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Abstract

We have tested the scalability of three supercomputers: the Tianhe-2, Stampede and CS-Storm 

with multiscale fluid-platelet simulations, in which a highly-resolved and efficient numerical 

model for nanoscale biophysics of platelets in microscale viscous biofluids is considered. Three 

experiments involving varying problem sizes were performed: Exp-S: 680,718-particle single-

platelet; Exp-M: 2,722,872-particle 4-platelet; and Exp-L: 10,891,488-particle 16-platelet. Our 

implementations of multiple time-stepping (MTS) algorithm improved the performance of single 

time-stepping (STS) in all experiments. Using MTS, our model achieved the following simulation 

rates: 12.5, 25.0, 35.5 μs/day for Exp-S and 9.09, 6.25, 14.29 μs/day for Exp-M on Tianhe-2, CS-

Storm 16-K80 and Stampede K20. The best rate for Exp-L was 6.25 μs/day for Stampede. 

Utilizing current advanced HPC resources, the simulation rates achieved by our algorithms bring 

within reach performing complex multiscale simulations for solving vexing problems at the 

interface of biology and engineering, such as thrombosis in blood flow which combines 

millisecond-scale hematology with microscale blood flow at resolutions of micro-to-nanoscale 

cellular components of platelets. This study of testing the performance characteristics of 

supercomputers with advanced computational algorithms that offer optimal trade-off to achieve 

enhanced computational performance serves to demonstrate that such simulations are feasible with 

currently available HPC resources.
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1. INTRODUCTION

Numerical simulations revolutionize many fields of engineering and science [1, 2] by 

extending traditional theoretical studies and laboratory experiments to explore multiscale 

phenomena that are hardly observable or measurable in laboratory settings. Such simulations 

also require overcoming computational challenges including resolving the diverse spatial-

temporal scales [3-5] for understanding multi-component biological and behavioral systems 

[3-5]. For instance, cardiovascular diseases account for nearly 30% of all deaths globally and 

35% of all U.S. deaths annually. Whether due to acute thrombosis associated with 

myocardial infarction, or progressive intermittent atherothrombotic events, significant 

ventricular dysfunction may result, leading to hear failure. Presently over 5.5 million 

patients suffer from heart failure in US and their number is expected to grow by 50%. Of 

these patients, a significant proportion will become candidates for mechanical circulatory 

support and prosthetic cardiovascular devices, also burdened with thromboembolic risk and 

complications. The coagulation cascade of blood may be initiated by flow-induced platelet 

activation, which prompts clot formation in prosthetic cardiovascular devices and in arterial 

disease processes. Upon activation, platelets undergo complex biophysical and 

morphological changes. Activated platelets polymerize fibrinogen into a fibrin network that 

enmeshes red blood cells. Continuum methods fail to capture the small-scale molecular 

mechanisms such as filopodia formation upon platelet activation. Utilizing molecular 

dynamics (MD) that can capture and model the molecular mechanisms is computationally 

prohibitive for large-scale hematologic problems [5, 6]. Innovative numerical approaches are 

essential for elucidating such vexing problems and enhance the linkage to applications for 

solving complex problems at the interface of biology and engineering. We propose a 

multiscale numerical approach for modeling the multiscale fluid-platelet phenomena. The 

proposed approach utilizes a multiscale model where dissipative particle dynamics is 

coupled with molecular dynamics to describe flow induced mechanotransduction processes 

and biochemical events spanning the vast range of spatial and temporal scales characterizing 

blood flow-induced clotting and thrombosis [6-9].

However, the challenge of multiscale modeling cannot be simply resolved by leveraging on 

the raw computing speeds of hardware systems. The multiscale nature of such problems 

mandates developing efficient computational algorithms Hence, we develop a multiple time-

stepping (MTS) algorithm in which time integration is carried out at multiple temporal 

scales [8] and we implement this algorithm on multi-CPU and multi-GPU supercomputers. 

Our MTS algorithm helps to bridge the temporal gap between macroscale flow regime and 

cellular-scale events. As a result, it avoids a massive number of redundant computations that 

are inherent in single time-stepping (STS) algorithms, thus significantly boosting the 

computing efficiency.

