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Abstract

In Monte Carlo integration an accurate and reliable deter-

mination of the numerical intregration error is essential. We

point out the need for an independent estimate of the error

on this error, for which we present an unbiased estimator.

In contrast to the usual (first-order) error estimator, this

second-order estimator can be shown to be not necessarily

positive in an actual Monte Carlo computation. We propose

an alternative and indicate how this can be computed in lin-

ear time without risk of large rounding errors. In addition,

we comment on the relatively very slow convergence of the

second-order error estimate.

1 Monte Carlo integration and its errors

It does not need to be stressed that in numerical integration, including Monte
Carlo (MC) integration [1], a determination or estimate of the integration
error made is essential. The Central Limit Theorem (CLT) practically en-
sures that if the number N of MC points is sufficiently large the numerical
value of the MC integral - itself a stochastic variable - will have a Gaussian
distribution around the true integral value, with a standard deviation that
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can itself also be estimated: this is the first-order error. The results of MC
integrations are therefore usually reported as

”result” ± ”error”

with the understanding that the ”error” value quoted is the Gaussian’s stan-
dard deviation. In this way one can, for instance, assign confidence levels
when comparing the integration result with a measurement. However, since
the Gaussian distribution is quite steep, a modest change in the value of the
error can change the confidence levels considerably. It is therefore preferable
to also have a second-order error that estimates how well the first-order error
was computed. The better way to report the result of a MC integration is
then

”result” ±

(

”first-order error” ± ”second-order error”

)

.

A first attempt to implement such a method was presented in [2]. However, in
that paper no explicit form of the second-order error estimator was presented,
nor were its numerical stability properties and its convergence behaviour
discussed: also it was (wrongly) stated that the second-order error was the
square root of the estimator, while it ought to be the fourth root. The present
paper addresses and corrects these issues. In what follows we shall arrive at
an estimator for the second-order error that, like the first-order one, can be
evaluated in linear time i.e. at essentially no extra CPU cost. We shall also
discuss several of its numerical aspects, and suggest an improvement.

2 Error estimators

We will start by defining some mathematical tools. We consider an integral
over an integration region Γ of an integrand f(x), with x ∈ Γ. We have at
our disposal a set of MC integration points xj , j = 1, 2, . . . , N , assumed to
be iid (Independent, Identically Distributed) with a probability distribution
P (x) in Γ. We define

Jp =
∫

Γ

dxP (x) w(x)p , w(x) =
f(x)

P (x)
, (1)
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so that J1 =
∫

dx f(x), the integral we want to compute. The numbers
wj ≡ w(xj) are called the weights of the points. We see that Jp is nothing
but the expectation value of w(x)p:

〈wp〉 = Jp . (2)

Furthermore, we define the following multiple sums:

Sp1,p2,...,pk =
N
∑

j1,2,...,k=1

wj1
p1 wj2

p2 · · · · · ·wjk
pk (3)

with the condition that the indices j1,2,...,k are all different. As an example,
the sum S1,1 does not contain N2 but N2 = N2 − N terms. The falling

powers are defined by

Np = N !/(N − p)! = N(N − 1)(N − 2) · · · (N − p+ 1) . (4)

The simple sums Sp can be evaluated in linear time (that is, using N addi-
tions), but a multiple sum Sp1,...,pk needs time of the order Nk. In calculating
estimators we therefore want to use only simple sums. On the other hand,
only the multiple sums have a simple expectation value:

〈Sp1,p2,...,pk〉 = Nk Jp1 Jp2 · · ·Jpk . (5)

We can relate simple and multiple sums to one another by the following
obvious rule:

Sp1,p2,...,pkSq = Sp1+q,p2,...,pk + Sp1,p2+q,...,pk + · · ·+ Sp1,p2,...,pk+q

+ Sp1,p2,...,pk,q . (6)

We are now ready to construct the various estimators, starting with the
well-known MC formulæ for clarity. For the integral we have

