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Abstract 

The accuracy of numerical models that describe complex physical or chemical processes 

depends on the choice of model parameters. Estimating an optimal set of parameters by 

optimization algorithms requires knowledge of the sensitivity of the process of interest to 

model parameters. Typically the sensitivity computation involves differentiation of the model, 

which can be performed by applying algorithmic differentiation (AD) tools to the underlying 

numerical code. However, existing AD tools differ substantially in design, legibility and 

computational efficiency. In this study we show that, for geophysical data assimilation 

problems of varying complexity, the performance of adjoint codes generated by the existing 

AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms 

in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the 

efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the 

efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 

90-95 elements such as structures and pointers, which are new elements that either combine 

groups of variables or provide aliases to memory addresses, respectively. We show that, while 

operator overloading tools are the only ones suitable for modern codes written in object-

oriented programming languages, their computational efficiency lags behind source 

transformation by orders of magnitude, rendering the application of these modern tools to 

practical assimilation problems prohibitive. In contrast, the application of source 

transformation tools appears to be the most efficient choice, allowing handling even large 

geophysical data assimilation problems. However, they can only be applied to numerical 

models written in earlier generations of programming languages. Our study indicates that 

applying existing AD tools to realistic geophysical problems faces limitations that urgently 

need to be solved to allow the continuous use of AD tools for solving geophysical problems 

on modern computer architectures.   
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1.   Introduction. 

To date, numerical modelling is a widespread and generally accepted approach for solving 

complex mathematical equations of physical, biological, or chemical processes in climate and 

earth system sciences. However, the accuracy of respective solutions fundamentally depends 

on the choice of – typically uncertain - model parameters. One therefore is usually faced with 

the following two questions: (i) How sensitive are model solutions to the detailed choice of 

model parameters, and (ii) what is the optimal set of these parameters required to minimize 

the difference between a simulated process to a given set of observations. One elegant way to 

answer these questions involves the computation of derivatives of the corresponding 

numerical model with respect to its parameters or state variables [1], [2],[3],[4],[5].   

Generally, model derivatives can be generated in three different ways, the simplest of which 

is an estimation of approximate derivatives by applying a finite difference method. Being 

simple, however, this method is always plagued by approximation errors. The second way is 

to derive the model derivatives manually. Such differentiation leads to exact derivatives but is 

labor-intensive and therefore impractical for large numerical models. The third option is to 

use an algorithmic differentiation (AD) tool, which almost automatically provides the exact 

derivatives of any complex function represented by a numerical code with only little extra 

effort by the user. 

For simplicity we introduce two definitions commonly used in AD. We consider a numerical 

model as mathematical operator that acts on state variables 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) and returns an 

output 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) (e.g. state variables at the end of computation). Let 𝐉 be the 

Jacobian matrix of 𝒚 with respect to 𝒙 and 𝒔 be an n-dimensional column vector, with only 𝑠𝑖 

element equal to one and the rest to zero. The differentiation of y with respect to 𝑥𝑖 produced 

by the AD tool can be presented as a multiplication of 𝒔 by 𝐉, where 𝐉𝒔  gives the derivative of 

𝒚 with respect to 𝑥𝑖. The corresponding computer code, generated by the AD tool, is called 

the tangent linear model and the derivatives referred to as tangents. The multiplication of 𝒔𝑻𝐉 

(superscript T means transpose) provides the derivative of 𝑦𝑖 with respect to 𝒙. The 

corresponding computer code, generated by the AD tool, is called the adjoint model and the 

derivatives referred as adjoints. These two ways of differentiation of a numerical model 

performed by the AD tool are referred as tangent linear and adjoint modes
1
, respectively. A 

                                                 
1The terms adjoint and tangent linear models should not be confused with terms adjoint and tangent linear 

modes.  



 3 

further field of AD tools is the computation of higher order derivatives. In particular, the 

second derivative, the Hessian matrix, or approximations to it, are used in parameter 

optimization algorithms such as the Gauss-Newton algorithm, and the posterior evaluation of 

the uncertainties of the estimated parameters requires the inverse of the Hessian.  

Today, AD is a well-established field of applied mathematics, formulated initially in the 

middle of the previous century. In detail, AD techniques are based on the mathematical 

formalisms of differentiation represented by a set of simple, well-known mathematical 

operations. They are designed for the numerical differentiation of mathematical functions of 

any complexity represented by computer codes [6],[7]. The resultant derivatives are exact up 

to the numerical precision, i.e., no truncation is used so that no approximation errors appear in 

the output code.  

