
 1

The Efficiency of geophysical adjoint codes generated by

automatic differentiation tools

A. V. Vlasenko, A. Köhl, and D. Stammer

Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Germany

Corresponding author: A. V. Vlasenko (andrey.vlasenko@uni-hamburg.de)

Abstract

The accuracy of numerical models that describe complex physical or chemical processes

depends on the choice of model parameters. Estimating an optimal set of parameters by

optimization algorithms requires knowledge of the sensitivity of the process of interest to

model parameters. Typically the sensitivity computation involves differentiation of the model,

which can be performed by applying algorithmic differentiation (AD) tools to the underlying

numerical code. However, existing AD tools differ substantially in design, legibility and

computational efficiency. In this study we show that, for geophysical data assimilation

problems of varying complexity, the performance of adjoint codes generated by the existing

AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms

in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the

efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the

efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN

90-95 elements such as structures and pointers, which are new elements that either combine

groups of variables or provide aliases to memory addresses, respectively. We show that, while

operator overloading tools are the only ones suitable for modern codes written in object-

oriented programming languages, their computational efficiency lags behind source

transformation by orders of magnitude, rendering the application of these modern tools to

practical assimilation problems prohibitive. In contrast, the application of source

transformation tools appears to be the most efficient choice, allowing handling even large

geophysical data assimilation problems. However, they can only be applied to numerical

models written in earlier generations of programming languages. Our study indicates that

applying existing AD tools to realistic geophysical problems faces limitations that urgently

need to be solved to allow the continuous use of AD tools for solving geophysical problems

on modern computer architectures.

mailto:andrey.vlasenko@uni-hamburg.de

 2

1. Introduction.

To date, numerical modelling is a widespread and generally accepted approach for solving

complex mathematical equations of physical, biological, or chemical processes in climate and

earth system sciences. However, the accuracy of respective solutions fundamentally depends

on the choice of – typically uncertain - model parameters. One therefore is usually faced with

the following two questions: (i) How sensitive are model solutions to the detailed choice of

model parameters, and (ii) what is the optimal set of these parameters required to minimize

the difference between a simulated process to a given set of observations. One elegant way to

answer these questions involves the computation of derivatives of the corresponding

numerical model with respect to its parameters or state variables [1], [2],[3],[4],[5].

Generally, model derivatives can be generated in three different ways, the simplest of which

is an estimation of approximate derivatives by applying a finite difference method. Being

simple, however, this method is always plagued by approximation errors. The second way is

to derive the model derivatives manually. Such differentiation leads to exact derivatives but is

labor-intensive and therefore impractical for large numerical models. The third option is to

use an algorithmic differentiation (AD) tool, which almost automatically provides the exact

derivatives of any complex function represented by a numerical code with only little extra

effort by the user.

For simplicity we introduce two definitions commonly used in AD. We consider a numerical

model as mathematical operator that acts on state variables 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) and returns an

output 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) (e.g. state variables at the end of computation). Let 𝐉 be the

Jacobian matrix of 𝒚 with respect to 𝒙 and 𝒔 be an n-dimensional column vector, with only 𝑠𝑖

element equal to one and the rest to zero. The differentiation of y with respect to 𝑥𝑖 produced

by the AD tool can be presented as a multiplication of 𝒔 by 𝐉, where 𝐉𝒔 gives the derivative of

𝒚 with respect to 𝑥𝑖. The corresponding computer code, generated by the AD tool, is called

the tangent linear model and the derivatives referred to as tangents. The multiplication of 𝒔𝑻𝐉

(superscript T means transpose) provides the derivative of 𝑦𝑖 with respect to 𝒙. The

corresponding computer code, generated by the AD tool, is called the adjoint model and the

derivatives referred as adjoints. These two ways of differentiation of a numerical model

performed by the AD tool are referred as tangent linear and adjoint modes
1
, respectively. A

1The terms adjoint and tangent linear models should not be confused with terms adjoint and tangent linear

modes.

 3

further field of AD tools is the computation of higher order derivatives. In particular, the

second derivative, the Hessian matrix, or approximations to it, are used in parameter

optimization algorithms such as the Gauss-Newton algorithm, and the posterior evaluation of

the uncertainties of the estimated parameters requires the inverse of the Hessian.

Today, AD is a well-established field of applied mathematics, formulated initially in the

middle of the previous century. In detail, AD techniques are based on the mathematical

formalisms of differentiation represented by a set of simple, well-known mathematical

operations. They are designed for the numerical differentiation of mathematical functions of

any complexity represented by computer codes [6],[7]. The resultant derivatives are exact up

to the numerical precision, i.e., no truncation is used so that no approximation errors appear in

the output code.

By now more than 42 different AD packages exist, which were developed for different

applications and programming languages (see www.autodiff.org for details). They use

different strategies for computing derivatives [8]. Among them source code transformation

(SCT) and operator overloading (OO) are the most common strategies [9]. SCT AD tools

replace the original source code by a new source code, usually in the same programming

language that includes the statements for computing user specified derivatives. In contrast, the

OO AD tools generally leave the original source code as it is and the sequence of operations

in the original source code for the function to be differentiated remains unchanged. However,

it requires a change in basic data types for numbers and vectors for supporting differentiation,

and establishes a special polymorphism
2
 for mathematical operators called overloading. The

change of data type is done for all differentiating and differentiated variables (which may be

done automatically by the AD tool) in such a way, that any variable of a changed type holds

both its actual value and its derivative. Overloading reintroduces the original mathematical

operators in the source code by splitting each operator’s action. An action of any overloaded

elementary mathematical operator depends on whether it is applied to the value of the variable

or to its derivative. For an actual value of the variable, the operator remains the same as it was

before the overloading, while it operates according to the rules of differentiation when being

applied to the derivatives of the variable.