In terms of the scalability tests, we build a problem-specific benchmark for three benchmark 

systems. The smallest system contains 680,718 particles, forming a single platelet that flows 

in a viscous flow. In this system, the platelet and flow models contain 140,015 (21%) and 

540,703 (79%) particles, respectively. This system is typically used for parameterization and 

observation of morphological changes for a single human platelet. The largest system 

contains 10,891,488 particles and it includes 16 platelets. This system helps to study the 
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initial stage of clot processes involving multiple platelets. The middle system contains 

2,722,872 particles forming 4 platelets. This system is suitable for validating the inter-

platelet and platelet-vessel interactions. From a practical point of view, our results provide 

the references for evaluating the computational capabilities for given computers. These 

benchmarks are carried out on two main categories of supercomputer architectures: 

homogeneous multi-processor and heterogeneous multi-accelerator architectures. This 

selection allows us to establish the relationship between diverse supercomputer architectures 

and diverse multiscale simulations.

In terms of engineering efforts, we implement our novel multiscale model and 4-level 

multiple time-stepping (MTS) algorithm on three supercomputers of different architectures 

and we further implement this MTS algorithm on GPUs. These implementations enabled us 

to: provide for the first time computational insights for solving multiscale simulations; and 

demonstrate the computational capabilities for simulating millisecond-scale multiscale 

phenomena of multi-component biological systems. The substantial speedup resulting from 

aggregated efforts of physical models, mathematical algorithms and sophisticated 

implementation on supercomputers of different architectures offer the community of 

computational science and biomedical engineering new insights and enhanced ability for 

incorporating and advancing multiscale modeling in their research. Our work is the first 

examination of the performance of multiscale platelet-mediated simulations on 

supercomputers. It clearly demonstrates the feasibility and affordability for conducting 

millisecond-order micro-to-nanoscale simulations of multiple platelets in viscous blood 

flows on top supercomputers- , an essential step for numerical studies of the 

thrombogenicity in clinical problems. The integration of multiple model and MTS algorithm 

is a cost-effective approach for various classes of specific problems in biomedical 

engineering and biomedical sciences.

The computational research presented in this paper is organized as follows: a multiscale 

model and multiple time-stepping (MTS) algorithm is presented in Section 2. The key 

features of three supercomputers are described in Section 3. In Section 4, the experiment 

setup is presented, followed by results. In Section 4.3, we characterize and analyze the 

performance of individual supercomputers, followed by conclusions in Section 5.

2. MULTISCALE SIMULATIONS

The multiscale model of a platelet is introduced by examining the anatomy of the platelet. 

The numerical algorithm is designed to model the platelet with sufficient spatio-temporal 

resolution using minimal computing resources that would typically require far larger ones. 

The key element of the algorithm is the multiple time-stepping integration of the equation of 

motion. In this section, we first describe the multiscale model where multiple spatial-

temporal scales are formulated and then employ the multiple time-stepping (MTS) algorithm 

as an efficient numeric solver for this model.

2.1 Multiscale Model

By extending our previous efforts for modeling platelets under viscous shear flow conditions 

at multiple spatio-temporal scales [6-9], we develop a multiscale benchmark model for 

Zhang et al. Page 3

Comput Phys Commun. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assessing the performances of three supercomputers for understanding multiscale 

phenomena of complex biological systems. In this model, we cover two spatio-temporal 

scales: (i) the microscale flow regime using dissipative particle dynamics (DPD) to describe 

the bulk transfer of viscous blood flow [10]; and, (ii) the nanoscale platelet model using 

coarse-grained molecular dynamics (CGMD) to describe the cellular scale structural details 

of a platelet such as membranous morphology, cytoplasmic biorheology, cytoskeletal 

filaments and the flow-mediated cellular mechanotransduction of hemodynamic stresses 

across the platelet surface and through the cytoskeleton [6]. Both DPD and CGMD are 

coarse-grained particle-based methods Specifically DPD/CGMD is the coarse-grained 

