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Abstract

We present a method for the numerical calculation of derivatives of functions
of general complex matrices. The method can be used in combination with
any algorithm that evaluates or approximates the desired matrix function, in
particular with implicit Krylov–Ritz-type approximations. An important use
case for the method is the evaluation of the overlap Dirac operator in lattice
Quantum Chromodynamics (QCD) at finite chemical potential, which requires
the application of the sign function of a non-Hermitian matrix to some source
vector. While the sign function of non-Hermitian matrices in practice cannot be
efficiently approximated with source-independent polynomials or rational func-
tions, sufficiently good approximating polynomials can still be constructed for
each particular source vector. Our method allows for an efficient calculation of
the derivatives of such implicit approximations with respect to the gauge field
or other external parameters, which is necessary for the calculation of conserved
lattice currents or the fermionic force in Hybrid Monte-Carlo or Langevin sim-
ulations. We also give an explicit deflation prescription for the case when one
knows several eigenvalues and eigenvectors of the matrix being the argument
of the differentiated function. We test the method for the two-sided Lanczos
approximation of the finite-density overlap Dirac operator on realistic SU(3)
gauge field configurations on lattices with sizes as large as 14× 143 and 6× 183.

Keywords: chiral lattice fermions, finite density QCD, Krylov subspace
methods, numerical differentiation

1. Introduction

Over the last decade matrix valued functions of matrices have become an
essential tool in a variety of sub-fields of science and engineering [1]. An impor-
tant application for matrix functions in the field of lattice QCD is the so-called
overlap Dirac operator, which is a discretisation of the Dirac operator that re-
spects the properly defined lattice chiral symmetry (Ginsparg-Wilson relations)
and is free of doublers. Therefore the overlap Dirac operator is well suited for
the non-perturbative study of strongly interacting chiral fermions. At finite
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chemical potential µ the overlap Dirac operator is defined as [2]

Dov :=
1

a
(1 + γ5 sgn [H(µ)]) , (1)

where H(µ) := γ5Dw(µ), Dw(µ) is the Wilson–Dirac operator at chemical po-
tential µ, sgn is the matrix sign function and a stands for the lattice spacing.
An explicit form of Dw(µ) is given in Appendix A.

At finite chemical potential H is a non-Hermitian matrix with complex eigen-
values. Since the size of the linear space on which H is defined is typically very
large (n ∼ 104 . . . 107), it is not feasible to evaluate the matrix sign function
exactly. While at µ = 0 one can efficiently approximate the sign function of the
Hermitian operator H by polynomials or rational functions [3–6], at nonzero
µ the operator H becomes non-Hermitian and such approximations typically
become inefficient. However, having in mind that in practice the sign function
sgn [H(µ)] is applied to some source vector, one can still construct an efficient
polynomial approximation for each particular source vector by using Krylov
subspace methods, such as Krylov–Ritz-type approximations. One of the prac-
tical Krylov–Ritz-type approximations which are suitable for the finite-density
overlap Dirac operator is the two-sided Lanczos (TSL) algorithm, developed in
[7, 8]. The efficiency of the TSL approximation can be further improved by
using a nested version of the algorithm [9].

Many practical tasks within lattice QCD simulations require the calculation
of the derivatives of the lattice Dirac operator with respect to the gauge fields or
some other external parameters. For example, conserved lattice vector currents
and fermionic force terms in Hybrid Monte-Carlo simulations involve the deriva-
tives of the Dirac operator with respect to Abelian or non-Abelian gauge fields.
Also, electric charge susceptibilities which are used to quantify electric charge
fluctuations in quark–gluon plasma involve derivatives of the Dirac operator
with respect to the chemical potential.

While explicit expressions for the derivatives of source-independent approx-
imations of matrix functions are well known and are routinely used in practical
lattice QCD simulations, differentiating the implicit source-dependent approx-
imation appears to be a more subtle problem. In principle the algorithms for
taking numerical derivatives of scalar functions, like the finite difference method
or algorithmic differentiation, can be generalised to matrix functions and to ma-
trix function approximation algorithms. It is easy to combine an approximation
with the finite difference method, but finite differences are very sensitive to
round-off errors and it is often not possible to reach the desired precision in
the derivative using this method. For algorithmic differentiation the situation
is more complicated. Depending on the approximation method used it might
not be immediately clear how to apply algorithmic differentiation. Even if algo-
rithmic differentiation can be implemented for the approximation method this
might lead to a numerically unstable algorithm. Such a behaviour was observed
when the TSL approximation was used in conjunction with algorithmic differ-
entiation [10].

In this paper, we propose and test a practical numerically stable method
which makes it possible to compute derivatives of implicit approximations of
matrix functions to high precision. The main motivation for this work is the
need to take derivatives of the overlap Dirac operator in order to compute
conserved currents on the lattice.
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The structure of the paper is the following: in Section 2 we state some
general theorems about matrix functions and their derivatives, which provide
the basis for our numerical method. In Section 3 we discuss how the calculation
of the derivatives of matrix functions can be made more efficient by deflating a
number of small eigenvalues of the matrix which is the argument of the function
being differentiated. The deflation is designed with the matrix sign function
and the TSL approximation in mind. Nevertheless we want to emphasise that
the method is very general and can be applied to other matrix functions and
different matrix function approximation schemes. In Section 4 we demonstrate
how the method can be used in practice. First we discuss the efficiency and
convergence of the TSL approximation. After that, as a test case, we compute
U (1) lattice vector currents, which involve the derivatives of the overlap Dirac
operator with respect to background Abelian gauge fields, and demonstrate
that they are conserved. Finally we summarise and discuss the advantages and
disadvantages of our method in Section 5. Detailed calculations and derivations
as well as a pseudo code implementation of the method can be found in the
Appendices.

2. Matrix functions and numerical evaluation of their derivatives

For completeness we start this Section with a brief review of matrix func-
tions. Let the function f : C→ C be defined on the spectrum of a matrix
A ∈ Cn×n. There exist several equivalent ways to define the generalisation of f
to a matrix function f : Cn×n → Cn×n[1, 11]. For the purpose of this paper the
most useful definition is via the Jordan canonical form. A well known Theorem
states that any matrix A ∈ Cn×n can be written in the Jordan canonical form

X−1AX = J = diag (J1, J2, . . . , Jk) , (2)

where every Jordan block Ji corresponds to an eigenvalue λi of A and has the
form

Ji = Ji(λi) =



λi 1 0 · · · 0

0 λi 1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . λi 1
0 · · · 0 0 λi


∈ Cmi×mi , (3)

with m1 +m2 + · · ·+mk = n. The Jordan matrix J is unique up to permuta-
tions of the blocks but the transformation matrix X is not. Using the Jordan
canonical form the matrix function can be defined as [1, 11]

f(A) := Xf(J)X−1 = X diag(f(Ji))X
−1. (4)

The function of the Jordan blocks is given by

f(Ji) :=


f(λi) f ′(λi) . . . f(mi−1)(λi)

(mi−1)!

0 f(λi)
. . .

...
...

. . .
. . . f ′(λi)

0 · · · 0 f(λi)

 ∈ Cmi×mi , (5)
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Note that this definition requires the existence of the derivatives f (mi−1)(λi)
for i = 1, . . . , k. If A is diagonalisable every Jordan block has size one and
equation (5) reduces to the so-called spectral form

f(A) = X diag(f(λ1), f(λ2), . . . , f(λn))X−1, (6)

which does not depend on the derivatives of f . For instance, the matrix sign
function sgn [H(µ)] in (1) is defined by sgn(λi) = sgn (Reλi).

