
ar
X

iv
:1

50
5.

07
27

1v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
7 

M
ay

 2
01

5

Particle-in-Cell Laser-Plasma Simulation on Xeon Phi

Coprocessors

I.A. Surmina, S.I. Bastrakova, E.S. Efimenkoa,b, A.A. Gonoskova,b,c,
A.V. Korzhimanova,b, I.B. Meyerova,∗

aLobachevsky State University of Nizhni Novgorod, Building 2, 23 Gagarina Avenue, Nizhni

Novgorod, Russia 603950
bInstitute of Applied Physics of the Russian Academy of Sciences, 46 Ul’yanov Street,

Nizhni Novgorod, Russia 603950
cChalmers University of Technology, SE-412 96, Gothenburg, Sweden

Abstract

This paper concerns development of a high-performance implementation of
the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coproces-
sors. We discuss suitability of the method for Xeon Phi architecture and present
our experience of porting and optimization of the existing parallel Particle-in-
Cell code PICADOR. Direct porting with no code modification gives perfor-
mance on Xeon Phi close to 8-core CPU on a benchmark problem with 50
particles per cell. We demonstrate step-by-step application of optimization tech-
niques such as improving data locality, enhancing parallelization efficiency and
vectorization that leads to 3.75 x speedup on CPU and 7.5 x on Xeon Phi. The
optimized version achieves 18.8 ns per particle update on Intel Xeon E5-2660
CPU and 9.3 ns per particle update on Intel Xeon Phi 5110P. On a real prob-
lem of laser ion acceleration in targets with surface grating that requires a large
number of macroparticles per cell the speedup of Xeon Phi compared to CPU
is 1.6 x.

Keywords: plasma simulation, Particle-in-Cell, Xeon Phi
PACS: 52.65.Rr, 52.38.-r
2010 MSC: 68W10

1. Introduction

The progress in high intensity laser pulse generation throughout the last
20 years has stimulated theoretical and experimental research on ultra-intense
laser-matter interaction in extremely relativistic regimes [1, 2]. This is valuable

∗Corresponding author
Email addresses: i.surmin@gmail.com (I.A. Surmin), bastrakov@vmk.unn.ru

(S.I. Bastrakov), evgeny.efimenko@gmail.com (E.S. Efimenko), arkady.gonoskov@gmail.com
(A.A. Gonoskov), korzhimanov.artem@gmail.com (A.V. Korzhimanov), meerov@vmk.unn.ru
(I.B. Meyerov)

Preprint submitted to Elsevier May 28, 2015

http://arxiv.org/abs/1505.07271v1


for both fundamental research on physics of matter in extreme conditions and
various applications. The notable directions are: laser-driven electron acceler-
ation to the ultrarelativistic energies [3], acceleration of ion beams to tens and
hundreds MeV / nucleon [4, 5], generation of X-ray and gamma ray radiation
including pulses of atto- and zeptosecond duration [6], and QED effects in ul-
trahigh intensity field, namely electron-positron pair production and nonlinear
optics of vacuum [7, 8]. The applications are fast ignition of inertial confinement
fusion targets [9], hadron therapy for cancer treatment [10], protonography, x-
ray imaging [11], etc.

High intensity laser-matter interaction involves several nonlinear physical
phenomena: relativistic and ponderomotive self-focusing, collisionless heating,
various plasma instabilities, high harmonics generation, and others. The proper
analytical examination is only possible in several simple cases. Thus, one of the
main tools for theoretical research is numerical simulation. Along with investi-
gation of the underlying physics, computer simulation helps to set experiments
by allowing faster and more efficient adjustment of parameters for laser and
target, designing experimental schemes, and interpretation of the results.

The most widely used method for simulation of plasma in ultrahigh field is
the Particle-in-Cell (PIC) method [12], which allows to perform full 3D simula-
tions that capture the main processes governing laser-plasma interaction. The
computational complexity of the Particle-in-Cell method is relatively low com-
pared to other kinetic methods (e.g. Euler [13]), yet large-scale 3D simulation
requires high-performance implementation aimed at supercomputers. Currently,
several widely known implementations of the fully relativistic Particle-in-Cell
method are capable of 3D large-scale plasma simulation on supercomputers,
most notably, OSIRIS [14], VPIC [15], VLPL [16], WARP [17], PIConGPU
[18]. The striking example of continuous progress in accelerating the simula-
tion in terms of both algorithms and implementation efficiency is a relativistic
boosted frame that allows to speed up simulations of laser propagation in low
density plasma by a factor of tens [17].

Heterogeneous cluster systems are based not only on convenient CPUs, but
also on different types of accelerators, including GPUs and the recently in-
troduced Intel Xeon Phi coprocessors. This results in a growing interest in
Particle-in-Cell adaptations for such systems. While the Particle-in-Cell method
is generally suitable for modern GPUs, its efficient implementation requires a
meticulous approach to data structures and parallel processing schemes as well
as conscious usage of different layers of GPU memory and is by no means a
simple port of an efficient implementation for CPUs.

