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Abstract

A mixed basis approach based on density functional theory is extended to one-dimensional

(1D) systems. The basis functions here are taken to be the localized B-splines for the two finite

non-periodic dimensions and the plane waves for the third periodic direction. This approach

will significantly reduce the number of the basis and therefore is computationally efficient for

the diagonalization of the Kohn-Sham Hamiltonian. For 1D systems, B-spline polynomials are

particularly useful and efficient in two-dimensional spatial integrations involved in the calculations

because of their absolute localization. Moreover, B-splines are not associated with atomic positions

when the geometry structure is optimized, making the geometry optimization easy to implement.

With such a basis set we can directly calculate the total energy of the isolated system instead of

using the conventional supercell model with artificial vacuum regions among the replicas along

the two non-periodic directions. The spurious Coulomb interaction between the charged defect

and its repeated images by the supercell approach for charged systems can also be avoided. A

rigorous formalism for the long-range Coulomb potential of both neutral and charged 1D systems

under the mixed basis scheme will be derived. To test the present method, we apply it to study

the infinite carbon-dimmer chain, graphene nanoribbon, carbon nanotube and positively-charged

carbon-dimmer chain. The resulting electronic structures are presented and discussed in details.

PACS: 71.15.Mb, 73.20.-r
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I. INTRODUCTION

There has been increasing interest in one-dimensional (1D) systems on the nanoscale,

such as tubes, wires, rods, ribbons, etc, because the electronic properties of these systems

are fundamentally different from those in higher dimensions due to their unusual collec-

tive excitations. Expectations concerning the creation and application of improved func-

tional electrodevices with better performance characteristics are rising from the intensive

exploration of 1D systems. Particularly, the emergence of nanotechnology has led to the

realization of 1D materials and stimulated both academic research and material innovation.

First-principles methods based on the density functional theory have proven to be pow-

erful and successful in investigating the electronic structures and properties of solids. The

use of a plane-wave basis is most natural for infinite 3-dimensional periodic systems, such

as bulk solids, because of its easy implementation and the fact that the convergence of the

calculation can be checked systematically.

To retain all the advantages of plane-wave expansions and of periodic boundary condi-

tions in the investigation of low-dimensional systems, which are finite along the non-periodic

direction(s), the conventional supercell approximation is adopted by introducing some artifi-

cial vacuum space to separate the periodic replica along the non-periodic direction. However,

this approach suffers from one main drawback. For example, in two-dimensional (2D) sys-

tems, it requires a vacuum layer of large thickness such that the interactions between the

adjacent slabs are negligible, and therefore increases the number of the plane waves along

that direction. In particular, for charged systems (e.g. charged defects), the rather long-

range tail of the Coulomb potential inevitably requires an extremely large separation of the

two slabs and makes the calculation impractical [1]. Many correction schemes have been

devised to remedy this difficulty [2]-[4]. These drawbacks become even more significant in

1D systems.

In previous work [5]-[8], a mixed planar basis approach that is conceptually simple, has

successfully been introduced for the first-principles calculations of 2D systems by expanding

the wavefunction along the periodic directions with 2D plane waves but, for the finite non-

periodic direction, with 1D localized basis of Gaussian functions or B-splines [9]. The use

of this mixed basis has several advantages over the supercell modeling: (1) It resumes the

layer-like local geometry which appears in surfaces and describes the wavefunction in a
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natural way. (2) Because one can calculate the total energy for an isolated slab instead of

using a supercell consisting of alternating slab and vacuum regions, the physical quantity,

such as the work function can be immediately obtained without any correction. (3) For

charged systems, the spurious Coulomb interaction between the defect, its images and the

compensating background charge in the supercell approach can be automatically avoided.

(4) The number of the basis is significantly reduced, easing the computational burden for

the diagonalization of the Kohn-Sham Hamiltonian.

