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Mode Gaussian beam tracing
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Abstract: An adiabatic mode Helmholtz equation for 3D underwater sound propa-
gation is developed. The Gaussian beam tracing in this case is constructed. The test
calculations are carried out for the crosswedge benchmark and proved an excellent
agreement with the source images method.

PACS numbers:43.30.Bp, 43.30.Cq, 43.20.Bi

1. Introduction

The problem of sound propagation across the slope in three dimensions is considered by the method
of summation of mode Gaussian beams [1, 2]. In our case, no interaction of modes is necessary to model
correctly across slope propagation. The paper is organizedas follows. After formulation of the problem in
section 2, we consider an adiabatic mode Helmholtz equationand the corresponding parabolic equation in
the ray-centered coordinates. In the next section we develop certain details related to the mode Gaussian
beams propagation. After that we illustrate the efficiency of the obtained equation by the numerical simu-
lation of sound propagation for the standard ASA wedge benchmark, as it was performed in the paper [3]
for the case of the 3D parabolic equation. The paper ends witha brief conclusion.

2. Basic Equations and Boundary Conditions

We consider the propagation of time-harmonic sound in the three-dimensional waveguide

Ω = {(x, y, z)|0 ≤ x ≤ ∞,−∞ ≤ y ≤ ∞,−H ≤ z ≤ 0}

(thez-axis is directed upward), described by the acoustic Helmholtz equation

(γPx)x + (γPy)y + (γPz)z + γκ2P = 0 , (1)

whereγ = 1/ρ, ρ = ρ(x, y, z) is the density,κ is the wave-number. We assume the appropriate radiation
conditions at infinity in thex, y plane, the pressure-release boundary conditionP = 0 atz = 0 and the rigid
boundary condition∂P/∂z = 0 at z = −H. The parameters of the medium can be discontinuous at the
nonintersecting smooth interfacesz = h1(x, y), . . . , hm(x, y), where the usual interface conditions

P+ = P− ,

γ+

(

∂P

∂z
− hx

∂P

∂x
− hy

∂P

∂y

)

+

= γ−

(

∂P

∂z
− hx

∂P

∂x
− hy

∂P

∂y

)

−

,
(2)

are imposed. Hereafter, we use the denotationsf(z0, x, y)+ = limz↓z0 f(z, x, y) and f(z0, x, y)− =
limz↑z0 f(z, x, y). As will be seen below, it is sufficient to consider the casem = 1, so we setm = 1
and denoteh1 by h.

We introduce a small parameterǫ (the ratio of the typical wavelength to the typical size of medium
inhomogeneities), the slow variablesX = ǫx andY = ǫy and the fast variablesη = (1/ǫ)Θ(X, Y ) and
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ξ = (1/
√
ǫ)Ψ(X, Y ) and postulate the following expansions for the acoustic pressureP and the parameters

κ2, γ andh:

P = P0(X, Y, z, η, ξ) +
√
ǫP1/2(X, Y, z, η, ξ) + · · · ,

κ2 = n2

0(X, Y, z) + ǫν(X, Y, z, ξ) ,

γ = γ0(X, Y, z) + ǫγ1(X, Y, z, ξ) ,

h = h0(X, Y ) + ǫh1(X, Y, ξ) .

(3)

To model attenuation effects, we admitν to be complex. Namely, we takeIm ν = 2µβn2
0 , whereµ =

(40π log10 e)
−1 andβ is the attenuation in decibels per wavelength.

Following the generalized multiple-scale method [4], we replace derivatives in equation (1) by the rules

∂

∂x
→ ǫ

(

∂

∂X
+

1√
ǫ
ΨX

∂

∂ξ
+

1

ǫ
ΘX

∂

∂η

)

,

∂

∂y
→ ǫ

(

∂

∂Y
+

1√
ǫ
ΨY

∂

∂ξ
+

1

ǫ
ΘY

∂

∂η

)

.

Given the postulated expansions, the equation under consideration becomes

ǫ2
(

∂

∂X
+

1√
ǫ
ΨX

∂

∂ξ
+

1

ǫ
ΘX

∂

∂η

)

((γ0 + ǫγ1)

·
(

∂

∂X
+

1√
ǫ
ΨX

∂

∂ξ
+

1

ǫ
ΘX

∂

∂η

)

·
(

P0 + ǫP1 + · · · ,
))

+ the same term with theY -derivatives

+ ((γ0 + ǫγ1) (P0z + ǫP1z + · · · , ))z
+ (γ0 + ǫγ1)(n

2

0 + ǫν) (P0 + ǫP1 + · · · , ) = 0 .