Respective tools have been applied to a variety of problems in many research areas [10],

2 Polymorphism is the ability of a function to be applied to different types of variables. The

result of application depends on the types of these variables.

http://www.autodiff.org/

 4

[11],[12],[13],[14],[15],[16],[17] .But, although all these AD tools simplify the computation

of the derivatives, the computational efficiency of these derivatives strongly depends on the

internal structure of the AD tool that produced it. In particular, existing AD tools differ

substantially in the design, readability and computational efficiency of resulting numerical

codes. Moreover, the AD tools also differ by their ability to operate with various high level

programming languages. This difference in structure and design of different AD tools has a

great effect on the performance of the adjoints that they produce. Applying these theories to

real geophysical problems remains a huge challenge given the size, complexity, and often the

non-linear nature of those problems. Understanding the efficiency of existing adjoint codes is

therefore a prerequisite to applying them to real climate science problems. Rather than

developing new algorithms, the goal of this paper is to analyze the practicality and efficiency

of existing OO and STC based AD tools for geophysical problems. We focus our study on

adjoint modes, since the computation of sensitivities in climate modeling is mainly associated

with the execution of adjoint models. Based on simple test problems, we evaluate the

efficiency of each AD tool with respect to computational speed, accuracy of the generated

adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern

FORTRAN 90-95 elements such as structures and pointers.

In detail, we compare adjoint codes generated by Transformation of Algorithms in Fortran

(TAF) [18] and Open_AD [19] and TAPENADE [20] as the AD tools representing SCT

approach. As for the OO based AD tool, we choose NAGWare [21]. All these AD tools have

the tangent linear and adjoint mode for differentiation. We note that the same derivatives can

be obtained with either an adjoint or a tangent linear mode; which mode is more appropriate is

a question of efficiency.

Here, we focus on the performance of the adjoint mode of differentiation, because most of

difficulties related to memory usage efficiency and execution runtime are typically associated

with this mode [22]. Our case studies are specifically intended to identify strengths and

weaknesses of the OO and SCT procedures and provide the corresponding benchmarks for

their efficiency in climate applications. The ability to operate with different programming

language features is also compared, and their effect on the computational speed performance

(CSP) is investigated. By doing so, we expect to give recommendations to model developers

guiding their choice of the proper AD procedures.

The remaining paper is organized as follows. A brief summary of the methodology for testing

 5

the compilers is given in the second section. The test-bed codes on which the efficiency of the

compilers is investigated is given in the third section. Section 4 gives a short theoretical

overview of the differentiation machinery of the AD tools. Tests on the compiler's speed

performance, accuracy and the efficiency in memory usage are described in fifth and six

sections respectively. Section 7 describes the ability of the compilers to handle pointers and

user defined structures. The conclusion is given in Section 8.

2. Test of the AD tools

Our inter-comparison is based on the latest versions of TAF (versions 2.3.5-2.8.4), Open_AD

(versions S440,S469, S493), Tapenade (version 3.10) and NAGWare (version 5.1) AD

packages. For a quantitative comparison of all three AD tools, we have prepared several

sample codes to test computational speed, memory usage efficiency (MUE), accuracy, and

compatibility with different programming features such as pointers, structures, and user

defined data types. In order to test how the efficiency of computations of adjoints depends on

the hardware, the tests were carried out on different platforms. All executables were

subsequently run on three different computer platforms (Intel CoreDuo E8500 2Gb DDR3,

AMD Sempron AM2 2Gb DDR2 and Intel Core I5-2500 8Gb DDR3), and the corresponding

computational times were used to evaluate the performance. Although the SCT AD tools

allow utilizing any FORTRAN compiler, the NAGWare AD tool is embedded in the NAG

FORTRAN compiler, and consequently compilation has to be done with this. To avoid

differences in execution time related to the usage of different compilers, we chose NAG for

all three AD tools. The optimization options of the compiler were the same.

Throughout the remaining paper, the distinction of variables will be used that is common to

AD: the input variables with respect to which the differentiation initially should be performed

are referred to as independent variables. The output dependent variables are those whose

derivatives are required. All other variables in the source code are divided into two classes. A

variable is referred to as active and belongs to an active type if it depends on at least one

independent variable and influences at least one dependent variable. All other variables are

considered as passive and belong to the passive type.

 6

3. Test bed codes

Test of the computational speed and accuracy were performed using three different codes of

increasing complexity in the following, called linear model, regularized Lorenz model

(RLM), and Shallow Water model (SWM) code. The idea of such an approach involving

codes with different levels of complexity is straightforward. An optimal adjoints in sense of

runtime and memory usage should be easier to generate from codes, representing trivial linear

mathematical problems, which exclude the need for recomputations. Such trivial

mathematical problem is represented by the linear model example and optimal adjoints with

the best CSP for OpenAD, NAGWare, Tapenade and TAF were achieved. The obtained level

of CSP is used later as a benchmark (the upper bound, in fact) for the comparison of the CSPs

obtained for the more complex codes, like the shallow water model (SW code), or the Lorenz

model with relaxation (Lorenz code) [23]. With the Lorenz and SW codes, one can reveal

how the complexity of these codes, i.e. the amount of inter-commuting active variables in a

single expression, and non-linear and implicit dependencies between these variables presented

in the code, affects the performance of the discussed AD tools.

i) The linear model.

