eigCG algorithm and used to deflate the CG inversions ranged from 0.01 to
0.2, while the eigenvectors used in the deflated SUMR algorithm (also after five eigSUMR routines
to calculate the eigenvalues) had residuals ranging from 0.0003 to 0.01. This tells us that firstly
the eigSUMR algorithm is far more efficient at calculating the eigenvectors (which we expected,
given the wrong Krylov subspace is used in the CG algorithm), and secondly that the deflation
algorithm used in the eigCG routine works to its theoretical maximum even when the eigenvectors
are exceptionally poor, while the projection/GMRES deflation used in SUMR did not work at full
efficiently even with more accurate eigenvectors. We would require the eigenvectors to a greater
accuracy, i.e. more inversions calculating the eigenvectors, to achieve the optimum improvement.
Additionally, the full improvement of deflation is visible for CG after just the second eigenvalue
calculation, while for SUMR the required iteration count gradually improves as the eigenvalues
are computed. Nonetheless, despite the deflation method used for the CG algorithm’s greater
efficiency, we still see that eigSUMR is more efficient than eigCG.

We do not see quite the same gain when we consider the number of calls to the Wilson operator
(in terms of the number of calls to the Kernel operator, the gain for CG was only a factor of 2.2).
This is mostly due to the higher accuracy applications to the matrix sign function in the outer
GMRES inversion. The deflation only affects the middle pre-conditioner, while the GMRES part
of the algorithm remains untouched – a fixed cost regardless of whether we deflate. The deflation
reduces the calls to the Wilson operator in the pre-conditioner at a similar rate to the reduction
of the iteration count. The remaining inefficiency when converting iteration count into calls of the
Wilson operator is due to the relaxation.

Finally, we can see that the cost of calculating the eigenvectors is substantial, particularly
for the SUMR routine where more calculating inversions are required before the gain from the
deflation starts to become significant. The cost is usually largest for the first inversions, and
even for the more mature calculations around a factor of 2-4 for CG and 4-5 for SUMR (i.e. one
calculating inversion is twice to five times more expensive than a undeflated inversion). This is
solely because we cannot relax the accuracy of the matrix sign function efficiently while calculating
the eigenvectors. However, in a real-life simulation, only three or four of these steps are required
(at least on the small lattices used in this study), while we will be able to use the deflated
algorithm far more times. The gain from deflation will far outweigh the cost of the calculation of
the eigenvectors.

We also note that the deflation will become more effective as the quark mass is reduced, and on
configurations with a non-zero topological charge (and thus exact zero eigenvectors of the massless
operator).

6.3. Eigenvector calculation

We now consider the efficiency of the eigenvalue calculation, and whether our proposed relax-
ation schema is successful. For this calculation, we used a standalone eigenvalue solver, starting
from a Z2 source, and continuing the eigenvalue calculation after the inversion had converged. We
restarted the calculation after every twenty four diagonalisations of the lanczos vectors (i.e. when
we were due to recalculate vD), or when the eigenvectors reached the required precision for that
restart. At each restart, we performed an additional diagonalisation of the eigenvectors, using
the computed eigenvectors and those from the previous two restarts. We used the final q vector
from the previous run to restart the simulation, after re-orthogonalising it against the already
calculated eigenvectors. This allowed us to further adjust the desired accuracy of the eigenvectors
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as the calculation progressed, so we could always set the tolerance for the eigenvector run to be
suitably lower than the expected residual at the next restart. We also restarted the eigenvector
calculation when ‖q‖−1 grew larger than 0.1 (which indicates a breakdown in the algorithm due to
the imprecision of the matrix sign function. If ‖q‖ grows too much then the algorithm can become
unstable). This therefore does not fully replicate the situation in an eigSUMR inverter; however
the rate of convergence is similar whether we use eigSUMR or this stand alone eigenvalue solver.
We compare the residual for the eigenvector against the number of calls to the Kernel operator and
the number of calls to the matrix sign function for both when we relax the accuracy of the solver
according to the prescription described in section 5.1 and when we use a full accuracy matrix sign
function for the whole calculation. In addition to the thirty eigenvectors, we used an additional
80 Arnoldi vectors when updating the eigenvectors. In an eigSUMR or eigCG calculation, this
number would be restricted by the number of iterations needed for the inversion to converge.