(4)

We put now

P0 + ǫP1 + · · · = (A0(X, Y, z, ξ) + ǫA1(X, Y, z, ξ) + · · · )eiη .

Using the Taylor expansion, we can formulate the interface conditions ath0 which are equivalent to interface
conditions (2) up toO(ǫ):

(A0 + ǫh1A0z + ǫA1)+ = (the same terms)− , (5)

((γ0 + ǫh1γ0z + ǫγ1)

× (A0z + ǫh1A0zz + ǫA1z − ǫiΘXh0XA0 − ǫiΘY h0YA0))+
= (the same terms)− .

(6)

2.1. The problem atO(ǫ0)

At O(ǫ0) we obtain

(γ0A0z)z + γ0n
2

0A0 − γ0
(

(ΘX)
2 + (ΘY )

2
)

A0 = 0 , (7)

with the interface conditionsA0+ = A0−, (γ0A0z)+ = (γ0A0z)− at z = h0, and the boundary conditions
A0 = 0 at z = 0 andA0z = 0 atz = −H. We seek a solution to problem (7) in the form

A0 = Bj(X, Y, ξ)φ(X, Y, z) . (8)
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From eqs. (7) we obtain the following spectral problem forφ with the spectral parameterk2 = (ΘX)
2 +

(ΘY )
2

(γ0φz)z + γ0n
2

0φ− γ0k
2φ = 0 ,

φ(0) = 0 , φz = 0 at z = −H ,

φ+ = φ− , (γ0φz)+ = (γ0φz)− at z = h0 .

(9)

This spectral problem, considering in the Hilbert spaceL2,γ0 [−H, 0] with the scalar product

(φ, ψ) =

∫

0

−H

γ0φψ dz , (10)

has countably many solutions(k2j , φj), j = 1, 2, . . . where the eigenfunctions can be chosen as real func-
tions. The eigenvaluesk2j are real and have−∞ as a single accumulation point. The normalizing condition
is

(φ, φ) =

∫

0

−H

γ0φ
2 dz = 1 , (11)

2.2. The problem atO(ǫ1/2) and atO(ǫ1)

The solvability condition of problem atO(ǫ1/2) is

ΘXΨX +ΘYΨY = 0 , (12)

from which we conclude that we can takeP1/2 = 0.

2.3. The problem atO(ǫ1)

At O(ǫ1), we obtain

(γ0A1z)z + γ0n
2

0A1 − γ0k
2

jA1

= −iγ0XkjA0 − 2iγ0kjA0X − iγ0kjXu0 + γ1k
2

jA0 − γ0(ΨX)
2A0ξξ

− the same terms withY -derivatives

− ∂

∂z
(γ1A0z)− n2

0γ1A0 − νγ0A0 ,

(13)

with the boundary conditionsA1 = 0 at z = 0, A1z = 0 at z = −H, and the interface conditions at
z = h0(X, Y ):

A1+ −A1− = h1(A0z− −A0z+) ,

γ0+A1z+ − γ0−A1z−

= h1
(

((γ0A0z)z)− − ((γ0A0z)z)+
)

+ γ1−A0z− − γ1+A0z+

− ikjh0XA0(γ0− − γ0+)− ikjh0YA0(γ0− − γ0+) .

(14)

Multiplying (13) byφj and then integrating resulting equation from−H to 0 by parts twice with the use of
interface conditions (14), we obtain the solvability condition for the problem atO(ǫ1)

2i(ΘjXBjX +ΘjYBjY ) + i(ΘjXX +ΘjY Y )B

+ ((ΨX)
2 + (ΨY )

2)Bjξξ + αjBj = 0 ,
(15)

whereA0 = Bjφj andαj is given by the following formula

αj =

∫

0

−∞

γ0νφ
2

j dz +

∫

0

−∞

γ1
(

n2

0 − k2j
)

φ2

j dz −
∫

0

−∞

γ1 (φjz)
2 dz

+

{

h1φj

[

((γ0φjz)z)+ − ((γ0φjz)z)−
]

−h1γ20 (φjz)
2

[(

1

γ0

)

+

−
(

1

γ0

)

−

]}
∣

∣

∣

∣

z=h0

.
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Using spectral problem (9), the interface terms introducedabove can be rewritten also as
{

h1φ
2

j

[

k2j (γ0+ − γ0−)−
(

n2

0γ0
)

+
+
(

n2

0γ0
)

−

]

−h1γ20 (φjz)
2

[(

1

γ0

)

+

−
(

1

γ0

)

−

]}
∣

∣

∣

∣

z=h0

.