Although several successful porting of applications to Xeon Phi coprocessors
have been reported recently[19–21], it is not certain if a significant portion of
peak performance is achievable for a wide class of applications, and does efficient
porting of an existing application require code tuning in scope of OpenMP or
rather massive rewriting similar to porting to GPUs. A brief analysis shows that
although a straightforward porting can be done very quickly even for a large
application, it will be efficient only if the application was properly optimized
for CPUs and has a large degree of parallelism on thread-level and SIMD-level.

2



This might be a limiting factor, as many implementations scale well up to 8–16
threads, but not up to 120–240 threads or are only capable of using low width
SIMD. Another obstacle similar to GPUs might be a small amount of memory,
which on Xeon Phi is only 6–16 GB. Thus, a no-effort ”just rebuild” porting
does not seem to be efficient except some very special cases, at the same time a
porting with reasonable additional tuning seems promising.

This paper presents our experience with porting the existing parallel Particle-
in-Cell plasma simulation code PICADOR [22, 23] to Xeon Phi coprocessors.
We demonstrate a step-by-step optimization process with iterative bottleneck
analysis and application of optimization techniques. We believe that the encoun-
tered problems and applied optimizations are not specific to the Particle-in-Cell
implementation and similar ideas are useful for a wide class of applications. We
illustrate porting and optimization of the code on CPUs and Xeon Phi coproces-
sors. We use a benchmark frozen plasma simulation problem with ideal balance
and no MPI exchanges. The performance of the final version is then evalu-
ated on a real problem of laser ion acceleration in targets with surface grating.
This problem is shown to be demanding a high number of macroparticles which
makes it highly suitable for acceleration by means of Xeon Phi coprocessors.

The paper is organized as follows. The Particle-in-Cell method is briefly
described in section 2. In section 3 we discuss suitability of the method for
Xeon Phi coprocessors and optimization methodology. We present experience
of porting and optimization of the Particle-in-Cell plasma simulation code PI-
CADOR to Xeon Phi in section 4. Section 5 contains performance evaluation
of a real simulation.

2. Particle-in-Cell Method

This section briefly describes the Particle-in-Cell method in the form used
in our implementation, a detailed description is given in [12].

The simulation area is a 3D axis-aligned parallelepiped covered by uniform
spacial grid. Dynamics of the electric field E and magnetic field B is defined
by the Maxwell’s equations solved on the grid using the FDTD method [24].
Plasma is represented as an ensemble of N charged quasi-particles, each with a
variable momentum p and position r , and constant mass m and charge q. The
position and velocity v evolve according to Newton’s law in relativistic form that
is numerically integrated using Boris method. Particles motion creates electric
current j that is a part of Maxwell’s equations, enclosing the self-consistent
system of equations.

A basic computational scheme of the Particle-in-Cell method with the main
equations and data dependencies is given in Fig. 1. An iteration of the com-
putational loop corresponds to a time step. Each time step consists of 4 main
stages. Field solver updates grid values of the electromagnetic field. Field inter-
polation from the grid to particle position is performed to compute the Lorenz
force affecting particles. Solving equations of particle motion is used to push
particles one step further. The computational loop closes with computation
of current created by particle motion. In terms of software implementation

3



Figure 1: Computational scheme of the Particle-in-Cell method. An iteration of the compu-
tational loop corresponds to a time step. The equations are given in the CGS system. Arrow
labels denote data dependencies between stages.

it is convenient to merge the field interpolation, force computation and solv-
ing equations of particle motion into one stage, referred as particle push. The
Particle-in-Cell method can be extended in many ways [25], in this paper we
consider only the basic version of the method as these stages take significant
share of computational time even in more complicated simulations.

The Particle-in-Cell method operates on two principally different data sets:
an ensemble of charged particles with continuous coordinates and values of the
field and current density set on a discrete grid. The most time consuming stages
of particle push and current deposition operate on both data sets, thus imple-
mentation of these stages plays a major role in both accuracy and computational
efficiency.

3. Implementation of the Particle-in-Cell Method for Xeon Phi Co-
processors

In this section we analyze suitability of the Particle-in-Cell method for Xeon
Phi coprocessors and discuss optimization techniques required to achieve good
performance. There are several highly efficient implementations of the method
for GPUs [18] which implies good suitability for Xeon Phi as well. However,
there are several Xeon Phi-specific features and considerations.

3.1. Overview of Xeon Phi Coprocessors

A Xeon Phi coprocessor has 60 cores (61 on some modifications) on shared
memory with Linux on board. The cores are x86-compatible, but have sim-
plified architecture compared to CPU cores with no support to out-of-order

4



execution and branch prediction, combined with wider 512-bit vector registers
(256-bit on modern CPUs). Each core supports up to 4 hardware threads, it
is recommended to run at least 2 threads per core [26]. The peak performance
of a Xeon Phi core is lower than of a modern CPU core, but larger number of
cores provides overall nearly 1 TFLOPS peak performance in double precision.
Another notable advantage over CPUs is GDDR5 memory with about 350 GB/s
peak throughput, 5 to 10 times larger compared to CPUs.