Finding the Jordan normal form (or the spectral decomposition) of a matrix
is a computationally expensive task and takes O(n3) operations. For large
matrices it is therefore not feasible to compute the matrix function exactly. In
practical calculations it is often sufficient to know the result |y〉 = f(A) |x〉 of
the action of the matrix function on a vector and it is not necessary to explicitly
compute the matrix f(A). A variety of different methods have been developed
to efficiently calculate an approximation of |y〉 = f(A) |x〉 (see chapter 13 of [1]
for an overview). For non-Hermitian matrices A one typically constructs the
approximation to |y〉 using the Krylov subspaces spanned by the Krylov vectors

Ak |x〉 and
(
A†
)k |x〉, k = 0, . . . , kmax. This implies that the approximation

depends both on the matrix A itself and on the source vector |x〉. A practical
example of such an approximation is the TSL algorithm of [7–9].

Let us now assume that the matrix A ≡ A (t) depends on some parameter
t. In this work we are interested in the calculation of the derivative

∂t |y〉 = (∂tf (A (t))) |x〉 , (7)

where ∂t ≡ ∂
∂t and the source vector |x〉 is assumed to be independent of t. The

practical method for calculating ∂t |y〉 which we propose here is based on the
following Theorem [12]:

Theorem 1. Let A(t) ∈ Cn×n be differentiable at t = 0 and assume that
the spectrum of A(t) is contained in an open subset D ⊂ C for all t in some
neighbourhood of 0. Let f be 2n − 1 times continuously differentiable on D.
Then

f (B) ≡
(
f(A(0)) ∂tf(A(t))|t=0

0 f(A(0))

)
, B(A) :=

(
A(0) ∂tA(t)|t=0

0 A(0)

)
Theorem 1 relates the derivative of a matrix function ∂tf(A) to the function

of a block matrix f(B(A)), and is in fact closely related to the formula (5). It is
remarkable that one does not need to know the explicit form of ∂tf to compute
the derivative of f . This comes at the cost of evaluating the function f for the
matrix B that has twice the dimension of A and one needs to know the derivative
∂tA. In practice ∂tA is usually known analytically or can be computed to high
precision. Moreover the block matrix B is very sparse and one only needs to
store A and ∂tA. Thus Theorem 1 makes it possible to efficiently calculate the
derivative of a matrix function.

Using Theorem 1 it is straightforward to compute the action of the derivative
of a matrix function on a vector:

f(B)

(
0
|x〉

)
=

(
∂tf(A) |x〉
f(A) |x〉

)
(8)
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Now one can use any matrix function approximation method to compute an
approximation to the function f(B) in equation (8). To be specific we will use
the TSL approximation for the rest of this paper, but any other approximation
scheme can be used instead.

3. Spectral properties of the block matrix B and deflation of the
derivatives of matrix functions

The convergence properties of the TSL approximation crucially depend on
the spectrum of the matrix to which it is applied. In Appendix C we show that
the spectrum of eigenvalues of B is identical to the spectrum of A. Often the
efficiency of the TSL approximation can be greatly improved by deflating a small
number of eigenvalues. One might for example deflate the eigenvalues that are
close to a pole of the function. For the matrix sign function it is advantageous to
deflate the eigenvalues smallest in absolute value[7–9]. The standard deflation
method relies on the diagonalisability of the matrix A. It is then straightforward
to project out the eigenvectors corresponding to the deflated eigenvalues.

However the following Theorem states that, in general, the matrix B is not
diagonalisable:

Theorem 2. Let A be a diagonalisable matrix. If ∂tλi 6= 0 for at least one
eigenvalue λi of A then the matrix B is not diagonalisable. If A has no degen-
erate eigenvalues and ∂tλi 6= 0 for all i ∈ {1, . . . , n} then every Jordan block in
the Jordan normal form of B is of size two, i.e.

J =



J1 0 0 . . . 0

0 J2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 0 Jn


, Ji :=

(
λi 1
0 λi

)
.

The proof of this Theorem is somewhat technical and the main steps of the proof
can be found in Appendix C. It follows directly from Theorem 2 that a matrix
of the form B does not possess a full basis of eigenvectors and it is therefore
not immediately clear how to apply deflation to the numerical evaluation of
equation (8).

In the following we develop a deflation method that is based on the Jordan
normal form of B. Since J is the Jordan matrix of B there exists an invertible
matrix X such that X−1BX = J . Using Theorem 2 it is possible to derive an
analytic expression for X and X−1 in terms of the eigenvalues and left and right
eigenvectors of A and their derivatives. After some algebraic manipulations that
are summarised in Appendix D we get
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X−1 =


(〈L1| , 〈∂tL1|)
∂tλ1 (0, 〈L1|)

...
(〈Ln| , 〈∂tLn|)
∂tλn (0, 〈Ln|)

 and (9)

X =

((
|R1〉

0

)
, 1
∂tλ1

(
|∂tR1〉
|R1〉

)
, · · · ,

(
|Rn〉

0

)
, 1
∂tλn

(
|∂tRn〉
|Rn〉

))
, (10)

where we used the eigenvalues λi and left (right) eigenvectors 〈Li| (|Ri〉) of A.
The matrix X−1 consists of 2n-dimensional row vectors, i.e.

(〈Li| , 〈∂tLi|) = (〈Li|1 , . . . , 〈Li|n , 〈∂tLi|1 , . . . , 〈∂tLi|n). (11)

Analogously X is made up by 2n-dimensional column vectors. With the help
of the matrices X and X−1 we can define a generalised deflation. Let |xi〉 be

the columns of X and 〈x̄i| the rows of X−1, then
2n∑
i=1

|xi〉 〈x̄i| = 1. We define

the projectors Pm =
m∑
i=1

|xi〉 〈x̄i| and P̄m := 1−
m∑
i=1

|xi〉 〈x̄i|, such that for every

vector |ψ〉 we have
|ψ〉 = Pm |ψ〉+ P̄m |ψ〉 (12)

Now we have all the necessary ingredients to define a deflation algorithm for the
matrix B. Say we want to deflate the first 2l eigenvalues of B (corresponding to
the first l eigenvalues λ1, . . . , λl of A). To calculate f(B) we split the evaluation
of the function into two parts:

f(B) |ψ〉 = Xf(J )X−1P2l |ψ〉+ f(B)P̄2l |ψ〉 (13)

where we used equation (4) for the first term on the right side. To compute the
function of the Jordan matrix we only need to consider the function for each
Jordan block. Applying equation (5) to the j-th block of J yields:

f(Ji) :=

(
f(λj) ∂tf(λj)

0 f(λj)

)
(14)

Since the block structure of J is preserved by the function and the |xi〉 and 〈x̄i|
are biorthogonal one finds:

Xf(J )X−1P2l |ψ〉 =

l∑
i=1

[f(λi) (|x2i−1〉 〈 x̄2i−1|ψ〉+ |x2i〉 〈 x̄2i|ψ〉) + (∂tf(λi)) |x2j−1〉 〈 x̄2i|ψ〉] (15)