Figure 8 shows the residual of the eigenvectors plotted against the number of calls to the
kernel operator for the first and last eigenvalues calculated, while figure 9 shows the residuals
plotted against the number of recalculations of the eigenvectors. We see that, at least for the
lowest eigenvector, the convergence is similar compared to the number of calls to the recalculation
routine for both the relaxed and full accuracy eigenvalue solver. This means that our relaxation
has not added to the number of iterations required to solve for the eigenvectors: the error in
the eigenvectors is under control. When comparing the residue against the number of calls to
the Kernel operator, we see a significant gain for the relaxed algorithm at the early stages of the
calculation.

However, while our eigenvalue routine works well to obtain the eigenvalues and eigenvectors to
a low accuracy, it slows down considerably beyond a certain point, which depends on the number
of eigenvectors calculated. If high accuracy eigenvectors are required in addition to the inversion,
it may be advantageous to use eigSUMR to calculate the eigenvectors to a low precision, and
then some other method such as inverse iteration or the Jacobi-Davidson algorithm to polish the
eigenvectors to the required accuracy. The Jacobi-Davidson algorithm [48], a more robust, faster
and efficient generalisation of inverse iteration, generally converges well once the eigenvalues are
known to a moderate accuracy, but less well if the eigenvalues are not known, although the cost of
Jacobi-Davidson is also proportional to the number of eigenvectors required. The expensive part
of the Jacobi-Davidson algorithm is a low accuracy inversion of the operator, which we already
know how to do efficiently for overlap fermions. This is the opposite to what we have found for
the Arnoldi process used in the eigSUMR routine. If high accuracy eigenvectors are required, we
therefore suggest using eigSUMR to obtain an initial estimate of the eigenvectors and eigenvalues
which can be used both as an input for the Jacobi Davividson routine and to construct a spectral
preconditioner to accelerate it.

We show the error ‖vD − Dv‖ plotted for the thirtieth overlap eigenvector in figure 10. We
see that the accuracy of vD remains slightly below the target accuracy, which suggests that our
relaxation strategy works reasonably well. We calculate vD accurately after every twenty four
diagonalisations of the Lanczos vectors, which causes the troughs seen in the plot.

6.4. Varying the number of eigenvectors

Finally, we consider the effect of varying the number of calculated eigenvectors, both on the
convergence of the inversion and on the convergence of the eigenvector calculation. We consider
15, 30 and 45 eigenvectors. We expect that the inversions will will improve as we deflate more
eigenvectors, while it is less clear how the eigenvector calculation will fare. Figure 11 shows the
convergence of the deflated CG inversion as different numbers of eigenvectors are calculated, and
Figure 12 shows the same thing for SUMR. Once again, the CG algorithm rapidly, after only a
few iterations to calculate the eigenvectors, reaches the optimum convergence rate, while SUMR
requires more than the five inversions we used to reach it. The ratio of the SUMR against CG
improvement factor becomes worse as we deflate more eigenvalues, which means that the more
eigenvalues we calculate, the more inversions are needed to have the eigenvalues calculated to a
high enough accuracy for the deflation to take effect. For CG, this is not the case, and no matter
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Figure 8: The convergence of the first and 30th eigenvectors in terms of the number of calls to the kernel operator,
comparing the relaxed and full accuracy eigenvalue solvers.
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to the target accuracy given in equation 33.

how many eigenvalues we calculate (at least up to the numbers we study here) only two or three
inversions are required to calculate the eigenvectors to the required accuracy.

Of course, the number of inversions required for the full improvement factor is one part of the
cost of calculating the eigenvalues; the second is whether the cost changes per inversion for the
CG and SUMR inversions used to calculate the eigenvectors. We display this in figures 13 and
14, for the third calculating CG or calculating SUMR inversion, and in figures 15 and 16 for the
initial calculating CG or calculating SUMR inversion. It can be seen that the additional cost per
inversion required to invert extra eigenvalues is negligible.

We conclude that in terms of computer time, the cost for the eigenvalue calculation for the CG
algorithm is roughly independent of the number of eigenvalues calculated, at least when the size of
the Krylov subspace used in each of the CG inversions is smaller than the number of eigenvalues
needed. For SUMR, the computational cost to get the maximum gain for the deflation will increase
as the number of eigenvalues increases. This difference is due to the improved preconditioning
method used for the CG algorithm, which does not need the eigenvectors to be calculated to
any significant accuracy to be effective; while the Galerkin projection method requires that the
accuracy of the eigenvectors is comparable to the accuracy needed for the SUMR preconditioner
in the GMRESR algorithm. With the number of eigenvalues we tested, deflated SUMR is still
more efficient than deflated CG. That might change if more eigenvectors are included, or at lower
masses, or fewer right hand sides are needed. Of course, for both CG and SUMR the required
memory increases as the number of eigenvectors increases, and this may well be a limiting factor
on some machines.