stochastic molecular dynamics, respectively. In the formulation, DPD employs a special 

stochastic character that depends on the momentum to increase the scales of viscous flows it 

can formulate. CGMD employs a conservative force field to formulate the cellular-scale 

intra-platelet interactions. The interface of these two formulations is described by a hybrid 

force field; the local thermodynamics and exchange of momentum is governed by the DPD 

stochastic term while the incompressibility of the platelets, under the stress of the 

surrounding flow is governed by the CGMD conservative term [6]. Figure 1 is a schematic 

description of the multiple spatio-temporal scales in which different force fields capture the 

characteristics of the different scales. A wall-driven Couette benchmark flow is introduced to 

induce the characteristic flipping of the deformable platelets in such shear flows.

This model may be utilized to study similar phenomena of flowing blood cells such as 

erythrocytes and leukocytes that require understanding, a priori, the scalability and time-to-

solution for such problems. Figure 2 illustrates the hierarchy of multiple spatial-temporal 

scales correlated with biological phenomena at multiple resolutions.

2.2 Multiple Time Stepping Algorithm

The spatial interface between DPD and CGMD is the first step for performing such 

multiscale simulation and the corresponding time integration, multiple time stepping (MTS) 

algorithm, solving the DPD and CGMD at microseconds and nanoseconds temporal scales 

[8] is the following step. Far more sophisticated than single time stepping algorithms 

[11-13], MTS algorithms handle time integration of step sizes differing by 3~4 orders of 

magnitude, as those between DPD and CGMD time scales. Following [8], we use a four-step 

scheme model in which the fluid advances at the largest step size, the fluid-platelet interface 

at a middle step size and the nonbonded and bonded force fields within platelets at the two 

smallest step sizes. The relationship between accuracy and computational load, i.e., the MTS 

parameters, was studied in [8].

We customized the LAMMPS software suite to implement our new model and algorithm. 

We implemented our multiscale model and MTS algorithm on the Tianhe-2 and Stampede 

supercomputers, and additionally implemented the GPU codes on the Stampede and CS-

Storm supercomputers. Specifically, the DPD-CGMD interface function is implemented on 

CPUs. The force evaluation for DPD and CGMD formulas is implemented on CPUs and 

GPUs. In the floating-point previsions, the force evaluation on GPU provides three floating-

point precisions: single, double and mixed; and the force evaluation on CPU uses double 
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precision. Inter-process communication (IPC) is unaltered and the integrator uses the NVE 

integrator.

3. THREE TOP SUPERCOMPUTERS

As increasing computer performance simply by increasing CPU clock speeds reaches its 

limitations, supercomputer developers must investigate new architectures that can achieve 

enhanced performance. Interconnection networks are developed to support much larger 

number of processors at the expense of increased engineering complexities and 

programming difficulties [14-17]. Accelerators are used for boosting floating-point 

performance, though it further escalates the difficulty of programming that can fully utilize 

the novel accelerator or co-processor design [18-21]. In this work, we implement our models 

on multi-CPU and multi-GPU platforms and test our multiscale codes on three top 

supercomputers: Tianhe-2 (No. 1 in TOP500 from Jun 2013 through Nov 2014), Stampede 

(No. 7 in TOP500 from Nov 2012 through Nov 2014) and Cray CS-Storm, a high-density 

multi-accelerator system. The CS-Storm system is used in the No. 10 computer of the 

November 2014 release of TOP500 with NVIDIA K40. In this work, we test the CS-Storm 

system with K40 and K80, the latest NVIDIA GPU generation.

3.1 Tianhe-2 Supercomputer

Tianhe-2 supercomputer [22] (introduced in 2013) is a 54.9-PFlops system that is powered 

by 3.12 million cores from 16,000 compute nodes. Each node has two Intel Ivy Bridge 

processors (Xeon E5-2692 v2 12C 2.2GHz) with 64GB of memory, providing 422.4 GFlops 

per dual socket node. Each node also has three Intel Phi coprocessors, providing 3 TFlops 

per node. The processing nodes are connected by the TH Express-2 customized interconnect 

networks [23].