3. The adiabatic mode Helmholtz equation and the ray parabolic equation in ray centered coordinates

To obtain the adiabatic mode Helmholtz equation from eq. (15), we introduce the new amplitude

Dj(x, y) = Bj(X, Y, ξ) ,

where(x, y) =
1

ǫ
(X, Y ) are the initial (physical) coordinates. One can easily obtain the following formulas

for thex-derivatives ofDj :
Djx = Bjξ ·

√
ǫΨX + ǫBjX , (16)

Djxx = Bjξξ · ǫ(ΨX)
2 + ǫ3/2(2BjξXΨX +BjξΨXX) + ǫ2BjXX , (17)

and analogous formulas for they-derivatives.
The solvability condition of the problem atO(ǫ3/2) gives us

2BjξXΨX +BjξΨXX + 2BjξYΨY +BjξΨY Y = 0 .

Substituting the obtained expressions for derivatives into eq. (15) we get, after some manipulations, the
reduced Helmholtz equation forD

2i(θxDjx + θxDjy) + i(θxx + θyy)Dj +Djxx +Djyy + ᾱjDj = 0 , (18)

whereθ(x, y) = 1

ǫ
Θ(X, Y ), ᾱj = ǫαj .

This equation can be transformed to the usual Helmholtz equation

D̄jxx + D̄jyy + k2D̄j + ᾱjD̄j = 0 , (19)

wherek2 = (θx)
2+(θy)

2 by the substitution̄Dj = Dj exp(iθ). Consider the ray equations for the Hamilton-
Jacobi equation

(θx)
2 + (θy)

2 = P
2 + Q

2 = k2

in the form

xt =
P

k
, yt =

Q

k
, Pt = kx , Qt = ky . (20)

We have(xt)2 + (yt)
2 = 1, sot is a natural parameter for the ray, and introduce~n to be orthogonal to the

ray (ray-centered coordinates).
To obtain the ray parabolic equation in the ray-centered coordinates, we first rewrite eq. (19) in the slow

variables(X, Y ) = (ǫx, ǫy) (ray scaling)

ǫ2D̄jxx + ǫ2D̄jyy + k2D̄j + ǫαjD̄j = 0 . (21)

Then, in the vicinity of a given ray, eq. (21) can be written inthe form

ǫ2
1

h
(
1

h
D̄jt)t + ǫ2

1

h
(hD̄jn)n + k2D̄j + ǫαjD̄j = 0 , (22)
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wheret is a natural parameter of the ray (arc length),n is the (oriented) distance to the ray andh = 1− k1
k0

.

Hereafter we use, for a given functionf = f(t, n), the following denotations:f0 = f |n=0, f1 = fn|n=0 and
f2 = fnn|n=0.

Substituting into eq. (22) the Taylor expansions

k2 = k20 + 2k1k0n + (k21 + k0k2)n
2 = k20 +

√
ǫ2k1k0N + ǫ(k21 + k0k2)N

2 ,

1

h
= 1 +

k1
k0
n +

k21
k20
n2 = 1 +

√
ǫ
k1
k0
N + ǫ

k21
k20
N2 ,

1

h2
= 1 + 2

k1
k0
n + 3

k21
k20
n2 = 1 +

√
ǫ2
k1
k0
N + ǫ3

k21
k20
N2 ,

whereN =
1√
ǫ

(parabolic scaling), and the WKB-ansatzD̄j = (u0 + ǫu1 + . . .) exp((i/ǫ)θ), we obtain at

O(ǫ0)

θt = ik0

and atO(ǫ1) the parabolic equation in the ray centered coordinates

2ik0u0t + ik0tu0 + u0NN + [(k0k2 − 2k21)N
2 + αj0]u0 = 0 . (23)

4. Mode Gaussian Beam Equations

To solve eq. (23), we first introduce the following substitution:

u0(t, N) =
1

√

k0(t)
exp

(

i

2

∫ t

0

αj0(s)

k0(s)
ds

)

Uj(t, N) . (24)

Then our equation becomes

2ik0Ujt + UjNN + (k0k2 − 2k21)N
2Uj = 0 . (25)

Following [1], we seek a solution of this equation in the formof the Gaussian beam anzats

Uj(t, N) = A(t) exp

(

i

2
N2Γ(t)

)

, (26)

whereΓ(t) is an unknown complex-valued function. Substitution of (26) into (25) gives

i(2k0At + AΓ)− AN2[k0Γt + Γ2 − (k0k2 − 2k21)] = 0 .