This example represents a simple data assimilation problem with the following linear

constraints:

min
𝑥0
||𝑥 − 𝑥𝑜𝑏𝑠||2

2

such that

𝑥(𝑡) = a ⋅ sin (𝑡), 𝑥(0) = 𝑥0.

In this problem, it is required to find an optimal initial state 𝑥0 for computation of oscillations

of a pendulum with the given amplitude 𝑎. In the optimum solution, the difference between

the computations 𝑥 and observations 𝑥𝑜𝑏𝑠 is minimal. Here, we used as optimization procedure

for data assimilation procedure the gradient descent method in which the gradients are

calculated by means of the AD routines. The code describing this problem is nearly 50 lines

long. It contains only one driver program in which the variables are set and one external

subroutine where the model equations and cost are computed.

 7

ii) The regularized Lorenz model code.

The RLM code represents a simplified version of a data assimilation method with relaxation

[23], applied to the Lorenz 1963 model [24]. The corresponding system of equations reads:

min
𝜎,𝜌.𝛽,𝑝

{‖𝑥 − 𝑥𝑜𝑏𝑠‖2
2 + ‖𝑦 − 𝑦𝑜𝑏𝑠‖2

2 + ‖𝑧 − 𝑧𝑜𝑏𝑠‖2
2 + 𝑝2}

such that

𝑑𝑥

𝑑𝑡
= 𝜎(𝑥 − 𝑦) + 𝑝(𝑥 − 𝑥𝑜𝑏𝑠)

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦 + 𝑝(𝑦 − 𝑦𝑜𝑏𝑠)

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧 + 𝑝(𝑧 − 𝑧𝑜𝑏𝑠)

Here 𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠, 𝑧𝑜𝑏𝑠, are the observations of 𝑥, 𝑦, 𝑧 measured on a time period[−𝑇, 0]. The

goal of this variational problem is to find a set of parameters of the Lorenz (1963) system that

optimally fit the model trajectory to given observations. The original method is based on an

iterative 4D-var data assimilation algorithm, where the model equations are relaxed by a

nudging term depending on the nudging parameter p. The usage of nudging and relaxation

suggested by [23] stabilizes the chaotic behavior of the Lorenz (1963) model, which in turn

allows performing assimilation for extensive periods of time. Note that the cost function is

minimized with respect to the Lorenz (1963) parameters including the nudging parameter 𝑝.

As before, we used the standard gradient descent method for solving this problem. With

decreasing model-data differences, the impact of nudging on the model simulation reduces.

Due to the models nonlinearity, its adjoints depend on the specific model’s trajectory, which

adds complexity.

iii) The SWM code.

The basis for the large code is the data assimilation problem discussed by [25]. It is

constructed to mimic a simplified model of the Antarctic Circumpolar Current using the

Shallow Water approximation. In that model a wind driven barotropic flow in a rectangular

zonal channel over a central meridional Gaussian sill is considered. The sill extends across the

channel and the overflowing current is connected to a perturbation of the sea level in that

place. The shape and size of this perturbation depends on the sill height depending on the

latitudinal direction.

 8

For a stationary case, the goal of this exercise is to estimate the height of the sill,ℎ𝑔, from

observations of the sea level by minimizing the difference of the simulated sea surface height

to its observations. The mathematical formulation of that data assimilation problem is as

follows:

min
ℎ𝑑

𝐶

2
‖ℎ𝑜𝑏𝑠 − ℎ𝑑‖

2

2

In order to find the stationary solution, the following time dependent Shallow Water equations

are integrated in time until the solution becomes stationary:

{

𝜕𝒖

𝜕𝑡
+ 𝒈

𝜕𝒖

𝜕𝑥
− 𝒇𝒖 + 𝑟

𝒖

ℎ
=
𝜏

ℎ
, ℎ = ℎ𝑏 + ℎ𝑑

𝜕ℎ

𝜕𝑡
+ ∇(𝒖ℎ) = 0

𝒖𝒕=𝟎 = 𝒖𝟎, ℎ𝑡=0 = ℎ𝑜

Here ℎ is the total depth including the sea surface height ℎ𝑑; ℎ𝑏 is the bathymetry with respect

to the sea surface zero value depending on sill’s height ℎ𝑔, which is a function of latitude

only; ℎ𝑜𝑏𝑠 is the observed sea surface height; 𝒖 = (𝑢, 𝑣) are longitudinal and latitudinal fluid

velocity components respectively; 𝜏 is the wind stress, which is a known function of time and

space; 𝑓 = 𝑓0 + 𝛽𝑦 is the Coriolis parameter; r is the parameter of bottom friction, 𝑡 ∈ [0: 𝑇]

is time and 𝒙 = (𝑥, 𝑦) is the coordinate vector.

This data assimilation problem is solved numerically in the following setup. The channel is

centered at approximately 55°S, it has solid boundaries in the north and the south and

idealized bottom topography. The motion is considered on a β-plane. The horizontal and

vertical extents of the model domain are 4000 and 1600 kilometers, respectively. The initial

guess for the height of the crest is set to 400 m above the average depth of 4000 m. Its half-

width of 200 km corresponds to an average slope of 1 m in 1000 m. The numerical

implementation of this problem is given at http://www.mcs.anl.gov/OpenAD the OpenAD

official website.

