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a b s t r a c t

An efficient algorithmand a Fortran 90module (LaguerrePol) for computing Laguerre polynomials L(α)
n (z)

are presented. The standard three-term recurrence relation satisfied by the polynomials and different
types of asymptotic expansions valid for n large and α small, are used depending on the parameter region.

Based on tests of contiguous relations in the parameterα and the degree n satisfied by the polynomials,
we claim that a relative accuracy close to or better than 10−12 can be obtained using the module
LaguerrePol for computing the functions L(α)

n (z) in the parameter range z ≥ 0, −1 < α ≤ 5, n ≥ 0.

Program summary

Program Title:Module LaguerrePol
Program Files doi: http://dx.doi.org/10.17632/3jkk659cn8.1
Licensing provisions: CC by 4.0
Programming language: Fortran 90

Nature of problem: Laguerre polynomials L(α)
n (z) appear in a vast number of applications in physics, such

as quantum mechanics, plasma physics, etc.
Solution method: The algorithm uses asymptotic expansions or recurrence relations for computing the
function values depending on the range of parameters.

Restrictions: The admissible input parameter ranges for computing the Laguerre L(α)
n (z) are z ≥ 0,

−1 < α ≤ 5, n ≥ 0.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As is well known, Laguerre polynomials L(α)
n (z) are involved in a vast number of applications in physics (quantum mechanics, plasma

physics, etc.) and engineering; for example see [1,2]. Also, the evaluation of Laguerre polynomials is central in the computation of nodes
and weights in Gauss–Laguerre quadrature rules.

In this paper, we present an algorithm for computing Laguerre polynomials based on the use of the standard three-term recurrence
relation satisfied by the polynomials and three types of asymptotic expansions valid for n large and small values of the parameter α: two
Bessel-type expansions (used in the oscillatory region of the functions) and a uniform Airy-type expansion. This Airy expansion is specially
suitable in the transition between the oscillatory andmonotonic regimes of the Laguerre polynomials, although its domain of applicability
extends to a large part of both the oscillatory and the monotonic regions.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Fig. 1. The function L(4)
150(z) is plotted as an example. The value of the parameter ν (defined in (2)) is 610 in this particular case.

The resulting algorithm, implemented in the Fortran 90 module LaguerrePol is accurate and particularly efficient for large values of
the parameter n.

2. Theoretical background

Laguerre polynomials L(α)
n (z) are solutions of the differential equation

zy′′
+ (α + 1 − z)y′

+ ny = 0. (1)

The polynomials present an oscillatory and amonotonic regime, depending on the parameter values. The oscillatory (monotonic) region
of L(α)

n (z) is found in the interval 0 < z/ν < 1 (z/ν > 1), where

ν = 4

n +

1
2 (α + 1)


. (2)

Sharper lower (zl) and upper (zu) bounds limiting the region where the Laguerre polynomial oscillates are given by [3]:

zl =
2n2

+ n(α − 1) + 2(α + 1) − 2(n − 1)

n2 + (n + 2)(α + 1)

(n + 2)
,

zu =
2n2

+ n(α − 1) + 2(α + 1) + 2(n − 1)

n2 + (n + 2)(α + 1)

(n + 2)
.

(3)

An example of the behavior of the Laguerre polynomials in the oscillatory region is shown in Fig. 1.
Next, we are going to describe the theoretical expressions involved in the computation of Laguerre polynomials.

2.1. Asymptotic expansions for n large

In the asymptotic expansions for large degree we assume the α is fixed, which means small with respect to n. If we need results for
which α is not small enough, we can use recursion with respect to α. That is,

xL(α+1)
n (x) = (α + x)L(α)

n (x) − (α + n)L(α−1)
n (x). (4)

This follows from the corresponding c-recursion of the Kummer function U(−n, c, x) = (−1)n n! L(c−1)
n (x).

2.1.1. An expansion in terms of Airy functions
We start with the representation2

L(α)
n (νx) = (−1)n

e
1
2 νxχ(ζ )

2αν
1
3


Ai

ν2/3ζ


A(ζ ) + ν−

4
3 Ai′


ν2/3ζ


B(ζ )


(5)

with expansions

A(ζ ) ∼

∞
j=0

α2j

ν2j
, B(ζ ) ∼

∞
j=0

β2j+1

ν2j
, n → ∞, (6)

uniformly for bounded α and x ∈ (x0, ∞), where x0 ∈ (0, 1), a fixed number.
Here

ν = 4κ, κ = n +
1
2 (α + 1), χ(ζ ) = 2

1
2 x−

1
4 −

1
2 α


ζ

x − 1

 1
4

, (7)

2 We summarize results of [4]; see also [5, §VII.5].
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and

2
3 (−ζ )

3
2 =

1
2


arccos

√
x −


x − x2


if 0 < x ≤ 1,

2
3ζ

3
2 =

1
2


x2 − x − arccosh

√
x


if x ≥ 1.
(8)

We have the relation

ζ
1
2
dζ
dx

=

√
x − 1
2
√
x

. (9)

The first coefficients of the expansions in (6) are

α0 = 1, β1 = −
1

4b3
(f1 − bf2) , (10)

where b =
√

ζ if ζ ≥ 0 and b = i
√

−ζ when ζ ≤ 0, and

f1 = i
(x + 3α(x − 1)) x2a31 − 2

3a21x
√
x(1 − x)

,

f2 =
−4 − 8x2(x + 3xα − 3α)a31 + x4(12x − 3 − 4x2 + 12α2(x − 1)2)a61

12x3a41(x − 1)
,

a1 =


4ζ

x3(x − 1)

 1
4

.