We require separately

k0Γt + Γ2 − (k0k2 − 2k21) = 0 , and 2k0At + AΓ = 0 . (27)

To solve the first ordinary non-linear differential equation of the Riccati type, we introduce new complex-
valued variablesq(t) andp(t) by the formulas

Γ =
k0
q
qt =

p

q
.

Then
qt = k−1

0 p , pt = (k2 − 2k1k
−1

0 )q . (28)
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The solution of the second equation in (27) can be expressed in the following form

A(t) =
Ψ

√

q(t)
,

whereΨ is a complex value, which is constant along the ray, but may vary at different rays.
Finally for u0 we have:

u0(t, N) =
Ψ(ϕ)

√

k0(t)q(t)
exp

(

i

2

∫ t

0

αj0(s)

k0(s)
ds+

i

2
N2

p(t)

q(t)

)

. (29)

Hereϕ is the parameter, that enumerates rays. Forp andq we have the system of ordinary differential
equations (28), which can be solved simultaneously with theray equations (20). It is convenient to split
variablesp andq onto real and imaginary parts as followsp = p2 − iεp1, q = q2 − iεq1 whereε is a rather
big positive real number, defining the width of the Gaussian beam. As found in [1] and discussed in [2], the
optimal choice ofε for the minimum value of the Gaussian beam width for a homogeneous medium at the
point of the receiver corresponds toε = Lr, whereLr is the length of the ray to the point of the receiver.
Initial conditions forp andq should be following

q1(0) = 1 , p1(0) = 0 , q2(0) = 0 , p2(0) = k0(0) .

The acoustic field at the point of the receiverM can be expressed as the integral on all rays

p(M) =

∫

2π

0

Ψ(ϕ)
√

k0(t)q(t)
exp

[

i

∫ t

0

(

k0(s) +
αj0(s)

2k0(s)

)

ds+
i

2
N2

p(t)

q(t)

]

dϕ . (30)

Heret andN are the ray centered coordinates of the receiver point for each ray.
One can determine the value ofΨ(ϕ) by comparing of the following two field. First, the one obtained for

the homogeneous medium from the formula (30) by the steepestdescent method. Second, the one obtained
from the fundamental solution of the Helmholtz equation forthis case. So we have

Ψ =
φ(zs)φ(zr)

ρ(zs)
·
√

ik0(0)ε ·

√

1− αj0(0)x

2ik0(0)2ε

(

1 +
αj0(0)

2k0(0)2

)−1

5. Numerical Example

We consider a standard ASA wedge benchmark problem with the angle of wedge≈ 2.86◦ in the case
of cross slope propagation (see Fig. 1). The bottom depth is200m along the trace withX = 0 . . . 25 km.
The sound speed in the water is1500m/sec. The sound speed in the bottom, which is considered liquid, is
1700m/sec. The bottom density is1500 kg/m3, the water density is1000 kg/m3. We assume that there is
no attenuation in the water layer, while in the bottom the attenuation is0.5 dB/λ. For calculation purposes
we restrict the total depth to600m.

To illustrate the efficiency of our equation, we performed a numerical simulation of sound propagation
for the standard ASA wedge benchmark. In fig. 2, we present comparisons of the solution of our equation
and the source images solution [5] in the case of cross slope propagation in the wedge with ASA parameters.
One can see that the curves are quite close, and the mean square difference between curves is about1.6 dB
in the case of 3 modes. To improve accuracy of the method on thefirst 1.5 km we can use more than 3
modes. For example, in the case of 7 modes, the field in the vicinity of the source is represented correctly,
and the mean square difference is about1.4 dB.

6. Conclusions

The results of test calculations show, that the acoustic field in the far zone is satisfactory described by its
first three modes. We have shown that no interaction of modes is necessary to perform satisfactory modeling
of a cross slope propagation. However, to obtain a more realistic model, we assert, that seven modes (total
depth is600m) are sufficient to represent the acoustic field in the all considered area.
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XSource

Bottom

Water
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Fig. 1: The geometry for the ASA wedge benchmark. The wedge angle is≈ 2.86◦ with a distance to the
apex4 km. The source is located at depth100m. The bottom depth at the place of the sourceH = 200m.
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Fig. 2: The transmission loss for the ASA wedge, the source depth is100m. The receiver depth is30m, 3
modes, attenuation is0.5 dB/λ. Across slope propagation.
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