4. Theoretical basis

The computational time required for executing an adjoint code prepared by an AD tool

directly depends on the method used by that tool for interpretation and differentiation of the

http://www.mcs.anl.gov/OpenAD

 9

original code. To understand why adjoint codes produced by different AD tools require

different computational time, one needs to consider the basics of algorithmic differentiation.

The general idea underlying an AD tool is the construction of a computational flow graph

representing a target mathematical function, and the application of the chain rule to this graph.

For simplicity, consider a source code consisting only of a single program aimed at

computing a mathematical function, which should be differentiated with respect to some of its

arguments. Let this program be without subroutine calls, “if” branches and loops. In such a

case, the function can be presented by a sequence of elementary mathematical operations.

This sequence in turn may be presented in the form of a directional computational graph with

independent variables as input, and the dependent variable (the function) as output. If the

active variables in the graph are described as edges, and immediate arithmetic interrelations

between these variables are located in nodes
3
, the computational graph can be considered as a

path from independent to dependent variables. Note that any elementary mathematical

operation at maximum involves only two variables. Hence the construction of such graph

requires that not more than two edges are input at each node. For some mathematical

expressions (e.g. 𝑎 ⋅ sin(𝑏)), the direct representation as a set of node-connected pairs of

vertices is not possible. For resolving this issue, auxiliary edges and nodes are introduced.

They represent auxiliary variables and operations between them, which split the original

expression in a set of subexpressions with at maximum two variables in each subexpression.

For instance, for 𝑐 = 𝑎 ⋅ sin 𝑏, auxiliary edge 𝑏1 = sin 𝑏 with node sin () are introduced and

the original expression simplifies to 𝑐 = 𝑏1 ⋅ 𝑎. The number of these auxiliary edges is chosen

in such a way that each node has only two entering edges. In case of the SCT AD tools, these

auxiliary edges are presented by corresponding auxiliary variables in the differentiated code.

Computational graphs significantly simplify the implementation of the chain rule: it reduces

to an accumulation (summation) of derivatives obtained by differentiating each vertex with

respect to a pair of its immediately preceding vertices. Depending on the mode, the

accumulation of the derivatives starts from the entrance of the graph (tangent linear mode)

towards its exit or from its exit (adjoint mode) towards its entry.

We note that splitting composite expressions with the aid of auxiliary variables may not be

unique. For instance, the expression 𝑦 = 𝑒𝑥+𝑧 may be split in two ways; 1) 𝑎 = 𝑥 + 𝑧,

𝑦 = 𝑒𝑎 with a single auxiliary variable 𝑎 or 2) 𝑎 = 𝑒𝑥, 𝑏 = 𝑒𝑧 , 𝑦 = 𝑎 ⋅ 𝑏, where two

3 In a real case with loops, if-else braches etc. a computational flow graph should be considered.

 10

auxiliary variables are used. The first case corresponds to a two edged graph, while the

second case corresponds to the three edged graph. This example shows that the same

composite mathematical expression may be presented with different computational graphs.

The choice of the graph with shortest path minimizes the amount of applications of the chain

rule and hence results in higher efficiency in computing derivatives.

The scheme described above is an oversimplification of real algorithms underlying the AD

tools. However, it shows that constructing a computational graph with an un-optimized length

results in suboptimal memory usage efficiency (MUE) and computational speed performance

(CSP) efficiency. Finding a graph with the optimal path is still a research question and

different AD tools employ different strategies.

The implementation of the chain rule requires that, for the places where the active variables

depend non-linearly on other variables, the actual values of those variables are known. In the

case of tangent linear mode, this requirement is easy to fulfill, since the differentiation starts

from the entry of the graph and the accumulating derivatives and all required variable’s values

are estimated at the same time during the forward sweep of the source code. In the case of

adjoint mode, this problem is more complex, since the differentiation starts from the exit of

the graph and hence the estimation of the derivatives requires the values of all active

variables, beginning from the end of the graph.

The values of active variables may be obtained during the adjoin run by implementing either

the “store-all” or the “recompute-all” strategy. The “recompute-all” strategy implies that all

active variables, which are overwritten during the forward sweep, are recomputed during the

adjoint sweep. This strategy is utilized by default in NAGWare, OpenAD and TAF. The

rational behind a “store-all” strategy is to store all values that are overwritten by an

assignment during the forward sweep just before the assignment and then restore them before

the adjoint of this assignment in the reverse sweep. The array where these variables are stored

is called “tape”. In order to minimize the set of saved variables in a tape, the store-all strategy

is performed together with the “to be recorded” (TBR) analysis. It is a static data flow

analysis, which determines the variables that are not used in derivative computation and then

excludes them from taping [26]. The store-all strategy together with TBR analysis is realized

in Tapenade [20],[27]. Note that the reverse mode implemented with the store-all strategy has

additional memory cost proportional to the execution time of the forward sweep; the reverse

 11

mode implemented with recompute-all strategy has no additional memory cost, however, its

execution time is proportional to the square of the execution time of the forward sweep [28].

Although the recomputed-all strategy is set in TAF, OpenAD and NAGWare by default, these

tools however, allow the initiation of the tape by the user [18],[19],[21]. To do so, the user

explicitly specifies the names of the active variables and the place in the source code where

they should be recorded. The AD tool has only to exclude these variables from recomputation

in the adjoint sweep. All variables recomputed in forward sweep that are not included in tape

but required for adjoint computations will be recomputed in the adjoint sweep.

