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A tractable prescription for large-scale free flight expansion of wavefunctions
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Abstract

A numerical recipe is given for obtaining the density image of an initially compact quantum mechanical wavefunction
that has expanded by a large but finite factor under free flight. The recipe given avoids the memory storage problems
that plague this type of calculation by reducing the problemto the sum of a number of fast Fourier transforms carried
out on the relatively small initial lattice. The final expanded state is given exactly on a coarser magnified grid with the
same number of points as the initial state. An important application of this technique is the simulation of measured
time-of-flight images in ultracold atom experiments, especially when the initial clouds contain superfluid defects. Itis
shown that such a finite-time expansion, rather than a far-field approximation is essential to correctly predict images
of defect-laden clouds, even for long flight times. Examplesshown are: an expanding quasicondensate with soliton
defects and a matter-wave interferometer in 3D.

Keywords: Discrete Fourier transform, Ultracold atoms, Free flight evolution, Time of flight imaging, Far-field
image, Solitons, Wavefunction, Classical field,
PACS:02.60.Cb, 02.70.-c, 67.85.-d, 03.75.Lm, 03.75.-b

1. Introduction

The free flight expansion of a quantum wavefunction, though physically very simple, is often a troublesome com-
putational problem if the state that is required is not quiteyet in the far field regime. The snag is that a computational
lattice that both resolves the small initial cloud and encompasses the large expanded cloud can be prohibitively large.
Here, it will be described how to overcome this while still using standard discrete fast Fourier transform (FFT) tools.

For example, this is commonly desired when simulating experiments in ultracold atoms. A ubiquitous experi-
mental procedure in this field is the release of the atoms froma trap and the subsequent observation of the density
of a strongly expanded cloud. Given that the imaged expandedcloud is usually much larger than the initial one pre-
release, the observed expanded atom density corresponds approximately to the velocity distribution in the initial cloud.
More precisely, it corresponds to the velocity distribution that is formed early on after release, when the interatomic
interaction energy has been converted into kinetic energy.This is the picture that is often used to interpret the data.

This interpretation assumes that the detection is occurring in the far field where all structure is large compared to
the initial cloud. However, in practice this is often not a good enough approximation, particularly if one is interested
in fine structure inside the atomic cloud, such as defects or interparticle correlations. The reality is that the expansion
is usually by a factor of tens or hundreds, so that interesting features such as defects or correlations that are of the
order of 10% or 1% of the initial cloud in size have not yet yet attained a velocity profile at the time of detection. They
are already distorted from their spatial profile in the initial cloud, but their shape has not yet stabilized to its far field
form. Some examples where a long but not quite far-field expansion occurs include the interference pattern generated
after release of a pair of elongated clouds [1, 2], the study of Hanbury Brown-Twiss correlations in expanding clouds
[3, 4] and two-particle correlations in a halo of supersonically scattered atoms [5, 6].

The basic numerical task here is to predict the detected density image based on whatever model we are using for
the atomic field. For excited or thermal gases an ensemble of classical field [7–13] or truncated Wigner wavefunctions
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[14–17] are often used. The straightforward approach is to place the whole fieldΨ(x, t) from the outset in an x-space
large enough to accommodate the whole expansion. However, it is rarely technically feasible to carry out the entire
expansion by this method in three dimensions despite the seemingly trivial physics. A good description of the initial
state in a three-dimensional lattice can easily requireO(105) lattice points or more, and an expansion by a factor
of 10–100 in each direction would lead to 108 − 1011 lattice points. This is either intractable or impractical on a
simple computer, and even more so for studies of defect statistics or correlations which require surveys of hundreds
or thousands of realizations.

Barring access to supercomputing resources, a standard resort in this case is to make a somewhat unsavory com-
promise: Simulate the expansion as far in time as the computer allows, and assume that the neglected later changes
are not qualitatively important. It will be shown here how toavoid this while still using standard discrete FFT tools
on a simple computer.

In Sec. 2 the basics of the problem are described, and in Sec. 2.5 an estimate is made of the the time regime over
which a careful exact expansion of clouds with defects is necessary. Sec. 3 demonstrates this with an example. The
numerical difficulty is examined in more detail in Sec. 4, andthe solution derived in Sec. 5.1. The paper concludes in
Sec 7 with some discussion of practicalities and applications.

The prescription that constitutes the main result is brieflygiven in a stand-alone form in Sec. 5.2.

2. The matter at hand

The aim is to calculate what is actually measured, the spatial density distribution at the detector,ρ(r , tfinal). We
assume that just before the trap is switched off att = 0, the trapped state is described by a complex fieldΨ0(r ) that
has the form of a single-particle wavefunction.

2.1. Conversion phase

Typically the expansion can be considered as consisting of two phases: An initial “conversion” phase during which
the interaction energy between the atoms is converted to kinetic energy, and later free flight of the atoms. Since the
interaction energy per particle is proportional to the density, an expansion in three-dimensional space by a factor of
two in size will reduce this interaction energy per particleby a factor of eight. This initial expansion can be done in
a straightforward way until interactions are diluted away to become negligible. One just takes a computational lattice
x in x-space that is 2–4 times wider than the initial cloudΨ0, and evolves on that. In ultracold atoms, the workhorse
Gross-Pitaevskii Equation (GPE) is typically used – see theexample in Sec. 6.

The end result of this phase (at timets, say) is that we have a partly expanded wavefunctionΨ(r , ts). Numerically,
it is described as a table of complex numbersΨn indexed by the set of integersn = {n1, . . . , nd} in d-dimensional
space, that enumerate the points on the numerical lattice. The lattice spacings are∆x j = L j/M j whereL j is the length
of the box in thejth direction, andM j the corresponding number of lattice points, so thatn j = 0, 1, . . . , (M j − 1). The
lattice positions are

x j = a j + ∆x jn j (1)

with offsetsa j . i.e. x = a+ ∆x · n.
Note that the wavefunctionsΨ(r ) are not in general the complete quantum many-particle wavefunction unless the

particles are non-interacting. For interacting particles, one usually works withΨ in some kind of c-field approximation
[10–13, 15, 16].

2.2. Lattice notation

Several numerical lattices will appear in what follows. Thefollowing notation will be used:

• Quantities with a tilde, such as̃Ψ(k), are in k-space.