Programming for Xeon Phi can be done using traditional programming lan-
guages and parallel programming libraries: C, C++, Fortran languages, MPI,
OpenMP, Cilk Plus, OpenCL, TBB and MKL libraries. This significantly sim-
plifies porting of existing applications as the vast majority of code (or even
full code) does not need to be modified for Xeon Phi. There are three execu-
tion modes: running only on Xeon Phi as a multicore processor (native mode),
running the main program on a CPU and calling computational cores on a co-
processor similar to GPU usage (offload), running some MPI processes on CPUs
and some on Xeon Phi coprocessors (symmetric) [26].

Overall, Xeon Phi has manycore architecture with wide vector registers and
high throughput memory. Parallelism on both thread level (120–240 threads)
and 512-bit SIMD level is crucial for good performance. Although existing
applications can generally be ported without any significant effort, performance
of such ports is not guaranteed even for implementations that are efficient on
CPU. Some additional optimization and tuning is most likely required. However,
the main optimization principles for CPU and Xeon Phi coprocessors are similar,
so optimization for one of the platforms is likely to yield benefit for the other.

3.2. Analysis of Suitability of the Particle-in-Cell Method for Xeon Phi Copro-

cessors

Generally there are several fundamental factors that determine applicability
of accelerators such as GPUs and Xeon Phi coprocessors. First, there is a
memory limitation of 6 to 16 GB RAM per accelerator which is coupled with a
PCI Express bus to the host. While this could be very restrictive for applications
working with large sets of data, Particle-in-Cell simulations are spatially local,
thus allowing to efficiently decompose a problem between many computational
nodes and fit memory limitations of a node.

Performance-wise Xeon Phi coprocessors offer about 5 x peak performance
advantage over top server CPUs. Achieving a significant share of peak per-
formance is challenging on CPUs and even more so on Xeon Phi coprocessors.
However, a half of peak performance of Xeon Phi is attributed to vector fused
multiply-add (FMA) instruction that performs two floating-point operations at
once. Obviously, real applications do not consist of sequences of pure FMA calls
and not utilizing FMA effectively reduces performance by half.

Efficient utilization of Xeon Phi requires excellent scaling on shared mem-
ory. Coprocessors offer 60 cores with up to 4 hardware threads. Well-suited
applications usually either scale well up to 120–240 threads or use efficient hy-
brid MPI + OpenMP parallel scheme. One way or another, the method must
have a significant parallelization potential. An ideal application in this regard

5



(for pretty much all parallel hardware) is a Monte-Carlo method, which allows
ideal scaling. The Particle-in-Cell method also allows ideal scaling on shared
memory CPU cores and, in our experience, 75% scaling efficiency on Xeon Phi
cores (for large number of particles per cell). It is important to note that good
scalability is only the necessary condition for efficient utilization of Xeon Phi,
but not sufficient.

Another important — and often the most challenging — factor is utilization
of vector units for performing floating-point operations, so-called vectorization.
Vectorization is important for CPUs, and even more so on Xeon Phi due to 512-
bit vector registers compared to 256-bit on modern CPUs. As consequently, vec-
torization theoretically offers double dividend on Xeon Phi compared to CPUs
and lack of vectorization puts double penalty on Xeon Phi performance. The
Particle-in-Cell method is not an easy candidate for vectorization. A straightfor-
ward implementation of field interpolation and current deposition in 3D results
in non-unit stride (not local) memory access pattern that is detrimental to vec-
torization. A special organization of those operations is required to allow proper
vectorization.

Our analysis shows that the Particle-in-Cell method, although not ideally
suited for Xeon Phi coprocessors due to vectorization issues, is a promising
candidate. We will show that with proper programming a Xeon Phi coprocessor
can achieve about 2 x speedup over a tuned implementation on a modern 8-core
CPU on both benchmark and simulation of the real problem.

3.3. Optimization Methodology

Although some computational applications are developed for specific class
of hardware and thus could largely benefit from hardware-specific features, the
vast majority of applications are initially developed for CPUs and then ported to
accelerators. This subsection is devoted to general discussion of porting and op-
timization of an existing computational application from CPUs to accelerators.
We suppose the numerical schemes being used are suited for parallel processing
and the code is developed using standard for HPC programming languages C,
C++ or Fortran and parallel programming technologies MPI and OpenMP.

By all means, one should start with optimization for modern CPUs mainly
focusing on scaling efficiency and vectorization. In most cases this optimization
is beneficial for Xeon Phi as well. An existing code can be ported to Xeon
Phi by just recompiling it with Intel Compiler; this is a substantial advantage
of Xeon Phi over GPUs that generally require significant modification of the
code. In our experience this ”no-effort” port usually requires several minutes in
an ideal case to several hours, mostly spent on rebuilding third-party libraries.
Performance of such port can be discouraging even for codes that are fairly
efficient on CPUs. It is essential to use profiling tools to discover the most time-
consuming routines and performance-limiting factors. Pieces of code that were
fast enough to not optimize and parallelize on CPU often become a bottleneck
on Xeon Phi due to larger amount of cores and poor single-core performance.
After such unexpected bottlenecks are eliminated, one should generally focus

6



on scaling efficiency and vectorization in the most time-consuming routines and
loops.