To avoid recomputation in all test codes, the same tapes for all active variables were

generated. In the case of the SWM test code, the generation of continuous tape for the entire

adjoint sweep was not possible and the same checkpointing scheme for all AD tools was

established, which is as follows: The SWM code is represented by a set of subroutines

executed in a time stepping loop, where the active variables are overwritten at each iteration.

This loop was split into an outer and an inner loop with subroutines embedded in the inner

loop. The total number of operations remains the same. When the computations in the inner

loop are finished, all values of the active variables are recorded in a special checkpoint. Hence

the amount of checkpoints equals to the amount of the outer loop steps. The tape is initiated

only in the inner loop during the reverse sweep and is reset when it is finished. Thus,

departing from the nearest checkpoint, the values of active variables are recomputed in the

inner loop once again and stored in the tape. After that, the corresponding values of

derivatives are computed and accumulated. Then the tape is reset and the recomputations in

the inner loop start from the next checkpoint. The size of the inner loop is chosen in such a

way that the generated tape almost completely fills the available memory.

5. Testing the computational speed and accuracy

The tests for all AD tools were performed as follows: At first, the adjoint source codes were

generated from test source codes with aid of TAF, Tapenade and OpenAD. Then the

executables of the adjoint executables were obtained by compiling them with NAG compiler.

The adjoint executables for NAGWare were obtained directly by application of this AD tool

to all test source codes. Since the actual runtime of the executables strongly depends on the

platform, the tests were subsequently carried out on three different computer platforms (Intel

CoreDuo E8500 2Gb DDR3, AMD Sempron AM2 2Gb DDR2 and Intel Core I5-2500 8Gb

 12

DDR3), and the corresponding computational times were used to evaluate the performance.

These results are presented in Table 1. In the table, the CSP ratio is obtained as 𝐴𝐷𝐽𝐴𝐷/

𝐹𝑂𝑅𝑊, where 𝐹𝑂𝑅𝑊 is the runtime of the initial source code. This ratio shows how much

slower the execution of adjoint computations are in comparison to the execution of the

corresponding forward computation, thus bigger ratio numbers correspond to worse CSP. The

invariance of these ratios to the choice of the executing platforms is found in all experiments.

Note that among the SCT AD tools, Open_AD has the worst CSP value for all 3 test codes,

which differs from CSP of TAF and Tapenade typically at least by a factor of two. The

analysis of the adjoint source codes generated by TAF, Tapenade, and Open_AD revealed

that Open_AD introduces excessive auxiliary variables into the adjoint code which do not

influence the dependent variables or simply alias other variables in the computations. The idle

manipulations with these variables and their allocation in random access memory (RAM)

require additional computational time. The amount of idle operations produced by Open_AD

was at least two times bigger than the amount of idle operations produced by TAF and for all

test codes.

Since the adjoint codes generated by Tapenade and TAF from the linear test code have a

similar pattern, they should have similar CSP. However, this is not confirmed in the

experiments. The difference in CSP accounts for the fact that TAF can use both static

(constant shape arrays) and dynamic tapes (flexible shape arrays), while Tapenade uses only

dynamic tapes. Note that the usage of dynamic tape results in a small reduction of CSP, since

its permanent reallocation during the run requires additional computational time. For better

CSP in the tests, static tapes were set in TAF.

The inspection of adjoints of RLM code revealed that although 𝑥, 𝑦, 𝑧 were declared for

taping, TAF still introduces a single recomputation for each of these variables inside the main

loop of the adjoint code, although TAF did not report any recomputation warnings. During

each loop-iteration, all these variables are loaded from the tape but then recomputed in the

next step. Such recomputations are equivalent to one excessive forward sweep. Note that, if

continuous taping is applied, the run time of adjoint executable should consist only of single

forward and reverse sweeps. Such run times have adjoint executables of the linear test code,

generated with the aid of TAF and Tapenade. However, due to extra recomputations, the

runtime of the adjoint code generated by TAF is increased by the run time of a single forward

sweep. Because of this, TAF’s CSP obtained for the RLM test code are 1.6 times worse than

 13

RCSP and CSP obtained for the linear model. The inspection of the adjoint of RLM code,

produced by Tapenade revealed that it did not initiate excessive recomputations and its CSP

values remain the same as for the linear model.

In case of the SWM code, the same checkpointing scheme was applied for all AD tools. The

tests revealed that CSP for TAF and Tapenade obtained for the SWM code differ much less

than the same ratios for linear and RLM codes. The inspection of the adjoint code did not

reveal excessive recomputation, while in case of OpenAD most of operations fall on

excessive variables.

Tests with the NAGWare tool showed that its adjoints are the slowest of all three test-codes.

Comparing the CPS for all tools (see Table 1) shows that TAF and Tapenade generated codes

are 20-30 times faster than NAGWare, while OpenAD has a 5.3 – 9.23 times better CSP than

NAGWare.

Along with the evaluation of the computational speed performance, the similarity between the

values of the resultant derivatives obtained by means of NAGWare, TAF, Tapenade and

OpenAD were checked on all three test-codes. All derivatives were computed with double

precision. The value for gradients obtained with double precision accuracy coincides for all

three AD tools in case of the linear model, with only differences in the last digit. Similar

results were obtained for NAGWare and OpenAD tools for the RLM code, while TAF

produces the difference in the 7-th digit. Finally, for all three AD tools, the gradients differ in

the 7-th digit in the case of SWM code.

