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a b s t r a c t

Cavities in linear accelerators suffer from eigenfrequency shifts due to mechanical deformation caused
by the electromagnetic radiation pressure, a phenomenon known as Lorentz detuning. Estimating the
frequency shift up to the needed accuracy by means of standard Finite Element Methods, is a complex
task due to the non exact representation of the geometry and due to the necessity for mesh refinement
when using low order basis functions. In this paper, we use Isogeometric Analysis for discretizing both
mechanical deformations and electromagnetic fields in a coupled multiphysics simulation approach.
The combined high-order approximation of both leads to high accuracies at a substantially lower
computational cost.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Controlling the resonant frequency of cavity eigenmodes in a
particle accelerator is crucial in order to guarantee the synchro-
nization of the electromagnetic wave and the particle bunches.
Such frequency is determined essentially by the geometry of the
cavity walls, which is therefore a critical parameter for the de-
sign of the cavity. The high-energy electromagnetic field inside the
cavity exerts a radiation pressure on the walls, which causes a me-
chanical deformation of the geometry. Albeit small, this deforma-
tion may lead to a significant shift of the resonant frequency. This
effect, known as Lorentz detuning [1–4], needs to be predictedwith
high precision in order to achieve a robust cavity design.

Standard Finite Element Methods (FEM) may require an
extremely high level of mesh refinement to achieve sufficient
accuracy when evaluating Lorentz detuning, due to inaccuracies
when approximating the deformed and undeformed cavity walls
in the FEM mesh and due to the limited accuracy of typical low-
order FEM basis functions. In this work, we propose a simulation
strategy based on Isogeometric Analysis (IGA) [5] which allows an
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exact representation of the geometry and the direct application
of the computed deformation to the starting geometry, without
any further approximation. Finally it offers the possibility to
accurately approximate the electromagnetic fields using high-
order elements [6].

The outline of this paper is as follows: first we introduce the
coupled electromagnetic–mechanical model describing Lorentz
detuning. In the subsequent section Isogeometric Analysis is
introduced along with an overview on the particular discretization
used for Maxwell’s equations. Finally we present the results
obtained for the standard cylindrical test case and for the TESLA
cavity geometry [7].

2. Multi-physics model for Lorentz detuning

Consider a one cell cavity geometry as the one depicted in
Fig. 1. Let the two disjoint open domains with Lipschitz continuous
boundaries ΩW ⊆ R3 and ΩC ⊆ R3 represent the cavity walls
and the interior of the cavity, respectively. Let ΓCW = ΩC ∩ ΩW
denote the interface between the two domains. To evaluate the
frequency shift, it is necessary to solve Maxwell’s eigenproblem
inside the undeformed and deformed cavity and an elasticity
problem in the cavity walls. We employ linear elasticity theory
since the deformations are very small. The radiation pressure on
the common interface ΓCW introduces a coupling between the two
problems [8]. The calculation steps are as follows:
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Fig. 1. 2D cut of the 3D computational domain for simulating Lorentz detuning in
one cell of the TESLA cavity [7] (not to scale) and labels for the domains and the
boundaries (yz section). The full cell is the result of a revolution around the z axis.

Step 1. Solve Maxwell’s eigenproblem in ΩC :

∇ ×


1
µ0

∇ × E


= ω2
0ϵ0E in ΩC (1a)

with the boundary conditions
E × nc = 0 on ΓCW

1
µ0

∇ × E


× nc = 0 on ΓC
(1b)

where µ0 and ϵ0 are the permeability and permittivity of vac-
uum and nc is the outward unit normal to ΩC . We assume time-
harmonic fields with E a phasor given in terms of peak values. As
cavity walls are often composed of a superconducting material,
e.g. niobium, in order to reduce losses, they are assumed here to
behave as a perfectly conducting boundary. At the two irises ΓC ,
a Neumann condition is enforced, which is a common approxi-
mation corresponding to assuming the cell to be one of an infi-
nite chain of cells. The eigenmode solution delivers a number of
eigenfunction–eigenvalue couplets, corresponding to the possible
modes within the cavity. The accelerating mode of interest is the
first transverse magnetic mode (TM010). Let E0 be the computed
electric field and ω2

0 the corresponding eigenvalue, then f0 =
ω0
2π is

the resonant frequency for the accelerating eigenmode in the un-
deformed geometry.