3.2 Stampede Supercomputer

Stampede supercomputer [24] (introduced in 2012) is an 8.5-PFlops system that is powered 

by 0.46 million cores from 6,400 compute nodes. Each node has two Intel Sandy Bridge 

processors (Xeon E5-2680 8C 2.7GHz) with 32GB of memory, providing 345.6 GFlops per 

dual socket node. Each node also has one Intel Phi coprocessor, providing 1 TFlops per 

node. These nodes use the FDR Infiniband network in a 2-level fat-tree topology. The 

Tianhe-2 single-node peak-performance is 2.54 times that of Stampede.

3.3 Cray CS-Storm Supercomputer

CS-Storm is a high-density multi-accelerator system and it can integrate up to eight GPU 

cards, e.g., incorporate 8 K40m or 16 K80 where K80 is a dual GPU accelerator. A single 

CS-Storm 8-K40m/16-K80 server provides the double-precision (single-precision) peak 

performance of 11.4 / 15 (34.3 / 44.8) TFlops respectively. The memory is 12 GB per 

K40/K80 GPU. The CS-Storm node is much more powerful than the node in Tianhe-2 and 

Stampede. We tested two configurations of the CS-Storm node: one with 8 NVIDIA K40m 

GPUs and 2 Intel Xeon E5-2670 v2 2.5GHz CPUs (264GB memory) and the other with 16 

K80 GPUs and 2 Intel Xeon E5-2680 v3 2.5 GHz CPUs (132GB memory).
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4. PERFORMANCE EXAMINATIONS

4.1 Experiment Setups

Three problem sizes of our multiscale simulations were selected to benchmark the three 

supercomputers as shown in Table 2. In this setup, we extend the system size only by 

extending the simulation domain in the x- and z-dimension. The shear stress is generated by 

moving the walls in y-dimension and the stress as well as the platelet density remains 

unchanged for all experiments.

Algorithmically, the MTS and STS algorithms are tested. The single step size in STS is 

1×10−6. The step sizes for the flow regime and platelet-flow interface in MTS are 5×10−4 

and 5×10−5, and the smallest step size for intra-platelet force fields is 5×10−6 [8]. The error 

propagation in terms of energy conservation and other measures are prevented in MTS [8]. 

The scaling of dimensionless units and physical units in simulations is one dimensionless 

time unit representing 2.083 microseconds in SI units. The wall-driven shear stress is 8.58 

Pa and shear rate is 8000 s−1. The mean velocity of flow is 3.2 cm/s and the viscosity of flow 

is 1.072 mPa·s which is close to the normal viscosity of blood plasma [25]. This model can 

simulate the flow conditions through the small gap clearances in crevices of cardiovascular 

devices, in which platelet activation is a major clinical problem [6, 26, 27].

In every step, the particle data are exchanged between processors and accelerators. Neighbor 

list building and force evaluation are accelerated. The software provides three precision 

options: single, double and mixed. It allows the GPUs to process data in single or double 
precision or in mixed-mode precision, where the pairwise forces are computed in single 

precision but they are accumulated into double-precision force vectors. For the sake of 

speed, we experiment the mixed precision for all tests. Though LAMMPS starts to support 

some simulations on Intel Xeon Phi, it is still unavailable to support all of necessary 

functions on coprocessors for our multiscale model.

For all tests, we performed a lengthy process for the wall-driven Couette flow to become 

equilibrated. A no-slip boundary condition characteristic of viscous flows is applied to the y-

dimension and a periodic boundary condition is applied to the x-/z-dimension. The timing 

output from the LAMMPS code is used as the final timing results. From these timing results, 

we compute the simulation speed in units of: (1) days/μs, i.e., the number of wallclock days 
it takes to complete 1-μs multiscale phenomena, for showing the days-per-microsecond 

performance rate; and (2) μs/day, i.e., the number of microseconds one physical day’s 

simulation can achieve, for demonstrating the microseconds-per-day rate. The timing for 

simulation speed uses the wallclock time of a simulation, i.e., the loop time from the code 

timing output. Then we compute the performance improvement percentage of MTS over 

