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Mode Gaussian beam tracing
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Abstract: An adiabatic mode Helmholtz equation for 3D underwater slquiopa-
gation is developed. The Gaussian beam tracing in this sagenistructed. The test
calculations are carried out for the crosswedge benchmatkpeoved an excellent
agreement with the source images method.
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1. Introduction

The problem of sound propagation across the slope in threerdiions is considered by the method
of summation of mode Gaussian beams [1, 2]. In our case, eoaiction of modes is necessary to model
correctly across slope propagation. The paper is orgaizddllows. After formulation of the problem in
section 2, we consider an adiabatic mode Helmholtz equatidrthe corresponding parabolic equation in
the ray-centered coordinates. In the next section we dp\wadain details related to the mode Gaussian
beams propagation. After that we illustrate the efficienicihe obtained equation by the numerical simu-
O _ lation of sound propagation for the standard ASA wedge berack, as it was performed in the paper [3]
~for the case of the 3D parabolic equation. The paper endsatief conclusion.
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— 2. Basic Equations and Boundary Conditions
g We consider the propagation of time-harmonic sound in theetldimensional waveguide
™
g Q={(z,y,2)|0 <z <00,—00<y<oo,—H<2z<0}
o (the z-axis is directed upward), described by the acoustic Heltaleguation
—
ot (VPy), + (YPy), + (YP.), +vK°P =0, (1)
2 wherey = 1/p, p = p(x,y, z) is the densityx is the wave-number. We assume the appropriate radiation
>< .conditions at infinity in ther, y plane, the pressure-release boundary condffiea 0 atz = 0 and the rigid
E boundary conditio®P/0z = 0 atz = —H. The parameters of the medium can be discontinuous at the
nonintersecting smooth interfaces= h,(z,y), . .., hn(x,y), where the usual interface conditions
P+ =P 9
oP oP oP opP oP oP (2)
— —hy——h,— | =9 |——hy— —h,— | ,
nyr(@z Ox y@y)Jr 7 (02 Ox y@y)

are imposed. Hereafter, we use the denotatiffs, z,y)y = lim,|,, f(z,z,y) and f(z,z,y)- =
lim,+,, f(2,2,y). As will be seen below, it is sufficient to consider the case= 1, so we setn = 1
and denoté; by h.

We introduce a small parameter(the ratio of the typical wavelength to the typical size ofdiuen
inhomogeneities), the slow variablés = ex andY = ey and the fast variables = (1/¢)©(X,Y) and
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= (1/4/€)¥(X,Y) and postulate the following expansions for the acoustisqueeP and the parameters
k2, v andh:

P = PO(X7 szunug) + \/EP1/2(X7 szunug) +
K*=n3(X,Y, 2) + ev(X,Y, 2,€),

Y= ’YO(vavaz) +€71(X7}/727€)7
h=ho(X,Y) + ehy(X,Y,€).

3)

To model attenuation effects, we admito be complex. Namely, we taken v = 2u(n?, wherepy =
(407 log;, €)' andg is the attenuation in decibels per wavelength.
Following the generalized multiple-scale methiad [4], welaee derivatives in equationl (1) by the rules

(ot e+ Ox
Oz axX e Yo¢ Xon
0 0 1,0 0
— 4 Uy :
ay%<ay+f Yoe " @Yan>

Given the postulated expansions, the equation under cenasion becomes

0 1 o 1_ 9
2 7 T e - I
€ <8X+\/E\11X + @X%) (o + em1)

KA 1 8 0

+ the same term W|th thﬁ-derlvatlves

+ (o +em) (Po- +€Pr+---,)),
+ (Yot en)(ng +ev) (Po+eP +-++,)=0.

We put now
Po+ePy+ - = (A(X,Y, 2,8) + €A (X, Y, 2,&) + -+ )e.

Using the Taylor expansion, we can formulate the interfaceltions at:, which are equivalent to interface
conditions[(2) up t@)(e):

(Ao + €h1 Ao, + €Ay), = (the same terms (5)

(0 + €h1v0. + 1)
X (AOz —+ EhlAOzz —+ EAlz — Gi@XhoxAQ — Ei@yhoyAQ))+ (6)
= (the same terms .

2.1. The problem ab(¢°)
At O(€°) we obtain

(7040:): + 01540 — 70 ((Ox)% + (Oy)?) A4 =0, (7)

with the interface conditiongly, = Ao, (70Ao.), = (70A40:)_ atz = he, and the boundary conditions
Ap=0atz=0andA,, =0atz = —H. We seek a solution to problefm (7) in the form

Ao = Bi(X,Y,£)o(X, Y, 2). (8)
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From egs.[(7) we obtain the following spectral problemfawith the spectral parameté? = (Ox)? +
(©y)?