E1 =
1

N
S1 , (7)

since 〈E1〉 = J1; moreover we see that this estimator is unbiased. For the
variance of E1 we have

〈

E1
2
〉

− 〈E1〉
2 =

1

N2
〈S2 + S1,1〉 − J1

2

=
1

N

(

J2 − J1
2
)

=
1

N2
〈S2〉 −

1

N2N
〈S1,1〉 (8)
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so that the appropriate estimator is

E2 =
S2

N2
−

S1,1

N2N
=

1

N2N
Σ2 , Σ2 = N S2 − S1

2 . (9)

The latter form is more suited to computation since it can be evaluated in
linear time. From Eq.(8) we see that the first-order error, defined as E2

1/2

decreases as N−1/2, as is of course very well known. Moreover, the expected
error is defined for all functions that are quadratically integrable, as is equally
well known.

The second-order error should have as its expectation value the variance
of E2, which by the same methods as above can be shown to be

〈

E2
2
〉

− 〈E2〉
2 =

1

N3

(

J4 − 4J3J1 + 3J2
2 − 4

(

J2 − J1
2
)2
)

+
2

N2N2

(

J2 − J1
2
)2

. (10)

We see that the second-order error, defined as E4
1/4 decreases, for large N ,

as N−3/4. Moreover we see that the second-order error is only meaningful for
integrands that are at least quartically integrable. The appropriate unbiased
estimator with the correct expectation value is

E4 =
1

N4N3

(

N2Σ4 − 4Σ2
2
)

+
2

N4N2N2
Σ2

2 ,

Σ4 = N S4 − 4S3 S1 + 3S2
2 . (11)

An important observation here concerns the asymptotic behaviour of the rel-
ative errors. Whereas the relative first-order error, i.e. the ratio E2

1/2/E1,
goes as N−1/2 according to the ‘standard’ behaviour in MC, the relative
second-order error E4

1/4/E2
1/2 only decreases as fast as N−1/4. It will there-

fore take much longer for the error to be well-determined than for the integral
itself4.

A final point is in order. By the CLT we know that the distribution of E1

in an ensemble of MC computations is normally distributed, which tells us
the meaning of E2, as discussed above. Since E2 is not computed as a simple
average, its distribution is not governed by the same CLT. Nevertheless,

4Note that the relative errors as defined here are the dimensionless ratios, the only
meaningful measures of performance of the computation.
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as is shown in the Appendix a good case can be made for it being also
approximately normally distributed, so that the relation between E4 and the
confidence levels of E2 can be treated in the usual manner. Below, we shall
illustrate this with several examples.

3 Positivity and numerical stability

In principle, equations (7), (9) and (11) are what is necessary to obtain the
integral and its first- and second-order errors. However, a number of consid-
erations must modify this picture. In the first place, the issue of positivity.
Writing w(x) = J1 + u(x) so that

∫

dxP (x) u(x) = 0, we have

J2 − J1
2 =

∫

dx P (x) u(x)2 ,

J4 − 4J3J1 + 3J2
2 =

∫

dx P (x) u(x)4 + 3
(
∫

dx P (x) u(x)2
)2

,

J4 − 4J3J1 + 3J2
2 − 4

(

J2 − J1
2
)2

=

1

2

∫

dx dy P (x)P (y) (u(x)2 − u(y)2)2 ,

(12)

so that the expectation values of E2,4 are positive, as they should. In addition,
since with the notation Wj = E1 + uj the Σ2 can be written as

Σ2 =
1

2

∑

j,k

(uj − uk)
2 , (13)

also E2 itself is strictly nonnegative in any actual MC calculation. For E4

this does not hold, however. A counterexample can be constructed as follows.
Let us assume that the MC weights wj take on only the values 0 and 1, and
that E1 = Nb, b ∈ [0, 1]. We then have