We have employed this approach to porting our implementation of the
Particle-in-Cell method, gradually profiling, solving performance issues and
measuring effect of optimization on CPU and Xeon Phi. Only after our op-
timization resources on CPU were exhausted, we proceeded to trying Xeon
Phi-specific optimizations. Those included manual vectorization using intrin-
sics translated into vector instructions of Xeon Phi, using large memory pages
to reduce DTLB miss rate, non-temporal stores for better cache utilization effi-
ciency, adjusting number of processors and threads in MPI + OpenMP scheme.
Most of the enlisted optimization techniques did not yield a significant if any
performance benefit for our application, a notable exception is manual vector-
ization via intrinsics.

4. Porting and Optimization of the Particle-in-Cell Code PICADOR

4.1. PICADOR Particle-in-Cell Code

PICADOR [22, 23] is a fully parallel 3D Particle-in-Cell implementation ca-
pable of running on heterogeneous cluster systems with CPUs, GPUs and Xeon
Phi coprocessors. Features of PICADOR include FDTD and NDF field solvers,
Boris particle pusher, CIC and TSC particle form factors, Villasenor-Buneman
and Esirkepov current deposition, ionization, moving frame, and dynamic load
balancing. Each MPI process handles a part of simulation area (domain) us-
ing either a multicore CPU or Xeon Phi coprocessor via OpenMP, or GPU via
CUDA. All MPI exchanges occur only between processes handling neighboring
domains.

The baseline version was developed taking into account some common knowl-
edge performance considerations, the short description is given below.

Values of each vector component are stored separately in a 3D array wrapped
into 1D. Current values are written directly to global current arrays, similarly,
field values are read directly from global field arrays. The key performance con-
sideration is a particle storage. We use separate array of particles per each cell
with Array-of-Structures (AoS) layout. This approach varies from the widely
used global particle array with sorting strategy and is closer to data struc-
tures used for GPU-based implementation (but without supercells common for
GPUs).

On the most time consuming particle push and current deposition stages
particles are processed in a cell-by-cell order. Particles in several cells are pro-
cessed in parallel using OpenMP in one-pragma style. After each particle push
we perform a check and, in case a particle leaves the current cell, update particle
storage structure accordingly. This migration check is done partly in parallel:
each thread has its own buffer for migrating particles, after all checks are done
all buffers are merged and processed sequentially. On the current deposition
stage each thread writes to its own current buffer to avoid data races, all buffers
are summed after the stage is over.

7



4.2. Benchmark, Hardware and Performance Measurement Details

For all the performance measurements presented in this paper we used a
frozen plasma benchmark with 40× 40× 40 grid, 50 particles per cell, and 1000
time steps. We used CIC particle formfactor for field interpolation and current
deposition, and perform all calculations in double precision. The time given in
tables refers only to the computational phase which is a sum of particle push,
current deposition and field update.

Computational experiments were done on a node of Lobachevsly cluster
system at University of Nizhni Novgorod with 8-core Intel Sandy Bridge E5-
2660 CPUs (2.2 GHz), 64 GB RAM, and 2 Intel Xeon Phi 5110P coprocessors,
each with 60 cores, 240 threads, and 8 GB RAM. Peak performance of each
CPU in double precision is 140 GFLOPS, and peak performance of Intel Xeon
Phi 5110P is 1 TFLOPS. The code was compiled with Intel C++ Compiler.

Table 1 presents performance results of the baseline version on the CPU
and Xeon Phi. On Xeon Phi we used native mode and porting required only
rebuilding the code and libraries with compiler options for Xeon Phi support
(-mmic). Performance on Xeon Phi is very close to CPU, but time distribution
between stages is different with faster particle push and significantly slower field
update. Thus, no effort port gives reasonable performance (taking in account
in only took several hours) but further optimization is required.

Table 1: Performance of the baseline version on CPU and Xeon Phi

Stage
Time [s]

CPU Xeon Phi
Particle push 163.1 134.8

Current deposition 61.3 81.3
Field update 0.8 7.7

Total 225.2 222.8

4.3. Improving Memory Locality

A natural and widely used idea for efficient implementation of the Particle-
in-Cell method is to use physical locality of the method — each particle is
interacting only with several closest field values — and transform it into memory
locality to allow cache-friendly implementation. With CIC particle formfactor
and Yee grid particles in each cell interact only with 27 closest grid values
for each field and current component (a cube with side 3). Before processing
particles of a cell we preload corresponding 27 surrounding field values into a
small local array and use these values for field interpolation. In a similar way,
we accumulate currents created by particles of a cell in a small local array and
add it to the global array after all particles are processed. Thus, we replace the
majority of memory operations with global field and current arrays with the
same operations on local arrays.