It is not necessary to compute the full transformation matrices X and X−1 since
the rows and columns needed to evaluate equation (15) are known analytically
in terms of the left and right eigenvectors of A. The latter can be efficiently
computed using the Arnoldi algorithm (we have used the ARPACK implementation
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[13]). In practical calculations one chooses 2l� 2n and splits the calculation of
f(B) in the following way

f(B) |ψ〉 = f(B)P̄2l |ψ〉︸ ︷︷ ︸
TSL approximation

+

l∑
i=1

[f(λi) (|x2i−1〉 〈 x̄2i−1|ψ〉+ |x2i〉 〈 x̄2i|ψ〉) + (∂tf(λi)) |x2i−1〉 〈 x̄2i|ψ〉]︸ ︷︷ ︸
exact

(16)

This looks very similar to the standard deflation formula for diagonalisable
matrices. The difference is that now, because the Jordan blocks have size two,
there is an additional “mixing term” proportional to ∂tf(λi). For the sign
function equation (16) becomes even simpler. The sign function is piece-wise
constant and for realistic gauge field configurations the eigenvalues of H do not
cross the discontinuity line Re(z) = 0 when an external parameter is varied.
Therefore the derivative of the sign function ∂t sgn(λi) is identically zero and
the mixing term is absent in the deflation. A detailed explicit expression for the
deflated derivative of the matrix sign function and the corresponding pseudo-
code can be found in Appendix E.

We note that in Hybrid Monte-Carlo simulations with dynamical overlap
fermions it is possible that an eigenvalue λi of H crosses the discontinuity of
the sign function at Reλi = 0, which corresponds to a change of the topological
charge. The derivative of sgn (λi) in the last term in (16) then becomes singu-
lar. However, in practice such singularities in the fermionic force are typically
avoided by modifying the Molecular Dynamics process in the vicinity of the
singularity, for example by using the transmission-reflection step of [14, 15].

4. Numerical Tests for the overlap Dirac Operator

4.1. Numerical setup and tuning of the TSL algorithm

For the numerical tests we have used quenched SU(3) gauge configura-
tions generated with the tadpole-improved Lüscher–Weisz action [16, 17]. The
Wilson–Dirac operator with a background Abelian gauge field and finite quark
chemical potential µ is described in Appendix A. There we also give an analytic

expression for the derivative ∂Dw(µ)
∂Θx,µ

of the Wilson–Dirac operator with respect

to the external lattice gauge field Θx,µ.
Before we discuss our results we give a detailed description of our numerical

setup. The results in this Section were obtained using a nested version of the
TSL algorithm [9]. We found that the main performance gains are already
achieved with a single nesting step and that further nesting does not significantly
improve the efficiency of the algorithm. Therefore for all our calculations we
used only one level of nesting. In this case one has to choose two parameters for
the Lanczos approximation, the sizes of the inner and outer Krylov subspace.
For the TSL method it is not known how to compute a priori error estimates.
In particular it is not possible to estimate which values for the Krylov subspace
size parameters are necessary to reach a given precision in the calculation. An
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a posteriori estimate for the numerical error ε can be computed using the identity
sgn(A)2 = 1:

εA =
‖ sgn(A)2 |ψ〉 − |ψ〉 ‖

2 ‖ |ψ〉 ‖
, (17)

where ‖ |ψ〉 ‖ :=
√
〈ψ|ψ〉 and the factor two was added because we have to

apply the TSL approximation twice to compute the square of the sign function.
Similarly, in order to estimate the error εB in the calculation of the derivative

of the sign function we use the same formula as (17) where A is replaced by B
and the vector |ψ〉 is replaced by the sparse vector (0, |ψ〉)T , i.e

εB =

∥∥∥∥sgn(B)2
(

0
|ψ〉

)
−
(

0
|ψ〉

)∥∥∥∥
2 ‖|ψ〉‖

. (18)

We note that the square of the sign of the block matrix B is given by

sgn(B)2 =

(
sgn(A)2 sgn(A)(∂t sgn(A)) + (∂t sgn(A)) sgn(A)

0 sgn(A)2

)
(19)

and the error estimate for the derivative as defined in equation (17) contains
the anti-commutator {sgn(A), ∂t sgn(A)} of the sign function and its derivative:

εB =

√(
‖ sgn(A)2 |ψ〉 − |ψ〉 ‖

2 ‖ |ψ〉 ‖

)2

+

(
‖{sgn(A), ∂t sgn(A)} |ψ〉 ‖

2 ‖ |ψ〉 ‖

)2

. (20)

Note that the first summand in (20) is in general not equal to ε2A, because
the optimal polynomials approximating the sign functions of A and B are in
general different. Since the square of the sign function is the identity the anti-
commutator {sgn(A), ∂t sgn(A)} = ∂t(sgn(A)2) should vanish and its deviation
from zero can be used as an indicator of the precision with which the derivative
∂t sgn(A) is calculated [10]. We found numerically that εB gives a better estimate
for the true error of the derivative and moreover it is easier to compute than
the anti-commutator.

During production runs it is not feasible to check the error for every source
vector |ψ〉. In general the optimal subspace sizes will depend on the matrix and
on the source vector. If deflation techniques are used, however, the performance
critical components of the source vector are projected out and treated exactly.
Then it is reasonable to assume that for a given matrix the optimal parameter
values will depend only weakly on the source vector. This suggests that it is
possible to find a set of optimal parameters that will give the desired error for
any vector. In order to find these optimal parameters we perform a “tuning
run” for every gauge configuration:

• Select a target precision ε0 (typically ε0 = 10−8).

• Select a trial vector |φ〉. To compare different parameter sets the trial
vector should be the same throughout the tuning run. Additionally it
should be a good representation of the vectors that will be used in the
production runs. Here we use |φ〉 = (1, . . . , 1)† to estimate the error εA of
sgn(A) and the sparse vector (0, |φ〉) to estimate the error εB of sgn(B).

8



• Choose a set of trial parameters for the outer (kO) and inner (kI) Krylov
subspace size p = {(kO1 , kI1), . . . , (kOm, k

I
m)}. For every pi ∈ p compute

εi := ε(pi) and the CPU time ti := t(pi) the TSL approximation took.

• Sort out all pi for which εi > εo

• From the remaining parameter sets pj choose the one with the smallest tj

• Save the optimal parameters kO0 and kI0 for use in the production runs

Of course there is no guaranty that for some vector other than the trial vector
|φ〉 the parameters kO0 and kI0 found in the tuning run will give an error smaller
than ε0. One way to validate the results from the tuning run is to perform a
cross check:

• Use kO0 and kI0 to compute the error for l random vectors (in practice,
l = 20 . . . 30)

• Check if the maximal error for all random vectors is smaller than ε0.

If the maximal error is found to be too large one can restart the tuning run with
a different trial vector to get better estimates for the optimal parameters. We
found that in most cases the error for the random vectors has the same order
of magnitude as the error for the trial vector. As a rule of thumb if one wants
to achieve a precision ε0 one should use the target precision 10−1ε0 for the trial
run.

The TSL algorithm implicitly generates a polynomial approximation of the
sign function. The highest order of the approximation polynomial is given by
the size of the outer Krylov subspace. Another way to test the validity of the
optimal parameter estimate obtained in the trial run is to compare the results
of the TSL approximation to some other method. To this end we have set µ = 0
and compared the relative error of the TSL approximation with the error of the
minmax polynomial approximation [4], which works well when H is a Hermitian
operator.