6 Testing the efficiency of memory usage

Due to the taping process, running the adjoint models in most cases requires more computer

memory for data storage than for the execution of the forward codes. The amount of this data-

storage related memory depends on the AD tool used for the construction of the adjoint

model. In this test, the memory requirements of adjoint executables differentiated by TAF,

NAGWare, Tapenade and OpenAD were tested. The results of the measurements are given in

Table 2. There, the values in each column represent the relative MUE for a given AD tool

obtained for all three test codes. Each relative MUE is the ratio between the amounts of

memory required by the same adjoint codes obtained by the OpenAD and the specific AD

tool. The choice of OpenAD’s MUE as a reference one is made because of it worse

 14

performance in all tests. Hence, big numbers in the table corresponds to better MUE. The

table demonstrates that Tapenade is the most efficient in memory usage. NAGWare is less

efficient, but still it is better than TAF and OpenAD.

The advantage in memory usage of Tapenade may be explained by two factors. Firstly, it is

related to the altering of the tape sizes during the reverse sweep, which in turn allows

minimizing the used memory. This was achieved by using stacks for taping: the used values

in the reverse sweep are removed from the stack during the reverse sweep and hence release

the occupied memory. In contrast, TAF uses regular arrays for dynamic or static tapes. The

dynamic tape in TAF grows during the forward sweep, but once it is finished it remains the

same during the reverse sweep. Secondly, the advantage in memory usage of Tapenade in

case of RLM may be connected to its efficient TBR analysis. Note that efficient TBR analysis

excludes recomputations of the taped variables. By contrast, TAF and OpenAD still initiate a

single recomputation of these variables in the adjoint code of RLM (see section above). Thus,

in the adjoint code generated by these tools the same variable is stored twice: in tape and in a

representative array that is used for recomputation. As the result, duplex saving of the same

variable increase memory costs.

7 Handling structures and pointers.

The ability of Tapenade, TAF, OpenAD and NAGWare tools in their recognition and correct

interpretation of pointers and structures is investigated in this section. For these tests the data

assimilation computations on the basis of linear, RLM and SWM scripts discussed in the

second section were repeated with a small modification. In each test active variables were

substituted with pointers and structures, and after that the same was done for passive

variables. The adjoint codes and corresponding executables were generated for each modified

source code. The values of derivatives obtained from these executables were compared with

the derivatives obtained in the experiments described in previous section where no pointes

and structures were used. If the derivatives obtained with and without pointers and structures

differed, the corresponding adjoint codes were investigated and compared, and the reasons

that caused difference were figured out. The corresponding tests are discussed in the

following paragraphs with results summarized in the Table 3.

 15

7.1 Pointers on active values.

The idea of the test is to check the ability of the AD tools in recognizing and interpreting

pointers on active values, without discussing the sense of their practical usage. It was

investigated how the substitution of an active variable with a corresponding pointer affects the

correctness of gradient computations. The tests revealed that for the linear model, except

Tapenade, all three AD tools were able to interpret pointers correctly, even when the active

variables were not used. Tapenade ignored the pointer, considering it as a passive variable,

and generated a wrong adjoint. However, for the RLM and SWM codes, TAF and OpenAD

failed when using only a single pointer. This pointer was not recognized as an active variable

and did not appear as part of the expressions in the adjoint codes. At the same time, the

NAGWare passed the tests for all codes, while Tapenade failed the test completely.

Therefore, we conclude that in general Tapenade, TAF and OpenAD is likely to fail

differentiating the code correctly if it contains pointers on active variables, a fact that has

significant consequences for model developers. The conclusion of this test is summarized in

the first row of Table 3.

7.2 Alias pointers.

By alias pointers, we mean a case when two or more pointers are pointing to the same

variable. Similar to the previous paragraph, we test here only the ability of AD tools in

recognizing and interpreting alias pointers. As before, all three linear, RLM and lSWM codes

were used for tests. At least two pointers that point on the same active variable were set in

these codes. It was found that Tapenade failed all tests, but the other three AD tools delivered

correct adjoints when they were applied to the linear model. However, the adjoints produced

by TAF and OpenAD calculated incorrect gradients for RLM and SWM codes. The results of

this test are summarized in the second row in Table 3.

7.3 Pointers on passive values.

In the cases when pointers were set only on passive variables, all four AD tools deliver

correct adjoints with differences only in the 7-th digit. Therefore, we conclude that Tapenade

NAGWare, OpenAD and TAF passed the test successfully. The results of this test are listed in

row 4 of Table 3.

 16

7.4 User-defined types (structures).

Structures, or user-defined types, are a quite common feature in modern models such as the

ICOsahedral Nonhydrostaticl(ICON) model [29]. The idea of using structures is to combine

groups of variables into mathematically logical units, e.g., state vectors, and then operate with

these units as variables. The correctness of the adjoints to such models produced by an AD

tool depends on the capability of the AD tool to interpret respective structures. To test this

capability for Tapenade, TAF, NAGWare and OpenAD, the three problems from the second

section were employed again. In each of these problems, all active variables were combined

into a single structure. After such substitution, the variables cannot be accessed directly in the

code; instead one has to address them as a part of a structure. Therefore, the active variables

in the equations of all three codes were substituted with the corresponding elements of the

structure. Subsequently, we generated adjoints for the three test codes without using structures

and compared the results.