8



The comparison of performance of this version and the baseline version is
presented in Table 2. Improving memory locality yields over 3 x benefit over
the baseline on both CPU and Xeon Phi.

Table 2: Performance of the version with improved memory locality

Stage
Time [s] Speedup to the baseline

CPU Xeon Phi CPU Xeon Phi
Particle push 56.9 41.3 2.87 x 3.26 x

Current deposition 14.0 16.9 4.38 x 4.81 x
Field update 0.8 7.7 1.00 x 1.00 x

Total 71.7 65.9 3.14 x 3.38 x

4.4. Enhancing Scalability on Shared Memory

Efficiency of scaling on shared memory is important for multicore CPUs
and even more for Xeon Phi. First, we changed parallel current deposition
scheme. While storing a separate global current array for each thread to avoid
data races is possible for 16 threads it is probably not the most efficient way
and definitely not practical for 240 threads of Xeon Phi. Thus, we developed
a new parallel current deposition scheme that does not replicate global current
array. Again, we employ locality properties described in the previous subsection.
Since particles in each cell only contribute to grid values in 3×3×3 surrounding
cube, particles that are distant enough from one another can be processed in
parallel without any risk of data races. Namely, for CIC form factor we can
concurrently process cells that have 2 unprocessed cells in between; the same
idea can be applied to other form factors with probably larger distance. Thus,
current deposition consists of 27 particle traversals in checkerboard order, each
internal traversal is parallel with only synchronization at the end of the traversal.

Then we eliminated sequential migration of particles between cells. Due to
relation between space and time steps, particle can not pass the distance greater
than cell size in one time step. Thus, a migrating particle is necessarily located
in a neighbor cell. We again applied the checkerboard order parallelization
scheme. For each cell we create a buffer for particles migrating to this cell,
after pushing a particle each thread computes new cell index and in case of
migration writes the particle to a buffer of the new cell. Because of locality and
checkerboard traversal order there is not need for synchronization except at the
end of each traversal.

The performance of this version is presented in Table 3.

4.5. Improving Vectorization

Efficient vectorization is a key factor in achieving good performance on CPUs
and particularly on Xeon Phi coprocessors. The main reason for lackluster
performance on Xeon Phi is poor vectorization of the code.

9



Table 3: Performance of the version with improved memory locality and enhanced scalability

Stage
Time [s] Speedup to the baseline

CPU Xeon Phi CPU Xeon Phi
Particle push 52.1 37.1 3.13 x 3.63 x

Current deposition 13.9 13.1 4.41 x 6.21 x
Field update 0.7 1.8 1.14 x 4.28 x

Total 66.7 52.0 3.38 x 4.28 x

We tried two approaches to vectorization. First we tried to assist the com-
plier with auto-vectorization by using special directives of Intel Compiler (such
as #pragma ivdep and #pragma simd) and loop splitting. It allowed to vector-
ize implementation of field update and the Boris method for particle push, but
did not vectorize more time-consuming field interpolation and current deposi-
tion because of complicated memory access pattern. Thus, vectorization lead to
a modest speedup of particle push and field update, as shown at Table 4, this
version for Xeon Phi is denoted as v1.

Table 4: Performance on CPU and Xeon Phi after improving vectorization. Compiler auto-
vectorization version on Xeon Phi is denoted as v1, version with manual vectorization of field
interpolation and current deposition is denoted as v2.

Stage
Time [s] Speedup to the baseline

CPU Xeon Phi v1/v2 CPU Xeon Phi v1/v2
Particle push 45.6 20.2 / 18.8 3.58 x 6.67 x / 7.17 x

Current deposition 13.8 13.0 / 10.1 4.44 x 6.25 x / 8.05 x
Field update 0.6 0.8 / 0.8 1.33 x 9.63 x / 9.63 x

Total 60.0 34.0 / 29.7 3.75 x 6.55 x / 7.50 x

The main reason of lackluster speedup due to vectorization is that for each
cell we have to store 3 × 3 × 3 arrays of field and current density components,
while each particle uses 2× 2× 2 subarray depending on its position inside the
cell. The implementation uses indirect indexing which renders vectorization of
the loop over particles inefficient on Xeon Phi.

To eliminate indirect indexing the field and current density values have been
repacked into eight 2 × 2 × 2 arrays each corresponding to an octant of a cell.
Those arrays contain 512-bit vector elements of the components of the electric
and magnetic field (6 values) for field interpolation and the components of the
current density (3 values) for current deposition. Thus, field interpolation ef-
fectively uses 75% of the vector register length and current deposition uses only
37.5%. For each particle we determine the octant it belongs and perform the
corresponding operation with vector registers using intrinsics. This modification

10



was only done for Xeon Phi as vector extensions are different for Xeon Phi and
CPUs and yield additional 1.15 x overall speedup, as shown at Table 4.

