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Abstract

Synthetic data describing coherent random fluctuations have widely been used to validate numerical simulations against experi-
mental observations or to examine the reliability of extracting statistical properties of plasma turbulence via correlation functions.
Estimating correlation time or lengths based on correlation functions implicitly assumes that the observed data are stationary and
homogeneous. It is, therefore, important that numerically generated synthetic data also satisfy the stationary process and homo-
geneous state. Based on the synthetic data with randomly generated moving Gaussian shaped fluctuations both in time and space,
the correlation function depending on the size of averaging time window is analytically derived. Then, the smallest possible spatial
window size of synthetic data satisfying the stationary process and homogeneous state is proposed, thereby reducing the compu-
tation time to generate proper synthetic data and providing a constraint on the minimum size of simulation domains when using
synthetic diagnostics to compare with experiment. This window size is also numerically confirmed with 1D synthetic data with
various parameter scans.
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1. Introduction

As the turbulence driven transport in a magnetically confined
plasma exceeds the neoclassical transport level by at least an or-
der of magnitude [1], it is desirable to suppress the turbulence.
For this purpose, we wish to understand the basic characteris-
tics of the turbulence such as decorrelation rate and correlation
lengths, and to perceive how they are correlated with equilib-
rium quantities, how they react back to these equilibrium quan-
tities, and hopefully how they might be controlled [2–9]. Not
being deterministic, turbulent structures must be studied based
on the statistical grounds. Therefore, developing reliable sta-
tistical analyses to extract turbulence characteristics from the
measured data is of paramount importance. For example, cor-
relation functions can estimate correlation time and lengths of
the turbulence, and the cross-correlation time delay method al-
lows us to measure the velocity of pattern flows [10–12].

As numerical simulations and experimental diagnostics on
plasma turbulence become more sophisticated, synthetic turbu-
lence data generated from the simulations have been used to
compare the results from simulations and experiments directly
[13–15]. Turbulence synthetic data can also be used to examine
the reliability of statistical techniques used to extract turbulence
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characteristics [10, 16–18], i.e., turbulence characteristics ex-
tracted from the synthetic data using a statistical technique can
be compared with the input parameters generating the synthetic
data.

The property of synthetic data themselves has not been thor-
oughly investigated so far. For instance, as estimating correla-
tion time and lengths using correlation functions from the mea-
sured data implicitly assumes that the data are stationary and
homogeneous, synthetic data must also comply with the condi-
tions of stationary process and homogeneous state. Stationary
process means that low moments of fluctuating data such as
mean and variance do not vary with time; while if they are un-
changed in space, then the data are said to be homogeneous.
To generate ‘true’ stationary and homogeneous synthetic data,
the simulation domain has to be infinitely large due to the fi-
nite correlation time and lengths of turbulent eddies. This is
impractical. In practice, turbulent structures, or ‘eddies’, are
generated within a finite spatial domain and temporal domain.
Therefore, for eddies which have a finite spatial and temporal
extent, there are no sources from outside of these domains that
contribute to the response within the domain (assuming that the
boundary conditions are not periodic). Hence, these cause a
spatial (and/or temporal) variation that leads to an inhomoge-
neous (non-stationary) correlation function.

In this paper, we thus provide the minimal size of required
simulation domain ∆L given the ‘viewing’ domain (domain of
interest) ∆Lview upon where one would apply statistical analy-
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Figure 1: A diagram depicting the total simulation domain ∆L and a smaller
‘viewing’ domain (domain of interest) ∆Lview where the generated synthetic
data are stationary and homogeneous. Outside ∆Lview the synthetic data may
become non-stationary and/or non-homogeneous depending on how they are
generated.

ses as shown in Fig. 1. This means that generated synthetic data
within ∆Lview must be stationary and homogeneous, otherwise
statistically calculated correlation functions may give us incor-
rect results. Of course, we wish to find the minimal ∆L so that
we do not waste our computation resource. Or, for the case of
local gyro-kinetic (GK) simulations where simulation domains
∆L are set, we provide the maximum possible ∆Lview where the
synthetic data can be valid for direct comparisons with experi-
mental observations.