In figures 17 and 18 we consider the convergence of the eigenvector calculation as more eigen-
vectors are calculated. We consider the tenth eigenvector, which is calculated in all our runs,
and the last eigenvector calculated in each run. It can be seen that the convergence of the tenth
eigenvector improves as we increase the number of computed eigenvectors, while the final eigen-
vector generally converges slower the more eigenvectors are calculated. The sharp drops in the
eigenvector residual in figure 18 occur when we reset the computation. They are partially caused
by our diagonalisation of the eigenvectors against the eigenvalues computed from the previous
iterations, which seems to particularly benefit the last few eigenvectors. If the eigenvectors are
required in themselves, and not just for the deflation, then it may be advantageous to calculate
more eigenvectors than necessary so that the convergence of the wanted eigenvectors improves.
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Figure 11: The convergence of the CG inverter after deflating 0, 15, 30 and 45 eigenvectors. The maximum possible
improvement over the original routine is given by the ratio of the lowest eigenvalue of γ5D not included in the
deflation to the lowest eigenvalue of the operator. The ratio of the fifteenth to the first eigenvalue of γ5D is 2.1, of
the thirtieth to the first eigenvalue 2.6 and of the 45th to the first eigenvalue is 3.1. The improvement in the number
of iterations after deflation is a factor of 2.1 for 15 eigenvalues, 2.7 for 30 eigenvalues, and 3.1 for 45 eigenvalues.

27



10−12

10−10

10−8

10−6

10−4

10−2

1

102

104

0 30000

re
si
d
u
a
l

Calls to Kernel operator

GMRES(relSUMR)
GMRES(deflated(15) relSUMR)
GMRES(deflated(30) relSUMR)
GMRES(deflated(45) relSUMR)

10−12

10−10

10−8

10−6

10−4

10−2

1

102

104

0 50 100 150 200 250 300 350

re
si
d
u
a
l

SUMR iterations

GMRES(relSUMR)
GMRES(deflated(15) relSUMR)
GMRES(deflated(30) relSUMR)
GMRES(deflated(45) relSUMR)

Figure 12: The convergence of the SUMR inverter after deflating 0, 15, 30 and 45 eigenvectors. The improvement
in the number of iterations for the deflated routines is 1.6 for 15 eigenvalues, 2.0 for 30 eigenvalues, and 2.2 for 45
eigenvalues.
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Figure 13: The convergence of the CG inverter while calculating 0, 15, 30 and 45 eigenvectors.
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Figure 14: The convergence of the SUMR inverter while calculating 0, 15, 30 and 45 eigenvectors.
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Figure 15: The convergence of the CG inverter while calculating 0, 15, 30 and 45 eigenvectors.

31



10−12

10−10

10−8

10−6

10−4

10−2

1

102

104

0 30000 60000 90000 120000 150000 180000 210000

re
si
d
u
a
l

Calls to Kernel operator

GMRES(relSUMR)
GMRES(calculating(15) relSUMR 1)
GMRES(calculating(30) relSUMR 1)
GMRES(calculating(45) relSUMR 1)

10−12

10−10

10−8

10−6

10−4

10−2

1

102

104

0 50 100 150 200 250 300 350

re
si
d
u
a
l

SUMR iterations

GMRES(relSUMR)
GMRES(calculating(15) relSUMR 1)
GMRES(calculating(30) relSUMR 1)
GMRES(calculating(45) relSUMR 1)

Figure 16: The convergence of the SUMR inverter while calculating 0, 15, 30 and 45 eigenvectors.
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Figure 17: The convergence of the tenth eigenvector while calculating 15, 30 and 45 eigenvectors with the relaxed
eigenvalue solver.
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Figure 18: The convergence of the last calculated eigenvector while calculating 15, 30 and 45 eigenvectors with the
relaxed eigenvalue solver.
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7. Conclusions

We have tested the application of deflation methods to overlap fermions; focussing on the
eigCG and eigSUMR algorithms. We construct a rigorous (though conservative) bound for the
accuracy of the matrix sign function, and suggest a less rigorous and less conservative bound
which seems to work well in practice. We see no loss in accuracy for the eigenvectors during the
calculation.