The main obstacle for efficient vectorization is indirect addressing caused
by usage of the standard Yee grid for values of the electro-magnetic field and
current density [24]. As shown in [21], vectorization can be done much easier
for a more straightforward grid.

5. Performance Evaluation on a Real Simulation

5.1. Problem Statement

In this section we present the results of efficiency measurements of our Xeon
Phi implementation solving a real physical problem. As an example, we chose a
laser ion acceleration in a so-called Target Normal Sheath Acceleration (TNSA)
regime [27]. In this regime ions are accelerated from a rear side of a thin (sub-
micron thick) solid-state target by quasistatic electron sheath. This sheath is
formed by hot electrons accelerated to relativistic energies by laser field at front
surface of the target. One of the main problems of the scheme is its low efficiency
[5]. Recently, it has been suggested to use surface grating on the irradiated size
of the target to increase laser-electron coupling and therefore increase amount
of energy transferred from laser radiation to ions [28]. This proposal has been
tested via a number of 2D numerical simulations [29–31], however for more
realistic results full 3D simulations are needed especially for investigation of
complex gratings. Realistic 3D simulations, however, are known to be extremely
resource-demanding and thus may greatly benefit from the opportunity to be
run on heterogeneous systems enabling resources of Xeon Phi coprocessors.

We investigated irradiation of a 0.3 µm thick target composed of Au+31
197

ions with plasma density corresponding to electron concentration 3×1021 cm−3

(overdense parameter n0 = 30). The accelerated proton layer with the same
electron concentration and 0.1 µm thickness has been attached to a rear side
of the target. The grating in the form of rectangular brush modulated along
y-axis only has been placed on an irradiated side. The grating height has been
chosen to be equal to 0.3 µm, the thickness of a single element was equal to
0.15 µm and the grating period was equal to 0.5 µm. Initial temperature of
all plasma components was 100 eV which is referred to values usually expected
from collisional heating.

The laser pulse normally impinged on the target was supposed to be an
infinite in transversal direction plane wave propagating along x-axis and linearly
polarized in the y-direction. It had a Gaussian envelope along propagation axis
with duration at full width half maximum equal to 42 fs and its wavelength was
equal to 1 µm. The laser intensity in maximum reached 3.75 × 1019 W/cm2

(dimensionless amplitude a0 = 5.2). These parameters are typical for Ti:Sa
terawatt systems widespread nowadays in laboratories worldwide.

The simulation area is a box of size 12×1×1 µm covered with 512×64×64
grid. A time step was equal to 0.026 fs and the total simulation time was 300 fs,
requiring 11 512 time steps to complete.

11



Figure 2: Dependence of the maximal ion energy on the number of particles per cell.

The maximal ion energy Wmax is sensitive to the number of macroparticles
per cell NPPC . This is due to the fact that higher NPPC provides better res-
olution of a tail of sheath electron energy distribution and this tail is known
to define the maximal energy Wmax reached by the accelerated ions. In our
simulations we varied PPC-parameter in 10 to 150 range in order to investigate
the dependence of Wmax on NPPC , which is shown in Fig. 2. One can see
that obtained maximal ion energy steadily grows with increasing NPPC until it
reaches 14.8 MeV at NPPC = 80 and does not grow further. This feature of the
investigated problem makes it highly favourable for running on Xeon Phi copro-
cessors because in comparison with CPUs they do Particle-in-Cell simulations
with high NPPC faster.

5.2. Performance Evaluation

We measured performance of simulations on 2 CPUs and 2 Xeon Phi copro-
cessors with the number of particles per cell varying from 10 to 80. The results
are presented in Fig. 3. Three most time-consuming stages are particle push,
current deposition and MPI exchanges. Other stages, including field solver,
pulse generation and absorbing boundary conditions took negligible time.

MPI communication phase on Xeon Phi takes much longer not only due
to additional data transfer between coprocessor and host occurring with each
MPI data exchange, but mainly due to preparation of the data to be trans-
fered involving copying of the boundary of 3D arrays to 1D arrays, that is not
fully parallelized. Total computational time on CPU and Xeon Phi is close for
NPPC = 10 with Xeon Phi steadily outperforming CPU as NPPC grows. For
NPPC = 80 simulation on Xeon Phi is 1.6 x times faster compared to CPU
with 2.8 x speedup of particle push, 2.0 x speedup of current deposition, 2.6 x

12



Figure 3: Performance of 2x CPUs and 2x Xeon Phi coprocessors on a TNSA simulation with
10 to 80 macroparticles per cell.

overall speedup of computational core, and significantly slower data exchanges
and related operations.

6. Summary

This paper studies suitability of Intel Xeon Phi coprocessors as accelerators
for Particle-in-Cell plasma simulation. We discuss features of Xeon Phi that
influence performance of Particle-in-Cell implementations. Limitation of 16 GB
RAM on Xeon Phi is not a severe constraint for Particle-in-Cell simulation. Due
to massive parallelism potential of the Particle-in-Cell method it can efficiently
utilize Xeon Phi. We found that an important limiting factor is low single-core
performance, particularly for code that is not ideally vectorized. In practice, it
means that the pieces of code fast enough to not be parallelized or vectorized on
CPU can become a bottleneck on Xeon Phi and therefore has to be rewritten.