STS using the formula: P (tMTS, tSTS) = (tSTS − tMTS) / tSTS, in which tMTS and tSTS are the 

timing results in days/μs for MTS and STS algorithms. For detailed analysis, we present the 

communication-to-computation ratio. The communication uses the comm timing and the 

computation is the sum of the pair and bond timing. In all tests, we notice that the output 
timing is almost zero since most outputs are disabled and thus the I/O operation with file 

systems is negligible. The neigh timing is also relatively small, less than 5%. This is then 

used to examine the performance results, as described below.
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4.2 Performance Results

Performance results are presented in Figures 3-14. Every three successive figures present the 

performance metrics of one supercomputer, namely, the simulation speed in days/μs, the 

performance improvement for MTS over STS and the communication-to-computation ratio. 

The supercomputers are presented in the following order: Tianhe-2, Stampede, CS-Storm 8-

K40m and 16-K80. For Tianhe-2 and Stampede, the horizontal axis is the number of 

processor cores in Figure 3 through Figure 8. For CS-Storm systems, the horizontal axis is 

the number of accelerators in Figure 9 through Figure 14. These results for speeds vs. 

number of cores/GPUs show the strong scaling of the multiscale simulations, in which the 

problem size is fixed while the number of processing elements (core/GPU) is increased. The 

weak scaling is not applicable since the problem size is dictated by the biological nature 

(i.e., number of platelet and platelet density) so it is hardly tailored to offer the fixed 

workload per processing element.

Constrained by limited memory of computer configuration, the multiscale simulations failed 

to run on a small group of computing nodes. This is common for large scale complex 

simulations. Thus, we begin our tests with 16 cores for Exp-S/Exp-M and 64 cores for Exp-

L on Tianhe-2 and Stampede. Since the improvement of simulation speeds diminish with the 

rapid increase in the number of cores, we limited the tests to below 512 cores.

In the CS-Storm, we use 16 cores and vary the number of GPUs. Similarly, constrained by 

the limited memory of accelerators, the Exp-M failed to run on single GPU. The minimum 

numbers for K40m/K80 for the Exp-L with STS was eight. However, the minimum 

requirements for the Exp-L with MTS were 8 K40m and 16 K80 GPUs correspondingly, 

since the MTS needs more memory to store multi-level force vectors than the STS.

With the results from these runs obtained, the simulation speeds and the communication-to-

computation ratios for Exp-L re compared between Tianhe-2 and Stampede in Figure 15 and 

Figure 16, respectively. The best performance in days/μs and μs/day are presented in Table 3, 

Table 4 and Table 5 for the Exp-M and Exp-L. Moreover, we extend the tests for Exp-S and 

Exp-M on Stampede K20-enabled nodes and present the results in Table 3 and Table 4, 

respectively. Exp-L failed to run on K20-enabled nodes due to memory deficiency.

4.3 Analysis and Summary

Based on the performance studies of our multiscale simulations on three top 

supercomputers, we arrive at the following conclusions: (1) MTS is an efficient algorithm 

that achieves significantly enhanced performance required by large multiscale simulations, 

and that developing problem-specific MTS algorithms may enable solving of various 

multiple spatio-temporal problems.

The results in Figs. 4, 7, 10 and 13 show that MTS is consistently superior over STS in all 

tests on all supercomputers in terms of the simulation speeds. The improvement for MTS 

over STS is larger on Tianhe-2/Stampede than that on CS-Storm. For example, for the Exp-

L, the improvement that was achieved was 84% on Tianhe-2/Stampede and 66% and 45% on 

CS-Storm 16-K80 / 8-K40m, respectively.
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MTS excels at reducing the computation costs while the communication-to-computation 

ratio remains unaltered across diversified supercomputers. In general, MTS has higher ratios 

on Tianhe-2/Stampede (Figs. 5 and 8) and lower ratios on CS-Storm 8-K40m/16-K80 (Figs. 