We first describe the mathematical model of a fluctuating
quantity, or ‘eddy’, such as density, temperature or potential
in Sec. 2 and analytically derive correlation functions assum-
ing that eddies are uniformly distributed in an infinitely large
domain. In Sec. 3, we provide the condition on the total simu-
lation domain ∆L as a function of the ‘viewing’ domain ∆Lview
and the size of the turbulent eddies, based on the derived cor-
relation function such that the generated synthetic data satisfy
stationarity and homogeneity. This condition is verified numer-
ically using the 1D (in space) fluctuating synthetic data with
various parameter scans. Note that even though we use 1D syn-
thetic data, our arguments can be generalized to 3D as long as
the basis vectors are orthogonal to each other. Our conclusion
follows in Sec. 4.

2. Correlation function of ‘eddies’

2.1. Mathematical model of ‘eddies’

In this section, we introduce a mathematical model describ-
ing real fluctuations as an ensemble of ‘eddies’ – its definition
will follow soon – based on which we derive the correlation
function and generate synthetic data [10, 16, 17]. For simplicity
we model the fluctuations in a 1D spatial domain. We represent
our data at the spatial location x = xa as a function of time as

S a(t) =

N∑
i=1

S ai (t), (1)

where S ai (t) is the ith ‘eddy’, and N is the total number of ed-
dies generated in the synthetic data.

We have many different possibilities on what mathematical
form S ai (t) would take. Inspired by the experimental observa-
tions on ion-scale density fluctuations [12, 19], we model that
eddies are Gaussian shaped in both time and space:

S ai (t) = Ai exp
− (t − ti)2

2τ2
life

−
(xa − v (t − ti) − xi)2

2λ2
x

 . (2)

Coherent properties of each eddy in space and time are parame-
terized by the characteristic spatial scale (λx) and the character-
istic temporal scale (τlife). The ith eddy has a maximum ampli-
tude Ai at x = xi and t = ti. Further, we allow an eddy to move
with the velocity of v. Note that our model eddy does not con-
tain the wave-like structures [10], and we justify it by arguing
that we are primarily interested in the envelope of eddies. Here,
Ai is selected from a normal distribution with zero mean and
variance of A2; whereas xi and ti are randomly selected from
uniform distributions:

P(ti) =


1

∆T
if −

∆T
2
≤ ti ≤

∆T
2

0 otherwise

P(xi) =


1

∆L
if −

∆L
2
≤ xi ≤

∆L
2

0 otherwise

P(Ai) =
1
√

2πA
exp

− A2
i

2A2

 ,

(3)

where P (ti), P (xi) and P (Ai) are the probabilities of obtain-
ing ti, xi and Ai, respectively. ∆T and ∆L are the total simula-
tion domains in time and space, respectively (as in Fig. 1 for
∆L). Furthermore, to make sure that eddies do not occur too fre-
quently or too rarely, we define a spatio-temporal filling factor
F [10]. We determine the total number of eddies (N) generated
in a set of synthetic data such that the following expression is
satisfied:

F = N
(
λx

∆L

) (
τlife

∆T

)
∼ O (1) . (4)

Fig. 2 shows an example of the contour of a generated eddy in
the spatial and temporal coordinates.

2.2. Correlation function of stationary and homogeneous fluc-
tuating data

As many kinds of statistical analyses are performed on the
data based on the stationary and homogeneous assumptions, we
let ∆T and ∆L to be infinite to make sure that our model data are
stationary and homogeneous. To analytically calculate the cor-
relation function following Tal et al. [17] between two spatial
positions, xa and xb, as a function of time delay τ, we average
the signals S a (t) and S b (t) over the ‘subtime’ window ∆Tsub:

Ca,b(τ) =(S a(t) − S a)(S b(t + τ) − S b)

≈S a(t)S b(t + τ) − S a S b,
(5)
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Figure 2: An example of the contour of a single eddy in the space (ordinate)
and time (abscissa) coordinate. The correlation length (λx) and time (τlife) in
Eq. (2) are also depicted. The slope of the red line is the velocity of the eddy.