By now more than 42 different AD packages exist, which were developed for different 

applications and programming languages (see www.autodiff.org for details). They use 

different strategies for computing derivatives [8]. Among them source code transformation 

(SCT) and operator overloading (OO) are the most common strategies [9]. SCT AD tools 

replace the original source code by a new source code, usually in the same programming 

language that includes the statements for computing user specified derivatives. In contrast, the 

OO AD tools generally leave the original source code as it is and the sequence of operations 

in the original source code for the function to be differentiated remains unchanged. However, 

it requires a change in basic data types for numbers and vectors for supporting differentiation, 

and establishes a special polymorphism
2
 for mathematical operators called overloading. The 

change of data type is done for all differentiating and differentiated variables (which may be 

done automatically by the AD tool) in such a way, that any variable of a changed type holds 

both its actual value and its derivative. Overloading reintroduces the original mathematical 

operators in the source code by splitting each operator’s action. An action of any overloaded 

elementary mathematical operator depends on whether it is applied to the value of the variable 

or to its derivative. For an actual value of the variable, the operator remains the same as it was 

before the overloading, while it operates according to the rules of differentiation when being 

applied to the derivatives of the variable.   

Respective tools have been applied to a variety of problems in many research areas [10], 

                                                 
2 Polymorphism is the ability of a function to be applied to different types of variables. The 

result of application depends on the types of these variables. 

http://www.autodiff.org/
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[11],[12],[13],[14],[15],[16],[17] .But, although all these AD tools simplify the computation 

of the derivatives, the computational efficiency of these derivatives strongly depends on the 

internal structure of the AD tool that produced it. In particular, existing AD tools differ 

substantially in the design, readability and computational efficiency of resulting numerical 

codes. Moreover, the AD tools also differ by their ability to operate with various high level 

programming languages. This difference in structure and design of different AD tools has a 

great effect on the performance of the adjoints that they produce. Applying these theories to 

real geophysical problems remains a huge challenge given the size, complexity, and often the 

non-linear nature of those problems. Understanding the efficiency of existing adjoint codes is 

therefore a prerequisite to applying them to real climate science problems. Rather than 

developing new algorithms, the goal of this paper is to analyze the practicality and efficiency 

of existing OO and STC based AD tools for geophysical problems. We focus our study on 

adjoint modes, since the computation of sensitivities in climate modeling is mainly associated 

with the execution of adjoint models. Based on simple test problems, we evaluate the 

efficiency of each AD tool with respect to computational speed, accuracy of the generated 

adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern 

FORTRAN 90-95 elements such as structures and pointers.  

In detail, we compare adjoint codes generated by Transformation of Algorithms in Fortran 

(TAF) [18] and Open_AD [19] and TAPENADE [20] as the AD tools representing SCT 

approach. As for the OO based AD tool, we choose NAGWare [21]. All these AD tools have 

the tangent linear and adjoint mode for differentiation. We note that the same derivatives can 

be obtained with either an adjoint or a tangent linear mode; which mode is more appropriate is 

a question of efficiency.  

Here, we focus on the performance of the adjoint mode of differentiation, because most of 

difficulties related to memory usage efficiency and execution runtime are typically associated 

with this mode [22]. Our case studies are specifically intended to identify strengths and 

weaknesses of the OO and SCT procedures and provide the corresponding benchmarks for 

their efficiency in climate applications. The ability to operate with different programming 

language features is also compared, and their effect on the computational speed performance 

(CSP) is investigated. By doing so, we expect to give recommendations to model developers 

guiding their choice of the proper AD procedures.  

The remaining paper is organized as follows. A brief summary of the methodology for testing 
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the compilers is given in the second section. The test-bed codes on which the efficiency of the 

compilers is investigated is given in the third section. Section 4 gives a short theoretical 

overview of the differentiation machinery of the AD tools. Tests on the compiler's speed 

performance, accuracy and the efficiency in memory usage are described in fifth and six 

sections respectively. Section 7 describes the ability of the compilers to handle pointers and 

user defined structures. The conclusion is given in Section 8. 

 

2.   Test of the AD tools 

Our inter-comparison is based on the latest versions of TAF (versions 2.3.5-2.8.4), Open_AD 

(versions S440,S469, S493), Tapenade (version 3.10) and NAGWare (version 5.1) AD 

packages. For a quantitative comparison of all three AD tools, we have prepared several 

sample codes to test computational speed, memory usage efficiency (MUE), accuracy, and 

compatibility with different programming features such as pointers, structures, and user 

defined data types. In order to test how the efficiency of computations of adjoints depends on 

the hardware, the tests were carried out on different platforms. All executables were 

subsequently run on three different computer platforms (Intel CoreDuo E8500 2Gb DDR3, 

AMD Sempron AM2 2Gb DDR2 and Intel Core I5-2500 8Gb DDR3), and the corresponding 

computational times were used to evaluate the performance. Although the SCT AD tools 

allow utilizing any FORTRAN compiler, the NAGWare AD tool is embedded in the NAG 

FORTRAN compiler, and consequently compilation has to be done with this. To avoid 

differences in execution time related to the usage of different compilers, we chose NAG for 

all three AD tools.  The optimization options of the compiler were the same.  