• Bold quantities are vectors ind dimensions (usuallyd = 3), with elements indexed byj as inx = {x1, . . . , x j . . . , xd}.

• Undecorated quantities, such asΨ(x) denote the lattice used to represent the starting state atts. This has a
manageable number of points,M.
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• Barred quantities, such asΨ(x) will be on a magnified numerical latticex that can describe the expanded state,
but is too coarse to describe the starting state atts.

• Underlined quantities such asΨ(x) will be used to denote a sufficiently huge lattice that both encompasses
the expanded state attfinal and resolves the starting state atts, when this lattice is different from the starting
undecorated one.

• The position coordinater is a continuum quantity, as opposed tox which are corresponding lattice positions.
Similarly, κ is a continuum wavevector, whilek is discretized.

2.3. Free flight into the far field
The remaining evolution afterts, the “starting time”, is just free flight. Each particle of momentum~κ flies a

distance~κ tflight/m, where the flight time is
tflight = tfinal − ts . (2)

Then with a far field assumption, i.e. that the initial starting position atts is irrelevant because they have flown so far,
the position of a particle is

r = ~tflightκ/m. (3)

An estimate for the final density can then be obtained fromΨ̃(κ, ts), the momentum-space wavefunction at the end of
the conversion phase. It is:

ρff(r ) = |Ψff(r )|2 =
(

m
~tflight

)d ∣∣∣∣∣∣ Ψ̃
(

mr
~tflight

, ts

) ∣∣∣∣∣∣
2

. (4)

The prefactor is for normalization purposes, so that
∫

dd
κ |Ψ̃(κ)|2 =

∫
ddr |Ψff(r )|2. Notably, this discards any phase

information. However, the usual imaging in ultracold atom experiments is insensitive to that.
The starting momentum wavefunctioñΨ(κ) at ts is obtained with a norm preserving Fourier transform:

Ψ̃(κ) =
1

(2π)d/2

∫
ddr e−iκ·r

Ψ(r ). (5)

Numerically, the conversion is best made with a discrete Fourier transform (DFT). The DFT of a fieldQ is

Q̃m̃ = DFT [Qn]m̃ =

∑

n

Qn exp

−i
d∑

j=1

2π
M j

n jm̃j

 . (6)

with indicesm̃j = 0, 1, . . . , (M j − 1) labeling the position on the k-space lattice which has spacing∆k j = 2π/L j. The
sum is over the wholen range.

In what follows, we will always be using the physical free-space wavevectorskm̃ ordered as:

k j(m̃j) = ∆k j l̃ j = ∆k j ×
{

m̃j for m̃j < M j/2
m̃j − M j for m̃j ≥ M j/2

(7)

The integer multipliers can also be written asl̃ j = mod
[
m̃j +

1
2 M j , M j

]
− 1

2 M j . For simple transformations such as
(5) and (8), a set of monotonically ordered non-negative wavevectors̃m ·∆k is equivalent operationally to (7) because
∆k j M j(x j − a j) is an integer multiple of 2π. However, such equivalence no longer holds for calculatingthe kinetic
energy or upon changing the lattice offseta, both of which will be needed for expansion.

Using (5) and the DFT (6), as well as taking care of a possible offset in (1), the discrete momentum wavefunction
at ts is

Ψ̃m̃(ts) =
∆V

(2π)d/2
e−ia·km̃ DFT [Ψn(ts)]m̃ . (8)

with lattice point volume∆V =
∏

j ∆x j . This is readily implemented using standard fast Fourier transform (FFT)
libraries [18, 19].

In most cases in the literature, the short initial expansionto ts and conversion (4) to obtain the detected density is
all that is done. This is fine provided that we are only interested in momentum differencesδk much larger than those
corresponding to the widthWs of the converted cloud atts. That is, when|δk| ≫ mWs/~tflight. Or, alternatively, that
we are only interested in spatial resolutions≫Ws in the final expanded cloud.
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2.4. Free flight without a far field assumption
To avoid making the rather uncontrolled far field assumption(4), and get results for a well defined final timetfinal,

consider first that in principle, the free flight evolution ofthe wavefunction in k-space is straightforward:

Ψ̃(k, tfinal) = Ψ̃(k, ts) exp

[
−itflight

~|k|2
2m

]
. (9)

In principle, all one then needs to obtainρ(r , tfinal) is to inverse Fourier transform̃Ψ(k, tfinal) back into x-space. Gen-
erally:

Ψ(r , tfinal) =
1

(2π)d/2

∫
dd
κ eiκ·r

Ψ̃(κ, tfinal). (10)

The discrete implementation like in (6) and (8) is

Qn = DFT−1 [Qm̃]n =
1
M

∑

m̃

Q̃m̃ exp

i
d∑

j=1

2π
M j

n jm̃j

 . (11)

M =
∏

j M j is the overall lattice size. With volumeV =
∏

j L j ,

Ψn(tfinal) =
(2π)d/2

V
DFT−1

[
Ψ̃m̃(tfinal)eia·km̃

]
n
. (12)

This step can, however, be hard on computational resources,even with an FFT because a very large latticeM is often
needed to fully describe the final time stateΨ̃(tfinal).

2.5. Continued defect dynamics during free-field expansion
Expansions of clouds containing narrow mobile defects are apopular experimental topic in recent years [1, 20–25].

These are systems for which the transition from the startingts state to the far-field is nontrivial.
Let the overall width of the cloud atts in a chosen direction beWs, and consider defects of width wdef ≪ Ws

and typical speedu. Speed differences between different defects are then also≈ u. The velocity distribution in the
gas, however, is dominated by the shortest length scale in the system. This is usually given by the half-width of
individual defects, giving a typical velocityσv ≈ 2~/mwdef. After significant expansion, the width of the cloud will
beWfinal ≈ 2tflightσv = 4~tflight/mwdef.

It takes a timetv =Ws/σv for a rough semblance of the velocity/momentum distribution to form in real space due
to expansion (this is the time for a typical particle to move across the initial cloud). Remnants of defects can continue
to rearrange until a time when their relative speed would allow them to move as far as≈ Ws, which is a typical initial
spacing between them:

tarrange≈
Ws

u
≫ tv. (13)

For clearly recognizable defects to be present, one should have defects slower than particles:u ≪ σv. Due to this
slowness, there is a periodtv ≪ tflight ≪ tarrangeduring which complicated rearrangement of defect remnantscan take
place even though the gross shape of the cloud already resembles the far-field velocity distribution. The simple far
field expression (4) is not appropriate during this time.