We confirm this conclusions by porting of an existing 3D Particle-in-Cell
plasma simulation code PICADOR to Xeon Phi coprocessors. The parallel
C++ code using MPI and OpenMP was originally ported by means of just
recompiling with performance on Xeon Phi close to that of 8-core CPU. We
demonstrate step-by-step application of standard optimization techniques: im-
proving memory locality, scaling efficiency and vectorization that lead to overall
speedup of 3.75 x on CPU and 7.5 x on Xeon Phi. On a test problem with 50
macroparticles per cell the final version achieves 18.8 ns per particle update on
CPU and 9.3 ns per particle update on Xeon Phi in double precision. On the

13



real simulation of laser ion acceleration two Xeon Phi coprocessors outperform
two CPUs by factor of 1.6. Our implementation demonstrates good scaling on
shared memory with 240 threads of Xeon Phi. The most challenging aspect of
efficient implementation is vectorization of field interpolation and vectorization
due to non-unit stride memory access. Overall, the Particle-in-Cell method,
although not ideally suited for Xeon Phi coprocessors due to vectorization is-
sues, allows to achieve significant performance gain on a modern heterogenous
clusters.

In terms of further development, the second-generation Intel Knights Land-
ing coprocessors has significant advances over the current Xeon Phi architecture
including significant improvement of the single-core performance and support
for out-of-order execution, and capability for direct data exchanges between
coprocessors avoiding PCI Express. Higher single-core performance will allow
efficient Particle-in-Cell simulation with lower number of macroparticles per cell
and to a certain extent alleviate performance degradation of a poorly vectorized
or parallelized code. The capability for coprocessor-only simulation with direct
data transfers provides good scaling potential. This improvements together with
our good experience of porting PICADOR to existing hardware makes Xeon Phi
coprocessors a very promising hardware platform for high-performance Particle-
in-Cell plasma simulation.

This study was partially supported by the RFBR, research project No. 14-
07-31211 and by the grant (the agreement of August 27, 2013 No. 02..49.21.0003
between The Ministry of education and science of the Russian Federation and
Lobachevsky State University of Nizhni Novgorod).

References

[1] G. Mourou, T. Tajima, S. Bulanov. Optics in the relativistic regime. Rev.
Mod. Phys., 78 (2) (2006), pp. 309–371

[2] A.V. Korzhimanov, A.A. Gonoskov, E.A. Khazanov, A.M. Sergeev. Hori-
zons of petawatt laser technology. Phys-Usp+, 54 (1) (2011), pp. 9–28

[3] I.Yu. Kostyukov, A.M. Pukhov. Plasma-based methods for electron accel-
eration: current status and prospects. Phys-Usp+, 58 (1) (2015), pp. 81–88

[4] A. Macchi, M. Borghesi, M. Passoni. Ion acceleration by superintense laser-
plasma interaction. Rev. Mod. Phys., 85 (2) (2013)

[5] V.Y. Bychenkov, A.V. Brantov, E.A. Govras, V.F. Kovalev. Laser acceler-
ation of ions: recent results and prospects for applications. Phys-Usp+, 58
(1) (2015), pp. 71–81.

[6] U. Teubner, P. Gibbon. High-order harmonics from laser-irradiated plasma
surfaces. Rev. Mod. Phys., 81 (2) (2009), pp. 445–479

[7] A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel. Extremely high-
intensity laser interactions with fundamental quantum systems. Rev. Mod.
Phys., 84 (3) (2012), pp. 1177–1228

14



[8] N.B. Narozhny, A.M. Fedotov. Quantum-electrodynamic cascades in in-
tense laser fields. Phys-Usp+, 58 (1) (2015), pp. 95–102

[9] M. Ghoranneviss, A.S. Elahi. Review on Recent Developments in Laser
Driven Inertial Fusion. Sci. Technol. Nucl. Ins. (2014)

[10] K.W.D. Ledingham, P.R. Bolton, N. Shikazono, C.-M. Ma. Towards Laser
Driven Hadron Cancer Radiotherapy: A Review of Progress. Retrieved
from http://arxiv.org/abs/1405.2657

[11] F. Albert, A.G.R. Thomas, S.P.D. Mangles, S. Banerjee, S. Corde,
A. Flacco, et al. Laser wakefield accelerator based light sources: poten-
tial applications and requirements. Plasma Phys. Control. Fusion, 56 (8)
(2014)

[12] C.K. Birdsal, A.B. Langdon. Plasma physics via computer simulation. CRC
Press (2004)

[13] M. Shoucri. Eulerian codes for the numerical solution of the Vlasov equa-
tion. Commun. Nonlinear Sci. Numer. Simul., 13 (1) (2008), pp. 174–182