In Figure 1 we compare the error of the TSL approximation for a given outer
Krylov subspace size with the minmax polynomial result. The error estimate
(17) for sgn(H) is computed for 10 random vectors on 20 different gauge con-
figurations of size 8 × 83 (corresponding to a matrix of dimension n = 49152)
with β = 8.1. For these parameters the spectrum of H has only a small gap
around the line Re(z) = 0, which makes it more difficult to approximate the
matrix sign function with a polynomial of low order. To improve both the TSL
and the minmax approximation we deflated the 30 eigenvalues with the smallest
absolute value in our calculations.

The mean error is computed by averaging over random vectors and gauge
configurations and we plot the mean error as a function of the maximal power
of H in the approximating polynomial (for the nested TSL algorithm, this is
the size of the outer Krylov subspace). The results are shown in Figure 1. We
find that at fixed polynomial degree the error for the TSL method is smaller
than the error of the minmax polynomial by almost an order of magnitude.
This is to be expected, since the minmax polynomial tries to minimise the
maximal error over all vectors, while the TSL method constructs a different
and optimised polynomial for every source vectors. For large matrices the main

9



computational cost comes from matrix vector products and the overhead of
different algorithms for finding the optimal coefficients of the approximating
polynomial becomes negligible. The minmax polynomial method generates a
polynomial in H2, while the TSL method constructs the Krylov subspaces for
both H and H†. Moreover, since storing all the Krylov vectors requires very
large RAM memory and is hardly feasible in practice, we have used a two-pass
version of the TSL method. The first pass is used to find the coefficients of
the optimal approximating polynomial, and the second pass to calculate this
polynomial with known coefficients. Because of the twice larger number of
vectors used to construct the Krylov subspace and the need to calculate these
vectors twice, for a given order of the approximating polynomial the minmax
approach is roughly four times faster. The CPU time of the two algorithms is
compared in Figure 1. Our numerical test for 8× 83 configurations shows that
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Figure 1: Comparison of the TSL approximation with the minmax polynomial method. On
the left we show the mean error of both methods as a function of the highest power of
the polynomial. The plot on the right shows the mean time required for the calculation of
sgn(H) |x〉 on an Intel R© CoreTM i5-3470 CPU, with multi-core OpenBLAS [18] used for basic
linear algebra. As expected the TSL is slower than the minmax polynomial approach by a
factor of four.

the error of the TSL method does not strongly depend on the source vector
and that it is almost an order of magnitude smaller that one would expect from
a naive comparison with other approximation methods. For our production
runs we therefore use a single tuning run to find an estimate for the optimal
parameters. The parameter set found in this way is then used for all further
calculations.

4.2. TSL approximation for the derivatives of the sign function

After tuning the TSL approximation for the sign function sgn(H), we are
now ready to apply it to the block matrix B(H). Motivated by the practical
calculations of conserved vector currents on the lattice, we assume that the
parameter t is the Abelian lattice gauge field Θx,µ on the link which goes in the
direction µ from the lattice site x.

In Figure 2 we show typical results for the error of sgn(H) and sgn(B(H)) at
µ = 0 as a function of the outer Krylov subspace size for gauge configurations
ranging in size from 4 × 43 (n = 3072) to 14 × 143 (n = 460992). The benefit
of the deflation is clearly visible. In the computation of the derivatives the
deflation process has an additional positive side effect. To evaluate derivatives
we have to take a sparse input vector. Moreover the derivative matrix in lattice
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QCD is very sparse, since the change of a single link influences only two lattice
sides. Therefore the vectors generated by the TSL algorithm have a sparse
upper part and the Krylov subspace does not efficiently approximate the full
space. By projecting out the vectors corresponding to the eigenvalues near zero
the sparse pattern of the source vector is destroyed and the Krylov subspace
has a more general form which positively influences the convergence rate of
the method. Figure 2 shows that the method scales very well with the lattice
volume. For the configuration with V = 6×183 and β = 8.45 the temperature is
already above the deconfinement transition temperature for the Lüscher–Weisz
action [19], hence there is already a large gap in the spectrum of H and the
deflation has only a minor effect on the efficiency of the TSL method.
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Figure 2: Matrix size dependence of the optimal outer Krylov subspace size for zero chemical
potential. The green, dash-dotted line marks the desirable error of 10−8. (Un-)deflated results
are marked by (circular) triangular symbols. The data points are connected with lines to guide
the eye. A solid line stands for the sign function results while a broken line indicates the results
for the derivative. Clockwise from top left the results are shown for 4 × 43, 6 × 63, 14 × 143

and 6× 183 lattices. For 4× 43, 6× 63, 14× 143 lattices we have used β = 8.1 (a = 0.125 fm)
and for 6× 183 lattice we have used β = 8.45 (a = 0.095 fm). The inner Krylov subspace size
is set to 100 in all plots. For the deflation of the sign function we use the 40 eigenvalues with
the smallest magnitude. To deflate the derivative, we have used two eigenvalues for 4 × 43,
6× 63 and 6× 183 lattices and six eigenvalues for 14× 143.

An interesting question is how the optimal Krylov subspace size for a given
error depends on the chemical potential. As the chemical potential is increased
the operator H deviates more and more from a Hermitian matrix and one ex-
pects that a larger Krylov subspace size is necessary to achieve a given accuracy.
We indeed observe this behaviour and Figure 3 shows the results for the error
at different values of µ. From the plots we can estimate that at µ = 0 an outer
Krylov subspace size of 500 is sufficient to obtain an error of 10−8 for the de-
flated derivative for the V = 14 × 143 configuration. For µ = 0.05 one has to
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use a subspace size of roughly 600 for the same error. At µ = 0.3 it seems that
the error can be achieved with a subspace size of around 650. Going from zero
chemical potential to a finite value of µ = 0.05 makes it necessary to increase
the Krylov subspace size by about 20%. Once the chemical potential is switched
on, however, the increase in the Krylov subspace size is not that dramatic. Be-
tween µ = 0.05 and the rather large value µ = 0.30 the increase in the Krylov
subspace size is roughly 10%. For the V = 6 × 183 configuration switching on
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Figure 3: Chemical potential dependence of the error as a function of the outer Krylov sub-
space size. Top: V = 6 × 183 and µ = 0.04 on the left and µ = 0.23 on the right. Bottom:
V = 14× 143 and µ = 0.05 on the left and µ = 0.3 on the right. All other parameters are the
same as for Figure 2.

a small chemical potential only has a negligible effect on the error for a given
Krylov subspace size. If µ = 0.23 one has to take a Krylov subspace size of
approximately 350 to get an error of 10−8. Compared to the Krylov subspace
size of 280 for µ = 0 this is an increase of about 25%.

4.3. Divergence of U (1) vector current

As a further practice-oriented test of our method, we now consider the di-
vergence of the U (1) vector current

δjx =
∑
µ

(jx,µ − jx−µ,µ) (21)

at a randomly chosen lattice site x for a fixed gauge field configuration which was
randomly selected from an ensemble of equilibrium gauge field configurations.
For a fixed gauge field configuration, the current jx,µ flowing in the direction µ
from the lattice site x is given by

jx,µ = tr

(
D−1ov

∂Dov

∂Θx,µ

)
. (22)
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Invariance of the Dirac operator under the gauge transformations
Θx,µ → Θx,µ + φx − φx+µ demands that the divergence of the vector cur-
rent at a given lattice site vanishes.