11 and 14), in comparison with STS. These phenomena could be the result of widely 

different communication schemes: in the code, the inter-process communication employs the 

intra-node wires in CS-Storm and the inter-node cables in Tianhe-2 and Stampede.

Comparing speeds in Fig. 15, one can see that for Exp-L, Tianhe-2 is faster than Stampede 

for up to 128 cores, where then the Stampede is faster for 256 and 512 cores than the 

Tianhe-2. This could be the result of the node configuration. Tianhe-2 and Stampede have 24 

and 16 cores per node, respectively. To provide the run with 128 cores, Stampede and 

Tianhe-2 needs 8 and 5 nodes respectively and thus Tianhe-2 would need less inter-node 

data transfers than Stampede. In addition, Tianhe-2 has more host memory (64GB per node) 

than Stampede (32GB per node), further boosting the node-level performance. Thus, when 

using a small group of cores, Tianhe-2 is better than Stampede. With the increase of cores, 

communication becomes more stressful than computation (Fig. 16) then the performance 

gap between Stampede and Tianhe-2 appears to diminish: 0.16~0.17 days/μs (MTS) and 

0.98~1.09 days/μs (STS) for Stampede/Tianhe-2 using 512 cores.

(2) Multiscale simulations can provide nanoscale details of biomedical problems with 

affordable computing resources. The results demonstrate that the simulation rate of multiple 

microseconds of physical time per day for systems with multiple platelets and 10-million 

particles is achievable on these supercomputers.

Our multiscale approach offers nanoscale details for intracellular details while modeling the 

bulk transport of blood flows at the microscale [6]. The multiscale nature helps improve the 

scale of stepping sizes from femtosecond to nanosecond [8] for the deforming platelets. In 

addition, the MTS allows simulating viscous flow particles at the scale of 100-nanosecond 

stepping sizes. This algorithmic approach vastly improved the simulation speeds. For 

example, the CS-Storm 16-K80 server simulated 25 microseconds for a single-platelet 

system within a single day (Table 3), and 512-cores in Tianhe-2 and Stampede simulated 

5.88~6.25 microseconds for a 16-platelet system (Table 5) within one day. Accordingly, the 

1-ms nano/micro-composite simulation for a 10-million-particle system could be completed 

within 160 wallclock days.

The accelerator further boosts the performance of large scale computer systems. For 

example, the K20-enabled nodes improved the performance of CPU-only nodes by a factor 

of 2~3 for the Exp-M on Stampede (Table 4). In other words, the time it takes for 1-ms 

simulation of a 2.7-million-particle system is reduced from 140 days (32 CPU nodes) to 70 

days (16 K20-enabled nodes) on Stampede.

The results demonstrated that the millisecond-scale nano/micro-composite simulations for 

million-particle systems are computationally feasible and affordable on supercomputers. As 

a comparison, Anton 2, a special-purpose molecular dynamics supercomputer achieved a 

simulation of 2.2-million-atom ribosome system at a rate of 3.6 μs/day [28]. Our efficient 

algorithms achieved a simulation of multiscale 10-million-particle 16-platelet system at a 
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rate of 6.25 and 5.88 μs/day on Stampede and Tianhe-2 (Table 5), and 2.7-million-particle 4-

platelet system at a rate of 14.29 and 6.25 μs/day on Stampede/K20 and Tianhe-2 (Table 4).

The computationally affordable multiscale model presented here raise the bar by facilitating 

simulations of complex clinical problems such as thrombogenic and thrombolytic 

mechanisms involving multiple flowing blood elements in small arteries, which are rarely 

modeled utilizing atomic scale molecular dynamics multiscale simulations due to the 

prohibitive computational costs.

(3) upercomputers play a key role in development of multiscale models for large scale 

biological multi-component systems.