To preserve the above good properties, in the present work, we extend our earlier work

[8] to 1D systems, i.e., with two sets of B-splines to expand the wavefunctions along the

two finite non-periodic directions and 1D plane waves along the periodic one. B-splines are

highly localized and piecewise polynomials within prescribed break points which consist of

a sequence numbers called knot sequence [9] and have proven to be an excellent tool for the

description of wavefunctions [8]-[12]. B-splines have the following properties: (1) due to their

absolute localization, the relevant matrices are sparse. This is particularly useful and efficient

for 1D systems, which involve multi-dimensional spatial integrations. (2) B-splines possess

good flexibility to represent a rapidly varying wavefunction accurately with the knots being

arbitrarily chosen to have an optimized basis. (3) B-splines are, unlike the atom-centered

Gaussian basis, independent of atomic positions, so the geometry optimization can be easily

implemented. Here, a rigorous formalism designed to treat the long-range Coulomb potential

of both neutral and charged 1D systems within the present mixed-basis framework is also

developed.

We apply the present approach to study the infinite carbon-dimmer chain, graphene

nanoribbon, carbon nanotube, and the case of positively-charged carbon-dimmer chains.

We perform the band structure calculation using Vanderbilt’s ultra-soft pseudopotentials

(USPP) [13]. Extensive comparisons are made to the standard supercell approach with

the popular VASP code [14, 15]. It is found that the calculated band structures are very

promising but the number of the basis is significantly reduced. Aside from the reduction,

no further corrections are needed for the charged chain.

3



II. METHOD OF CALCULATION

A. B-splines

For the sake of completeness, we first briefly summarize the B-spline formalism. More

details can be found in Refs. [8] and [9].

B-spline of order κ consists of positive polynomials of degree κ − 1, over κ adjacent

intervals. These polynomials are determined by a knot sequence {τi} and vanish everywhere

outside the subintervals τi < s < τi+κ. The B-spline basis set is generated by the following

relation :

Bi,κ(s) =
s− τi

τi+κ−1 − τi
Bi,κ−1(s) +

τi+κ − s

τi+κ − τi+1

Bi+1,κ−1(s), (1)

with

Bi,1(s) =







1, τi ≤ s < τi+1

0, otherwise .
(2)

The first derivative of the B-spline is given by

d

ds
Bi,κ(s) =

κ− 1

τi+κ−1 − τi
Bi,κ−1(s)−

κ− 1

τi+κ − τi+1
Bi+1,κ−1(s). (3)

Therefore, the derivative of B-splines of order κ is simply a linear combination of B-splines

of order κ−1, which is also a simple polynomial and is continuous across the knot sequence.

Obviously, B-splines are flexible to accurately represent any localized function of s with a

modest number of the basis by only increasing the density of the knot sequence where it

varies rapidly [8].

B. Relevant matrix elements within B-spline basis

In Vanderbilt’s USPP scheme [13], the wavefunction φi satisfies a secular equation of the

form

H|φi >= ǫiS|φi > (4)

under a generalized orthonormality condition

< φi|S|φj >= δij . (5)

Here,

H = −∇2 + Vpp + VH + Vxc , (6)
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with Vpp, VH , and Vxc denoted as the pseudopotential, Hartree potential, and exchange-

correlation potential, respectively, and S is a Hermitian overlap operator. In the following,

we will give a detailed description of the relevant calculations for H and S operators.

By using two sets of B-splines to describe the non-periodic x and y directions and 1D

plane waves for the periodic z direction, the present mixed basis used to expand φi is defined

as

< r| k+G; j, κ; j
′

, κ
′

> =
1√
L

ei(k+G)z Bj,κ(x)Bj
′
,κ

′ (y) (7)

where G and k denote respectively the reciprocal lattice vector, and the Bloch wave vector.

L is the length of the system along the z direction.

We define

< Bi,κ| Bi′,κ >s =

∫

ds Bi,κ(s) Bi′,κ(s) (8)

where s = x or y. It is an integration of local polynomials with bounded support and

vanishes unless the condition |i− i′| ≤ κ is fulfilled . This property is particularly useful for

higher-dimensional integrals involved in the calculations for 1D systems.