Throughout the remaining paper, the distinction of variables will be used that is common to 

AD: the input variables with respect to which the differentiation initially should be performed 

are referred to as independent variables. The output dependent variables are those whose 

derivatives are required. All other variables in the source code are divided into two classes. A 

variable is referred to as active and belongs to an active type if it depends on at least one 

independent variable and influences at least one dependent variable. All other variables are 

considered as passive and belong to the passive type.  
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3.   Test bed codes 

Test of the computational speed and accuracy were performed using three different codes of 

increasing complexity in the following, called linear model, regularized Lorenz model 

(RLM), and Shallow Water model (SWM) code. The idea of such an approach involving 

codes with different levels of complexity is straightforward. An optimal adjoints in sense of 

runtime and memory usage should be easier to generate from codes, representing trivial linear 

mathematical problems, which exclude the need for recomputations. Such trivial 

mathematical problem is represented by the linear model example and optimal adjoints with 

the best CSP for OpenAD, NAGWare, Tapenade and TAF were achieved. The obtained level 

of CSP is used later as a benchmark (the upper bound, in fact) for the comparison of the CSPs 

obtained for the more complex codes, like the shallow water model (SW code), or the Lorenz 

model with relaxation (Lorenz code) [23]. With the Lorenz and SW codes, one can reveal 

how the complexity of these codes, i.e. the amount of inter-commuting active variables in a 

single expression, and non-linear and implicit dependencies between these variables presented 

in the code, affects the performance of the discussed AD tools.  

 

i) The linear model.  

This example represents a simple data assimilation problem with the following linear 

constraints: 

min
𝑥0
||𝑥 − 𝑥𝑜𝑏𝑠||2

2
 

such that 

𝑥(𝑡) = a ⋅ sin (𝑡),    𝑥(0) = 𝑥0. 

In this problem, it is required to find an optimal initial state 𝑥0 for computation of oscillations 

of a pendulum with the given amplitude 𝑎. In the optimum solution, the difference between 

the computations 𝑥 and observations 𝑥𝑜𝑏𝑠 is minimal. Here, we used as optimization procedure 

for data assimilation procedure the gradient descent method in which the gradients are 

calculated by means of the AD routines. The code describing this problem is nearly 50 lines 

long. It contains only one driver program in which the variables are set and one external 

subroutine where the model equations and cost are computed.  
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ii) The regularized Lorenz model code.  

The RLM code represents a simplified version of a data assimilation method with relaxation 

[23], applied to the Lorenz 1963 model [24]. The corresponding system of equations reads: 

min
𝜎,𝜌.𝛽,𝑝

{‖𝑥 − 𝑥𝑜𝑏𝑠‖2
2 + ‖𝑦 − 𝑦𝑜𝑏𝑠‖2

2 + ‖𝑧 − 𝑧𝑜𝑏𝑠‖2
2 + 𝑝2} 

such that  

𝑑𝑥

𝑑𝑡
= 𝜎(𝑥 − 𝑦) + 𝑝(𝑥 − 𝑥𝑜𝑏𝑠)        

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦 + 𝑝(𝑦 − 𝑦𝑜𝑏𝑠)

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧 + 𝑝(𝑧 − 𝑧𝑜𝑏𝑠)         

 

Here 𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠, 𝑧𝑜𝑏𝑠, are the observations of 𝑥, 𝑦, 𝑧 measured on a time period[−𝑇, 0]. The 

goal of this variational problem is to find a set of parameters of the Lorenz (1963) system that 

optimally fit the model trajectory to given observations. The original method is based on an 

iterative 4D-var data assimilation algorithm, where the model equations are relaxed by a 

nudging term depending on the nudging parameter p. The usage of nudging and relaxation 

suggested by [23] stabilizes the chaotic behavior of the Lorenz (1963) model, which in turn 

allows performing assimilation for extensive periods of time. Note that the cost function is 

minimized with respect to the Lorenz (1963) parameters including the nudging parameter 𝑝. 

As before, we used the standard gradient descent method for solving this problem. With 

decreasing model-data differences, the impact of nudging on the model simulation reduces. 

Due to the models nonlinearity, its adjoints depend on the specific model’s trajectory, which 

adds complexity.  

 

iii) The SWM code.  