Step 2. Compute the magnetic field H0 for the first accelerating
eigenmode as

H0 =
i

ω0µ0
∇ × E0. (2)

The accelerating mode exerts on the cavity walls a radiation
pressure with one component at 0 frequency and one component
at frequency 2 f0. In practice, the latter can be neglected and the
radiation pressure on ΓCW is approximated by a time-constant
value that may be expressed as

p = −
1
4
ϵ0 (E0 nc) ·


E∗

0 nc

+

1
4
µ0 (H0 × nc) ·


H∗

0 × nc


(3)

where E0 and H0 are peak values and (·)∗ denotes the complex
conjugate.

Step 3. Solve the following linear elasticity problem in the walls
domain ΩW

∇ ·

2η∇

(S)u + λI∇ · u


= 0 in ΩW (4a)
with boundary conditions
u = 0 on ΓW
2η∇

(S)u + λI∇ · u

nw = p nw on ΓCW

2η∇
(S)u + λI∇ · u


nw = 0 on Γext

(4b)

for the displacement u. In (4) we denote by ∇(S) the symmetric
gradient, while η and λ are the Lamé parameters of the wall
constituent material and nw is the outward unit normal to ΩW . On
ΓCW the radiation pressure p is applied.

Step 4. Let the deformed walls domain Ω ′

W be defined as

Ω ′

W ≡ {x + u (x) , x ∈ ΩW } , (5)

and the deformed cavity boundary Γ ′

CW as

Γ ′

CW ≡ {x + u (x) , x ∈ ΓCW } . (6)

Furthermore, let Ω ′

C denote the domain enclosed by Γ ′

CW and ΓC .
Step 5. Solve Maxwell’s eigenproblem in Ω ′

C :

∇ ×


1
µ0

∇ × E′


=


ω′

0

2
ϵ0E′ in Ω ′

C

with the boundary conditions
E′

× n′

c = 0 on Γ ′

CW
1
µ0

∇ × E′


× n′

c = 0 on Γ ′

C

and let


ω′

0

2
, E′

0


denote the accelerating eigenmode. The

shifted frequency is finally obtained as

f ′

0 =
ω′

0

2π
and the frequency shift due to Lorentz detuning as

∆f0 =
f0 − f ′

0

 . (7)

This procedure can be carried out iteratively if necessary.

3. Numerical discretization

Isogeometric Analysis (IGA)was born, less than adecade ago [9],
with the goal of bridging the gap between Computer Aided Design
(CAD) and Finite Element Method (FEM). The main distinctive
feature of IGA is that CAD geometries, commonly defined in
terms of Non-UniformRational B-splines (NURBS), are represented
exactly throughout the analysis, regardless of the level of mesh
refinement, while in standard FEM the computational domain
needs to be remeshed when performing h-refinement and its
geometry approaches the exact one only in the limit of vanishing
mesh size h.

Moreover, in addition to h-refinement and p-refinement,
k-refinement [5] was introduced as a combination of degree
elevation and mesh refinement, yielding approximation spaces
with higher regularity properties. k-refinement has the advantage
of not increasing the number of degrees of freedomof the problem,
but produces matrices with larger bandwidth.