The overlap matrix elements between two basis states are given by

< k+G; i, κ; i
′

, κ
′ | k+G′; j, κ; j

′

, κ
′

> = < Bi,κ| Bj,κ >x < Bi′,κ′| Bj′,κ′ >y δG,G′ . (9)

The kinetic energy matrix elements are given by

< k+G; i, κ; i
′

, κ
′ | − ∇2 | k +G′; j, κ; j

′

, κ
′

> (10)

=[ < B′
i,κ| B′

j,κ >x < Bi′,κ′| Bj′,κ′ >y + < Bi,κ| Bj,κ >x < B′
i′,κ′| B′

j′,κ′ >y (11)

+ < Bi,κ| Bj,κ >x < Bi′,κ′| Bj′,κ′ >y (k +G)2 ] δG,G′ . (12)

B′
i,κ(s) is the derivative of Bi,κ(s). As mentioned above, because of the absolute local-

ization of Bi,κ and B′
i,κ, the evaluation for the kinetic part of H|φi > is only an order

Nd(κ− 1)κ , (13)

where Nd is the number of the basis. In practical applications, κ is usually set to be 4

or 5. Therefore, the computational effort for the construction of the kinetic energy matrix

elements scales linearly as Nd.

The local part of Vpp on each atomic site with species σ concerned here was fitted as

V σ
loc(r) = − Zσ

r
erf

(

r

Rσ
c

)

+
∑

i

Aσ
i e

−aσi r
2

. (14)
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Presently, the d-like pseudopotential is chosen as the local pseudopotential. The first term

on the right hand side of Eq. (14) will be referred to as the core term due to the core charge

distribution

nc(r) =
Zσ

π
3

2Rσ
c
3
e
− r2

Rσ
c
2 .

The local pseudopotential of the crystal is then given by

VLOC(r) =
∑

σ,Rσ

V σ
loc(r−Rσ) , (15)

where Rσ denotes the position of each atom with species σ. The Fourier transform of the

local pseudopotential of the crystal excluding the core term, V ′
LOC, is given by

V ′
LOC(ρ, g) =

1

L

∫

dz V ′
LOC(r) e

−igz (16)

=
∑

σ,Rσ
‖
∈ UC

∑

i

(

Aσ
i

Lu

)
√

π

aσi
e
− g2

4aσ
i e−aσi (ρ−Rσ

‖ )
2

. (17)

Here, Lu is the length of the unit cell (UC) along z axis.

The total charge distribution n is defined as the sum of the core charge distributions for

all atoms in the sample nc, plus the electronic charge distributions ne,

n(r) = nc(r) + ne(r). (18)

The Coulomb potential V (C) due to the total electron charge distribution and the exchange-

correlation potential Vxc should be determined self-consistently. The exchange-correlation

potential are deduced from the Monte Carlo results calculated by Ceperley and Alder[16]

and parametrized by Perdew and Zunger[17]. We write

Vxc(r) =
∑

g

Vxc(ρ, g) e
igz . (19)

With the use of the 1D Fourier transformation of 1/r (see the Appendix)

1

r
=

1

π

∫

dqzK0(|qz|ρ) eiqzz

where K0 is the modified cylindrical Bessel function of zero order, the Coulomb potential

due to the total charge distribution is given by

V (C) =

∫∫∫

d3r′
n(r′)

|r− r′|
=

∑

g

V (C)(ρ, g) eigz (20)
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where

V (C)(ρ, g) = 2

∫∫

d2ρ′n(ρ′, g)K0(|g||ρ− ρ′|), (21)

with

n(ρ, g) =
1

L

∫

dz n(r) e−igz .

K0 will diverge when g → 0. But, V (C)(ρ, 0) is still well defined, as explained below.

For the g → 0 case, using the asymptotic behavior of K0

K0(x) → − ln x+ ln 2− γ, x → 0+

where γ is the Euler-Mascheroni constant, V (C)(ρ, 0) is now split into two terms,

V (C)(ρ, 0) = 2 (ln 2− γ − ln |g|)
∫∫

d2ρ′n(ρ′, 0)− 2

∫∫

d2ρ′n(ρ′, 0) ln(|ρ− ρ′|) . (22)

The first term could be safely dropped if the system is charge neutral (
∫∫

d2ρ′n(ρ′, 0) = 0).