This is not an uncommon situation in ultracold atom experiments, and has relevance for interpretation of experi-
mental data. For an initially trapped thermal gas in a classical field regime where its dynamics is quite well described
by the Gross-Pitaevskii equation [10, 15, 26–29], typical defects are solitons in 1D and vortices in 2D. In this regime,
wheng is the s-wave scattering length andρ the typical density, the chemical potential isµ ≈ gρ, giving defect width
wdef ≈ 2~/

√
mµ and a speed of soundc =

√
µ/m. Major defects are much slower, i.e.u = ǫc with ǫ ≪ 1. With a trap

frequency ofω, the initial cloud width isWs ≈ (2/ω)
√

2µ/m. This lets us estimatetv =
√

8/ω andtarrange, and one
finds that the timestflight during which rearrangement is still taking place in a cloud that looks to be already far-field
in its gross features is

tv . tflight . tarrange, i.e. 1<
ωtflight√

8
.

1
ǫ
. (14)

This can be a significant period.
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3. Example: soliton dynamics during expansion

Let us consider an example of complicated free evolution even at times that would naively be considered to be in
the far-field: the expansion of an elongated 1D ultracold gasin the quasi-1D regime. We take physical parameters like
in a series of recent experiments [1, 2], where clouds in the classical field regime were prepared. An initial c-field state
of the 1d system is generated at temperatureT = 80nK = 260~ω/kB using the stochastic Gross-Pitaevskii equation

~
∂Ψ(x, τ)
∂τ

= −i(1− iγ)

[
− ~

2

2m
∇2
+ g1|Ψ(x, τ)|2 − µ

]
Ψ(x, τ) +

√
2γ~kBT η(x, τ) (15)

by taking a sample of the fieldΨic(x) = Ψ(x, τ) at τ = 10/ω, once the ergodic ensemble is reached. The simulation
grows the field from the vacuumψ(x, 0) = 0. Here,g1 = 0.54~ωaho is the 1D s-wave scattering length for87Rb in
terms of the harmonic oscillator lengthaho =

√
~/mω. The bath couplingγ = 0.02 has a typical value,µ = 90~ω is a

chemical potential chosen to giveN = 3000 particles on average in the stationary ensemble, andη(x, τ) is a Gaussian
complex white noise field with variance〈η(x, τ)∗η(x′, τ′)〉 = δ(x− x′)δ(τ− τ′). The lattice cutoff in a plane-wave basis
is chosen as~kmax = 0.65

√
2πmkBT, according to the optimum values obtained in [29]. The generation ofΨic(x) was

carried out using (15) on an initial lattice withM = 211 points andL = 60aho.
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Figure 1: Evolution of the densityρ(x) = |Ψ(x)|2 (in units of a−1
ho) after release, calculated directly according to (16), (8), and (12). The vertical

scale is narrowed down compared to the computational lattice, with L = 2400aho, to show the most interesting region.

A proper treatment of the conversion phase will be done in the3D example 6. Here, let us just do an immediate
free-field expansion ofΨic(x) from the moment the trap is switched off atts = t0 = 0. The 1D densityρ(x) =
|Ψ(x)|2 approximates the marginal density of the 3D cloud when integrated over transverse directions. The fully free
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expansion can be quite a good approximation for a very tight initial trap that has the initial gas in a quasi-1d regime
(tight transverse trap frequencyω⊥). Release causes a very rapid expansion in the transverse directions on a timescale

of 1/ω⊥, with width ∝ (1/ω⊥)
√

1+ ω2
⊥t2 [30]. Accordingly, the density drops as∼ 1/(1+ ω2

⊥t2), and so does the
relative strength of interparticle interactions. After a time of several 1/ω⊥ (short compared totv), the gas is effectively
non-interacting.

The evolution of the field is shown in Fig. 1. Here in 1D, it is easily done directly using the equation

∂Ψ(x, t)
∂t

= i
~

2m
∇2
Ψ(x, t) (16)

and the DFTs (8,12). The initial stateΨic(x) was padded with vacuum and evolved on a lattice ofM = 81920 points on
a simulation region of lengthL = 2400aho, with a = −L/2. The purpose is to see defect evolution during expansion.
Indeed, we see that appreciable defect evolution occurs until times of about≈ 30/ω. This can be compared to the
values of the crude estimates of (13) obtained for this system when takingǫ = 0.1: tv = 2.8 for significant expansion
andtarrange= 28 for end of rearrangement. A very good match.
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Figure 2: True density (blue) and its far-field estimate (green) given by (4) after long times of flight.

In Fig. 2, the central section of the expanding cloud is shownfor two long timest = 10/ω andt = 40/ω. The figure
also compares to the far-field estimate (4) given by a magnified momentum distribution. The far field estimate is found
wanting even at the otherwise very long timet = 10/ω, and becomes only passable att = 40/ω. For comparison, note
that the detection time in the reference experiment [1] wastflight = 0.65/ω≪ tv, which places it even well before any
significant expansion.

4. A closer look at the numerical difficulty

Consider now calculations, e.g. in 3D, for which a lattice that properly describes both the small starting and large
expanded state is extremely large.

4.1. Computational effort

Let the energy per particle in the trapped state beεd, i.e. it will beε per degree of freedom in free space. This is all
converted to kinetic energy by the end of the conversion phase atts so that a typical wavevector isktypical =

√
2mε/~.

For good measure, and particularly to allow for energy fluctuations above the mean, one needs to include higher
valueskmax ≈ rKktypical with rK ∼ 2. The spacing on the lattice needed to resolve the resultingwavelengths (Nyquist-
Shannon theorem) is going to be∆xmin ≤ π/kmax = π~/(rK

√
2mε). Now, when the widths of the starting cloud in the

jth direction areWj , the widths after free flight expansion will be approximately

W j =Wj + 2rK tflight

√
2ε/m, (17)

allowing again for wavevectors of up tokmax. We use the underlined notation for final quantities in anticipation of
a large lattice. The minimum number of lattice points neededin each direction for the expanded cloud isMmin

j =

W j/∆xmin = (rK/π~)[Wj

√
2mε+ 4rK tflightε]. To have an accurate calculation extra padding and resolution usually has

to be included, givingM j ≈ rAMmin
j with another factorrA ∼ 2.
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After significant expansion, when theWj have become negligible, the required lattice size approaches M j ≈
4r2

KrAtflightε/π~. Thus the overall required sizeM =
∏

j M j will be

M ≥ C
(ε tflight

~

)d

, (18)

whereC = (4r2
KrA/π)d ∼ O(10d), which is about a thousand in 3D.