The particular IGA scheme adopted in this work takes advan-
tage of the benefits of different approaches for each of the dif-
ferent physical subproblems being considered. The computational
domains ΩW and ΩC are both defined via geometric mappings
constructed in terms of NURBS basis functions. In solving the me-
chanical subproblem (4) an isoparametric approach is adopted so
that the computed (discrete) displacement is defined in terms of
the same NURBS basis and therefore the domain deformation (5)
is treated in a straight-forward way by a simple displacement of
the control-points. In solving the Maxwell sub-problem (1), on the
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Fig. 2. B-spline curves with different knot vectors: the multiplicity of the knot effects the regularity of the curve.
other hand, the isoparametric approach is abandoned in favor of
the choice of a solution space comprised of (push-forwards of)
suitable B-spline functions which guarantees an H (curl) conform-
ing, and therefore spectrally accurate, approximation of the field,
as shown in [6]. These concepts are explained in more detail be-
low after introducing the required notation for NURBS and B-spline
spaces (see Fig. 2).

3.1. B-spline and NURBS functions

A B-spline geometrical entity is the result of the transformation
through an appropriate mapping of a reference domain. In one
dimension, the reference domain is typically the interval [0, 1]
which is then subdivided by a knot vector
Ξ =


ξ0, ξ1, . . . , ξn+p


where ξi ∈ R ∩ [0, 1] is the ith knot, p is the polynomial degree
(p + 1 is the order) and n is the number of basis functions used
to build the B-spline curve. The knots divide the parameter space
into elements. The element boundaries in the physical space are
the images of the knots under the B-spline mapping. Knot vectors
can be uniform, if the knots are equally spaced, or non-uniform
otherwise. Knots can be repeated and, by changing themultiplicity
of a knot, we can change the level of continuity of the curve: basis
functions of order p have p− ri continuous derivatives across each
knot ξi, where ri is the multiplicity of the ith knot. In the particular
case of a knot repeated exactly ri = p + 1 times, the basis is
interpolatory at the knot ξi. A knot vector is said to be open if
its first and last knots are repeated p + 1 times (i.e. the curve
is interpolatory at its ends). Below, we will always assume to be
dealing with open knot vectors.

B-spline basis functions are defined by the Cox–de Boor
recurrence formula:

Bi,0

x̂


=


1 if ξi ≤ x̂ ≤ ξi+1
0 otherwise

Bi,p

x̂


=
x̂ − ξi

ξi+p − ξi
Bi,p−1


x̂

+

ξi+p+1 − x̂
ξi+p+1 − ξi+1

Bi+1,p−1

x̂


(8)
with i = 0, . . . , n − 1. We will denote the space spanned by the
n functions B0,p, . . . , Bn−1,p by Spα (Ξ), with α =


α0, . . . , αn+p+1


and αi = p − ri, where ri is the multiplicity of the ith knot.

B-spline curves are built taking a linear combination of B-spline
basis functions and defining a set of control points. In particular,
given n basis functions Bi,p and n control points Pi ∈ Rd, i =

0, 1, . . . , n − 1, a piecewise polynomial B-spline curve is defined
by the following:

C

x̂


=

n−1
i=0

Bi,p

x̂

Pi. (9)

The concepts presented until now can be easily extended to
B-spline surfaces and volumes using a tensor product approach.
For instance in the 3D case, given the knot vectors Ξd, the degrees
pd and the number of basis functions nd (with d = 1, 2, 3), the
B-spline trivariate basis functions are defined as

Bp
i

x̂


= Bi1,p1


x̂

Bi2,p2


ŷ

Bi3,p3


ẑ

, (10)

where p = (p1, p2, p3) and i = (i1, i2, i3) is a multi-index in the
set

I = {i = (i1, i2, i3) : 0 ≤ id ≤ nd − 1} .

Given the regularities α1, α2, and α3, we will refer to this space of
B-splines as Spα1,α2,α3 .