For small lattice sizes the trace in (22) can be calculated exactly, but for
larger volumes this is no longer feasible. We use stochastic estimators with Z2-
noise [20] to compute an approximation of the trace for all currents in (21). The
error bars on our results are given by the standard estimate for the error of the
sample mean.

As a further check we additionally compute the “total current” at a lattice
site, which is just the sum over incoming and outgoing currents (replacing the
minus sign in (21) with a plus). This quantity has no physical meaning and can
take any value. If the total current is not zero an exact cancellation is necessary
to achieve a vanishing divergence. Finding numerically that the divergence
vanishes even when the total current does not can be seen as an additional
cross check. Figure 4 shows the results for the divergence and the total current
at finite µ for two configurations of different size. For both configurations we
find that the total current has a finite value but the divergence vanishes as the
number of stochastic estimators is increased.
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Figure 4: Results for divergence (red squares) of the vector current and the total current (green
circles) at a lattice site for configurations with β = 8.1 and µ = 0.3, plotted as functions of
the number of stochastic estimators. On the left V = 3× 43. For this small configuration the
exact values can be computed and are indicated by solid blue lines. On the right V = 6× 63.
Here it is not feasible to compute the exact values. The results for the total current are shifted
by 100 estimators to the right for better visibility and the blue line marks zero.

Results for larger configurations are shown in Figure 5. Computing a large
number of stochastic estimators is very expensive even for relatively small lattice
sizes. For the larger lattices we therefore studied the current conservation only
for the case µ = 0.0. We found that the divergence of the current as well as
the total current is very small for both configurations. To see a clear separation
between the divergence and the total current one would have to significantly
increase the number of stochastic estimators. The value of the divergence is in
both cases consistent with zero and we emphasise that the error bars clearly
show the expected inverse square root dependence on the number of estimators.

5. Discussion and conclusions

In this work we have proposed and tested an efficient numerical method
to compute derivatives of matrix functions of general complex matrices. In
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visualise the error dependence on the number of estimators.

particular we have shown that our method in combination with the TSL ap-
proximation can be used to compute derivatives of the matrix sign function with
high precision. When one computes an approximation of a matrix function it
is often possible to improve the efficiency of the algorithm by deflating a rela-
tively small number of eigenvalues and treating them exactly. For this reason
we have also presented a generalised deflation method that does not depend on
the diagonalisability of the matrix.

In practical calculations it is important to know (an estimate for) the error
of an algorithm. We give a heuristic for tuning the parameters of our method to
a given error. To check how reliable the error estimate is we computed the error
for a variety of random source vectors on a number of medium sized (8 × 83)
gauge configurations. As a cross check we compared the errors of the TSL ap-
proximation with the errors obtained by a minmax polynomial approximation.
We found that our heuristic works very well and gives a good error estimate.
The error of the TSL method is consistently lower than the error of the minmax
polynomial by almost an order of magnitude. The TSL method constructs two
Krylov subspaces and we have to use a double-pass version of the algorithm
because of memory limitations, which makes the TSL method about a factor of
four slower than the minmax polynomial for a given order of the interpolating
polynomial. We note that our findings suggest that a Lanczos type algorithm
that is optimised for Hermitian matrices could outperform the minmax poly-
nomial approximation. The Lanczos method for Hermitian matrices constructs
only one Krylov subspace size, which reduces the computational effort and the
memory requirements by a factor two. Therefore a single-pass version of the
Lanczos algorithm could be feasible even for relatively large Hermitian matrices.
At a given precision, such an algorithm would be considerably faster than the
minmax approximation.

We have tested our method for the derivatives of the finite-density overlap
Dirac operator on different gauge configurations and for different values of the
chemical potential µ. The higher the value of µ the more the operator H differs
from a Hermitian matrix. We find that our method performs very well even for
large values of µ up to 470 MeV in physical units and that the Krylov subspace
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size necessary to achieve a given error does not strongly depend on µ. For
all configurations we compared the deflated and the undeflated version of the
algorithm. With our choice of parameters in the confining phase the operator H
in general only has a rather small gap in the spectrum around the discontinuity
line Re(z) = 0 and deflation greatly improves the performance of the method.
On the other hand we find numerically that in the deconfinement phase the gap
in the spectrum of H is larger and there are no eigenvalues with real part close
to zero. In this case the deflation has only a minor effect.

In the deflated version of our method a large fraction of the overall CPU
time is spent for the inversion of the matrices Aλi = λi − A in equation (E.4).
All the inversions act on the same source vector and if it is possible to use a
multi-shift algorithm for the inversions the performance of the method could be
significantly improved. We tried to use the BiCGSTAB algorithm to compute
A−1λi , since multi-shift versions of this algorithm exist. It turned out, however,
that this approach is numerically unstable and in the end we computed the
inverse by applying the CG algorithm to the matrix AλiA

†
λi

. Thus finding a
suitable multi-shift inverter is one of the possible ways to speed up our algorithm.

Equivalents of Theorem 1 exist also for higher order derivatives of matrix
functions [21] and in principle it is straightforward to generalise our method
for higher derivatives. To compute the k-th derivative of a function of a n-
dimensional matrix one has to construct an upper-triangular block matrix of
dimension (k + 1)n. In particular, second-order derivatives are required for
the calculation of current–current and charge–charge correlators, from which
one can extract electric conductivity and charge diffusion rate. However, in
the case of higher derivative the expressions for the deflated derivatives become
extremely complicated. It seems thus that the only practical way to calculate
higher derivatives is to avoid deflation, which necessarily involves restriction to
small lattice sizes or to high temperatures.

An important application of our method and the main motivation for this
work is the computation of conserved currents for the finite-density overlap Dirac
operator in lattice QCD. Conserved currents and current-current correlators are
important observables for the study of anomalous transport effects such as the
Chiral Magnetic [22] or the Chiral Separation [23, 24] effects. These dissipation-
less parity-odd transport effects, which originate from the chiral anomaly, have
recently become the focus of intensive studies in both high-energy and solid-
state physics. While the anomalous transport for free chiral fermions is well
understood, there are still many interesting open questions for strongly inter-
acting fermions. With our method it is possible to efficiently study anomalous
transport for strongly interacting chiral fermions on the lattice at finite quark
chemical potential.
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Appendix A. The Wilson–Dirac operator and its derivative

The Wilson–Dirac operator Dw(µ) for a single quark flavour at finite quark
chemical potential µ and in the presence of a background U(1) gauge field can
be written as

Dw(µ) = 1− κ
3∑
i=1

(
G+
i +G−i

)
− κ

(
eµG+

4 + e−µG−4
)
, (A.1)

with
(G±ν )x,y := (1± γν)U±ν(x)eiΘ±ν(x)δx±ν̂,y. (A.2)

The U±ν(x) ∈ SU(3) are (dynamical) lattice gauge fields and the factors
eiΘ±ν(x) ∈ U(1) describe the (background) lattice gauge fields corresponding
to the external Abelian gauge field Θν(x). We set the lattice spacing to one
and define the hopping parameter κ := 1/(2mW + 8), where mW ∈ (0, 2) is the
Wilson mass term. The matrices γν are the Euclidean Dirac matrices.