This test revealed that Tapenade failed the test completely, but the other three AD tools

produced correct adjoints for the linear model, although only NAGWare was able to produce

correct adjoints for RLM and SWM codes. On the other hand, if structures consisting only of

passive values are introduced into the scripts, all four AD tools deliver correct adjoints (see

the fifth and six rows in Table 3).

8. Conclusions

In this study we analyze the practicality of four existing OO and STC based AD tools for

generating adjoint codes of geophysical models, and tested their efficiency with respect to

computational speed and accuracy of the generated adjoint plus the efficiency of memory

usage. In general terms, the best computational speed performance (CSP) is found for SCT

AD tools. As discussed in Section 5, the CSP of such AD tools’ adjoint code in some of our

test cases is only 2.5 times slower than the original forward code. On the other hand, the SCT

AD tools usually have limitations in supporting some elements of modern programming

languages. In contrast, the operator overloading (OO) AD tools have none of those limitations

intrinsic to SCT tools, allowing the generation of adjoints to modern climate model codes

using all FORTRAN 90-95 coding. However, they have much degraded CSP (see Sec. 2 for

details).

The finding of the present paper can be summarized as follows:

 17

 The NAGWare showed the best compatibility with all types of coding elements (e.g.,

pointers and structures). For the more complex scripts that represent non-linear problems,

Tapenade, TAF and OpenAD were not able to interpret pointers correctly; the same holds for

structures containing active variables.

 The Tapenade and NAGWAre are the most efficient in terms of memory usage.

 However, NAGWare has the worst computational performance. The fastest performance is

obtained by the TAF and Tapenade generated code, which is 20-30 times faster than

NAGWare, while OpenAD showed a CSP being 5.3 – 9.23 times better than NAGWare.

From our results, any model developer interested in creating an adjoint from a forward code

using the existing AD tools at present faces a serious dilemma: while it is almost mandatory to

use SCT tools if one were to generate an efficient adjoint model, it restricts the model

programming language to older (seemingly obsolete) programming standards. Having a new

model developed in FORTRAN 95, however, requires using OO procedures, capable of

handling these programming standards, for the generation of the adjoint. On the other hand,

the generated adjoint model is too slow to be applicable for any state-of-the art climate-related

problem, rendering modern models useless as source code for an adjoint model unless they

were already written with this application in mind.

Our results therefore suggest that every-day cutting edge assimilation efforts in weather,

ocean or climate applications for the foreseeable future will heavily rely in SCT tools and

therefore will require to be written in previous generation FORTRAN. At the same time our

results almost demand that substantial effort is being spent on bringing SCT tools to the next

level where modern circulation models can be adjointed in an efficient way in support of

climate research and operational applications alike.

Acknowledgements

This work was funded in part through a Max Planck Society Fellowship to D. Stammer, the

European Union 7th Framework Programme (FP7 2007-2013), under grant agreement

n.308299 NACLIM (www.naclim.eu), and the CliSAP Excellence Cluster of the University

of Hamburg, funded through the DFG.

http://www.naclim.eu/

 18

References

[1]. Bücker H.M., B. Lang, A. Rasch, C.H. Bischof. Computing sensitivities of the

electrostatic potential by automatic differentiation. Computer Physics Communications

Volume 147(1), 2002, Pp. 720–723.

[2]. Saltelli A., M. Ratto, S. Tarantola, F. Campolongo, Sensitivity analysis practices:

Strategies for model-based inference, Reliability Engineering and System Safety 91 (2006)

1109–1125.

[3] Wunsch, C.W. Discrete Inverse and State Estimation Problems. With Geophysical Fluid

Applications, Cambridge Un. Press, 2006, Cambridge.

[4] Nichols, N. K. Mathematical concepts of data assimilation. In Data Assimilation: Making

Sense of Observations. (Lahoz, W., Khattatov, B. and Menard, R. Eds.), Springer, 2010, p

13–39.

[5] Molkenthin C, Scherbaum F, Griewank A, Kuehn N, Stafford Pet al., 2014, A Study of

the Sensitivity of Response Spectral Amplitudes on Seismological Parameters Using

Algorithmic Differentiation, Bulletin of the Seismological Society of America, 2014, 104 pp:

2240-2252.

[6] Naumann U. The Art of Differentiating Computer Program. 2012, SIAM.

[7] Griewank, A., and A. Walther. Evaluating Derivatives: Principles and Techniques of

Algorithmic Differentiation, Second Ed., Siam, 2008.

[8] Gay D.M., Semiautomatic Differentiation for Efficient Gradient Computations. In

Automatic Differentiation of Algorithms: Applications Theory and Implementations, (H. M.

Bücker and G. Corliss and P. Hovland and U. Naumann and B. Norris Eds.), Springer, 2005,

pp. 147--158.

[9] Bischof C. H., H. M. Bücker, Computing Derivatives of Computer Programs

Modern Methods and Algorithms of Quantum Chemistry: In Proceedings, Second Edition,

NIC-Series, 2000, 3, pp. 315-327.

 [10] Kaminski T., Giering R., Scholze M., Rayner P., Knorr W. An Example of an Automatic

Differentiation-Based Modelling System. In Computational Science—ICCSA 2003, Part II,

LNCS, 2003, 2668, p. 95—104.