Starting from the Cox–de Boor formula given in (8), we can
define the rational basis functions Np

i

x̂

:

Np
i


x̂


=
Bp
i

x̂

wi

j∈I

Bp
j

x̂

wj

(11)

where we assume wi > 0 for all i. We will denote the space of
NURBS with N p. A NURBS object is built in an analogous way to
(9):

C

x̂


=


i∈I

Np
i


x̂

Pi. (12)
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With respect to B-spline, using NURBS, one can utilize both the
control points and the weights to control the local shape: as wi
increases, the curve is pulled closer to the control point Pi, and vice
versa. This allow the exact representation of important geometries,
often used in CAD, such as conic sections.

3.2. Linear elasticity problem

The weak formulation of (4) is:
Find the displacement u ∈


H1

0 (ΩW )
3 such that

ΩW

(2ηε (u) : ε (v) + λ (∇ · u) (∇ · v)) dx

=


ΓN

pnw · v dΓ , ∀v ∈

H1

0 (ΩW )
3

(13)

where ε = 1/2

∇u + ∇uT


is the small deformation strain

tensor. In structural mechanics, it is very useful to invoke the
isoparametric concept, such that the undeformed and deformed
geometry belong to the same function spaces. This means that
when the problem is solved using a higher order solution space, the
order of the geometrical representation has to be elevated accord-
ingly. In the k-refinement approach this is achieved via appropriate
knot-insertion so that the shape of the domain is not changed.

Let the walls domain ΩW , bounded and Lipschitz, be repre-
sented by a NURBS volume

ΩW = FW

Ω̂W


=


i∈I

Np
i


x̂

Pi (14)

where FW is a 3D mapping of the type introduced in (12) (smooth
with an almost everywhere piecewise smooth inverse). The dis-
crete space is the space Vh obtained by the transformation through
FW of the same space N p that defines the geometry:

Vh =

vh ∈ H1

0,ΓD
: vh = v̂h ◦ F−1

W , v̂h ∈ N p . (15)

With this choice, the deformed geometry is elegantly obtained by
adding the solution vector u to the control net of the initial NURBS
domain

Ω ′

W = F′

W


Ω̂W


=


i∈I

Np
i


x̂

(Pi + ui) . (16)

3.3. Electromagnetic cavity eigenproblem

Let ΩC ∈ R3 be our bounded NURBS cavity domain. Us-
ing Green’s integration by parts formula and the notion of
H0,ΓD (curl; ΩC ) of functions with curl well defined in L2 and van-
ishing trace on the boundary, a standard variational formulation of
problem (1) reads as follows [6]:

Find ω ∈ R, and E ∈ H0,ΓD (curl; ΩC ), with E ≠ 0, such that
ΩC

µ−1
0 ∇ × E · ∇ × w dx = ω2


ΩC

ϵ0E · w dx

∀w ∈ H0,ΓD (curl; ΩC ) . (17)

It is known that ω = 0 is the essential spectrum, and that its
associated eigenspace has infinite dimension. All other eigenval-
ues form a diverging sequence with associated eigenspaces be-
longing to H0,ΓD (curl; ΩC ) ∩ H (div0; ΩC ), where we denote with
H (div0; ΩC ) the space of function in H (div; ΩC ) with divergence
equal to zero.

The functional spaces used for the variational formulation (17)
have some special relations that are summarized through the well
known de Rham diagram [6]. In order to achieve a consistent
approximation of Maxwell’s eigenvalue problem, the discrete
spaces have to satisfy an analogous relation.

Following [6], we define on the reference domain a vectorial
B-spline space with differing degree for each component:

S1 = Sp1−1,p2,p3
α1−1,α2,α3

× Sp1,p2−1,p3
α1,α2−1,α3

× Sp1,p2,p3−1
α1,α2,α3−1 (18)

where αi −1 states that the regularity at each knot is decreased by
one (since the corresponding degree is decreased).

The final step is to define the finite dimensional spaces in
the physical domain ΩC . Let FC be the parametrization for our
domain computedwith the same hypothesis as given for (14), then
the discrete space on ΩC is defined through a curl conforming
mapping [10]:

X1
=


(DFC )−T 

w ◦ F−1
C


,w ∈ S1


(19)

where DFC is the Jacobian matrix of the parametrization. It has
been proven [6] that this space has the approximation properties
needed for the discretization of H (curl).