where the approximation is allowed because the data are sta-
tionary [17, 20]. The overline means the time average of the
signal over the subtime window ∆Tsub:

S ai (t)S b j (t + τ) =
1

∆Tsub

∫ ∆Tsub
2 +Tmid

−
∆Tsub

2 +Tmid

S ai (t)S b j (t + τ)dt

=Cai,b j (τ),

(6)

where Tmid is the time at the middle of the selected subtime
window. Note that Cai,b j (τ) − S ai S b j is the correlation function
between the ith eddy at x = xa and the jth eddy at x = xb.

As a set of total fluctuation data is the sum of all eddies as in
Eq. (1), we can expand Ca,b as

Ca,b =
∑

i

Cai,bi +
∑

i

∑
j,i

Cai,b j−
∑

i

S ai S bi−
∑

i

∑
j,i

S ai S b j . (7)

Finally, by averaging correlation functions estimated from
many subtime windows, we get the ensemble averaged corre-
lation function as

〈Ca,b〉 =N 〈Cai,bi〉 + N(N − 1) 〈Cai,b j〉

− N 〈S ai S bi〉 − N(N − 1) 〈S ai〉 〈S b j〉 ,
(8)

where the second and the fourth terms on the right-hand-side
cancel out. Furthermore, these two terms are independently
zero if the mean of Ai in Eq. (2) is zero.

Eq. (9) shows Cai,bi at the time delay τ = 0 as one would
do to attain the correlation length from the ensemble averaged

correlation function.

Cai,bi =
1

∆Tsub

∫ ∆Tsub
2 +Tmid

−
∆Tsub

2 +Tmid

S ai (t)S bi (t)dt

=A2
i

√
π

2
τac

∆Tsub
exp

[
−

τ2
ac

2λ2
x/v2

(xa − xb)2

2λ2
x

−
τ2

ac

τ2
life

(xa − xi)2 + (xb − xi)2

2λ2
x

W∆Tsub (ti)

≈



A2
i
√
π
τac

∆Tsub
exp

[
−

τ2
ac

2λ2
x/v2

(xa − xb)2

2λ2
x

−
τ2

ac

τ2
life

(xa − xi)2 + (xb − xi)2

2λ2
x


for −

∆Tsub

2
+ Tmid + γi ≤ ti ≤

∆Tsub

2
+ Tmid + γi

0 otherwise,
(9)

where τac is the usual auto-correlation time of eddies in the lab
frame defined as [16]

τac =
λxτlife√
λ2

x + τ2
lifev2

, (10)

and γi is

γi =
τ2

ac

λ2
x

v
[
xi −

xa + xb

2

]
. (11)

Here,W∆Tsub (ti) which acts like a weighting factor is a function
containing the error function Erf () defined as

W∆Tsub (ti) =Erf
[

1
τac

(
Tmid +

∆Tsub

2
− ti + γi

)]
−

Erf
[

1
τac

(
Tmid −

∆Tsub

2
− ti + γi

)]
.

(12)

The approximation in the last step in Eq. (9) is taken by assum-
ing large ∆Tsub such thatW∆Tsub (ti) ≈ 2.

Once we have Cai,bi , we calculate
〈
Cai,bi

〉
by taking an en-

semble average with the probability density functions defined
in Eq. (3):

〈
Caibi

〉
=

∫ ∞

−∞

dAi

∫ ∞

−∞

dti

∫ ∞

−∞

dxiP(xi)P(ti)P(Ai)Caibi

=

(
A2 π

2
τlife

∆T
λx

∆L

)
exp

− (xa − xb)2

2
(√

2λx

)2

W∆L

≈

(
A2π

τlife

∆T
λx

∆L

)
exp

− (xa − xb)2

2
(√

2λx

)2

 ,
(13)
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whereW∆L plays the similar role asW∆Tsub (ti) did for Eq. (9)
containing the error function Erf () defined as

W∆L = Erf

 xa + xb + ∆L

2
√
λ2

x + τ2
lifev2

 − Erf

 xa + xb − ∆L

2
√
λ2

x + τ2
lifev2

 . (14)