 19

[11] Marotzke, J., Giering, R., Zhang, K. Q., Stammer, D., Hill, C. and Lee, T. Construction

of the adjoint MIT ocean general circulation model and application to atlantic heat transport

variability, J. Geophys. Res., 1999, 104, C12:29, 529–547.

[12] Recent Advances in Algorithmic Differentiation In Lecture Notes in Computational

Science and Engineering (Forth S., Hovland P., Phipps P., Utke J., Walther A. Eds.),

Springer, 2012, 87, doi = 10.1007/978-3-642-30023-3.

[13] Advances in Automatic Differentiation. In LNCSE, (Bischof C.H., Bücker H.M.,

Hovland P., Naumann U., Utke J. Eds.), Springer, 2008, 64.

[14] Automatic Differentiation: Applications, Theory, and Implementations. In LNCSE, (

Bücker H.M., Corliss G.F., Hovland P., Naumann U., Norris B. Eds.), Springer, 2005, 50.

[15] Automatic Differentiation of Algorithms: From Simulation to Optimization. In Computer

and Information Science, (Corliss G.F., Faure C., Griewank A., Hascoët L., Naumann U.

Eds.), Springer, 2002.

[16] Automatic Differentiation of Algorithms: Theory, Implementation, and Application

(Griewank A., Corliss G.F. Eds.), SIAM, 1991.

[17] Sambridge A., Rickwood P., Rawlinson N. and. Sommacal S. Automatic differentiation

in geophysical inverse problems, Geophys. J. Int.", 2007. 170(1), pp. 1—8.

[18] Giering, R., Kaminski T. and Slawig, T. Generating efficient derivative code with TAF:

Adjoint and tangent linear Euler flow around an airfoil. Future Gener. Comp. Sy., 21(8),

2005, p. 1345–1355.

[19] Utke J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill C., and

Wunsch, C. Open AD/F: A modular, open-source tool for automatic differentiation of Fortran

codes. ACM T. Math. Software (TOMS), 34(4), 2008, p.18:1-18:36.

[20] Hascoёt L., Pascual, V. The Tapenade Automatic Differentiation tool: Principles, Model

and Specification. ACM Trans. Math. Soft., 39(3), 2013.

[21] Naumann U., and Riehme, J.: A differentiation-enabled Fortran 95 compiler. ACM T.

Math. Software (TOMS), 31(4), 2005, 458–474.

[22] Hogan, R. J. Fast reverse-mode automatic differentiation using expression templates in

C++. ACM T. Math. Software (TOMS), 2014. available only online at

http://www.met.reading.ac.uk/clouds/publications/adept.pdf.

http://www.met.reading.ac.uk/clouds/publications/adept.pdf
http://www.met.reading.ac.uk/clouds/publications/adept.pdf
http://www.met.reading.ac.uk/clouds/publications/adept.pdf

 20

 [23] Abarbanel, H. D. I, Kostik, M. and Whartenby, W. Data assimilation with regularized

nonlinear instabilities. Q. J. R. Meteorol. Soc., 136, 2010, p. 769–783.

[24] Lorenz, E. N.. Deterministic nonperiodic flow. J. Atm. Sci., 20(2), 1963, p. 130–141.

[25] Losch, M., and Wunsch, C.: Bottom Topography as a Control Variable in an Ocean

Model. J.Atm. and Ocean. Tech., 20, 2003, p. 1685-1696.

[26] Hascoёt. Adjoints by Automatic Differentiation. Advanced Data Assimilation for

Geosciences (Blayo, E. and Bocquet, M. and Cosme, E., Eds.), Oxford University Press,

2012, p362—364 .

[27] Hascoёt L, Naumann U., Pascual V. TBR Analysis in Reverse-Mode Automatic

Differentiation. Future Gener. Comp. Sy. 2005. 21(8), pp. 1401--1417.

[28] Hascoёt, L., Automatic differentiation by program transformation. Technical report,

INRIA, 2007. https://www-sop.inria.fr/tropics/papers/supportCoursDA.pdf

[29] Ripodas, P., Gassmann, A., Förstner, J., Majewski, D., Giorgetta, M., Korn, P.,

Kornblueh, L., Wan, H., Zängl, G., Bonaventura, L., and T. Heinze. Icosahedral Shallow

Water Model (ICOSWM): results of shallow water test cases and sensitivity to model

parameters. Geosci. Model Dev., 2, 2009, p.231–251.

Table 1. Comparison of computational speed performance for TAF OpenAD and NAGWare.

 OPEN_AD NAGWare TAF TAPENADE

Linear model

 CSP 8.69 84.03 2.5 3.28

RLM code

 CSP 5.88 80.5 4 3.25

SWM code

 CSP 21.27 112.3 5.95 7.2

Table 2. Memory Usage efficiency.

 OPEN_AD NAGWare TAF Tapenade

Linear model

https://www-sop.inria.fr/tropics/papers/supportCoursDA.pdf

 21

 MUE 1 70 70 70

RLM code

 MUE 1. 9.4 7.08 7.5

SWM code

 MUE 1. 5.5 4.2 17.3

Table 3. Ability in handling FORTRAN 90-95 elements

1 OPEN_AD NAGWare TAF Tapenade

Pointers

2 Pointers on active

values

No Yes No No

3 Alias pointers No Yes No No

4 Pointers on passive

values

Yes Yes Yes Yes

Structures

5 Structures containing

active values

No Yes No No

6 Structures containing

only passive values

Yes Yes Yes Yes