(709-), + Yongd — Yok*¢ =0,
$(0)=0, ¢.=0 at z=-H, (9)

Oy =0, (’Yoébz)Jr = (’Yoébz), at z=nhg.
This spectral problem, considering in the Hilbert spage, [— H, 0] with the scalar product

0
(¢w%=/;vdea (10)

has countably many squtiorQi;j?, ®;), j = 1,2,... where the eigenfunctions can be chosen as real func-
tions. The eigenvalue@ are real and have c as a single accumulation point. The normalizing condition
is

0
<¢@=/;%&w=1, (11)

2.2. The problem ab(e!/2) and atO(e!)
The solvability condition of problem &®(¢'/?) is

Ox¥yx +6yVy =0, (12)
from which we conclude that we can takg, = 0.

2.3. The problem ab(¢')
At O(e'), we obtain

(Y0A12), + 0mp AL — YokG Ay
= —iyoxk;jAo — 2in0k; Aox — inok;xuo + 7116]2A0 — 70(¥x)* Agge

— the same terms with'-derivatives (13)
0
T (71402) — ng”yle — vy,
with the boundary conditiongl; = 0 atz = 0, A;, = 0 atz = —H, and the interface conditions at

Z = hQ(X, Y)
Ay — A = hi(Agom — Aozy ),
Yor Atz — Yo- A1
= h1 ((70Ao2):)_ — ((70A02):)4) + 11=Aoa— — Y1+ Aoz
—ik;hox Ao(Yo— — Yo+) — ikjhoy Ao(Yo— — Yo+ ) -

Multiplying ([L3) by ¢, and then integrating resulting equation frent/ to 0 by parts twice with the use of
interface conditiongs(14), we obtain the solvability cdiwdi for the problem a0 (')

21(0;xBjx + ©;yBjy) +1(0;xx + O,yy)B
+((Ux)® + (Py)?) Bjee + a;B; = 0,
whereA, = B;¢,; andq; is given by the following formula

0 0 0
o= [ watdes [ (- i) etas- [ (o) d:

—00 —0o0

(14)
(15)

+ {h1¢j [((70¢jz)z)+ - ((70¢jz)z)f]

e |(5), - () 1)
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Using spectral probleni|9), the interface terms introdwdsalve can be rewritten also as

(et 12 o = 0-) = (i), + ()]

i [(3), - () I}

3. The adiabatic mode Helmholtz equation and the ray parabat equation in ray centered coordinates
To obtain the adiabatic mode Helmholtz equation from[ed), (@& introduce the new amplitude

z=hg

Dj(x,y) = B;(X,Y,€),

where(z,y) = —(X,Y) are the initial (physical) coordinates. One can easilyiolitee following formulas
for thez-derivatives ofD;:

Djx = ng . \/E\IIX + EBjX s (16)

Djro = Bjee - e(Ux)? + €/2(2BjexUx + BjeUxx) + ¢ Bjxx (17)

and analogous formulas for thyederivatives.
The solvability condition of the problem ét(¢*/?) gives us

2Bj§X\IfX + ng\IfXX + 2Bj§y\lfy + ngllfyy =0.

Substituting the obtained expressions for derivatives &d. (15) we get, after some manipulations, the
reduced Helmholtz equation f@»

21(0,Djy + 60,Djy) 4+ 10 + 0yy)Dj + Dy + Djyy + &, D; =0, (18)

wheref(z,y) = 10(X,Y), &; = o
This equation can be transformed to the usual Helmholtztesqua

Djuz+ Djyy + kK°D; +a;D; =0, (19)

wherek? = (6,)2+(6,)? by the substitutioD; = D, exp(if). Consider the ray equations for the Hamilton-
Jacobi equation
(02)" +(0,)* = P* + Q* = &

in the form
P Q
P Ye = P
We have(z;)? + (y;)* = 1, sot is a natural parameter for the ray, and introdéde be orthogonal to the
ray (ray-centered coordinates).

To obtain the ray parabolic equation in the ray-centereddinates, we first rewrite ed. (119) in the slow
variables( X, Y') = (ex, ey) (ray scaling)

Pr=ky, Q=k,. (20)

Ty =

EQD]';M + EQDjyy + ]i?QDj + EOéij =0. (21)
Then, in the vicinity of a given ray, ed. (21) can be writterthie form

1,1 _ - -
@3 (5 Dy €3 (WD), + KD + e, Dy = 0, (22)
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wheret is a natural parameter of the ray (arc lengthis the (oriented) distance to the ray ane- 1 — k:_l
0

Hereafter we use, for a given functigh= f (¢, n), the following denotationsf, = f|,.—o, fi = fu|n=0 and

f2 = fnn‘n:O-
Substituting into eq[(22) the Taylor expansions

]{?2 = ]{38 + 2]{51]{5071 + (k’% —|— k?ok’g)nz = ]{38 + \/E2k’1k’0N + 6(]{3% —|— k’ok’g)Nz s

1 ko k2, ky ko

S N LS | PIN ety

Pl T T Ve NN
1 ey K ks kT o
S ) el PN fo e | 9N 4 31N
= + k0n+ kén + /e T +e R

whereN = % (parabolic scaling), and the WKB-ansdiz = (ug + eu; + ...) exp((i/€)d), we obtain at
O(€?) 6
0; = ikg
and atO(¢') the parabolic equation in the ray centered coordinates
2ikguo; + ikoruo + uonn + [(koka — 2k1)N? + ajolug = 0. (23)