The basis for the large code is the data assimilation problem discussed by [25]. It is 

constructed to mimic a simplified model of the Antarctic Circumpolar Current using the 

Shallow Water approximation. In that model a wind driven barotropic flow in a rectangular 

zonal channel over a central meridional Gaussian sill is considered. The sill extends across the 

channel and the overflowing current is connected to a perturbation of the sea level in that 

place. The shape and size of this perturbation depends on the sill height depending on the 

latitudinal direction.  
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For a stationary case, the goal of this exercise is to estimate the height of the sill,ℎ𝑔, from 

observations of the sea level by minimizing the difference of the simulated sea surface height 

to its observations. The mathematical formulation of that data assimilation problem is as 

follows: 

min
ℎ𝑑

𝐶

2
‖ℎ𝑜𝑏𝑠 − ℎ𝑑‖

2

2

 

In order to find the stationary solution, the following time dependent Shallow Water equations 

are integrated in time until the solution becomes stationary:  

{
 
 

 
 
𝜕𝒖

𝜕𝑡
+ 𝒈

𝜕𝒖

𝜕𝑥
− 𝒇𝒖 + 𝑟

𝒖

ℎ
=
𝜏

ℎ
,    ℎ = ℎ𝑏 + ℎ𝑑                             

𝜕ℎ

𝜕𝑡
+ ∇(𝒖ℎ) = 0                                                                             

𝒖𝒕=𝟎 = 𝒖𝟎, ℎ𝑡=0 = ℎ𝑜                                                                    

 

Here ℎ is the total depth including the sea surface height ℎ𝑑; ℎ𝑏 is the bathymetry with respect 

to the sea surface zero value depending on sill’s height ℎ𝑔, which is a function of latitude 

only; ℎ𝑜𝑏𝑠 is the observed sea surface height; 𝒖 = (𝑢, 𝑣) are longitudinal and latitudinal fluid 

velocity components respectively; 𝜏 is the wind stress, which is a known function of time and 

space; 𝑓 = 𝑓0 + 𝛽𝑦  is the Coriolis parameter; r is the parameter of bottom friction, 𝑡 ∈ [0: 𝑇] 

is time and 𝒙 = (𝑥, 𝑦) is the coordinate vector. 

This data assimilation problem is solved numerically in the following setup. The channel is 

centered at approximately 55°S, it has solid boundaries in the north and the south and 

idealized bottom topography. The motion is considered on a β-plane. The horizontal and 

vertical extents of the model domain are 4000 and 1600 kilometers, respectively. The initial 

guess for the height of the crest is set to 400 m above the average depth of 4000 m. Its half-

width of 200 km corresponds to an average slope of 1 m in 1000 m. The numerical 

implementation of this problem is given at http://www.mcs.anl.gov/OpenAD the OpenAD 

official website.  

 

4. Theoretical basis 

The computational time required for executing an adjoint code prepared by an AD tool 

directly depends on the method used by that tool for interpretation and differentiation of the 

http://www.mcs.anl.gov/OpenAD
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original code. To understand why adjoint codes produced by different AD tools require 

different computational time, one needs to consider the basics of algorithmic differentiation. 

The general idea underlying an AD tool is the construction of a computational flow graph 

representing a target mathematical function, and the application of the chain rule to this graph.  

For simplicity, consider a source code consisting only of a single program aimed at 

computing a mathematical function, which should be differentiated with respect to some of its 

arguments. Let this program be without subroutine calls, “if” branches and loops. In such a 

case, the function can be presented by a sequence of elementary mathematical operations.  

This sequence in turn may be presented in the form of a directional computational graph with 

independent variables as input, and the dependent variable (the function) as output. If the 

active variables in the graph are described as edges, and immediate arithmetic interrelations 

between these variables are located in nodes
3
, the computational graph can be considered as a 

path from independent to dependent variables. Note that any elementary mathematical 

operation at maximum involves only two variables. Hence the construction of such graph 

requires that not more than two edges are input at each node.  For some mathematical 

expressions (e.g. 𝑎 ⋅ sin(𝑏)), the direct representation as a set of node-connected pairs of 

vertices is not possible. For resolving this issue, auxiliary edges and nodes are introduced. 

They represent auxiliary variables and operations between them, which split the original 

expression in a set of subexpressions with at maximum two variables in each subexpression. 

For instance, for 𝑐 = 𝑎 ⋅ sin 𝑏, auxiliary edge 𝑏1 = sin 𝑏 with node sin () are introduced and 

the original expression simplifies to 𝑐 = 𝑏1 ⋅ 𝑎. The number of these auxiliary edges is chosen 

in such a way that each node has only two entering edges. In case of the SCT AD tools, these 

auxiliary edges are presented by corresponding auxiliary variables in the differentiated code. 