Similar to what we did forW∆Tsub (ti), we approximateW∆L ≈

2 in Eq. (13) by assuming infinitely large ∆L. Note that we also
have large ∆T because ∆T � ∆Tsub, and ∆Tsub is assumed to be
large from Eq. (9). After another lengthy algebraic calculation,
we find that

〈
S ai S bi

〉
in Eq. (8) is

〈
S ai S bi

〉
≈

(
A2π

τlife

∆T
λx

∆L

) (
2
√
π
τac

∆Tsub

)
exp

− (xa − xb)2

4(λ2
x + τ2

li f ev2)

 ,
(15)

by applying the same assumptions, i.e., large ∆L, ∆T and ∆Tsub.
Collecting Eq. (13) and Eq. (15), we finally obtain the en-

semble averaged correlation value or the expected correlation
value between the signals at x = xa and xb at the time delay
τ = 0:

〈
Ca,b

〉
≈A2πN

λx

∆L
τlife

∆T

exp

− (xa − xb)2

2
(√

2λx

)2


−2
√
π
τac

∆Tsub
exp

− (xa − xb)2

4
(
λ2

x + τ2
lifev2

) 


≈A2π

exp

− (xa − xb)2

2
(√

2λx

)2


−2
√
π
τac

∆Tsub
exp

− (xa − xb)2

4
(
λ2

x + τ2
lifev2

) 
 ,

(16)

where we use Eq. (4) to get the last line. This is our final form
of the ensemble averaged correlation function at the time delay
τ = 0 with the assumptions of infinitely large domains and is
used for numerical comparisons in Sec. 3.

The first term has a Gaussian form as the shape of an individ-
ual eddy is set to be Gaussian (see Eq. (2)). Note that the shape
of a correlation function can be determined via a convolution
of an individual eddy function with itself. In general, a cor-
relation length is estimated by fitting correlation values

〈
Ca,b

〉
to a Gaussian function with the knowledge of xa − xb. Such
a fitting procedure, thus, implicitly ignores the second term in
Eq. (16) originated from

〈
S ai S bi

〉
. Discussing the finite effect

of the second term in estimating λx is not within the scope of
this paper. However, we briefly mention that ignoring the sec-
ond term can be justified for τ2

life/∆T 2
sub � 1 given λ2

x � τ2
lifev2,

or for (λx/v)2 /∆T 2
sub � 1 given λ2

x � τ2
lifev2. For the case of

λ2
x ∼ τ

2
lifev2, the situation becomes a bit more complicated, but

large enough ∆Tsub allows one to ignore the second term effect
as well. Furthermore, an astute reader may realize that esti-
mating the correlation length by fitting a Gaussian function to
the first term overestimates the characteristic spatial scale λx by

a factor of
√

2. Nonetheless, such an overestimation may not
become problematic if one is interested in the ‘scaling’ of the
correlation lengths rather than absolute quantities. In fact, as
we do not have the first principle argument on what form of the
correlation function, i.e., exponential function, Gaussian func-
tion, power-law function, etc, should be fitted to the experimen-
tal turbulence data, speaking of an absolute correlation length
from the fitting must be done with great care. Perhaps, it is
worth to consider the Gaussian process [21] to fit the data since
we do not have well defined a prior knowledge on a plasma
turbulence model function.

3. Synthetic data

3.1. Conditions for generating stationary and homogeneous
synthetic data

In Sec. 2, we have derived the correlation function assuming
that arguments inside the Erf () are large enough so that Erf ()
returns ±1 depending on the sign of arguments. It is important
to realize that this assumption is not used for a mere simplifi-
cation of equations, rather it is the consequence of data with
finite coherent structures, i.e., τlife , 0 or λx , 0, being ho-
mogeneous and stationary. To be quantitative, we argue that
|Erf (x)| ≥ 0.995 (or |x| ≥ 2) is the condition satisfying the as-
sumption we have made, i.e., |Erf (x)| → 1.