We demonstrate in the following that omitting such term still holds for charged systems.

We assume L, the length of the system along the z direction, is arbitrarily large but finite.

With

n(r) =
∑

g

n(ρ, g) eigz , (23)

the g = 0 component of V (C) will be

V (C)(ρ, 0) =

∫∫∫ L/2

−L/2

dz′
√

∆ρ2 + z′2
n(ρ′, 0) d2ρ′ (24)

where ∆ρ = |ρ − ρ′|. Suppose L be much larger than the cell size in the xy plane, i.e.,

L ≫ ∆ρ, then

∫ L/2

0

dz′
√

∆ρ2 + z′2
= ln

L/2 +
√

L2/4 + ∆ρ2

∆ρ
∼ lnL− ln |∆ρ| . (25)

So,

V (C)(ρ, 0) = 2 lnL

∫∫

d2ρ′ n(ρ′, 0)− 2

∫∫

d2ρ′ n(ρ′, 0) ln |ρ− ρ′|. (26)

In the case of charge neutrality, the first term on the right hand side of Eq. (26) vanishes and

we retain Eq. (22). For charged systems with net line charge density Nl =
∫∫

d2ρ′ n(ρ′, 0) 6=
0, such term would be huge. But clearly it is a constant that is independent upon ρ, and

only causes a shift to the total energy. This kind of constant is irrelevant to the band
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structure calculation. Therefore, within the present mixed basis approach, we could, just

like the charge-neutral case, omit the first term without further corrections for the charged

systems.

The numerical integration around the singularity at ρ = ρ′ in Eqs. (21) and ( 22) can

be carried out and averaged over one finer sub-grid unit. In practice, we perform such an

integration over a circle C, whose area is equal to that of the grid unit, as shown in Fig. 1.

We also assume n(ρ′) be constant within such a circle. Then,

2

∫∫

C

d2ρ′n(ρ′, g)K0(|g||ρ− ρ′|) ∼ 4πn(ρ, g)

[

1

g2
− ǫ

|g|K1(ǫ|g|)
]

, (27)

and

− 2

∫∫

C

d2ρ′n(ρ′, 0) ln(|ρ− ρ′|) ∼ −n(ρ, 0)

[

ǫ2 ln ǫ− 1

2
ǫ2
]

. (28)

Here, ǫ is the radius of the circle C and K1 is the modified Bessel function of order 1.

We define the total local potential Veff as

Veff = V (C) + Vxc + V ′
LOC . (29)

To construct the Veff|φi >, we need to calculate < k+G; i, κ; i
′
, κ

′ |Veff|φi > in the real-

space. Again, it can be done efficiently with the advantage of the absolute localization of

B-splines mentioned before.

Now, lets turn to the nonlocal part of H . The atomic nonlocal potential in the Kleinman-

Bylander (KB) form [18] is given as

V σ
nl(r−Rσ) =

∑

nlmn′l′m′

Dσ,Rσ

nlm,n′l′m′ |βσ,Rσ

n,lm >< βσ,Rσ

n′,l′m′ | , (30)

with

Dσ,Rσ

nlm,n′l′m′ = D0,σ
nl,n′l′δl,l′δm,m′ +

∫∫∫

d3rVeff(r)Q
σ
nlm,n′l′m′(r−Rσ) . (31)

The projector βσ
n,lm and the augmentation function Qσ

nlm,n′l′m′ vanish outside the atomic core

region. βσ,Rσ

n,lm denotes the projector centered at the Rσ atom, i.e., βσ,Rσ

n,lm = βσ
n,lm(r−Rσ).