Memory requirements for double precision arithmetic will be 16× M in bytes, while the time to carry out a FFT
will scale asM log M, and the time to do the evolution (9) is∼ M. Defect experiments tend to haveεtflight/~ ∼ O(100).
For example, in the [1] experiment considered as an example here,εtflight/~ ≈ 60. While the time for carrying out
such an FFT on desktop computers is manageable (of the order of an hour forM = 5× 109 on one processor core),
the real problem are memory requirements. ForM = 5× 109, having sufficient RAM memory (75GB) on a desktop
becomes troublesome.

4.2. Information in the wavefunction

What can be done? One can see that the effort involved in (18) is almost all wasted because there is no new
information about the cloud in the final stateΨ(x) that was not in the initialΨ(k). The evolution (9) and DFTs
between x-space and k-space (5), (10) are deterministic andreversible. Also, we know that the final not-quite-far-field
densityρ(x) is going to be at least qualitatively similar to (4) which obtained via a simple magnification of the starting
momentum wavefunction (see Fig. 2). This suggests that visible structures will be much broader than in the initial
state. The trouble of course is that while the density gets magnified during the free flight by factors

Λ j =
W j

Wj
= 1+

2rK tflight

√
2ε

Wj
√

m
, (19)

the velocity remains encoded in a wavelength that remains constant. As long as velocity information is kept, the
size of the computational lattice must grow by these same factorsΛ j to keep resolving the largely unchanged phase
oscillation. The wastefulness amounts to at least a factor of Λ =

∏
j Λ j .

Clearly the thing one must do is avoid storing the entire fine lattice of sizeM, and abandon knowledge of the
properly sampled phase profile attfinal, leaving only density information on a coarser lattice. Theinitial converted
stateΨ(x, ts) can be fully defined on a smaller lattice with

M =
∏

j

M j =
M

Λ
≈


rArK

√
2mε

π~


d ∏

j

Wj (20)

points and the usual spacings∆x, which comes from (18) and (19). The right hand expression assumesΛ j ≫ 1. A
magnification of the initialM lattice by a factor ofΛ j in each direction, while keeping the number of points constant,
should be possible in principle without adversely affecting the quality of the final density profile.

Let us first consider an overly simple approach that tries to do this but fails in an instructive way:

4.3. Naive DFT

Since the positions appear explicitly in (10), it is tempting to proceed as follows:

1. Obtain with the k-space wavefunction atts represented as̃Ψm̃ on the smallM lattice.
2. Apply evolution (9) to obtaiñΨ(tfinal)m̃ after whatever timetflight is necessary.
3. Carry out the sum in the return transformation (10) using magnified lattice values ofx and automatically keeping

the same relatively small number of points,M = M.

An appropriate magnified lattice would have the same number of points as the starting state:M j = M j , but larger
spacing∆x j = Λ j∆x j , as well as appropriately shifted zero pointsaj . The new positions would be

x = a+ Λ · (x − a) ; x j = aj + n j∆x j (21)

7



indexed byn j = 0, . . . , (M j − 1). For step 3, the discrete exponent in (10) is

ik · x = ik · a+ i
d∑

j=1

2π
M j

m̃jΛ jnj . (22)

To use the convenient DFT form (11), the factorsΛ jnj need to be integers. Hence, the scale factorΛ j needs to be
an integerλ j for all points on the finalx lattice to be calculated this way. Since phases that are a multiple of 2π are
equivalent, a value ofλ jnj > M j will lead to the sameΨ as one belowM j . This makes any value ofnj correspond to
an element of a DFT that sums overm̃j . Let us define an auxiliary index

n′′j = mod
[
n jλ j ,M j

]
(23)

dependent onnj , which indicates the element of the final inverse DFT that should to be used to obtain a particular
point on the finalx lattice. One obtains the following:

Ψ
(naive)
n (tfinal) =

Λ(2π)d/2

V
DFT−1

[
Ψ̃m̃(tfinal)e

ia·km̃
]
n′′
. (24)

which is very similar in form to (12), except for the indexingby n′′, shifta andΛ prefactor. The last is put in by hand,
to keep the amplitude of the original cloud unchanged atts upon magnification of the lattice. The numerical effort
required by (24) is small, with the largest matrix to be stored only of sizeM , i.e.

∏
j Λ j times less than the brute force

case of (18).
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(a) tflight = 0.2 (b) tflight = 0.5

Figure 3: Initial (blue) and final (magenta) densities afterthe naive attempt at expansion in 1D with prescription (24).The initial state isΨ(x) =
exp(−x2/2) cosk0x with k0 = 5, defined on the rangex ∈ [−3, 3] indicated with gray bars, withM = 600. Expansion times are given on the plots.
The true final state obtained using (12) on a larger lattice defined onx ∈ [−6, 6] is shown in green.

The results for a 1D test case can be seen in Fig. 3. They are notgood. This is of course because DFTs correspond
to the correct Fourier transform only for the specific relationship between x- and k-space lattices that is described in
Sec. 2.3, and not the wishful one that step 3 implies. What is actually being carried out by (24) instead, is the free
evolution for a timetflight of an infinite number of copies of the stateΨ(x, ts), repeated in a tiling pattern because of
the periodic boundary conditions assumed by the DFT. As soonas the cloud begins to expand, it overlaps around its
own edges and everything gets scrambled.

In k-space, the picture is that the flight time is so long that the phase winding caused by (9) advances so much that
aliasing occurs. The phase difference between neighboringhigh-k points is 2π~tflightkmax/mLj which is

∆θmax = π

(W j −Wj

L j

)
(25)

after substituting forkmax. As a result, the phase variation withk is not resolved and the state is scrambled by (24)
whenever the starting boxL j is appreciably smaller than the expanded widthW j .