3.4. Multipatch formulation

In some situations, using a single patch domain geometry
definition as in (14) is impossible or at least inconvenient. For
example, in parametrizing the geometries for both the cylindrical
pill-box cavity and for the TESLA cavity, that are the focus of
the present work, we have chosen to use a multipatch approach
in order to avoid singularities in the geometrical mapping [11].
In other words the walls domain geometry for our problems is
partitioned into Nw subregions as

ΩW ≡ ∪
Nw
i=1 ΩW ,i

ΩW ,i ∩ ΩW ,j = ∅ ∀i ≠ j
(20)

where each of the patches consists of a smooth mapping with
smooth inverse of the reference domain Ω̂

ΩW ,i ≡ FW ,i(Ω̂),

each of the mappings ΩW ,i being defined in terms of NURBS basis
functions as in (14).We require that twoneighboring patches share
one full face and we denote the interface by

ΓW ,ij ≡ ΩW ,i ∩ ΩW ,j.

The resulting overall geometrical mapping is globally continuous
but only piecewise smooth. A similar partitioning and similar
notation is used for the multipatch parametrization of the cavity
domain, i.e.

ΩC ≡ ∪
Nc
i=1 ΩC,i

ΩC,i ∩ ΩC,j = ∅ ∀i ≠ j,
(21)

with

ΩC,i ≡ FC,i(Ω̂),

and

ΓC,ij ≡ ΩC,i ∩ ΩC,j.

In Fig. 3 the subdivisions for the two geometries being consid-
ered in this paper are depicted. To extend the linear elasticity (4)
andMaxwell (1) problem to the new geometric setting, a substruc-
turing approach is used. For the problem (4) a new set of unknowns
ui is introduced, such that u|ΩW ,i = ui and aproblemsimilar to (4a)
is set in each patch

∇ ·

2η∇

(S)ui + λI∇ · ui


= 0 in ΩW ,i
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Fig. 3. Patch subdivision for the pill-box cavity (left) and the TESLA cavity (right).

and the overall problem (4) is recovered by imposing continuity of
the displacements and normal stresses at the patch interfaces

ui = uj on ΓW ,ij
2η∇

(S)ui + λI∇ · ui

· nw,i

+

2η∇

(S)uj + λI∇ · uj

· nw,j = 0 on ΓW ,ij.

Similarly for the Maxwell eigenproblem the unknowns Ei are
introduced and the problem to be solved in each patch becomes

∇ ×


1
µ0

∇ × Ei


= ω2

0ϵ0Ei in ΩC,i

with the interface conditions

Ei × nc,i = −Ej × nc,j on ΓC,ij
1
µ0

∇ × Ei


× nc,i +


1
µ0

∇ × Ej


× nc,j = 0 on ΓC,ij.

With respect to standard FEM, where only the tangential
component of the computed solution is continuous across the
elements boundaries, given IGA high regularity properties it is
possible to achieve solutions with higher smoothness (up to
Cp−1) within each patch. Only across the patch interfaces the
regularity is reduced to C0. The patches have been created in
such a way that there are no interfaces across the length (z
direction) of the cavity and this is of great interest since it leads to
smooth solutions particularly along the z-axis of the cavity, where
the particle bunches travel and thus high precision is required.
Classical FEM cavity simulations on tetrahedra may not achieve
sufficient precision since the solution is often affected by undesired
oscillations due to the discontinuities across the elements and not
axis-aligned edges (see Fig. 4). Usually this problem is solved by
using a huge number of tetrahedra, symmetric or hybrid meshes,
e.g., with hexahedra along the axis [12]. By using an Isogeometric
mesh it is possible to completely avoid the problem in an easy and
computationally inexpensive way.