Computational graphs significantly simplify the implementation of the chain rule: it reduces 

to an accumulation (summation) of derivatives obtained by differentiating each vertex with 

respect to a pair of its immediately preceding vertices. Depending on the mode, the 

accumulation of the derivatives starts from the entrance of the graph (tangent linear mode) 

towards its exit or from its exit (adjoint mode) towards its entry. 

We note that splitting composite expressions with the aid of auxiliary variables may not be 

unique. For instance, the expression 𝑦 =  𝑒𝑥+𝑧 may be split in two ways; 1) 𝑎 = 𝑥 + 𝑧, 

𝑦 =  𝑒𝑎 with a single auxiliary variable 𝑎 or 2) 𝑎 =  𝑒𝑥, 𝑏 =  𝑒𝑧 , 𝑦 = 𝑎 ⋅ 𝑏, where two 

                                                 
3 In a real case with loops, if-else braches etc. a computational flow graph should be considered.   
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auxiliary variables are used. The first case corresponds to a two edged graph, while the 

second case corresponds to the three edged graph. This example shows that the same 

composite mathematical expression may be presented with different computational graphs. 

The choice of the graph with shortest path minimizes the amount of applications of the chain 

rule and hence results in higher efficiency in computing derivatives. 

The scheme described above is an oversimplification of real algorithms underlying the AD 

tools. However, it shows that constructing a computational graph with an un-optimized length 

results in suboptimal memory usage efficiency (MUE) and computational speed performance 

(CSP) efficiency. Finding a graph with the optimal path is still a research question and 

different AD tools employ different strategies.  

The implementation of the chain rule requires that, for the places where the active variables 

depend non-linearly on other variables, the actual values of those variables are known. In the 

case of tangent linear mode, this requirement is easy to fulfill, since the differentiation starts 

from the entry of the graph and the accumulating derivatives and all required variable’s values 

are estimated at the same time during the forward sweep of the source code.  In the case of 

adjoint mode, this problem is more complex, since the differentiation starts from the exit of 

the graph and hence the estimation of the derivatives requires the values of all active 

variables, beginning from the end of the graph. 

The values of active variables may be obtained during the adjoin run by implementing either 

the “store-all” or the “recompute-all” strategy. The “recompute-all” strategy implies that all 

active variables, which are overwritten during the forward sweep, are recomputed during the 

adjoint sweep. This strategy is utilized by default in NAGWare, OpenAD and TAF. The 

rational behind a “store-all” strategy is to store all values that are overwritten by an 

assignment during the forward sweep just before the assignment and then restore them before 

the adjoint of this assignment in the reverse sweep. The array where these variables are stored 

is called “tape”. In order to minimize the set of saved variables in a tape, the store-all strategy 

is performed together with the “to be recorded” (TBR) analysis. It is a static data flow 

analysis, which determines the variables that are not used in derivative computation and then 

excludes them from taping [26]. The store-all strategy together with TBR analysis is realized 

in Tapenade [20],[27]. Note that the reverse mode implemented with the store-all strategy has 

additional memory cost proportional to the execution time of the forward sweep; the reverse 
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mode implemented with recompute-all strategy has no additional memory cost, however, its 

execution time is proportional to the square of the execution time of the forward sweep [28]. 

Although the recomputed-all strategy is set in TAF, OpenAD and NAGWare by default, these 

tools however, allow the initiation of the tape by the user [18],[19],[21]. To do so, the user 

explicitly specifies the names of the active variables and the place in the source code where 

they should be recorded. The AD tool has only to exclude these variables from recomputation 

in the adjoint sweep. All variables recomputed in forward sweep that are not included in tape 

but required for adjoint computations will be recomputed in the adjoint sweep.  

To avoid recomputation in all test codes, the same tapes for all active variables were 

generated. In the case of the SWM test code, the generation of continuous tape for the entire 

adjoint sweep was not possible and the same checkpointing scheme for all AD tools was 

established, which is as follows: The SWM code is represented by a set of subroutines 

executed in a time stepping loop, where the active variables are overwritten at each iteration. 

This loop was split into an outer and an inner loop with subroutines embedded in the inner 

loop. The total number of operations remains the same. When the computations in the inner 

loop are finished, all values of the active variables are recorded in a special checkpoint. Hence 

the amount of checkpoints equals to the amount of the outer loop steps. The tape is initiated 

only in the inner loop during the reverse sweep and is reset when it is finished. Thus, 

departing from the nearest checkpoint, the values of active variables are recomputed in the 

inner loop once again and stored in the tape. After that, the corresponding values of 

derivatives are computed and accumulated. Then the tape is reset and the recomputations in 

the inner loop start from the next checkpoint. The size of the inner loop is chosen in such a 

way that the generated tape almost completely fills the available memory.     