Computing the derivative of the Wilson–Dirac operator with respect to the
Abelian gauge field is straightforward and the result reads as(

∂Dw

∂Θν(z)

)
x,y

= −iκ
(

(G+
ν )x,y δx,z − (G−ν )x,y δx−ν̂,z

)
. (A.3)

Appendix B. Derivatives of eigenvectors and eigenvalues

In this Appendix we formally define the notion of the derivative of eigenvec-
tors and summarise some useful results.

Let A(t) be a diagonalisable matrix which depends on a parameter t and
has eigenvalues λi and (left) eigenvectors (〈Li|) |Ri〉. For brevity we assume
that A has no degenerate eigenvalues, i.e. λi 6= λj if i 6= j. For the Wilson–
Dirac operator on real lattice QCD configurations, this is usually the case, since
configurations with degenerate eigenvalues form a set of measure zero in the
space of all gauge field configurations.

If |Rj〉 is an eigenvector of A so is α |Rj〉 for any α ∈ C \ {0}. The direction
of an eigenvector is fixed, but its norm and phase are not. In practice a common
choice is to fix the eigenvectors by requiring that the left and right eigenvectors
are bi-orthonormal:

〈Li|Rj〉 = δij (B.1)

In general α can be any non-vanishing differentiable function α(t). The freedom
in choosing α leads to a freedom in the norm and the direction of the derivative
of the eigenvector, since

∂t (α |Rj〉) = α|∂tRj〉+ (∂tα) |Rj〉 (B.2)

This means the derivative of an eigenvector is fixed only up to a multiplication
with a scalar and the addition of any vector from span(|Rj〉). Therefore it is
necessary to specify which one of all this possible derivatives is used in a certain
calculation. Requiring the normalisation (B.1) only leads to the restriction
Re (〈Lj | ∂tRj〉) = 0 and does not fully fix the derivatives of the eigenvectors.
Throughout this paper we will therefore employ the additional constraint

〈Lj | ∂tRj〉 = 0 (B.3)

16



so that the derivative of an eigenvector is well defined. It is always possible to
choose the eigenvectors such that (B.3) is fulfilled. Note that condition (B.1)
does not fix the norm of the vectors |Rj〉 and 〈Lj |. Suppose we found vectors that
obey (B.1). Then 〈Lj | ∂tRj〉 = ξ, where ξ is either zero or purely imaginary. If
we now define

∣∣Rj〉 := e−ξt |Rj〉 and
〈
Lj
∣∣ := 〈Lj | eξt we find that

〈
Lj
∣∣Rj〉 = 1

and
〈
Lj
∣∣ ∂tRj〉 = 0.

Using the definitions above we will now derive some useful relations. We
start with the eigenvalue equation

A |Rj〉 = λj |Rj〉 . (B.4)

Taking the derivative on both sides yields

(∂tA) |Rj〉+A|∂tRj〉 = (∂tλj) |Rj〉+ λj |∂tRj〉. (B.5)

Multiplying from the left by 〈Lj | gives the following relation for the derivative
of the eigenvalue:

〈Lj | (∂tA) |Rj〉 = ∂tλj (B.6)

To derive a similar result for the derivative of the eigenvectors multiply (B.5)
from the left by 〈Li| for some i 6= j. With the normalisation (B.1) this gives

〈Li| (∂tA) |Rj〉+ λi 〈Li| ∂tRj〉 = λj 〈Li| ∂tRj〉 . (B.7)

Therefore the following equation holds for i 6= j:

〈Li| ∂tRj〉 =
〈Li| (∂tA) |Rj〉

λj − λi
(B.8)

Multiplying this equation by |Ri〉 from the left and summing over i 6= j yields

|∂tRj〉 =
∑
i 6=j

|Ri〉 〈Li| (∂tA) |Rj〉
λj − λi

, (B.9)

where we used (B.3) and the identity
n∑
i=1

|Ri〉 〈Li| = 1 to make the replacement∑
i 6=j
|Ri〉 〈Li| ∂tRj〉 =

n∑
i=1

|Ri〉 〈Li| ∂tRj〉 = |∂tRj〉. Similarly we obtain for the

derivative of the left eigenvectors

〈∂tLj | =
∑
i 6=j

〈Lj | (∂tA) |Ri〉 〈Li|
λj − λi

. (B.10)

Appendix C. Properties of the block matrix B

The convergence properties of matrix function approximation methods in
general depend on the spectrum of the matrix. It is therefore important to
know the spectrum of B. Let B be defined as in Theorem 1 and let λi, i =
1, · · · , n be the eigenvalues of A. Since B is an upper block matrix det(B) =
det(A) det(A) = det(A)2. From this it immediately follows that the eigenvalues
of B are degenerate and identical to the λi.
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A matrix is diagonalisable if and only if its minimal polynomial is a product
of distinct linear factors. We will now discuss the outline of a proof of Theorem 2,
which states that in general the matrix B is not diagonalisable. In the following
we assume that A has no degenerate eigenvalues to simplify the argumentation.
The generalisation to the case of degenerate eigenvalues is possible but a bit
more involved. For every eigenvalue λi of A we define the two vectors

|vi,1〉 :=

(
|Ri〉

0

)
and |vi,2〉 :=

(
|∂tRi〉
|Ri〉

)
. (C.1)

It is easy to convince oneself that these vectors are linearly independent and
that |vi,1〉 is an eigenvector of B to the eigenvalue λi. For |vi,2〉 we have

B |vi,2〉 =

(
A |∂tRi〉+ (∂tA) |Ri〉

A |Ri〉

)
=

(
∂t(A |Ri〉)
A |Ri〉

)
(C.2)

=

(
λi |∂tRi〉+ (∂tλi) |Ri〉

λi |Ri〉

)
= λi |vi,2〉+ (∂tλi) |vi,1〉 .

The vector |vi,2〉 is an eigenvector of B only if ∂tλi vanishes. If ∂tλi 6= 0 we find

(B − λi1)2 |vi,2〉 = (∂tλi)(B − λi1) |vi,1〉 = 0 (C.3)

and therefore |vi,2〉 is a generalised eigenvector of rank two corresponding to
the eigenvalue λi. From this and the fact that the algebraic multiplicity of the
eigenvalue λi of B is two it immediately follows that the multiplicity of λi in the
minimal polynomial of B is also two. This proves the first part of Theorem 2 .

To see that the second part of Theorem 2 is true, note that for every eigen-
value of A we have at least one Jordan block. Moreover the size of the largest
Jordan block belonging to an eigenvalue λi is the multiplicity of the eigenvalue
in the minimal polynomial. Therefore if the eigenvalues are all pairwise distinct
there are at least n Jordan blocks of size 2 and since the dimension of B is 2n
this proves the Theorem.

Appendix D. Derivation of the Jordan Decomposition

The aim of this appendix is to derive the analytic form of the Jordan de-
composition of B in terms of the eigenvectors and eigenvalues of A. In practice
one never encounters a matrix A with degenerate eigenvalues. Moreover if one
or more of the derivatives of the eigenvalues of A vanishes the Jordan matrix of
B only becomes simpler. Therefore in this paper we assume that every Jordan
block of B is of size two.The generalisation to the case where some of the Jordan
blocks have size one is straightforward.