[14] R.A. Fonseca, J. Vieira, F. Fiuza, A. Davidson, F.S. Tsung, W.B. Mori,
L.O. Silva.: Exploiting multi-scale parallelism for large scale numerical
modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion, 55
(12) (2013)

[15] K.J. Bowers, B.J. Albright, L. Yin, B. Bergen, T.J.T. Kwan. Ultrahigh
performance three-dimensional electromagnetic relativistic kinetic plasma
simulation. Phys. Plasmas, 15 (2008)

[16] A. Pukhov. Three-dimensional electromagnetic relativistic particle-in-cell
code VLPL. J. Plasma Phys, 61 (1999), pp. 425–433

[17] J-L Vay, et al. Simulating relativistic beam and plasma systems using an
optimal boosted frame . J. Phys. Conf. Ser., 180 (2009)

[18] H. Burau, R. Widera, W. Honig, G. Juckeland, A. Debus, T. Kluge,
U. Schramm, T.E. Cowan, R. Sauerbrey, M. Bussmann. PIConGPU: a
fully relativistic particle-in-cell code for a GPU cluster. IEEE T. Plasma
Sc., 38 (10) (2010), pp. 2831–2839

[19] J. Jeffers, J. Reinders. High performance parallelism pearls. Morgan Kauf-
mann (2014)

[20] I.M. Kulikov, I.G. Chernykh, A.V. Snytnikov, B.M. Glinskiy, A.V. Tu-
tukov. AstroPhi: a code for complex simulation of the dynamics of astro-
physical objects using hybrid supercomputers // Comput. Phys. Commun.,
186 (2015), pp. 71–80

15



[21] H. Nakashima. Manycore challenge in particle-in-cell simulation: how to
exploit 1 TFlops peak performance for simulation codes with irregular com-
putation. Comput. Electr. Eng. (2015)

[22] S. Bastrakov, R. Donchenko, A. Gonoskov, E. Efimenko, A. Malyshev,
I. Meyerov, I. Surmin. Particle-in-cell plasma simulation on heterogeneous
cluster systems. J. Comput. Sci., 3 (2012), pp. 474–479

[23] S. Bastrakov, I. Meyerov, I. Surmin, E. Efimenko, A. Gonoskov, A. Maly-
shev, M. Shiryaev. Particle-in-Cell plasma simulation on CPUs, GPUs and
Xeon Phi coprocessors. Lecture Notes in Comput. Sci., 8488 (2014)

[24] A. Taflove. Computational electrodynamics: the finite-difference time-
domain method. London: Artech House (1995)

[25] A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund,
I. Meyerov, A. Muraviev, I. Surmin, E. Wallin. Extending PIC schemes
for the study of physics in ultra-strong laser fields. arXiv:1412.6426v1

[26] J. Jeffers, J. Reinders. Intel Xeon Phi coprocessor high performance pro-
gramming. Morgan Kaufmann (2013)

[27] S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett,
et al. Energetic proton generation in ultra-intense laser-solid interactions.
Phys. Plasmas, 8 (2) (2001), pp. 542–549

[28] Y. Nodera, S. Kawata, N. Onuma, J. Limpouch, O. Klimo, T. Kikuchi.
Improvement of energy-conversion efficiency from laser to proton beam in
a laser-foil interaction. Phys. Rev. E, 78 (4) (2008), 046401

[29] K.H. Pae, I.W. Choi, S.J. Hahn, J.R. Cary, J. Lee. Proposed hole-target for
improving maximum proton energy driven by a short intense laser pulse.
Phys. Plasmas, 16 (7) (2009), 073106

[30] K. Takahashi, S. Kawata, D. Satoh, Y.Y. Ma, D. Barada, Q. Kong,
P.X. Wang. Efficient energy conversion from laser to proton beam in a
laser-foil interaction. Phys. Plasmas, 17 (9) (2010), 093102

[31] A. Andreev, N. Kumar, K. Platonov, A. Pukhov, A. Efficient generation of
fast ions from surface modulated nanostructure targets irradiated by high
intensity short-pulse lasers. Phys. Plasmas, 18 (10) (2011), 103103

16


	1 Introduction
	2 Particle-in-Cell Method
	3 Implementation of the Particle-in-Cell Method for Xeon Phi Coprocessors
	3.1 Overview of Xeon Phi Coprocessors
	3.2 Analysis of Suitability of the Particle-in-Cell Method for Xeon Phi Coprocessors
	3.3 Optimization Methodology

	4 Porting and Optimization of the Particle-in-Cell Code PICADOR
	4.1 PICADOR Particle-in-Cell Code 
	4.2 Benchmark, Hardware and Performance Measurement Details
	4.3 Improving Memory Locality
	4.4 Enhancing Scalability on Shared Memory
	4.5 Improving Vectorization

	5 Performance Evaluation on a Real Simulation
	5.1 Problem Statement
	5.2 Performance Evaluation

	6 Summary