Σ2 = Σ4 = N2a , a = b− b2 ∈ [0, 1/4] . (14)

The value of E4 now comes out as

E4 =
1

N4

(

N2

N
a−

4N3 − 6N2

N2
a2
)

, (15)

5



which is actually negative for

a >
(N − 1)2

N(4N − 6)
=

1

4
−

N − 2

2N(4N − 6)
. (16)

Although by small margin (surprisingly, in this counterexample, for b ≈ 1/2),
the positivity of E4 cannot be guaranteed, so that E4

1/4 may be undefined.
As an improvement on this situation we propose to abandon the estimator
E4 in favour of

Ê4 =
1

N4N3

(

N2Σ4 − 4Σ2
2
)

. (17)

This estimator has a slight (order 1/N) bias, which ought to be acceptable
since we are dealing with only the second-order error here; its advantage is
that, since

N2Σ4 − 4Σ2
2 =

N2

2

∑

j,k

(

uj
2 − uk

2
)2

, (18)

it always evaluates to a nonnegative number.

The second issue is that of numerical stability. It is well known that
already the evaluation of Σ2 involves large cancellations which may destroy
the numerical stability of the calculation and can actually lead to negative
values for E2: this is the reason why the straightforward computation of E2

usually cannot be reliably performed with single-precision arithmetic5. This
problem has been widely discussed, for instance in [3, 4]. The situation of E4,
which involves even larger cancellations, is certainly worse. To tackle these
problems, we adopt the CGV algorithm first described in [4]. The strategy
of this algorithm can best be summarized as follows. In the first place, one
concentrates on objects that are supposed to go to a finite asymptotic value.
E1 is such an object, but Σ2,4 are not. In the second place, the algorithm
focuses on the update of these numbers as N is increased by 1. So let us
define

M(N) = S1(N)/N ,

P (N) = S2(N)/N − S1(N)2/N2 ,

Q(N) = S3(N)/N − 3S2(N)S1(N)/N2 + 2S1(N)3/N3 ,

R(N) = S4(N)/N − 4S3(N)S1(N)/N2 + 3S2(N)2/N2 − 4P (N)2.(19)

5As anyone who has ever taught courses on Monte Carlo integration can testify.
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Here we have explicitly indicated the N dependence of the running sums
S1,2,3,4. We also define

m = M(N−1) , p = P (N−1) , q = Q(N−1) , u = wN−m . (20)

The authors of [4] have already established the update rules

M(N) = m+
1

N
u ,

P (N) =
N − 1

N

(

p+
1

N
u2

)

. (21)

We see that in particular the computation of P (N) is free of large cancella-
tions. Some algebra leads us to supplement these update rules by

Q(N) =
N − 1

N

(

q +
N − 2

N2
u3 −

3p

N
u
)

,

R(N) =
N − 1

N

(

R(N − 1) +
1

N

(

p−
N − 2

N
u2

)2

− 4
(

q

N
u−

p

N2
u2

)

)

.

(22)

Using these results, for any given N we then have

E2 =
N

N2
P (N) , Ê4 =

N

N4
R(N) . (23)

4 A case study

To illustrate all the above, we can perform a simple but enlightening study.
Let us consider the following class of integrands:

fα(x) = (1 + α) xα , x ∈ (0, 1] , −1 < α ≤ 0 , (24)

which we shall integrate by employing N pseudorandom numbers, iid uni-
formly in (0, 1]. These functions are all integrable (with J1 = 1), but diver-
gent as x → 0. For α ≤ −0.5 they are not quadratically integrable, and for
α ≤ −0.25 they are quadratically integrable but not quartically integrable.
Consequently, for α ≤ −0.25 the expectation value

〈

Ê4

〉

is not defined, and

for α ≤ −0.5 not even 〈E2〉 is defined. Nevertheless, in any actual MC
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calculation of this integral, Σ2,4 and E2, Ê4 will have definite, well-defined
numerical values. So how, then, are these to be interpreted?