First, we find the condition on how large ∆Tsub has to be by
referring to Eq. (12) as the ∆Tsub appears inside the Erf ():∣∣∣t∗i,± − ti

∣∣∣
τac

≥ 2, (17)

where t∗i,± is defined as

t∗i,± = Tmid ±
∆Tsub

2
+ γi, (18)

and by definition we have ∆Tsub = t∗i,+ − t∗i,−. Notice that at
ti = t∗i,±, we have W∆Tsub (ti) ≈ 1 as shown in Fig. 3 where
the exact W∆Tsub (ti) (blue) and its approximation (red), i.e.,
W∆Tsub (ti) ≈ 2, are plotted. Considering the exact and approx-
imated Cai,bi in Eq. (9), we find that the value of approximated
Cai,bi underestimates the true value in the green shaded region;
while it overestimates in the yellow shaded region in Fig. 3.
The width of each shaded region is approximately 2τac. Thus,
to obtain the correct correlation values, it is necessary to have
∆Tsub much larger than τac such that the fraction of under- or
over-estimated regions are small. Casting this idea into a quan-
titative form, it states that

ε ≡
2τac

∆Tsub
� 1. (19)

It is well known that the size of averaging time window ∆Tsub
must be much larger than the auto-correlation time τac to ob-
tain correct correlation functions, and here we have provided
a quantitative rationale behind such a criterion. Note that this
criterion does not guarantee the stationary process of the data.

It is obvious that the condition of ∆T � ∆Tsub must be well
satisfied for the ensemble average defined in Eq. (13), and it
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Figure 3: An illustration of exact (blue) and approximated (red) W∆Tsub (ti).
At ti = t∗i,±, we haveW∆Tsub (ti) ≈ 1. In yellow (green) shaded regions whose
widths are 2τac, the approximatedW∆Tsub (ti) over(under)-estimates the exact
value. We wish to minimize the fraction of the shaded regions in ∆Tsub.

is typically the case that the synthetic data are generated with
a large enough ∆T . However, for the sake of completeness,
we provide more quantitative criterion on ∆T such that the true
correlation value can be estimated from the synthetic data gen-
erated with the ‘finite’ ∆T . We realize thatW∆Tsub (ti) is shifted
by an amount of γi as depicted in Fig. 4 where the blue lines
show the shiftedW∆Tsub (ti), and the red line shows the uniform
probability density function of ti, P (ti). The W∆Tsub (ti) in the
middle of P (ti) would not cause any problems on estimating
correlation values, but theW∆Tsub (ti) at the edge of P (ti) may
cause the underestimation of the true correlation value. This
is because no eddies are generated in the shaded region, i.e.,
P (ti)=0, while the size of the averaging subtime window is kept
to be ∆Tsub as other subtime windows. This violates the con-
dition of data being stationary. To minimize this effect of un-
derestimation we, thus, need to have the maximum of |γi| much
smaller than ∆T .

From the definition of γi in Eq. (11), the maximum possible
value of |xi| is the ∆L/2 from the probability density function
of xi, i.e., P (xi), and that of |xa + xb| is ∆Lview since x = xa and
xb are the ‘measurement’ positions where we apply statistical
analyses. Note that this is valid for the center of ∆Lview coin-
ciding with that of ∆L. Thus, we obtain the condition on ∆T , in
addition to ∆Tsub � ∆T , such that the synthetic data satisfy the
stationary process:

max (|γi|) =
τ2

ac

λ2
x

v
[
∆L
2

+
∆Lview

2

]
�∆T and

∆Tsub �∆T,
(20)

which depends on the spatial domain size due to the finite ve-
locity of eddies.

To determine the minimal size of spatial domain ∆L given the
‘viewing’ domain ∆Lview, we need to examine Eq. (13) where
the approximation ofW∆L ≈ 2 is supported by assuming large
∆L. Again, this assumption is regarded to be well satisfied if
the argument is larger than two:∣∣∣∣∣∣∣∣∣

xa + xb ± ∆L

2
√
λ2

x + τ2
lifev2

∣∣∣∣∣∣∣∣∣ ≥ 2. (21)

Figure 4: Blue lines show the multipleW∆Tsub (ti)’s with the widths of ∆Tsub
inside the total ∆T window set by the P (ti) depicted by the red line. All the
W∆Tsub (ti)’s are shifted by an amount of γi. The correlation value is underesti-
mated for the far left subtime window containing the yellow shaded region. We
wish to have the size of γi negligible compared to ∆T .