Our deflated inversion algorithms show the usual level of improvement. In particular, the
spectral decomposition method we have used for the CG algorithm accelerates the inversions
according to the theoretical maximum even for exceptionally low quality approximations of the
eigenvectors. This pre-conditioner is impractical for other fermion formulations because of its cost,
but for overlap fermions the cost is negligible. A method such as this should be preferred over
the Galerkin projection for overlap inversions of D†D. For SUMR, we have to use a variation of
the Galerkin projection, which performs less well until the eigenvectors are calculated to a high
enough accuracy.

As an eigenvector routine, our proposed eigCG algorithm performs particularly poorly, which
is probably because the pre-conditioned inverter generates a different Krylov subspace than the
optimal one for the calculation of the eigenvectors. However, it was still able to calculate the
eigenvectors to a good enough accuracy to achieve the maximum possible acceleration from the
deflation after only one or two right hand sides. The eigSUMR algorithm works well up to a certain
accuracy, after which it shows a significant slowing down. To obtain high accuracy eigenvectors,
it is beneficial to combine eigSUMR with some other routine such as inverse iteration or the
Jacobi-Davidson method.

There is a considerable cost in using eigSUMR or eigCG to calculate the eigenvectors over
a straight inversion algorithm, because we are unable to relax the accuracy of the matrix sign
function as aggressively as is possible in an inversion. This set-up cost will, however, be negligible
compared to the gain if enough right hand sides are required.

Because the deflation for the CG algorithm is more efficient than for SUMR, it remains an
open question about which will be better in practical applications (if we do not also require high
accuracy eigenvectors as well as the inverse – we expect that if the eigenvectors are calculated
accurately enough then the Galerkin projection will work as well as the spectral preconditioner).
Which of these methods is superior may vary from simulation to simulation.

Obviously, deflation methods become less efficient on larger lattice volumes, since the increased
density of small eigenvalues requires a larger number of eigenvectors to be calculated, leading to
greater costs for the computational time and memory. However, given that our spectral pre-
conditioner for the CG algorithm works with the maximum efficiency with even very low accuracy
eigenvectors, and there does not seem to be an additional overhead for calculating more eigenvalues,
we do not expect that there should be a significant increase in the computational cost at larger
volumes (although, obviously, this needs to be confirmed). The memory requirement is likely to
be more of a bottleneck, with the memory costs for the same degree of improvement likely to
increase as O(V 2), where V is the lattice volume, since the number of eigenvectors required for
the same improvement is likely to increase with the volume. This should not be a problem on
the relatively small (compared to other fermion actions) lattices which are currently accessible to
overlap fermions, but it is something which will need to be addressed in the future.
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Appendix A. Construction of the SUMR algorithm

The Arnoldi equation is UQ = QB, where B is an n × n matrix, and Q is an N × n matrix
containing the n orthonormal Arnoldi vectors qi in its columns. This gives Q†U †UQ = B†Q†QB,
Or B†B = 1, i.e B is also unitary. This means that B can be decomposed in terms of Given’s
matrices and a U(1)n factor, which can be absorbed into the phase of the q vectors. Given that B is
also upper Hessenburg (like all Arnoldi matrices), the only Given’s matrices which can contribute
to it are those with only diagonal and sub-diagonal terms. We can therefore decompose,

Bn = G0(γ0)G1(γ1) . . . Gn−1(γn−1)G̃n(γ̃n), (A.1)

where

Gm(γm) =








1(m−1)×(m−1) 0(m−1)×1 0(m−1)×1 0(n−m−1)×(m−1)

01×(m−1) −γm σm 0(n−m−1)×1

01×(m−1) σm γ†m 0(n−m−1)×1

0(n−m−1)×(m−1) 0(n−m−1)×1 0(n−m−1)×1 1(n−m−1)×(n−m−1)









, (A.2)

where the † indicates the complex conjugate and σm =
√

1− |γm|2, so that the Gm matrices are
unitary. The final matrix is

G̃n(γ̃n) = diag(1, 1, . . . , γ̃n). (A.3)