The moral from this naive approach is that the data in the starting Ψn lacks the crucial physical information that
the area beyond the edges of the starting lattice is supposedto be vacuum.
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5. Solving the memory problem

5.1. Derivation

To utilize the physical information about the system that the background over which the cloud expands is vacuum,
let us define a buffered starting fieldΦ(r , ts):

Φ(r , ts) =

{
Ψ(r , ts) if ∀ j : a j ≤ r j < (a j + L j)

0 otherwise.
(26)

Also, to take advantage of the highly optimized FFT algorithms, the exponent in (11) should contain only integer
multiples of 2πi/M j in each directionj. We will henceforth assume the magnification factorsΛ j to all be positive
integersλ j , as in Sec. 4.3, which suffices to obtain this condition. The actual cloud need not expand by an integer
value, only the numerical lattice. It may also be possible, in principle, to translate cases of fractionalΛ j into an
algorithm containing FFTs, when theM j andΛ j are appropriately matched. However, this would lead to combinatorial
complications in the algorithm. We will refrain from considering this as it does not appear to offer any significant
computational advantage.

As usual, the general procedure to obtain a final state is to implement the time evolution in k-space as in (9), then
use a DFT to obtain the final x-space wavefunction. This final state is to be on the magnified lattice whose points are

x j = aj + n jλ j∆x j , (27)

lying ∆x j = λ j∆x j apart.n j = 0, . . . (M j − 1) is the index for the final “small coarse” lattice, like in (21). Its volume
is V =

∏
j L j , a factor ofλ =

∏
j λ j greater than the initial volumeV.

This last immediately presents a problem, because to obtaina final state on an x-space lattice of lengthL j with
an FFT requires transforming a k-space wavefunction that has resolution 2π/L j = ∆k j/λ j . This isλ j times finer than
what is available in the starting stateΨ(x). Fortunately, the vacuum assumption (26) provides sufficient information
to reconstruct the fine scale structure in k-space, as we willsee below.

Time evolution must also occur on this fine lattice, and to remain exact, it must not cut off high momenta, so the
huge latticeM will be required, at least formally. The required k-space wavefunction of the initial state is, generally,
obtained with the transform (5). Discretizing it onto theM lattice gives

Ψ̃(k, ts) =
∆V

(2π)d/2

∑

x

Φ(x, ts) e−ik·x. (28)

The initial points in x-space are thex, while the k-space lattice has fine spacing∆k j = ∆k j/λ j and valuesk j = l̃ j∆k j

indexed bỹmj = 0, . . . , (λ j M j − 1) with l̃ j = mod
[
m̃j +

1
2 M j , M j

]
− 1

2 M j . One in everyλ j values ofk j will fall on a
k j value that is also present in the small lattice of the starting state. In particular, instead of using the large indexm̃,
its values can be alternatively enumerated by a pair of integers in the following way:

m̃j = λ jm̃j + q j , (29)

where the coarse index̃mj = 0, . . . , (M j − 1) runs over the same set of momenta as in the starting state onthe small
latticeM, while a fine structure indexq j = 0, . . . , (λ j −1) counts the small∆k j steps within the larger momentum step
∆k j . The k values themselves are

k j = ∆k j

(
l̃ j +

q j

λ j

)
(30)

when the small lattice sizeM j is even (as is usual). OddM j introduces a minor but distracting complication, so from
here until (38) we will assume evenM j and return to this matter at the end of the section. It is convenient to define a
vector of fractional momentum steps

α j =
q j∆k j

λ j
∈ [0,∆k j) (31)
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so that the fine-grained momenta can be written in a conscise vector notation:

k j = k j + α j(q j) ; k = km̃ + αq (32)

in terms of the coarse starting momentak and the fine grained shiftα.
Now luckily, the majority of the elements in the sum over points x in (28) can be discarded because they are in

vacuum and contribute zero. Provided we make the commonsense assumption that the large lattice includes the entire
latticex for the small starting cloud, then this leaves just the sum over the usual starting state indicesn defined in (1).
With this, and substituting (1), (26) and (30) into (28), oneobtains:

Ψ̃(k, ts) =
∆V

(2π)d/2

∑

n

Ψn(ts) exp

−i
d∑

j=1

2πn j

M j

(
m̃j +

q j

λ j

) e−ik·a (33)

which is just a sum over the small lattice. In fact, any element of the k-space wavefunction is given by an appropriate
DFT on the small lattice:

Ψ̃(k, ts) =
∆V

(2π)d/2
e−ik·a DFT

[
Ψn(ts) e−iαq·(x−a)

]
m̃

(34)

with the help of the coarsẽm and fineq indices. To get the entire wavefunction, a separate FFT is required for each
differing value ofq.

The time evolution between the DFTs is just

Ψ̃(k, tfinal) = Ψ̃m̃,q(tfinal) = Ψ̃(k, ts) exp

[
−i

~tflight|k|2

2m

]
. (35)

To obtain the final state in x-space, one discretizes (10) andobtains the following expression on the fine lattice:

Ψ(x, tfinal) =
(2π)d/2

λV

∑

m̃,q

eik·x
Ψ̃ m̃,q(tfinal). (36)

We don’t need the entire huge latticex, only the coarsened version with selected sparse points given by (27). Taking
only the subsetx of points from thex lattice and substituting according to (27) and (30) gives

Ψ(x, tfinal) =
(2π)d/2

λV

∑

m̃,q

Ψ̃ m̃,q(tfinal) exp

i
d∑

j=1

2πm̃jn jλ j

M j
+ iαq · x + ikm̃ · a

 . (37)

This can almost be written as a sum of DFTs, except for one detail that was seen already in Sec. 4.3: For a DFT
over the small k-space latticẽm of sizeM, normally the “x-space” indices should run over the range 0, . . . (M j − 1).

Here instead, in the relevant part of the exponenti
∑d

j=1
2πm̃jn jλ j

M j
, we have the quantityn′j = (njλ j) which increments in

jumps:n′j = 0, λ j, 2λ j , . . . , [λ j(M j − 1)]. Fortunately, the whole exponent is unchanged upon adding M j to n′j . Hence
we can define the auxiliary numbersn′′j like in (23), which will index the output of the DFT. Then, thefinal result for
the coarse-grained wavefunction after flight can be writtenas a sum of inverse DFTs on the small latticeM:

Ψn(tfinal) =
(2π)d/2

λ∆V

∑

q

eiαq·x DFT−1
[
Ψm̃,q(tfinal)eikm̃·a

]
n′′
. (38)

Note how the proper expression (38) differs from the naive (24) by having a sum of similar DFTs indexed byq,
that account for the fine-scale fractional k-space shiftsαq. To calculate these, only FFTson the small lattice Mare
required. There is never a need to store the hugeM lattice.