Below, we give the results for E2
1/2 and Ê

1/4
4 in a MC run where N ≤ 104,

monitoring their behaviour while N increases. This we do for values of α
running from −0.1 down to −0.9.

log(N)10

210 310

-310

-210

=-0.1α

1/2
2E

1/4

4E

log(N)10

210 310
-310

-210

-110
=-0.3α

1/2
2E

1/4

4E

log(N)10

210 310
-210

-110

=-0.6α

1/2
2E

1/4

4E

log(N)10

210 310
-210

-110

=-0.9α

1/2
2E

1/4

4E

The upper line is the evolution of E2
1/2, and the lower line displays Ê

1/4
4 .

For the smoothest case, α = −0.1, the N−1 behaviour for E2 and the N−3

behaviour for Ê4 are evident6, marred by smallish jumps whenever an x
value close to the singularity at x = 0 is encountered. As α decreases to
-0.3 quartic integrability is lost, which can be seen from the fact that the
jumps in Ê4 are now much larger while those in E2 remain modest. Note
that in all cases exactly the same set of pseudrandom numbers was used.
Therefore in the various plots the jumps are in the same place, they simply
become larger and larger. For α = −0.6 where the integrand is also no

6Note that in the plots the values given are those of E
1/2
2

and Ê
1/4
4

.
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longer quadratically integrable even the N−1 behaviour of E2 becomes quite
distorted by the growing jumps. Finally, at α = −0.9 where the function
itself is barely integrable, the jumps have become so large that the short-
term N−1 and N−3 behaviour inbetween the jumps can no longer ensure
this behaviour over longer N ranges. It is this kind of behaviour — short-
range smooth decrease interspersed with (for increasing singularness of the
integrand) increasingly large local jumps — that ruins the usefulness of Ê4,
then E2, and, for non-integrable functions, finally even E1.

From this excercise we conclude that it should always be a good idea, in
any MC calculation, to monitor the behaviour of E2 and Ê4 as N increases;
and that this may tell us whether the second-order error, or indeed even
the first-order error itself, can be assigned any useful meaning. It should be
pointed out that, in our case study, the jumps in Ê4 are typically larger that
those in E2 and that Ê4 is therefore a more sensitive probe of possible conver-
gence problems; and, independently of that, an estimate of how accurately
the integration error itself is estimated is in our opinion always adviseable.

Conclusions

We have argued that the current practice of MC integration, resulting in
a report on the integral estimate and its error estimate, should always be
accompanied by a second-order error estimate, if only to validate the assign-
ment of confidence levels to the result (which can be, for instance, crucial in
comparing the results of different MC calculations, which is good and com-
mon practice). We have presented the relevant estimators. A closer look at
E4 shows potential positivitiy problems and we have emended this by defin-
ing an improved estimator Ê4. We also point out that, on the one hand, the
convergence of the second-order error, Ê

1/4
4 /E2

1/2 ∼ N−1/4, rather than the
‘well-known’ E2

1/2/E1 ∼ N−1/2 convergence of the error itself, and that on
the other hand E2 satisfies its own version of the central-limit theorem. In
addition, we have extended the methods of the Chan-Golub-Leveque algo-
rithm [4] to allow for a numerically stable computation of not only E2 but
Ê4 as well.
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Appendix

In this Appendix we will argue that the values of Σ2 obey their own version
of CLT. This is not automatically obvious, since we can write

Σ2 = N
N
∑

j=1

(wj −M(N))2 (25)

and therefore the summed quantities are not independent of one another. Let
us therefore consider a number of MC weights wj, j = 1, 2, . . . , N , that are
identically distributed with probability density P (w) but under the constraint
that

N
∑

j=1

wj = 0 . (26)

We define

X =
1

N

N
∑

j=1

wj
2 , (27)

and estimate the distribution of X for large N as follows. The moment-
generating function of X reads