Since ∆Lview ≥ |xa + xb|, we find a criterion on ∆L as

4
√
λ2

x + τ2
lifev2 + ∆Lview ≤ ∆L, (22)

and this condition guarantees that the ensemble averaged cor-
relation values do not depend on the ‘measurement’ positions,
hence the synthetic data satisfy the homogeneous state.

If we delve into the structure of Eq. (13) deeper, one may
raise a question: what happens if W∆L is almost constant at
a value other than two within the ‘viewing’ domain ∆Lview? If
this happens, then we realize that

〈
Cai,bi

〉
does not depend on the

spatial position as long as the distances between the two points,
|xa − xb|, are the same. This consequence may be argued for
the data being homogeneous without satisfying the condition
on ∆L set by Eq. (22). We provide more detailed explanation
on this in Appendix A.

3.2. Simulation results with parameter scans

We now have the conditions on the sizes of temporal (∆T )
and spatial (∆L) simulation domains given the viewing domain
size (∆Lview), correlation length, lifetime (decorrelation rate)
and velocity of eddies such that the synthetic data are stationary
and homogeneous. If the proposed conditions, Eq. (20) and Eq.
(22), are correct, then we can generate statistically valid syn-
thetic data, i.e., stationary and homogeneous data, while keep-
ing the computation resource minimal. Here, we examine the
conditions on ∆L with synthetic data using the auto-correlation
function because this is the easiest way to see the effect of the fi-
nite spatial domain, and whilst the correlation lengths and times
will also be affected these require fitting functions that add un-
necessary complexity to the problem. We do not examine the
∆T condition because synthetic data are usually generated with
many time points such that ensemble average can be performed,
in which case Eq. (20) is readily satisfied.

We generate synthetic data with λx = 0.1 m, τlife = 15 µs,
v = 5, 000 m/s, ∆T = 48, 000 µs and ∆Tsub = 480 µs. We set the
variance of amplitudes, A2 in P (Ai) (see Eq. (3)), constant in
space with the intention of generating homogeneous synthetic
data. To cover a couple of correlation lengths, we set ∆Lview =

0.2 m. Based on Eq. (22), we find that ∆L ≥ 0.7 m for this case.

5



Figure 5: Analytically calculated fluctuation levels of the synthetic data〈
Ca,a

〉1/2 (squares) using Eq. (16) with the actual values of W∆L, i.e., no
approximation of W∆L to two, and numerically estimated fluctuation levels〈
CSYN

a,a

〉1/2
from the synthetic data as a function of spatial position xa within

∆Lview for ∆L = 0.2 (blue dot), 0.4 (yellow dash dot), 0.8 (green dash) and
1.4 m (red line). Uncertainties represent the 95% confidence level of estimat-
ing fluctuation levels. Here, ∆L ≥ 0.7 m is the condition for the data to be
homogeneous.

Fig. 5 shows, as functions of spatial position xa, the
〈
Ca,a

〉1/2

(squares), i.e., the calculated fluctuation levels using Eq. (16)
with the actual values of W∆L (no approximation of W∆L to
two) for ∆L = 0.2 (blue), 0.4 (yellow), 0.8 (green) and 1.4 m
(red). Note that the green squares are not visible as they are
overlapped with the red squares. Numerically estimated fluctu-
ation levels,

〈
CSYN

a,a

〉1/2
, based on four sets of synthetic data with

∆L = 0.2 (blue dot), 0.4 (yellow dash dot), 0.8 (green dash) and
1.4 m (red line) are also shown. We see that the data are not
homogeneous for the cases of ∆L = 0.2 and 0.4 m which do not
satisfy the ∆L condition set by Eq. (22) even if A2 is set to be
constant in space while generating the synthetic data. The un-
derestimation of the fluctuation level towards the edge of ∆Lview
for these cases are caused by the ‘edge effect,’ i.e., W∆L < 2
towards the edge. Data are homogeneous for ∆L = 0.8 and 1.4
m, i.e., ∆L ≥ 0.7 m is satisfied.