Finally, returning to the unusual case of oddM j , (30) and (32) also apply to all points except for a few with
m̃j = (M j − 1)/2 that end up withk j > kmax

j = πM j/L j . For these, one should substitutel̃ j → l̃′j = (̃l j − M j) in (30)
andk j → (k j − M j∆k j) in (32) to carry out the umklapp flipping to negative wavevectors on the fine momentum grid.
It turns out that the only change in the intervening expressions above is that one should replacek j → (k j − M j∆k j) in
thekm̃ of (37) and (38) for the several points whenm̃j = (M j − 1)/2 andq j ≥ λ j/2. This actually makes very little
difference in practice provided that allλ j ≪ M j .
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5.2. The prescription

This is a summary of the main result that gathers the above results together. One starts from the initial wavefunc-
tionΨ(x, ts) ≡ Ψn(ts) described ind dimensions on an x-space lattice withM j points in each dimensionj = 1, . . . , d
of lengthL j . The region outside this lattice is initially vacuum. The positions of the points are

x j = a j +
n jL j

M j
(39)

with indicesn j = 0, . . . , (M j − 1). The momentum spacing is∆k j = 2π/L j. Free flight occurs for a time interval
tflight = tfinal − ts. Subsequently the lattice spacing on which the wavefunction is described in x-space is magnified by
integer factorsλ j , giving lattice points

x j = a j +
njλ jL j

M j
(40)

with indicesnj = 0, . . . , (M j − 1). The volume of the initial lattice isV =
∏

j L j , the number of pointsM =
∏

j M j ,
the volume magnificationλ =

∏
j λ j . The fractional momentum steps

α j =
∆k jq j

λ j
∈ [0, 1)∆k j (41)

form a vectorαq that is enumerated by the indicesq j = 0, 1, . . . , (λ j −1). Bold quantities are vectors ind-dimensional
space. The final x-space wavefunction on the magnified lattice is given by:

Ψn (tfinal) =

∑

q

f (q)
n B(q)

n′′ (42a)

f (q)
n =

1
λ

exp

[
iαq ·

(
xn − a− αq

~tflight

2m

)]
(42b)

B(q)
p = FFT−1

[
Ã(q)

m̃ e
i km̃ ·

[
a−a−(km̃+2αq)

~tflight
2m

]]

p
(42c)

Ã(q)
m̃ = FFT

[
Ψn(ts)e

−iαq·[x−a]
]
m̃

(42d)

when allM j are even, with the elements of the auxilliary index in (42a) being

n′′j = mod
[
njλ j ,M j

]
, (42e)

and FFT indicating fast Fourier transforms. The wavevectorskm̃ are given by (7).
If any M j are odd, then in thekm̃ of (42c) one should further umklapp the maximum k value in each of those

dimensionsj whenq j ≥ λ j/2. That is, for̃mj = (M j − 1)/2 andq j ≥ λ j/2, replacek j(m̃j) by−∆k j(M j + 1)/2.

6. 3D Example

As an example of a calculation that cannot be done by brute force on a PC, consider a full simulation of the relative
phase measurements in the Vienna experiment [1]. Here, two neighbouring ultracold atomic clouds of87Rb,Ψ(±), are
initially populated in quasi-one-dimensional harmonic traps that are elongated in thex direction, as seen in Fig. 4(a).
Trap frequencies areω = 2π × 6.4 Hz in thex direction, andω⊥ = 2π × 1400 Hz in the transverse directions. The
clouds are initially separated by a small gap ofD = 2.75nm= 0.645aho in they direction. The traps are released at
t = 0, and rapid expansion takes place in they andzdirections. The clouds soon interfere, forming a fringe pattern, as
shown in (Figs. 4(b-c))). The local displacementδy(x) of the fringes in they direction from the middle positiony = 0
corresponds to the phase difference that existed locally between the two initial clouds att = 0.

δy(x) ∝ ∆θ0(x) = ∠Ψ
(+)
0 (x) − ∠Ψ(−)

0 (x) (43)
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The fringe pattern is detected after 16ms of free flight (tfinal = 0.65/ω) at a detector. This is basically an integral of the
final density over thezdirection. In this way, a local phase difference measurement on the initial clouds can be made.

There is of course some distortion during flight, as was seen in Sec. 3, and a simulation of the expansion can be
necessary to see quantitatively how the pattern at the detector corresponds to the initial phase profile. Here the case
where the two clouds are populated by independent thermal gases will be considered. The one-dimensional c-field
wavefunctionsΨ(±)

ic (x) are generated using the same SGPE method as in Sec. 3 and the same parameters. Eq. (15) is
run separately with independent noises for each of the two clouds. As these are quasi-1D traps, the wavefunction in
they andzdirections is well approximated by just the harmonic oscillator ground state. The initial state (see Fig. 4(a))
consists of two terms:

Ψ0(x) =

√
mω⊥
π~

∑

±
Ψ

(±)
ic (x) exp

[
−

{ (
y± D

2

)2

+ z2

}
mω⊥
2~

]
. (44)
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Figure 4: Density patterns during the free flight described in Sec. 6. Shown is thex, y densityρ(x, y) =
∫

dz|Ψ(r )|2. Panel (a): initial state released
from the traps att = 0. Panel (b): The “starting” state for the free expansion, att = ts = 1.2ms, after the conversion phase. Panel (c): The state at
the detector att = tfinal = 16ms.

The conversion phase is simulated with the 3D Gross-Pitaevskii equation (GPE)

~
dΨ(x, t)

∂t
= −i

[
− ~

2

2m
∇2
+ g |Ψ(x, t)|2

]
Ψ(x, t) (45)

using with a semi-implicit split-step algorithm [31]. It isrun until 1.2ms, which ists = 0.05/ω. The s-wave scattering
length is 5.24nm, giving a value ofg = 0.01544~ωa3

ho for the interaction strength in 3D in terms ofaho =
√
~/mω.