4. Mode Gaussian Beam Equations
To solve eq.[(23), we first introduce the following substant

uo(t, N) = klo(t) exp (% /O t ‘;‘;’OO(S) ds) U;(t,N). (24)

Then our equation becomes
2ikoUj + Uinn + (koksy — 2k1)N?U; = 0. (25)

Following [1], we seek a solution of this equation in the foofrthe Gaussian beam anzats

U,(t,N) = A(t) exp (%sz(t)) , (26)
wherel'(¢) is an unknown complex-valued function. Substitution of)(@&o (25) gives

i(2koA; + AT) — AN?[koD; + T% — (koky — 2k3)] = 0.
We require separately

kol'y + T2 — (koky — 2k3) =0, and 2kgA; + A =0. (27)

To solve the first ordinary non-linear differential equatiaf the Riccati type, we introduce new complex-
valued variableg(t) andp(¢) by the formulas

k p
F:—Oqt:—.
q q

Then
@ =ki'p,  pi=(ka—2kiky")q. (28)



Mode Gaussian beam tracing page Elof 8 Trofimov et al

The solution of the second equation[in(27) can be expresste ifollowing form

1\
At) = —=—,
q(t)
whereV is a complex value, which is constant along the ray, but may agdifferent rays.
Finally for uy we have:

- :

up(t, N) = —2 8o (1/ 0(8) 4o 4 1N2@) . (29)
ko(t)g(t) 2Jo Fols) 2 q(t)

Here p is the parameter, that enumerates rays. j-and ¢ we have the system of ordinary differential

equations[(28), which can be solved simultaneously withrélyeequations (20). It is convenient to split

variablesp andg onto real and imaginary parts as follows= p, — iep;, ¢ = ¢2 — ieq; wheree is a rather

big positive real number, defining the width of the Gaussi@ah. As found in[1] and discussedin [2], the

optimal choice ot for the minimum value of the Gaussian beam width for a homegaa medium at the

point of the receiver correspondsdo= L,, whereL, is the length of the ray to the point of the receiver.
Initial conditions forp andg should be following

@(0) =1, p1(0)=0, @(0)=0, p(0)=*ko(0).

The acoustic field at the point of the receivdrcan be expressed as the integral on all rays

W) [ / ' < ozjo(s)) i ap(t)
= —— —exp |1 ko(s) + ds + —Nz—} dy. (30)
) /0 Vo) q(t) 0 ols) 2k (s) 2 q(t)
Heret and N are the ray centered coordinates of the receiver point dr eay.
One can determine the valuewty) by comparing of the following two field. First, the one obiifor

the homogeneous medium from the formdla (30) by the steegssent method. Second, the one obtained
from the fundamental solution of the Helmholtz equationtfos case. So we have

_ P(zs)9(2r) 425 ajo(0)z a;0(0) \ 7'
V= Viko(0 \/1 Dk (0)2 (1 N 2k0(0)2)

p(z

5. Numerical Example

We consider a standard ASA wedge benchmark problem withrigke af wedge~ 2.86° in the case
of cross slope propagation (see HKig. 1). The bottom depth(isn along the trace wittlX' = 0...25 km.
The sound speed in the waterlis00 m/sec. The sound speed in the bottom, which is considered ligsid, i
1700 m/sec. The bottom density i$500 kg/m?, the water density i$000 kg/m?. We assume that there is
no attenuation in the water layer, while in the bottom therattition i9.5 dB/\. For calculation purposes
we restrict the total depth %00 m.

To illustrate the efficiency of our equation, we performeduaerical simulation of sound propagation
for the standard ASA wedge benchmark. In fig. 2, we presenpesisons of the solution of our equation
and the source images solution [5] in the case of cross skapagation in the wedge with ASA parameters.
One can see that the curves are quite close, and the meae sliftenence between curves is abautd B
in the case of 3 modes. To improve accuracy of the method ofirttid .5 £m we can use more than 3
modes. For example, in the case of 7 modes, the field in theityi@f the source is represented correctly,
and the mean square difference is abbut/ 5.

6. Conclusions

The results of test calculations show, that the acoustit iirethe far zone is satisfactory described by its
first three modes. We have shown that no interaction of madesdessary to perform satisfactory modeling
of a cross slope propagation. However, to obtain a moresteathodel, we assert, that seven modes (total
depth is600 m) are sufficient to represent the acoustic field in the all wered area.
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Fig. 1. The geometry for the ASA wedge benchmark. The wedgéda= 2.86° with a distance to the
apex4 km. The source is located at depth0 . The bottom depth at the place of the soufte= 200 m.

Cross Wedge TL(X), Hs=100m, Hr=30m, f=25Hz
I

- - -lmages
—Ray MPE

TL, dB

_70,

_75,

X, km

Fig. 2: The transmission loss for the ASA wedge, the sourpehde 100 m. The receiver depth i30 m, 3
modes, attenuation i85 dB/\. Across slope propagation.
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