 

5.   Testing the computational speed and accuracy 

The tests for all AD tools were performed as follows: At first, the adjoint source codes were 

generated from test source codes with aid of TAF, Tapenade and OpenAD. Then the 

executables of the adjoint executables were obtained by compiling them with NAG compiler. 

The adjoint executables for NAGWare were obtained directly by application of this AD tool 

to all test source codes.  Since the actual runtime of the executables strongly depends on the 

platform, the tests were subsequently carried out on three different computer platforms (Intel 

CoreDuo E8500 2Gb DDR3, AMD Sempron AM2 2Gb DDR2 and Intel Core I5-2500 8Gb 
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DDR3), and the corresponding computational times were used to evaluate the performance. 

These results are presented in Table 1. In the table, the CSP ratio is obtained as 𝐴𝐷𝐽𝐴𝐷/

𝐹𝑂𝑅𝑊, where 𝐹𝑂𝑅𝑊 is the runtime of the initial source code. This ratio shows how much 

slower the execution of adjoint computations are in comparison to the execution of the 

corresponding forward computation, thus bigger ratio numbers correspond to worse CSP. The 

invariance of these ratios to the choice of the executing platforms is found in all experiments.  

Note that among the SCT AD tools, Open_AD has the worst CSP value for all 3 test codes, 

which differs from CSP of TAF and Tapenade typically at least by a factor of two. The 

analysis of the adjoint source codes generated by TAF, Tapenade, and Open_AD revealed 

that Open_AD introduces excessive auxiliary variables into the adjoint code which do not 

influence the dependent variables or simply alias other variables in the computations. The idle 

manipulations with these variables and their allocation in random access memory (RAM) 

require additional computational time. The amount of idle operations produced by Open_AD 

was at least two times bigger than the amount of idle operations produced by TAF and for all 

test codes. 

Since the adjoint codes generated by Tapenade and TAF from the linear test code have a 

similar pattern, they should have similar CSP. However, this is not confirmed in the 

experiments. The difference in CSP accounts for the fact that TAF can use both static 

(constant shape arrays) and dynamic tapes (flexible shape arrays), while Tapenade uses only 

dynamic tapes. Note that the usage of dynamic tape results in a small reduction of CSP, since 

its permanent reallocation during the run requires additional computational time.  For better 

CSP in the tests, static tapes were set in TAF.    

The inspection of adjoints of RLM code revealed that although 𝑥, 𝑦, 𝑧  were declared for 

taping, TAF still introduces a single recomputation for each of these variables inside the main 

loop of the adjoint code, although TAF did not report any recomputation warnings. During 

each loop-iteration, all these variables are loaded from the tape but then recomputed in the 

next step. Such recomputations are equivalent to one excessive forward sweep. Note that, if 

continuous taping is applied, the run time of adjoint executable should consist only of single 

forward and reverse sweeps. Such run times have adjoint executables of the linear test code, 

generated with the aid of TAF and Tapenade. However, due to extra recomputations, the 

runtime of the adjoint code generated by TAF is increased by the run time of a single forward 

sweep. Because of this, TAF’s CSP obtained for the RLM test code are 1.6 times worse than 
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RCSP and CSP obtained for the linear model. The inspection of the adjoint of RLM code, 

produced by Tapenade revealed that it did not initiate excessive recomputations and its CSP 

values remain the same as for the linear model.  

In case of the SWM code, the same checkpointing scheme was applied for all AD tools. The 

tests revealed that CSP for TAF and Tapenade obtained for the SWM code differ much less 

than the same ratios for linear and RLM codes.  The inspection of the adjoint code did not 

reveal excessive recomputation, while in case of OpenAD most of operations fall on 

excessive variables.    

Tests with the NAGWare tool showed that its adjoints are the slowest of all three test-codes. 

Comparing the CPS for all tools (see Table 1) shows that TAF and Tapenade generated codes 

are 20-30 times faster than NAGWare, while OpenAD has a 5.3 – 9.23 times better CSP than 

NAGWare. 

Along with the evaluation of the computational speed performance, the similarity between the 

values of the resultant derivatives obtained by means of NAGWare, TAF, Tapenade and 

OpenAD were checked on all three test-codes. All derivatives were computed with double 

precision. The value for gradients obtained with double precision accuracy coincides for all 

three AD tools in case of the linear model, with only differences in the last digit. Similar 

results were obtained for NAGWare and OpenAD tools for the RLM code, while TAF 

produces the difference in the 7-th digit. Finally, for all three AD tools, the gradients differ in 

the 7-th digit in the case of SWM code. 