The lattice used has dimensionsLx = 67.5aho, Ly,z = 8.26aho, andM = 2304× 256× 256 points. The calculation took
1hour 20 mins on an Intel 2.4 GHz CPU using the FFTW library [18], and used 8% of the 96GB RAM memory on
the PC. The situation atts is shown in Fig. 4(b).

Subsequently, theΨ(x, ts) were fed into the free flight prescription (42) developed here, for expansion out to the
detector at 16ms. The lattice expansion factors wereλy = λz = 8 andλx = 1, i.e. no expansion in thex direction.
However, the initialx lattice was slightly buffered with vacuum at the edges with respect to the one used for the
conversion phase, having a lengthLx = 94.92aho. This was to allow some natural spreading, which was too small
to make a lattice expansion byλx = 2 worthwhile. The final coarse lattice hadM = 3240× 256× 256 points. The
calculation took 64 minutes on the same PC and used 14% of RAM.The resulting predicted detector image is shown
in Fig. 4(c).

For comparison, a brute force calculation using the plain (12) was not able to reach the detection time. The
best that was obtained on the aforementioned PC without going into swap space was expansion out tot = 0.40/ω,
corresponding to 10ms, or 62% of the flight. This took 3 hours on a M = 2880× 1350× 1350 lattice, and used 88%
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of RAM, as well as requiring special additional work with thecode to pass 64 bit pointers into the FFTW library. 64
bit pointers were required whenM ≥ 231.
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Figure 5: Phase differences alongx in the central region of the cloud, after unwrapping modulo 2π to remove sudden jumps greater thenπ. The
black line shows the actual phase difference∠Φ+(x) − ∠Φ−(x) between the initial clouds. The blue squares and green circles show the apparent
phase differences inferred from the fringe shiftsδy(x) in the density images of Fig. 4(b,c), respectively, using (48). The yellow diamonds show
what would be inferred from the very late density image of Fig. 6 at 62ms.

Fig. 5 shows the apparent phase differences that can be inferred from the free-expansion at different times, and the
true initial phase difference. The fringe shiftδy(x) was estimated from they position of the maximum density peak
for a givenx. The proportionality constant in (43) can be estimated by considering the free flight evolution of (44) in
they direction only, ignoring other effects. One finds

ψ(y, t) =
1

√
1+ iω⊥t

∑

±
A± exp

[
−mω⊥(2y∓ D)2

8~(1+ iω⊥t)

]
. (46)

whereA± =
(

mω⊥
π~

)1/4
Ψ

(±)
0 (x). We are most interested in the limitω⊥t ≫ 1 andy ≫ D. We expand the exponents in

the density|ψ(y)|2 to lowest nontrivial orders in the small quantitiesηt = 1/ω⊥t andηy = D/y: that is,O(η2
t , η
−2
y ) for

the amplitude andO(ηt, η
−1
y ) for the phases. This gives

|ψ(y, t)|2 ≈
exp

[
− 2my2

~ω⊥t2

]

√
1+ (ω⊥t)2

{
|A+|2 + |A−|2 + 2|A+|A−| cos

[myD
~t
− ∆θ0(x)

] }
. (47)

Hence, the phase difference estimate (modulo 2π) is

∆θ0(x) ≈ ypeak(x)
mD
~t

. (48)

whereypeak is the location of the peak nearest toy = 0. What we see in Fig. 5 is that the global long-wavelength
behaviour of the phase difference is generally predicted well by the fringes in the expanded cloud. This is apart from
some remnant localized shifts of modulo 2π that move an entire segment by 2π without affecting the long-wavelength
phase trend. These shifts are at 0µm and 28µm for the early cloud atts, and near 10µm for the cloud at the detector.
However, one can also see that true to the behaviour seen in the 1D case of Sec. 3, the prediction of local details in the
phase difference is largely scrambled during the time of flight.

The effort required by (42) for even very long expansions scales relatively graciously. For example, continuing
the expansion out tot = 62ms= 2.5/ω is also possible. This is shown in Fig, 6 and the yellow plot in5, and one
sees continuing change in the fringe profile. In particular,the phase difference estimate is starting to become bad,
with large long-scale discrepancies. This because now the expansion has lasted long enough that a lot of movement
of the defects in thex direction has occurred. This is expected, since the estimate for formation time of a momentum
distribution from Sec. 2.5 istv =

√
8/ω = 70ms here. The final cloud is now a relatively huge 0.3× 0.6× 0.6 mm in
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Figure 6: The density pattern that would be seen aftert = 62ms of free flight, details as in Fig. 4, except for a 1:4 aspect ratio between the axes.

size, having expanded by a factor of about 104 in they andzdirections since release from the trap. The final lattice is
scaled byλx = 2, andλy = λz = 30 from that atts. This calculation took 18 hours on the reference PC, and used7GB
of memory. The direct approach with theM lattice would have needed 4000GB.

7. Discussion

7.1. Efficiency

To take advantage of the memory savings in (42), one should evaluate each term in the sum (42a) labeled byq
sequentially, and accumulate its contribution toΨn(tfinal). This way, memory requirements will be≈ 2M complex
numbers [32×M bytes for the usual double precision] – one array of sizeM for carrying out the FFTs, and one to
store the accumulated sumΨn(tfinal). Some time efficiency can be gained by using a third array of size M to store the
starting stateΨn(ts), but using 48×M bytes in total.

The computational load in terms of operations scales as

λM log M (49)

which is slightly faster than the brute force approach that would use (12) directly on a vacuum padded latticeM and
take∼ λM log(λM) operations. The speed-up is mostly marginal – an improvement by a factor of (1+ logλ/ log M).
The somewhat surprising result that there is any speed up at all compared to the highly-optimized FFT onM is due
to the fact that so much of the initial system is vacuum and does not contribute. For this reason, there is no advantage
to be gained by trying to use the maximum starting lattice size M that will fit in memory (perhaps after padding the
nonzero part of the field that comes out of the conversion phase with vacuum), and minimum magnificationλ.

The memory needed is of course strongly reduced – by a factor of at leastλ/2, comparing to the most memory-
efficient in-place FFT on the hugeM lattice.