The nonlocal pseudopotential of the crystal is

VNL(r) =
∑

σ,Rσ

V σ
nl(r−Rσ) . (32)
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In practical calculations, we define a box, which is large enough to contain the core region

[19]. The βσ
n,lm(ρ − Rσ

‖ , z) inside the box is transferred to G space, then

βσ,Rσ

n,lm = βσ
n,lm(r−Rσ) =

∑

G

βσ
n,lm(ρ − Rσ

‖ , G) e−iGRσ
z eiGz . (33)

Therefore,

< k +G; i, κ; i
′

, κ
′ |βσ,Rσ

n,lm >

= e−i(k+G)Rσ
z

∑

G′

∫∫

d2ρ Bi,κ(x)Bi′,κ′(y) βσ
n,lm(ρ − Rσ

‖ , G
′)

∫

dz ei(G
′−G−k)z . (34)

Similarly, both Qσ
nlm,n′l′m′(r−Rσ) and Veff(r) in Eq. (31) are also transferred by fast Fourier

transfer (FFT),

Qσ
nlm,n′l′m′(r−Rσ) =

∑

Gh

Qσ
nlm,n′l′m′(ρ − Rσ

‖ , Gh;R
σ
z ) e

iGhz , (35)

Veff(r) =
∑

Gh

Veff(ρ, Gh) e
iGhz . (36)

Then, we obtain

Dσ,Rσ

nlm,n′l′m′ = D0,σ
nl,n′l′δl,l′δm,m′ + Lσ

b

∑

Gh

∫∫

d2ρ [Veff(ρ, Gh)]
∗Qσ

nlm,n′l′m′(ρ − Rσ
‖ , Gh;R

σ
z ) .

(37)

Lσ
b is the length of the core region box along the z axis. Note that the FFT grid density

for Gh in the summation of Eqs. (35) and (36) is not necessarily the same with that for the

wavefunction [19]. Dσ,Rσ

nlm,n′l′m′ in the above should be calculated self-consistently. From Eqs.

(34) and (37), we can evaluate VNL|φi >. In doing this, we need to calculate

< k +G; j, κ; j
′

, κ
′ |VNL|φi >=

∑

σ,Rσ

∑

nlmn′l′m′

Dσ,Rσ

nlm,n′l′m′ < k+G; j, κ; j
′

, κ
′ |βσ,Rσ

n,lm >< βσ,Rσ

n′,l′m′ |φi > .

(38)

Because of the KB separation form in Eq. (38), the computation effort for this part is also

linear to Nd.

As for the Hermitian overlap operator S, which is peculiar to the Vanderbilt USPP

scheme, it is given by

S = I +
∑

σ,Rσ

∑

nlmn′l′m′

qσnlm,n′l′m′ |βσ,Rσ

n,lm >< βσ,Rσ

n′,l′m′ | , (39)
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where qσnlm,n′l′m′ =
∫∫∫

d3rQσ
nlm,n′l′m′(r). S|φi > will be obtained similarly. Finally, the

charge density from the wave function is augmented inside the core region,

ρe(r) =
∑

i

[ |φi(r)|2 +
∑

σ,Rσ

∑

nlmn′l′m′

Qσ
nlm,n′l′m′(r−Rσ) < φi|βσ,Rσ

n,lm >< βσ,Rσ

n′,l′m′ |φi > ]. (40)

To find the lowest eigenvectors of the Hamiltonian matrix H , we used the Lanczos-Krylov

method developed previously [8], with the orthonormality of the wavefunctions maintained

throughout by the standard Gram-Schmidt orthogonalization procedure.

III. APPLICATIONS OF PRESENT METHOD

A. infinite carbon-dimmer chain

For the first example, we study a simple testing case of infinite carbon-dimmer chains,

as shown in the top panel of Fig. 2. The chain has a periodicity of
√
3a0 (a0 = 2.461 Å)

along the z axis and the atom distance of C-C is chosen to a0/
√
3. Two sets of 11 B-splines

that each is defined over a range of 3.25 a0, are used to expand the x and y-component

wavefunction, respectively. The energy cutoff of the 1D plane waves along the z axis is 20

Ry. Special k-points of 1/8 and 3/8 (in unit of 2π/
√
3a0) were taken to sample the 1D

Brillouin zone. The C USPP was generated from the Vanderbilt’s code [20] and its quality

was examined previously [8]. For comparison, we also performed the calculation by using

the VASP code with the projector-augmented-wave potential (PAW) [14, 15]. A typical

vacuum space of 10 Å × 10 Å required in VASP was used in the calculation. The potential

is determined self-consistently until its change is less than 10−6 Ry.