〈

eizX
〉

∝
∫

du dw1 · · ·dwN P (w1) · · ·P (wN) exp
(

iu
∑

wj + i
z

N

∑

wj
2

)

=
∫

du
{
∫

dw P (w) exp
(

iuw + i
z

N
w2

)}N

, (28)

where the integrals run from −∞ to +∞. Introducing

Φk(u) =
∫

dw P (w) eiuw wk (29)

we can estimate

{
∫

dw P (w) exp
(

iuw + i
z

N
w2

)}N

= exp

(

N log

(

Φ0(u) + i
z

N
Φ2(u)−

z2

2N2
Φ4(u) +O

(

1

N3

)

))

≈ Φ0(u)
N exp

(

izλ(u)−
z2

2N
τ(u)

)

, (30)

λ(u) = Φ2(u)/Φ0(u) , τ(u) = Φ4(u)/Φ0(u) . (31)
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Now, since Φ0(0) = 1 is the absolute maximum of Φ0(u), and

Φ0(u) = 1 + iu 〈w〉 −
u2

2

〈

w2
〉

+O(u3) , (32)

we can estimate

|Φ0(u)|
2 = 1− u2σ2 +O(u4) , σ2 =

〈

w2
〉

− 〈w〉2 , (33)

so that we may approximate

|Φ0(u)|
N ≈ exp

(

−
u2N

2
σ2

)

(34)

and the u integral is dominated by the values of u around zero; consequently,

〈

eizX
〉

≈ exp

(

izλ(0)−
z2

2N
τ(0)

)

(35)

and the probability density for X to take on the value x is

Pr(X = x) ∝ exp

(

−
N

2τ(0)
(x− λ(0))2

)

,

λ(0) =
〈

w2
〉

, τ(0) =
〈

w4
〉

−
〈

w2
〉2

. (36)

We see that in this sense a CLT holds for the distribution of
∑

wj
2.

As an illustration, we generate a large number (106) of samples of N
(pseudo-)random numbers uniformly in the interval [0, 1], and compute for
these E1,2,4. Below, we give the actual distribution of the E1 values together
with the CLT Gaussian approximation with a width given by E2

1/2. Similarly,
we also give the actual distribution of the E2 values with their CLT Gaussian
approximation with width Ê

1/2
4 . We do this both for N = 10 and for N =

1000.
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Unsurprisingly, for N = 1000 the CLT approximation is excellent, but for
N = 10 it is evdident that the approximation is much worse for E2 than for
E1.

We repeat the same excercise for numbers that are exponentially dis-
tributed, that is, with probability density P (x) = exp(−x), x ∈ [0,∞).

Because of the long high-x tail of this P (x), the CLT approximation is ap-
preciably worse for N = 10 although still very good for N = 1000.

Finally, we consider numbers distributed according to the exponential
integral [5]:

P (x) = E1(x) ≡

∞
∫

x

dt
e−t

t
, x ∈ (0,∞) , (37)
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which looks like e−x for large x, and like − log(x) for x close to zero. Such a
distribution, with both many low-x values and a high-x tail, is typical for how
weights arising from MC event generators in particle physics are distributed.

Exponential Integral

Entries  1000000
Mean   0.4979
RMS    0.1995

0 0.2 0.4 0.6 0.8 1 1.2
0

5000

10000

15000

20000

25000

30000

35000

40000
Exponential Integral

Entries  1000000
Mean   0.4979
RMS    0.1995

(N=10)1E

Exponential Integral

Entries  1000000
Mean   0.03982
RMS    0.04161

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

100
310× Exponential Integral

Entries  1000000
Mean   0.03982
RMS    0.04161

(N=10)2E

The CLT approximation is, unsurprisingly, very poor for N = 10. However,
for large N values it is still seen to be quite good, where we must recall that
N = 1000 is actually quite a small number for any serious calculation.
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