 

6   Testing the efficiency of memory usage 

Due to the taping process, running the adjoint models in most cases requires more computer 

memory for data storage than for the execution of the forward codes. The amount of this data-

storage related memory depends on the AD tool used for the construction of the adjoint 

model. In this test, the memory requirements of adjoint executables differentiated by TAF, 

NAGWare, Tapenade and OpenAD were tested. The results of the measurements are given in 

Table 2. There, the values in each column represent the relative MUE for a given AD tool 

obtained for all three test codes. Each relative MUE is the ratio between the amounts of 

memory required by the same adjoint codes obtained by the OpenAD and the specific AD 

tool. The choice of OpenAD’s MUE as a reference one is made because of it worse 
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performance in all tests. Hence, big numbers in the table corresponds to better MUE. The 

table demonstrates that Tapenade is the most efficient in memory usage. NAGWare is less 

efficient, but still it is better than TAF and OpenAD.  

The advantage in memory usage of Tapenade may be explained by two factors. Firstly, it is 

related to the altering of the tape sizes during the reverse sweep, which in turn allows 

minimizing the used memory. This was achieved by using stacks for taping: the used values 

in the reverse sweep are removed from the stack during the reverse sweep and hence release 

the occupied memory. In contrast, TAF uses regular arrays for dynamic or static tapes. The 

dynamic tape in TAF grows during the forward sweep, but once it is finished it remains the 

same during the reverse sweep. Secondly, the advantage in memory usage of Tapenade in 

case of RLM may be connected to its efficient TBR analysis. Note that efficient TBR analysis 

excludes recomputations of the taped variables. By contrast, TAF and OpenAD still initiate a 

single recomputation of these variables in the adjoint code of RLM  (see section above). Thus, 

in the adjoint code generated by these tools the same variable is stored twice: in tape and in a 

representative array that is used for recomputation. As the result, duplex saving of the same 

variable increase memory costs. 

 

7   Handling structures and pointers. 

The ability of Tapenade, TAF, OpenAD and NAGWare tools in their recognition and correct 

interpretation of pointers and structures is investigated in this section. For these tests the data 

assimilation computations on the basis of linear, RLM and SWM scripts discussed in the 

second section were repeated with a small modification. In each test active variables were 

substituted with pointers and structures, and after that the same was done for passive 

variables. The adjoint codes and corresponding executables were generated for each modified 

source code. The values of derivatives obtained from these executables were compared with 

the derivatives obtained in the experiments described in previous section where no pointes 

and structures were used. If the derivatives obtained with and without pointers and structures 

differed, the corresponding adjoint codes were investigated and compared, and the reasons 

that caused difference were figured out. The corresponding tests are discussed in the 

following paragraphs with results summarized in the Table 3. 
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7.1   Pointers on active values.   

The idea of the test is to check the ability of the AD tools in recognizing and interpreting 

pointers on active values, without discussing the sense of their practical usage. It was 

investigated how the substitution of an active variable with a corresponding pointer affects the 

correctness of gradient computations. The tests revealed that for the linear model, except 

Tapenade, all three AD tools were able to interpret pointers correctly, even when the active 

variables were not used. Tapenade ignored the pointer, considering it as a passive variable, 

and generated a wrong adjoint. However, for the RLM and SWM codes, TAF and OpenAD 

failed when using only a single pointer. This pointer was not recognized as an active variable 

and did not appear as part of the expressions in the adjoint codes. At the same time, the 

NAGWare passed the tests for all codes, while Tapenade failed the test completely. 

Therefore, we conclude that in general Tapenade, TAF and OpenAD is likely to fail 

differentiating the code correctly if it contains pointers on active variables, a fact that has 

significant consequences for model developers. The conclusion of this test is summarized in 

the first row of Table 3. 

 

7.2   Alias pointers.  

By alias pointers, we mean a case when two or more pointers are pointing to the same 

variable. Similar to the previous paragraph, we test here only the ability of AD tools in 

recognizing and interpreting alias pointers. As before, all three linear, RLM and lSWM codes 

were used for tests. At least two pointers that point on the same active variable were set in 

these codes. It was found that Tapenade failed all tests, but the other three AD tools delivered 

correct adjoints when they were applied to the linear model. However, the adjoints produced 

by TAF and OpenAD calculated incorrect gradients for RLM and SWM codes. The results of 

this test are summarized in the second row in Table 3. 

 

7.3 Pointers on passive values. 

In the cases when pointers were set only on passive variables, all four AD tools deliver 

correct adjoints with differences only in the 7-th digit. Therefore, we conclude that Tapenade 

NAGWare, OpenAD and TAF passed the test successfully. The results of this test are listed in 

row 4 of Table 3. 