4. Results

The implementation of the discretization scheme just intro-
duced has been done in MATLAB [13] and Octave [14] using
GeoPDEs [15]. Its applicability for cavity simulation has been veri-
fied by using a pill-box cavitywith known closed form solution [16]
(excluding the bases of the cylinder in the mechanical simulation,
i.e. the resulting deformation is only radial). The steps illustrated
in Section 2 have been applied to the first transverse magnetic
(TM010) mode in the cavity and the corresponding detuning has
been computed. The eigenvalue problem has been solved using
the ARPACK library and the Implicitly Restarted Lanczos Method
(IRLM), a variant of the Arnoldi/Lanczos process with the Implicitly
Shifted QR technique that is suitable for large sparse matrices [17].
The new value of the frequency has been compared with the exact
Fig. 4. Oscillations in the transverse component of the electric field along the axis
of the 1-cell TESLA cavity. The correct accelerating field should have Ex = Ey = 0
and only a non zero longitudinal component Ez . The FEM method suffers from
oscillations due to non axis-aligned elements, while the IGA solution is precisely
determined. Both results are obtained with a second order approximation.

solution given by the theory while increasing the mesh resolution
for a given polynomial order (see Fig. 5(a)). Of particular relevance
is the fact that the multiphysical coupling does not decrease the
optimal convergence rates for the eigenvalue problem.

As a comparison, a similar procedure was performed in the
proprietary electromagnetic field simulation software CST STUDIO
SUITE R⃝ [18] that is the quasi-standard for cavity simulation.
The eigenproblem in the cavity is solved in CST MICROWAVE
STUDIO R⃝ (MWS) using the FE eigenvalue solver and the Lorentz
forces are exported to CST MPHYSICS STUDIO R⃝ (MPS) to compute
the wall deformation. The information on the displacement is then
imported once again in MWS, where the detuned frequency f ′

0
is estimated through a sensitivity analysis approach. The results
are depicted in Fig. 5(a) along the IGA ones. The approach used
in CST leads to a linearization of the problem but the method
performs well since the deformations are very small. In addition to
the simulation using sensitivity analysis, the proposed algorithm
for IGA was implemented in CST. The results show that the level
of accuracy reachable in this case for the resonating frequency is
limited to 10−6 (see Fig. 5(b)).

In order to be able to fairly compare the two codes in terms
of efficiency, a set of matrices, with increasing mesh resolution,
was generated in CST for 2nd and 3rd order basis functions and
exported to MATLAB. The same Arnoldi solver used for the IGA
matrices was applied to solve the generalized eigenvalue problem
for the FEM ones. In Table 1 we report the number of degrees
of freedom required by the IGA and FEM methods to achieve a
given level of accuracy, alongside with the time needed to solve
the corresponding eigenvalue problem. Since the B-spline basis
functions have a wider support, the IGA matrices are denser than
their FEM counterparts. For example, given an Isogeometricmatrix
of dimension 50000 approximately, the ratio of non zero elements
over total number of elements is 2.4 · 10−2, while for an analogous
FEM matrix the ratio is 8.8 · 10−4. However the accuracy-per-
degree-of-freedom is higherwhenusing Isogeometric Analysis and
this leads to speed-ups up to 9 times (2nd order, error 1e−8) as
shown in Table 1.

A second more realistic example is the 1-cell TESLA cavity [7]
(see Fig. 1). The accelerating eigenmode of the TESLA cavity is
the TM010 mode at 1.3 GHz. The frequencies for undeformed
and deformed geometry are computed on six meshes with an
increasing number of subdivisions (Table 2). In the last column
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Table 1
Number of DoFs required to compute the first acceleratingmode in the pill-box cavity within a prescribed accuracy (R = 35mm and L = 100mm, f0 = 3.2783579381 GHz).
The IGA implementation was performed in GeoPDEs [15] while for the FEM simulation CST STUDIO SUITE [18] was used (empty cells are due to unavailable FEM matrices).
The times listed refer to the solution of the eigenvalue problem with ARPACK.