The heterogeneous multi-accelerator architecture demonstrated the powerful acceleration 

potential for boosting the multiscale simulation speed, with the caveat that those are closely 

dependent on the complexities involved in algorithm development and coding. As the 

supercomputer architectures are becoming more diversified, there is a need to match of the 

architectural supply and application demand for achieving an optimal performance. The 

match can be optimized by exploring the characteristics of the supercomputers and the 

specifics of the models. For example, the simulation for parameterizing the multiscale 

models could be handled by a high-density multi-accelerator computer (Table 3). The 

simulation for validating the inter-platelet interactions could be handled by using a small 

group of computer nodes (Table 4). The simulation for studying large-scale multi-platelet 

and multi-component interactions in arteriole need use the large scale supercomputers with 

high performance interconnects (Table 5). Though novel supercomputers are emerging as 

dominant tools for computer simulations, it has to be judicially matched to the state-of-the-

art supercomputer architecture and state-of-the-practical application demand for efficient use 

of invaluable computing resources [29].

Based on these observations, we realize that the triple alliance of the multiscale model, 

efficient algorithm and powerful supercomputer should be consolidated for facilitating the 

anticipated revolutionizing of engineering and science through simulations [1]. In summary, 

application (multiscale model), algorithm (efficient algorithm), and architecture 

(supercomputer) must be developed collectively for securing optimal performance and 

driving the forefront of HPC.

5. Conclusions

We devised a multiscale benchmark model to assess the performance of three 

supercomputers by testing the performance of multiscale fluid-platelet simulations. This 

study demonstrates that (1) the MTS algorithm is superior to traditional STS algorithm for 

speeding up computation without losing accuracy, on all three supercomputers. The 

speedups achieved with 10 million particles system simulations were 84% (Tianhe-2/

Stampede), 66% and 45% for CS-Storm 16-K80 and 8-K40m, respectively. (2) The high-

density multi-accelerator computer, the CS-Storm, is capable of supporting a single-platelet 

multiscale simulation, taking 40 days to complete a 1-ms multiscale simulation of a single-

platelet system. (3) Tianhe-2 and Stampede are capable of supporting multiscale multi-
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platelet simulations, taking 160 days to complete 1-ms simulation for 16-platelet system 

(10.9 million particles). To compare, a 16-core Tianhe-2 or Stampede will require 42 years 

to complete a 1-ms multiscale simulation of the 16-platelet system. In particular, our 

multiple spatio-temporal model has brought a large multiscale simulation such as the 

millisecond-scale simulations of platelet-mediated processes presented here within 

computational reach to a practical arena. This study of testing the performance 

characteristics of supercomputers with advanced computational algorithms that offer optimal 

trade-off to achieve enhanced computational performance serves to demonstrate that such 

simulations are feasible with currently available HPC resources.

These performance examinations support the assertion that the triple alliance of models, 

algorithms and powerful computers can be formed to advance the frontiers of high 

performance computing for domain-specific applications, such as those represented by 

complex problems at the interface of biology and engineering,
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Figure 1. 
Multiple spatial-temporal scales for modeling platelets under shear flow conditions
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Figure 2. 
The hierarchy of multiple spatial-temporal scales correlated with biological phenomena at 

multiple resolutions
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Figure 3. 
Speeds of STS and MTS algorithms on Tianhe-2
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Figure 4. 
Perf. Improvement of MTS over STS on Tianhe-2
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Figure 5. 
Ratio of communication over computation on Tianhe-2
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Figure 6. 
Speeds of STS and MTS algorithms on Stampede
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Figure 7. 
Perf. Improvement of MTS over STS on Stampede
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Figure 8. 
Ratio of communication over computation on Stampede
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Figure 9. 
Speeds of STS and MTS algorithms on 8-K40m CS-Storm

Zhang et al. Page 21

Comput Phys Commun. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Perf. Improvement of MTS over STS on 8-K40m CS-Storm
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Figure 11. 
Ratio of communication over computation on 8-K40m CS-Storm
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Figure 12. 
Speeds of STS and MTS algorithms on 16-K80 CS-Storm
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Figure 13. 
Perf. Improvement of MTS over STS on 16-K80 CS-Storm
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Figure 14. 
Ratio of communication over computation on 16-K80 CS-Storm
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Figure 15. 
Speed of STS and MTS algorithms for Exp-L on Tianhe-2 and Stampede
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Figure 16. 
Ratio of communication over computation for STS and MTS algorithms for Exp-L on 