An expansion ind directions requires summing of a number of terms that grows as (tflight)d. This can eventually
become fairly time intensive as was seen for the calculationof Fig. 6. Memory use never budges above the baseline
no matter how long the flight takes.

The time needed can be alleviated by an extremely basic parallelization. Namely, distributing the evaluation of
theB(q) on many processing cores. Up toλ cores could be used to obtain the result in a time∼ M log M. However, a
significantly smaller number will be optimal sinceλ FFTs in parallel will require∼ λM numbers stored in memory
again, which is what one is trying to avoid.
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7.2. Relationship to fast Fourier transforms

The algorithm presented in (42) bears some rough resemblance to a Cooley-Tukey FFT algorithm [32] with radix-
λ j . The similarity is that the end results of the FFTs on the smaller M lattice are multiplied by twiddle factors in (42b).
These involveeiα j x j that introduces fractional phase shifts compared to those available on the FFT lattice. However,
the overall procedure is quite different to Cooley-Tukey and relies heavily on the vacuum padding assumption (26).
This allows it to e.g. perform the two sequential FFTs on eachq-th term in the final sum (42a). This is also what
allows the effort to scale asλ instead of theλ2 that would be expected from a manual summation of smallerM-size
FFTs.

Looking at (42e), one can see that whenλ andM have common factors, thisn′′ index only accesses a part of the
field B(q)

p . One can try to gain some computational advantage from this by using a pruned FFT [33] for the (42c) step,
to calculate only the requiredp values. The advantage of pruned FFTs is not huge though. Thiswould reduce the
overall computational effort at most from 2M log M to 2M log M − M logλ .

7.3. Loss of phase information
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Figure 7: Loss of momentum information in the final wavefunction generated by (42). The plot shows: In blue: the true k-space densitỹρ(k) =
|Ψ̃(k)|2 in the cloud on the initial (M) lattice. Physically, this is preserved during free evolution; In green and red: The apparent k-space density

ρ̃(k) = |Ψ̃(k)|2 , inferred by a DFT (50) of the coarse grained final wavefunction Ψ(x, tfinal) in x-space. Green is for a magnification ofλ = 8 at
tflight = 10/ω, while red is for a longer time oftflight = 40/ω with λ = 40. Other parameters as in Sec. 3. Panel (b) is a magnificationof part of
Panel (a).

An important feature of the algorithm (42) to be aware of is that while the density in x-space attfinal is calcu-
lated precisely, theΨn(tfinal) is not generally viable for further evolution, and does notstore the correct momentum
distribution. This is because of the phase aliasing (25) discussed in Sec. 4.3.

The wavefunction that can be reconstructed fromΨn(tfinal) is:

Ψ̃m̃ =
λ∆V

(2π)d/2
e−ia·km̃ DFT

[
Ψn

]
m̃
. (50)

This sits on a fine k-space latticek j(m̃j) = l̃ j (2π/L j) with l̃ j = mod
[
m̃j +

1
2 M j , M j

]
− 1

2 M j . The resulting momentum
distribution is shown in Fig. 7, for the same 1D system that was studied in Sec. 3. This time, the initial wavefunction
Ψic(x) was evolved to timestflight using the prescription (42) on the initialM = 2048 lattice rather than the standard
step-by-step evolution (16) onM = 81920 that was used in Sec. 3. The green case attflight = 10/ω might still
be passable for some purposes, though the high momenta are already lost. The red longer-time case is completely
scrambled.

The fact that the phase structure in x-space remains small-scale despite a magnification of the density stymies
several superficially promising ideas on how to increase theefficiency of the expansion calculation:

First, one could be tempted to try to reduce the processing load to only∼ logλ FFTs onM-points instead of the
presentλ FFTs, by implementing several sequential expansions (42) by small factors, sayλ j = 2. However, at each
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such step we are left with a discretized wavefunction that has has its momentum-space tails truncated. This will soon
come to resemble the red line in Fig. 7 and become useless for further evolution.

Another approach that has been discussed in the field would try to introduce a time-dependent lattice spacing
∆x(t) = F(t) that would track the expected density structure while keeping the lattice sizeM constant. The hope
is that it would allow one to keep the full nonlinear equation(45) at the cost of some additional correction terms
dependent onF(t). However, one can see that this will be unsuccessful as soonas the phase structure becomes too
fine for the growing∆x(t).

7.4. Generalizations

The algorithm is readily adapted to cases where several complex-valued fields are present. One such case that
may be aided with the algorithm presented here are positive-P simulations of supersonic BEC collisions [6, 34–36].
Here, two independent complex-valued fieldsψ(x) andψ+(x) that correspond to thêΨ(x) andΨ̂†(x) Bose fields are
used, and allow for the exact treatment of quantum fluctuations. The comparison of calculated and experimental pair
velocity correlation widths has been problematic in these systems , because of the narrowness of the correlation peak
in velocity [6]. The detected peak is distorted in comparison with its k-space prediction due to not yet being in the
far-field regime. There is no hope of a direct calculation of the free flight because the quantityεtflight/~ of (18) is very
high (up to∼ 104) in BEC collision experiments.

The approach can also be trivially adapted to cases of other spectra than the free particle one. This simply requires
a modification of (9) tõΨ(k, tfinal) = Ψ̃(k, ts) exp

[
−itflightωk

]
, with appropriate tweaks in (42b) and (42c). The crucial

element is the presence of the vacuum assumption (26).

7.5. Conclusions

To conclude, an algorithm (42) has been presented that allows the exact calculation of the density of a wavefunc-
tion freely expanding into vacuum for practically arbitrary flight times without filling up the computer memory. The
memory requirements do not depend on flight time and are the same size as the initial input state. Computation time
is slightly faster than using an FFT on a large vacuum padded lattice. It is implemented using standard FFT libraries
and some summing of terms. The approach relies crucially on two physical inputs: (1) That the initially compact
wavefunction expands into vacuum, and (2) that the density length scale of the expanded cloud grows approximately
linearly with time. The approach makes no assumptions aboutsymmetries of the system or about the input wave-
function, so that it is a black box tool that can be immediately applied to general cases. This makes it well suited to
the study of wavefunctions containing defects or samples ofa thermal ensemble, a topic of many recent experiments
[1, 20–25]. The flight times over which nontrivial defect evolution occurs during free flight are estimated in Sec. 2.4.
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