Figure 2(a) displays the band structure between Γ (0) and X (1/2). The VASP counter-

part is shown in Fig. 2(b). Clearly, the present calculation agrees nicely with that by VASP.

The splitting of the twofold degenerate bands due to the symmetry of the system is found to

be smaller than 0.0001 eV. Note that the number of the basis is significantly reduced from

∼ 4300 by VASP to ∼ 1900 by the present method.

B. graphene nanoribbon

Next, in order to provide a stringent test of the present method, a realistic system of

the armchair graphene nanoribbon is considered. The width of the ribbon here is chosen to
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include Na = 19 carbon dimmer lines, as indicated in the left part of Fig. 3. One set of

73 B-splines distributed over a range of 14.25 a0 and another of 11 B-splines over a range

of 3.25 a0 were used to expand the x- and y-components of the wavefunction, respectively.

The energy cutoff of the 1D plane waves for the periodic direction was 20 Ry. The atomic

positions of the system were taken from Ref. [8]. The special k-points for sampling the 1D

Brillouin zone are 1/8 and 3/8.

The present band structures near the Fermi level are displayed in Fig. 3(a). To make a

comparison, we also show the previous calculations and VASP results [8] in Figs. 4(b) and

(c), respectively. In previous work [8], we adopted the planar mixed basis set to study the

nanoribbon by using the surface supercell modeling for the x − z plane. Namely, we used

only one set of B-splines to expand the y component of the wavefunction. As compared

with the VASP calculation, which was obtain by the traditional 3-dimensional supercell

modeling, the total number of the basis in previous work [8] is reduced from ∼17000 to

∼12300. Now, if we use another set of B-splines for the x non-periodic direction, then the

number is further reduced to 8800 only. However, it can be seen from the figures that there

is a very nice agreement between these three approaches. This reflects the advantage of

using B-splines for non-periodic directions over the plane waves, especially for 1D systems.

Actually, we have done all the calculations of the Na < 19 families. All the results are found

in excellent agreements with those by VASP. Therefore, we are convinced that the present

program has been implemented successfully for 1D systems and the results obtained are

very reliable. Moreover, as compared to the traditional supercell modeling, the use of the

present mixed basis will significantly reduce the number of the basis functions and speed up

the calculations for 1D systems.

C. zigzag carbon nanotube

Now, we study carbon nanotubes (CNTs), allotropes of carbon with a cylindrical nanos-

tructure. We choose the (4,0) zigzag CNT (Fig. 4) as the third example.

A mixed basis set with two identical sets of 29 B-splines over a range of 6.25 a0 along the

two non-periodic directions and the plane wave cutoff of 20 Ry along the periodic direction

are used. All C atoms were kept at the ideal positions which were obtained by rolling the

ideal graphene sheet with the C-C bond length taken to be a0/
√
3. The special k-point for
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sampling the 1D Brillouin zone was 1/4. The resultant band structures are presented in Fig.

4(a), along with the VASP calculations in Fig. 4(b) for comparison.

Clearly, all bands compare favorably with those by VASP. It is worth mentioning that it

would be more efficient to investigate nanotubes or rods if we expand the wavefunction in

cylindrical coordinates rather than in Cartesian ones. Here, we utilize this system to test

the present program. With the present algorithm to study CNT, the B-splines used are

more densely distributed as compared to the first two cases. And the relevant real-space

integrations were carried out with finer grids (48 equal divisions within a0) to obtain precise

results. Nevertheless, the total number of the basis used here is reduced from ∼9700 by

VASP to ∼8000 by the present mixed-basis approach. To sum up, we have demonstrated

that the present program is computationally efficient to produced reliable results.

D. charged carbon-dimmer chain

Finally, we apply the present method to charged systems which are very challenging

for the supercell modeling because of the spurious long-range Coulomb interaction between

the defect and its periodic images. For simplicity, we still use the same system of the

infinite carbon-dimmer chain, but here with one of every eight electrons removed. That

is, the nominal ionicity of C in this artificial positively-charged chain is +0.5. All other

computational conditions are similar to the first example described above. The resulting

band structure is shown in Fig. 5(a). We also show the VASP result in Fig. 5(b), which

was obtained by using a homogeneous compensating background charge.