Tianhe-2 and Stampede
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Table 1

Nodal configurations and peak performance (GFlops) for Tianhe-2, Stampede and CS-Storm

Systems
Configuration of a

Single Compute Node*
Performance per
Node (GFlops)

Tianhe-2 24 cores 422.4

Stampede 16 cores 345.6

Stampede (K20) 16 cores + K20 1,515.6

CS-Storm (K40) 20 cores + 8 K40 11,840.0

CS-Storm (k80) 24 cores + 16 K80 15,440.0

Note:

*
We consider CPUs and GPUs here.
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Table 2

Problem sizes and dimensions of multiscale simulations for performance examinations

Experiments # of Platelets # of Particles Dimensions

Exp-S 1 680,718 45×90×45

Exp-M 4 2,722,872 90×90×90

Exp-L 16 10,891,488 180×90×180
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Table 3

Best performance for STS and MTS algorithms on three supercomputers (problem size: 0.7M particles)

Systems Resources Speed (days/μs) Speed (μs/day)
Speedup for
MTS vs. STS

# of GPUs # of Cores STS MTS STS MTS

K40m 8 16 0.14 0.06 7.14 16.67 2.33

K80 16 16 0.13 0.04 7.69 25.00 3.25

Tianhe-2 256 0.61 0.13 1.64 7.69 4.69

Tianhe-2 512 0.36 0.08 2.78 12.50 4.50

Stampede 256 0.57 0.12 1.75 8.33 4.75

Stampede 512 0.34 0.08 2.94 12.50 4.25

Stampede/K20 16 256 0.14 0.04 7.14 25.00 3.50

Stampede/K20 32 512 0.62 0.03 1.61 35.50 20.67
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Table 4

Best performance for STS and MTS algorithms on three supercomputers (problem size: 2.7M particles)

Systems
Resources Speed (days/μs) Speed (μs/day)

Speedup for
MTS vs. STS

# of GPUs # of Cores STS MTS STS MTS

K40m 8 16 0.45 0.17 2.22 5.88 2.65

K80 16 16 0.34 0.11 2.94 9.09 3.09

Tianhe-2 256 0.90 0.16 1.11 6.25 5.63

Tianhe-2 512 0.85 0.16 1.18 6.25 5.31

Stampede 256 0.85 0.15 1.18 6.67 5.67

Stampede 512 0.74 0.14 1.35 7.14 5.29

Stampede/K20 16 256 0.15 0.07 6.67 14.29 2.14

Stampede/K20 32 512 0.14 0.08 7.14 12.50 1.75
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Table 5

Best performance for STS and MTS algorithms on three supercomputers (problem size: 10.9M particles)

Systems
Resources Speed (days/μs) Speed (μs/day)

Speedup for
MTS vs. STS

# of GPUs # of Cores STS MTS STS MTS

K40m 8 16 1.63 0.90 0.61 1.11 1.81

K80 16 16 1.27 0.43 0.79 2.33 2.95

Tianhe-2 256 1.42 0.19 0.70 5.26 7.47

Tianhe-2 512 1.09 0.17 0.92 5.88 6.41

Stampede 256 1.29 0.18 0.78 5.56 7.17

Stampede 512 0.98 0.16 1.02 6.25 6.13

Stampede/K20 32 512 0.29 - 3.45 - -
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Table 6

Simulation speeds (μs/day) for multiscale model and MTS algorithm on Tianhe-2, Stampede and CS-Storm

Systems Tianhe-2
(512 cores)

Stampede
(512 cores)

Stampede
(512 cores,

32 K20)

CS-Storm
(20 cores +

8 K40)

CS-Storm
(24 cores, 16

K80)Problems

single platelet
680,718 particles 12.50 12.50 35.50 16.67 25.00

4 platelets
2,722,872 particles 6.25 7.14 12.50 5.88 9.09

16 platelets
10,891,488 particles 5.88 6.25 - 1.11 2.33
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