Fig. 6(a) shows the required minimum ∆L normalized to λx,
calculated with Eq. (22), as a function of λx and v while keeping
τlife = 15 µs with ∆Lview = 2λx. We, then, generate 342 sets of
synthetic data with various values of λx and v with the domain
size of ∆L/λx = 9 shown as the red line in Fig. 6(a). Thus, we
expect that the sets of synthetic data which fall into the region
above the line of ∆L/λx = 9 do not satisfy the homogeneous
condition, i.e., these sets of data require a larger ∆L. With the
line (red) of ∆L/λx = 9, Fig. 6(b) shows the normalized aver-
age distance D (λx, v) of the numerically estimated fluctuation
levels

〈
CSYN

a,a

〉1/2
from the expected value

〈
Ca,a

〉1/2 (Eq. (16))

Figure 6: (a) Required minimal ∆L normalized to λx as a function of λx and v
with fixed τlife = 15 µs and ∆Lview = 2λx. (b) The normalized average distance
D (λx, v), defined in Eq. (23), for 342 (18 × 19) sets of synthetic data with
various values of λx and v while keeping ∆L/λx = 9 (red lines in both figures).
If D (λx, v) is not close to zero, then the synthetic data may not be regarded as
homogeneous, and the region violating the required ∆L condition, i.e., above
the red line, has values ofD (λx, v) greater than zero.

defined as

D (λx, v) =

√
1

Nxa

∑
xa

[〈
CSYN

a,a

〉1/2
−

〈
Ca,a

〉1/2
]2

〈
Ca,a

〉1/2 , (23)

where the sum is performed on the all spatial positions within
the ∆Lview, and Nxa is the number of spatial points. D (λx, v)
is a zeroth order proxy for the homogeneity of synthetic data
(see Fig. 5). If D (λx, v) is not close to zero, then we speculate
that the data are not homogeneous. Fig. 6(b) clearly shows that
D (λx, v) is conceivably larger than zero above the line, hence
vindicating our proposed condition on ∆L.

4. Conclusion

Motivated by the recent trend of wide usage of synthetic data
either in a direct comparison of data from a local turbulence
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simulation to experimental data or in evaluating the reliability
of a statistical algorithm, we have investigated how the syn-
thetic data must be generated while minimizing the computa-
tion resource. The conditions on the total simulation domains,
∆T and ∆L, given the ‘viewing’ domain ∆Lview (or the domain
of interest) are summarized in Eq. (20) and Eq. (22) such that
the data are stationary and homogeneous. We emphasize that
many statistical analyses require the data to be homogeneous
and stationary at least within the domain of interest. Further-
more, if one generates a synthetic data based on a local turbu-
lence simulation such as a gyro-kinetic simulation, the condi-
tions can be applied to ∆Lview given ∆T and ∆L.

We found the conditions by realizing that two error func-
tions W∆Tsub (ti) in Eq. (9) and W∆L in Eq. (13), which take
roles of weighting factors on each eddy, must be approximately
two throughout the domain of interest. As these error func-
tions are manifestations of the coherent structure of Gaussian-
shaped eddies, similar weighting factors would appear for dif-
ferent shapes of eddies as long as the eddies have non-zero co-
herent structures in temporal and/or spatial domains. Although
we do not provide exact forms of weighting factors for different
shapes of eddies as we have done for Gaussian-shaped eddies
in this paper, our rationale can be applied to other shapes of ed-
dies. We do not extend the conditions to include other shapes
of eddies here because 1) the purpose of this paper is not to
provide the conditions for all possible shapes of eddies (which
is not possible), rather to provide the ‘rationale’ how one must
choose a domain of interest such that the synthetic data can be
used for statistical analyses and 2) we have chosen to apply our
rationale on the Gaussian-shaped eddies as we believe that such
a shape is a good approximation [22] to describe turbulent fluc-
tuations.
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Appendix A. Constant W∆L within the ‘viewing’ domain
∆Lview