If J is the Jordan normal form of the matrix B there exists an invertible
matrix X such that X−1BX = J , i. e.

BX = XJ (D.1)

The exact form of the Jordan matrix J follows form Theorem 2 and can be
exploited to compute the transformation matrix X . In bra–ket notation the
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transformation matrix reads as X := (|x1〉 , . . . , |x2n〉). Evaluating the right
hand side of equation (D.1) yields


x1,1 . . . x1,2n

...
...

x2n,1 . . . x2n,2n





λ1 1 0 · · · 0

0 λ1
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . λn 1

0 · · · · · · 0 λn


=

(D.2) λ1x1,1 x1,1 + λ1x1,2 . . . λnx1,(2n−1) x1,(2n−1) + λnx1,2n
...

...
...

...
λ1x2n,1 x2n,1 + λ1x2n,2 . . . λnx2n,(2n−1) x2n,(2n−1) + λnx2n,2n


Combining equations (D.1) and (D.2) leads to n coupled equations

B
∣∣x(2j−1)〉 = λj

∣∣x(2j−1)〉 (D.3)

B |x2j〉 =
∣∣x(2j−1)〉+ λj |x2j〉 , (D.4)

where j ∈ {1, n}. Equation (D.3) is just the eigenvalue equation for the matrix
B and is easy to solve. Assume that |Rj〉 is an eigenvector of A to the eigenvalue
λj , then it is straightforward to show that (|Rj〉 , 0)T is an eigenvector of B to
the same eigenvalue.

Using the solution of equation (D.3) and defining |x2j〉 := (|xj,1〉 , |xj,2〉)T
equation (D.4) can be written as(

A ∂tA
0 A

)(
|xj,1〉
|xj,2〉

)
=

(
|Rj〉

0

)
+ λj

(
|xj,1〉
|xj,2〉

)
(D.5)

which simplifies to

(A− λj) |xj,1〉+ (∂tA) |xj,2〉 = |Rj〉 I

(D.6)

(A− λj) |xj,2〉 = 0 II

Equation II in the system (D.6) is again the eigenvalue equation for A and the
solution is simply |xj,2〉 = κi |Rj〉, where κi is a finite complex number. Using
this result equation (I) becomes

(A− λj) |xj,1〉+ (∂tA)κi |Rj〉 = |Rj〉 . (D.7)

Let {〈Lj |}j=1,...,n denote the set of left eigenvectors of A, i.e. 〈Lj |A =

λj 〈Lj | and assume the normalisation 〈Lj |Ri〉 = δij . Then P :=
∑
i 6=j

|Ri〉〈Li|
λi−λj is

well defined. Multiplying both sides of equation (D.7) by P yields∑
i6=j

|Ri〉 〈Li|xj,1〉 =
∑
i 6=j

κi
|Ri〉 〈Li|
λi − λj

(∂tA) |Rj〉 . (D.8)
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The term
∑
i 6=j
|Ri〉 〈Li| on the right hand side of equation (D.8) is a projector

to the space 1 − |Rj〉 〈Lj | and using equation (B.9) one finds that the right
hand side is equal to |∂tRj〉. It follows that the projection of |xj,1〉 is equal to
κj |∂tRj〉 and therefore

|xj,1〉 = κj |∂tRj〉+ γj |Rj〉 , (D.9)

where γj is a complex number. Note that |Rj〉 is in the kernel of (A−λj), which
means we can add any scalar multiple of |Rj〉 to the solution |xj,1〉 of equation
(I) and get another solution. Exploiting this freedom it is possible to set γj = 0.
To compute the value of κj simply multiply equation (I) by 〈Lj | from the left.
This annihilates the first term on the left hand side and we obtain

κj 〈Lj | (∂tA) |Rj〉 = 1. (D.10)

Applying equation (B.6) gives κj = 1/∂tλj . Putting everything together yields
an analytic expression for the columns of the matrix X :∣∣x(2j−1)〉 =

(
|Rj〉

0

)
(D.11)

|x2j〉 =
1

∂tλi

(
|∂tRj〉
|Rj〉

)
.

To compute the columns of X−1 we start with the equation

X−1B = JX−1, (D.12)

which follows directly from equation (D.1). It turns out that it is advantageous
to consider the transpose of this equation

BTY = YJ T , (D.13)

where Y := (X−1)T is introduced to simplify the notation. The right hand side
of equation (D.13) can be written as

y1,1 . . . y1,2n

...
...

y2n,1 . . . y2n,2n





λ1 0 · · · · · · 0

1 λ1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . . λn 0

0 · · · 0 1 λn


=

(D.14) λ1y1,1 + y1,2 λ1y1,2 . . . λny1,(2n−1) + y1,2n λny1,2n
...

...
...

...
λ1y2n,1 + y2n,2 λ1y2n,2 . . . λny2n,(2n−1) + y2n,2n λny2n,2n


The next steps are analogous to the derivation of the columns of X above. Let
|yi〉 be the i−th column of Y, then (D.14) is equivalent to n systems of two
equations:

BT |y2j〉 = λj |y2j〉 (D.15)

BT
∣∣y(2j−1)〉 = λj

∣∣y(2j−1)〉+ |y2j〉 , (D.16)

20



Equation (D.15) is an eigenvalue equation and the solution is |y2j〉 =

ηj
(
0,
∣∣RTj 〉)T , where

∣∣RTj 〉 is the eigenvector of AT to the eigenvalue λj and

ηj is a scalar constant that will be fixed later by requiring YTX = 1.

With the notation
∣∣y(2j−1)〉 := (|yj,1〉 , |yj,2〉)T we can rewrite equation

(D.16) as a system of two equations:

(AT − λj) |yj,1〉 = 0 I

(D.17)

(∂tA
T ) |yj,1〉+ (AT − λj) |yj,2〉 = ηj

∣∣RTj 〉 II

Mimicking the steps used to solve the system (D.6) one finds the following
expressions for the columns of Y:

∣∣y(2j−1)〉 =
ηj
∂tλj

( ∣∣RTj 〉∣∣∂tRTj 〉
)

(D.18)

|y2j〉 = ηj

(
0∣∣RTj 〉
)
.

The rows of the inverse transformation matrix X−1 = YT follow immediately
from equation (D.18):

X−1 =


η1
∂tλ1

(〈L1| , 〈∂tL1|)
η1 (0, 〈L1|)

...
ηn
∂tλn

(〈Ln| , 〈∂tLn|)
ηn (0, 〈Ln|)

 , (D.19)

where we used the fact that
∣∣RTj 〉T = 〈Lj |.

To find the values of the complex constants ηj one has to evaluate the product
X−1X . In this computation one encounters only four different types of bra–ket
products, which are all shown in the following matrix product:( ηi

∂tλi
(〈Li| , 〈∂tLi|)
ηi (0, 〈Li|)

)((
|Rj〉

0

)
, 1
∂tλj

(
|∂tRj〉
|Rj〉

))
=

(
ηi
∂tλi

δij 0

0 ηi
∂tλj

δij

)
(D.20)

The entry below the diagonal is trivially zero and the super-diagonal entry
vanishes because 〈Li| ∂tRj〉+ 〈∂tLi|Rj〉 = ∂t (〈Li|Rj〉) = ∂tδij = 0. With the
choice ηi = ∂tλi the right hand side of equation (D.20) becomes the unit matrix
and the explicit form of the transformation matrices is given by equations (9)
and (10) in the main text.