By comparing the mth row, we can see that

UQm = Qm+1B̂m, (A.4)

where B̂m is the (m+1)× (m) matrix defined in terms of the (m+1)× (m+1) Given’s matrices
Gi(γi) and the (m+ 1)×m matrix Ĝ,

B̂m =G0(γ0)G1(γ1) . . . Ĝm(γm)

Ĝm(γm) =





1(m−1)×(m−1) 0 0
0 1 −γm
0 0 σm



 . (A.5)

We also know that

B =









(q0, Uq0) (q0, Uq1) (q0, Uq2) (q0, Uq3)
(q1, Uq0) (q1, Uq1) (q1, Uq2) (q1, Uq3)

0 (q2, Uq1) (q2, Uq2) (q2, Uq3)
0 0 (q3, Uq2) (q3, Uq3)









, (A.6)

where (, ) indicates the scalar product of two vectors.
Our intention is to build up the Arnoldi vectors qi via a short recurrence. We will first illustrate

the process using an example when n = 4, and later generalise to arbitrary n. Equating equations
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(A.1) and (A.6) gives

B =









−γ0 σ0 0 0

σ0 γ†0 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 −γ1 σ1 0

0 σ1 γ†1 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 0 −γ2 σ2
0 0 σ2 γ†2

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −γ̃3









=









−γ0 σ0 0 0

σ0 γ†0 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 −γ1 −σ1γ2 −σ1σ2γ̃3
0 σ1 −γ†1γ2 −σ2γ†1γ̃3
0 0 σ2 −γ̃3γ†2









=









(q0, Uq0) (q0, Uq1) (q0, Uq2) (q0, Uq3)
(q1, Uq0) (q1, Uq1) (q1, Uq2) (q1, Uq3)

0 (q2, Uq1) (q2, Uq2) (q2, Uq3)
0 0 (q3, Uq2) (q3, Uq3)









. (A.7)

A quick manipulation gives us









1 0 0 0
0 −γ1 −σ1γ2 −σ1σ2γ̃3
0 σ1 −γ†1γ2 −σ2γ†1γ̃3
0 0 σ2 −γ̃3γ†2









=









−γ†0 σ0 0 0
σ0 γ0 0 0
0 0 1 0
0 0 0 1

















(q0, Uq0) (q0, Uq1) (q0, Uq2) (q0, Uq3)
(q1, Uq0) (q1, Uq1) (q1, Uq2) (q1, Uq3)

0 (q2, Uq1) (q2, Uq2) (q2, Uq3)
0 0 (q3, Uq2) (q3, Uq3)









=









(q̃′0, Uq0) (q̃′0, Uq1) (q̃′0, Uq2) (q̃′0, Uq3)
(q̃1, Uq0) (q̃1, Uq1) (q̃1, Uq2) (q̃1, Uq3)

0 (q2, Uq1) (q2, Uq2) (q2, Uq3)
0 0 (q3, Uq2) (q3, Uq3)









, (A.8)

with

q̃†1 =σ0q
†
0 + γ0q

†
1 (A.9)

(q̃′0)
† =− γ†0q

†
0 + σ0q

†
1. (A.10)

This gives,

γ1 = −(q̃1, Uq1). (A.11)

The general form of this process is [34]

γn = − (q̃n, Uqn)

σn =
√

(1− |γn|2)
q̃n+1 =σnq̃n + γ†nqn+1 (A.12)

with q̃0 = q0. We can construct the next q vector from equation (A.4).

Uqm = (Qm+1)G0(γ0)G1(γ1) . . . Ĝm. (A.13)
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With Qm+1 = (q0, q1, q2, q3, . . .), applying Qm+1G0 gives

Qm+1G0 =(−γ0q0 + σ0q1, σ0q0 + γ†0q1, q2, q3, . . .)

=(q̃′0, q̃1, q2, q3, q4, . . .). (A.14)

Similarly,

Qm+1G0G1G2 . . . Gn−1 = ((q̃′0, q̃
′
1, . . . , q̃

′
n−1, q̃n, qn+1, qn+2, . . .). (A.15)

So we finish up with

Uqm = (. . . , q̃′m−1, q̃m, qm+1)Ĝm. (A.16)

We thus get

Uqm = σmqm+1 − γmq̃m (A.17)

or

qm+1 =
1

σm
(Uqm + γmq̃m). (A.18)

This leads to the modified Arnoldi algorithm shown in algorithm 1.
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