W∆L within the viewing window ∆Lview can be stated as con-
stant if the difference between the maximum and the minimum
of W∆L denoted as Wmax

∆L and Wmin
∆L , respectively, are small

(for instance, less than 5%):

Wmax
∆L −W

min
∆L

Wmax
∆L

≤ 0.05. (A.1)

Here, we provide the definition of W∆L again as a matter of
convenience:

W∆L = Erf

 xa + xb + ∆L

2
√
λ2

x + τ2
lifev2

 − Erf

 xa + xb − ∆L

2
√
λ2

x + τ2
lifev2

 . (A.2)

Figure A.7: (a) The minimum size of ∆L normalized to λx such that W∆L is
almost constant within ∆Lview, i.e., satisfying Eq. (A.1). Note that if this calcu-
lated ∆L is less than ∆Lview, then we force ∆L = ∆Lview. (b) Normalized differ-
ence between the maximum and minimum fluctuation levels from the synthetic
data with ∆L/λx = 2 (red lines in both figures). The region above the line has
constantW∆L within ∆Lview, thus the fluctuation levels are almost constant.

To estimate the fluctuation level, we set xa = xb as in
〈
Ca,a

〉1/2.
By taking the first and the second derivatives ofW∆L with re-
spect to xa, we find that the maximum point is at xa = 0. Fur-
thermore, because xa = 0 is the only critical point, the mini-
mum occurs at the boundary of the ∆Lview. Then, we have

Wmax
∆L =Erf

 ∆L

2
√
λ2

x + τ2
lifev2

 − Erf

 −∆L

2
√
λ2

x + τ2
lifev2

 ,
Wmin

∆L =Erf

 ∆Lview + ∆L

2
√
λ2

x + τ2
lifev2

 − Erf

 ∆Lview − ∆L

2
√
λ2

x + τ2
lifev2

 .
(A.3)

Thus, the data may resemble the condition of homogeneous
state if Eq. (A.1) is satisfied with Eq. (A.3).

Fig. A.7(a) shows, as a function of λx and v, the minimum
size of ∆L normalized to λx satisfying Eq. (A.1) with fixed
τlife = 100 µs and ∆Lview = 2λx. Note that if this calcu-
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Figure A.8: Normalized average distance D (λx, v) defined in Eq. (23) for the
342 sets of synthetic data used to generate Fig. A.7. None of the data sets have
the values ofD (λx, v) close to zero as in Fig. 6.

lated minimum size of ∆L happens to be less than ∆Lview, we
force ∆L = ∆Lview since it is non-sense to consider the larger
‘viewing’ window than the total simulation window. Then,
we generate 342 sets of synthetic data with ∆L/λx = 2, i.e.,
∆L = ∆Lview. The lines of ∆L/λx = 2 are depicted as red lines
in both Fig. A.7(a) and (b). Fig. A.7(b) shows that in the region
above the line of ∆L/λx = 2, where Eq. (A.1) is satisfied, the
maximum and minimum fluctuation levels from the synthetic
data,

〈
CSYN

a,a

〉1/2

max
and

〈
CSYN

a,a

〉1/2

min
, respectively, within the ∆Lview

are quite similar; while the region below the line shows non-
negligible differences.

Although the fluctuation levels are constant over the viewing
window for the data sets satisfying Eq. (A.1), we can easily
find that none of the data sets in Fig. A.7 satisfy the ‘true’ ho-
mogeneous condition set by Eq. (22). If we plot the normalized
average distance D (λx, v) defined in Eq. (23) for the same sets
of the synthetic data, we see that all the synthetic data have val-
ues ofD (λx, v) greater than zero as shown in Fig. A.8 (cf. Fig.
6(b) where we have deliberately used the same color scale).

As a summary, we state that constant W∆L is not a suffi-
cient condition for data being homogeneous, rather we require
W∆L ≈ 2.
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