Rel. error 2nd order 3rd order
IGA FEM IGA FEM
Ndof t [s] Ndof t[s] Ndof t[s] Ndof t[s]

1e−05 1540 0.2 5346 1.7
1e−06 9828 6.8 46266 21.1
1e−07 18304 14.8 158050 187.6
1e−08 47520 95.1 381036 843.4 4480 2.5 15618 5.8
1e−10 30628 91.7 135246 141.5
1e−11 97888 542.8 461937 1176.3
Table 2
Detuning values for the 1-cell TESLA cavity.

Subs Nel Ndof f0 [GHz] Shift [Hz] Variation [Hz]

1 120 1864 1.29986350 257.565054 –
2 960 7356 1.30100271 238.189022 19.37603
3 3240 18768 1.30099274 223.291696 14.89733
4 7680 38260 1.30100097 218.937003 4.35469
5 15000 67992 1.30100587 217.083298 1.85370
6 25920 110124 1.30100827 216.105059 0.97824
(a) Comparison of IGA proposed method and CST
implementation with sensitivity analysis.

(b) Convergence of CST results for the resonant frequency with
the algorithm proposed in Section 2.

Fig. 5. Convergence of the eigenfrequency for the deformed pill-box cavity (design parameters: R = 35 mm, L = 100 mm, exact frequency f ′

0 = 3.278292919 GHz). The
IGA simulation is performed following the steps described in Section 2. The FEM results are obtained using the commercial software CST.
of Table 2 we report the difference between the values of the
frequency shift computed at two subsequent levels of refinement,
which shows that six subdivisions, corresponding to about 110000
DoFs, are sufficient to achieve an accuracy of about 1 Hz. In this
last case, the total computational time (geometry creation, matrix
construction and eigenvalue solver) is approximately 10–15 min.
In Fig. 6, the undeformed and deformed geometry are compared.
The computed displacement is in the order of 1–10 nm, which is in
good accordance to results reported in literature [7].

Starting from [7], the geometry for full 9-cell TESLA cavity has
been created.With respect to the single cavity, one has to take into
account that, due to the coupling between the different cells, the
fundamental mode splits itself into 9 different modes with similar
frequencies giving rise to the so-called fundamental passband.
The results for these eigenfrequencies are shown in Table 3: the
accelerating mode is the π mode at 1.3 GHz. The z component for
the electrical field of the π modes is depicted in Fig. 7.

5. Conclusions

Low order Finite Element Methods may fail to achieve a suffi-
cient accuracy for calculating Lorentz detuning in superconducting
Fig. 6. On the left: undeformed geometry (pink) and deformed geometry (gray,
amplified by a factor 5 · 105) for the 1-cell TESLA cavity. On the right: deformed
accelerating cavity mode. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

accelerator cavities. This could be alleviated using software where
curved elements and methods such as sensitivity analysis can be
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Fig. 7. The fundamental TM010, π mode for the 9-cell TESLA cavity.
Table 3
Frequencies for the first passband of the 9-cell
TESLA cavity (151888 DoFs).

Mode Frequency [GHz]

1 1.276335705889215
2 1.278421359483793
3 1.281632725459760
4 1.285597822640840
5 1.289849369271624
6 1.293875642584478
7 1.297181927064266
8 1.299363801453597
9 1.300002415591750

exploited. Alternatively, this work proposes Isogeometric Analy-
sis as a solution for Lorentz detuning simulation since it naturally
comprehends a better representation of the curved cavity walls
and a natural way for treatingmechanical deformations within the
electromagnetic eigenvalue problem,without loss of geometric ac-
curacy. The results show that the Isogeometricmethod succeeds in
obtaining reliable results for the frequency shifts. Furthermore, the
tests performed indicate a higher computational efficiency regard-
less of the different properties of the matrices.
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