 16 

7.4 User-defined types (structures).  

Structures, or user-defined types, are a quite common feature in modern models such as the 

ICOsahedral Nonhydrostaticl( ICON)  model [29]. The idea of using structures is to combine 

groups of variables into mathematically logical units, e.g., state vectors, and then operate with 

these units as variables. The correctness of the adjoints to such models produced by an AD 

tool depends on the capability of the AD tool to interpret respective structures. To test this 

capability for Tapenade, TAF, NAGWare and OpenAD, the three problems from the second 

section were employed again. In each of these problems, all active variables were combined 

into a single structure. After such substitution, the variables cannot be accessed directly in the 

code; instead one has to address them as a part of a structure. Therefore, the active variables 

in the equations of all three codes were substituted with the corresponding elements of the 

structure. Subsequently, we generated adjoints for the three test codes without using structures 

and compared the results.  

This test revealed that Tapenade failed the test completely, but the other three AD tools 

produced correct adjoints for the linear model, although only NAGWare was able to produce 

correct adjoints for RLM and SWM codes. On the other hand, if structures consisting only of 

passive values are introduced into the scripts, all four AD tools deliver correct adjoints (see 

the fifth and six rows in Table 3). 

 

8.   Conclusions 

In this study we analyze the practicality of four existing OO and STC based AD tools for 

generating adjoint codes of geophysical models, and tested their efficiency with respect to 

computational speed and accuracy of the generated adjoint plus the efficiency of memory 

usage. In general terms, the best computational speed performance (CSP) is found for SCT 

AD tools. As discussed in Section 5, the CSP of such AD tools’ adjoint code in some of our 

test cases is only 2.5 times slower than the original forward code. On the other hand, the SCT 

AD tools usually have limitations in supporting some elements of modern programming 

languages. In contrast, the operator overloading (OO) AD tools have none of those limitations 

intrinsic to SCT tools, allowing the generation of adjoints to modern climate model codes 

using all FORTRAN 90-95 coding. However, they have much degraded CSP (see Sec. 2 for 

details).  

The finding of the present paper can be summarized as follows: 
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   The NAGWare showed the best compatibility with all types of coding elements (e.g., 

pointers and structures). For the more complex scripts that represent non-linear problems, 

Tapenade, TAF and OpenAD were not able to interpret pointers correctly; the same holds for 

structures containing active variables.  

   The Tapenade and NAGWAre are the most efficient in terms of memory usage.  

   However, NAGWare has the worst computational performance. The fastest performance is 

obtained by the TAF and Tapenade generated code, which is 20-30 times faster than 

NAGWare, while OpenAD showed a CSP being 5.3 – 9.23 times better than NAGWare. 

 

From our results, any model developer interested in creating an adjoint from a forward code 

using the existing AD tools at present faces a serious dilemma: while it is almost mandatory to 

use SCT tools if one were to generate an efficient adjoint model, it restricts the model 

programming language to older (seemingly obsolete) programming standards. Having a new 

model developed in FORTRAN 95, however, requires using OO procedures, capable of 

handling these programming standards, for the generation of the adjoint. On the other hand, 

the generated adjoint model is too slow to be applicable for any state-of-the art climate-related 

problem, rendering modern models useless as source code for an adjoint model unless they 

were already written with this application in mind.  

Our results therefore suggest that every-day cutting edge assimilation efforts in weather, 

ocean or climate applications for the foreseeable future will heavily rely in SCT tools and 

therefore will require to be written in previous generation FORTRAN. At the same time our 

results almost demand that substantial effort is being spent on bringing SCT tools to the next 

level where modern circulation models can be adjointed in an efficient way in support of 

climate research and operational applications alike. 
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Table 1. Comparison of computational speed performance for TAF OpenAD and NAGWare. 

  OPEN_AD NAGWare TAF TAPENADE 

Linear model  

 CSP 8.69 84.03 2.5 3.28 

RLM code  

 CSP 5.88 80.5 4 3.25 

SWM code  

   CSP 21.27 112.3 5.95 7.2 

 

Table 2. Memory Usage efficiency.  

  OPEN_AD NAGWare  TAF Tapenade 

Linear model 

https://www-sop.inria.fr/tropics/papers/supportCoursDA.pdf
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 MUE 1 70 70 70 

RLM code 

 MUE 1. 9.4 7.08 7.5 

SWM code 

 MUE 1. 5.5 4.2 17.3 

 

 

 

 

Table 3. Ability in handling FORTRAN 90-95 elements 

1  OPEN_AD NAGWare TAF Tapenade 

Pointers  

2 Pointers  on active 

values 

No Yes No No 

3 Alias pointers No Yes No No 

4 Pointers on passive 

values 

Yes Yes Yes Yes 

Structures  

5 Structures containing 

active values 

No Yes No No 

6 Structures containing 

only  passive values 

Yes Yes Yes Yes 

 