Appendix E. Efficient deflation of derivatives of the sign function

In this Appendix an efficient algorithm for the deflation of derivatives of
the sign function is developed. Let |Ri〉 and 〈Li| be the left and right eigen-
vectors of A to the eigenvalue λi, respectively. Considering equation (8) it
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is tempting to exploit the sparsity of (0, |x〉)T to simplify the deflation calcu-
lations. However it turns out that it is necessary to define the deflation for
general |Φ〉 := (|x1〉 , |x2〉)T . The reason is that the most convenient way to
estimate the error of the TSL approximation is via equation (17), i.e. we apply
the TSL approximation twice and measure the deviation from unity. Therefore
we need a deflation method that works with general input vectors. In analogy
to equation (16) we then get

sgn(B)

(
|x1〉
|x2〉

)
=

k∑
i=1

si

{(
|Ri〉

0

)
[〈Li|x1〉+ 〈∂tLi|x2〉] +

(
|∂tRi〉
|Ri〉

)
〈Li|x2〉

}
︸ ︷︷ ︸

I

+ sgn(B)P̄2k

(
|x1〉
|x2〉

)
︸ ︷︷ ︸

II

, (E.1)

where we used the fact that ∂t sgn(λi) = 0 since the sign function is piece-wise
constant and introduced the notation si := sgn(λi). Let us now investigate
part I of (E.1).

I =

k∑
i=1

si


(
|Ri〉

0

)
[〈Li|x1〉+ 〈∂tLi|x2〉]︸ ︷︷ ︸

c1i

+

(
|∂tRi〉
|Ri〉

)
〈Li|x2〉︸ ︷︷ ︸

c2i

 (E.2)

In a practical calculation we are interested in finding an efficient way to com-
pute the coefficients c1i and c2i. Note that these coefficients are proportional
to the scalar products of |Φ〉 with the odd and even rows of the matrix X−1
respectively. The same coefficients appear in the projection P̄2k |Φ〉, which is
needed to compute part II. Apart from c1i and c2i the only non-trivial part of
the deflation is the computation of |∂tRi〉. As we mentioned earlier, the left and
right eigenvectors 〈Li| and |Ri〉 can be computed with ARPACK routines.

The coefficients c2i are simply scalar products. As we will see later on they
appear in several parts of the deflation and therefore it pays off pre-compute
and save them.

The first part of the coefficients c1i is again a scalar product. The computa-
tion of the second part is more involved. First we use equation B.10 to get rid
of the derivative of the eigenvector:

〈∂tLi|x1〉 =
∑
j 6=i

〈Li| (∂tA) |Rj〉 〈Lj |x2〉
λi − λj

(E.3)

Computing all the eigenvectors of A is in general way too expensive and only
the first k eigenvectors are known explicitly. The trick now is to use the identity
n∑

j=k+1

|Rj〉〈Lj |x2〉
λi−λj ≡ (λi −A)

−1
Pk |x2〉, where Pk :=

n∑
i=k+1

|Ri〉 〈Li|. Note that

the inverse of (λi −A) is well defined for Pk |x2〉 and we can write

〈∂tLi|x1〉 =

k∑
j=1
j 6=i

〈Li| (∂tA) |Rj〉 c2j
λi − λj

+ 〈Li| (∂tA) (λi −A)
−1
Pk |x2〉 (E.4)
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In practical applications the matrix Aλi := (λi −A) is sparse and its inverse can
be computed very efficiently with iterative methods. Since the vector Pk |x2〉
in equation (E.4) is the same for all λi with i ∈ {1, . . . , k} it is in principle
possible to use a multi-shift inversion algorithm to compute the inversions. In
practice, however, we found that the numerical inversion with the (multi-shift)
BiCGSTAB algorithm was unstable. To avoid stability issues we used the CG
algorithm to find the inverse of the Hermitian matrix AλiA

†
λi

, from which it is
straightforward to compute the inverse of Aλi .

The vector |Ri〉 lies in the kernel of the matrix Aλi . For this reason and
because of numerical errors the vector A−1λi Pk |x2〉 can have non-zero compo-
nents in |Ri〉 direction. Remember that we normalised the derivative of the
eigenvectors such that 〈∂tLi|Ri〉 = 0. In order to enforce this normalisation in
a numerical calculation we have to project out the spurious |Ri〉 component. To
this end we define the projection operator Qi in the following way

Qi |ψ〉 := |ψ〉 − |Ri〉 〈Li|ψ〉 . (E.5)

With this operator we can now write down the final equation for 〈∂tLi|x1〉 that
can be used in numerical calculations

〈∂tLi|x1〉 = 〈Li| (∂tA)

 k∑
j=1
j 6=i

|Rj〉 c2j
λi − λj

+Qi (λi −A)
−1
Pk |x2〉

 . (E.6)

Analogously one can use equation (B.9) to derive the following formula for the
derivative of the right eigenvectors

|∂tRi〉 =

k∑
j=1
j 6=i

|Rj〉 〈Lj | (∂tA) |Ri〉
λi − λj

+Qi (λi −A)
−1
Pk(∂tA) |Ri〉 . (E.7)

We now have all the parts needed for an efficient computation of the deflation.
The whole computation is summarised in the following code listing:

1: function DeflatedSignDerivative
2: // Compute |out〉 = (|out1〉 , |out2〉)T = sgn(B)(|x1〉 , |x2〉)T
3: // with deflation
4:

5: for i← 1 to k do // Compute |∂tRi〉
6: |∂tRi〉 = |0〉
7: for j ← 1 to k do
8: if i 6= j then

9: |∂tRi〉 = |∂tRi〉+
|Rj〉〈Lj |(∂tA)|Ri〉

λi−λj
10: end if
11: end for
12: |∂tRi〉 = |∂tRi〉+Qi (λi −A)

−1
Pk(∂tA) |Ri〉

13: end for
14:

15: for i← 1 to k do // Compute c2i
16: c2[i] = 〈Li|x2〉
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17: end for
18:

19: // Compute c1i, the exact part and the projection of |x〉
20: |xk〉 = Pk |x2〉
21: |out1〉 = |0〉
22: |out2〉 = |0〉
23: for i← 1 to k do
24: |v〉 = Qi (λi −A)

−1 |xk〉
25: for j ← 1 to k do
26: if i 6= j then

27: |v〉 = |v〉+
c2[j]|Rj〉
λi−λj

28: end if
29: end for
30: c1[i] = 〈Li| ((∂tA) |v〉+ |x1〉)
31: // Exact part of output
32: si = sgn(λi)
33: |out1〉 = |out1〉+ si (c1[i] |Ri〉+ c2[i] |∂tRi〉)
34: |out2〉 = |out2〉+ si (c2[i] |Ri〉)
35: // Projection of input vector
36: |x1〉 = |x1〉 − (c1[i] |Ri〉+ c2[i] |∂tRi〉)
37: |x2〉 = |x2〉 − (c2[i] |Ri〉)
38: end for
39: // Exact part plus TSL approximation of projected part
40: |out〉 = (|out1〉 , |out2〉)T + TSL(B, (|x1〉 , |x2〉)T )
41: return |out〉
42: end function
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