It is obvious that the present approach yields very similar results to those by VASP.

Notably, the convergence rate of the calculation is fast and comparable to the neutral case.

In the supercell approach, the charged defects are unfortunately subjected to the spurious

image interaction, and no supercell size in practice would be sufficient to render this long-

ranged electrostatic interaction negligible. Various types of corrections have been proposed

to remove the interactions between the charged defect, its image, and the background charge

[2]-[4]. On the other hand, in the mixed-basis approach, it is natural to drop the logarith-

mically divergent term of Eq. (26) that has similar effect to the cancellation between the

electrostatic energies from the defects and the uniform compensating background assumed

in the supercell model. No further corrections are needed in our scheme since only one
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single isolated charged system rather than an array of the replicated ones is under consid-

eration. Hence, we have developed an alternative promising method to study both neutral

and charged 1D systems with no complications.

IV. CONCLUSIONS

In conclusion, we have successfully extended the previous mixed-basis approach to inves-

tigate the electronic structures of one-dimensional systems with plane waves for the periodic

direction and B-spline sets for the two non-periodic directions. As compared to the existing

algorithms based upon the conventional supercell model with alternating slab and vacuum

regions, it is a real space approach along the two non-periodic directions. Therefore, the

number of the basis functions used to expand the wavefunction is significantly reduced

and the spurious Coulomb interaction between the defect, its images and the compensating

background charge appeared in the supercell approach can be automatically avoided.

The new technique has been demonstrated to yield accurate and computationally efficient

treatments of the infinite carbon-dimmer chain, graphene nanoribbon, carbon nanotube, and

the system of the positively-charged chain. It is found that the band structures are all in

good agreement with those by the popular existing codes, but with a reduced number of basis

functions. Moreover, no further corrections are needed for the charged case. We have shown

that the present method is very suitable to investigate either neutral or charged 1D materials

without the need of artificially large supercells or corrections for supercell interactions.
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Appendix

1

r
=

4π

(2π)3

∫∫∫

eiqr

q2
d3q (A.1)

=
1

2π2

∫∫∫

eiq‖ρ

q2‖ + q2z
d2q‖ eiqzzdqz (A.2)

=
1

2π2

∫∫∫

eiq‖ρ cosφ

q2‖ + q2z
q‖dq‖dφ eiqzzdqz . (A.3)

With the identity

J0(x) =
1

2π

∫ 2π

0

eix cosφdφ (A.4)

where J0 is the Bessel function of order 0,

1

r
=

1

π

∫∫

J0(q‖ρ)

q2‖ + q2z
q‖dq‖ eiqzzdqz . (A.5)

Using another identity
∫ ∞

0

xJ0(ax)

x2 + k2
dx = K0(ak) [a > 0,Re k > 0] (A.6)

We obtain
1

r
=

1

π

∫

dqzK0(|qz|ρ) eiqzz . (A.7)
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FIGURE CAPTIONS

Fig. 1: Schematic plot of the grid unit containing the singularity at ρ = ρ′ for the Coulomb

potential. See text for details.

Fig. 2: (Color online) (top) Atomic structure of the infinite carbon-dimmer chain.

(a) and (b) are the corresponding band structures obtained by the present work and VASP.

Fig. 3: (Color online) (left) Atomic structure of the armchair graphene nanoribbon.

(a), (b) and (c) are the band structures near Fermi level by the present work, previous work

[8] and VASP, respectively.

Fig. 4: (Color online) (top) Atomic structure of the (4,0) zigzag carbon nanotube.

(a) and (b) are the band structures obtained by the present work and VASP.

Fig. 5: (Color online) The band structures of the positively charged carbon-dimmer

chain obtained by (a) the present work and (b) VASP with a uniform background charge.

16



FIG. 1:
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FIG. 2:
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FIG. 3:
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FIG. 4:
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FIG. 5:
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