(11)

More coefficients can be obtained by the method described in [6, §23.3].

2.1.2. A simple Bessel-type expansion
For the Laguerre polynomials we consider two types of asymptotic expansions in terms of Bessel functions, one for small values of the

variable z of L(α)
n (z) and one in which larger values are allowed. Next we give some details of the asymptotic expansion valid for small

values of the variable z.
We use the expansion of the Kummer function 1F1(a; c; x) for large negative values of a. First we mention

L(α)
n (z) =


n + α

n


1F1


−n

α + 1; z


. (12)

Then, see [6, §10.3.4],

1
Γ (c) 1F1


−a
c ; z


∼

 z
a

 1
2 (1−c) Γ (1 + a)e

1
2 z

Γ (a + c)


Jc−1


2
√
az
 ∞

k=0

ak(z)
(−a)k

−


z
a
Jc

2
√
az
 ∞

k=0

bk(z)
(−a)k


. (13)

This expansion of 1F1(−a; c; z) is valid for bounded values of z and c , with a → ∞ inside the sector −π + δ ≤ ph a ≤ π − δ. This gives
for the Laguerre polynomial

L(α)
n (x) ∼

 x
n

−
1
2 α

e
1
2 x


Jα

2
√
nx
 ∞

k=0

(−1)k
ak(x)
nk

−


x
n
Jα+1


2
√
nx
 ∞

k=0

(−1)k
bk(x)
nk


, n → ∞. (14)

The coefficients ak(x) and bk(x) follow from the expansion of the function

f (z, s) = exg(s)


s
1 − e−s

α+1

, g(s) =
1
s

−
1

es − 1
−

1
2
. (15)

The function f is analytic in the strip |ℑs| < 2π and it can be expanded for |s| < 2π into

f (x, s) =

∞
k=0

ck(x)sk. (16)

The coefficients ck(x) are combinations of Bernoulli numbers and Bernoulli polynomials, the first ones being (with c = α + 1)

c0(x) = 1, c1(x) =
1
12

(6c − x) ,

c2(x) =
1

288


−12c + 36c2 − 12xc + x2


,

c3(x) =
1

51 840


−5x3 + 90x2c + (−540c2 + 180c + 72)x + 1080c2(c − 1)


.

(17)
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The coefficients ak(x) and bk(x) are in terms of the ck(x) given by

ak(x) =

k
m=0


k
m


(m + 1 − c)k−mxmck+m(x),

bk(x) =

k
m=0


k
m


(m + 2 − c)k−mxmck+m+1(x),

(18)

k = 0, 1, 2, . . . , and the first relations are

a0(x) = c0(x) = 1, b0(x) = c1(x),
a1(x) = (1 − c)c1(x) + xc2(x), b1(x) = (2 − c)c2(x) + xc3(x),
a2(x) = (c2 − 3c + 2)c2(x) + (4x − 2xc)c3(x) + x2c4(x),
b2(x) = (c2 − 5c + 6)c3(x) + (6x − 2xc)c4(x) + x2c5(x),

(19)

again with c = α + 1.

2.1.3. A not so simple expansion in terms of Bessel functions
In this case we use the representation3

L(α)
n (2νx) =

eνxχ(ζ )

2αζ
1
2 α


Jα

2ν


ζ

A(ζ ) −

1
ν
√

ζ
Jα+1


2ν


ζ

B(ζ )


, (20)

with expansions

A(ζ ) ∼

∞
j=0

Aj(ζ )

ν2j
, B(ζ ) ∼

∞
j=0

Bj(ζ )

ν2j
, ν → ∞. (21)

Here,

ν = 2n + α + 1, χ(ζ ) = (1 − x)−
1
4


ζ

x

 1
2 α+

1
4

, x < 1, (22)

with ζ given by
−ζ =

1
2


x2 − x + arcsinh

√
−x


, if x ≤ 0,
ζ =

1
2


x − x2 + arcsin

√
x


, if 0 ≤ x < 1.
(23)

We have the relation

1

ζ
1
2

dζ
dx

=


1 − x
x

, x < 1. (24)

The first coefficients are

A0(ζ ) = 1,

B0(ζ ) =
1 − 4α2

16
+

√
ζ

8
√

ξ


4α2

− 1
2

+ ξ +
5
6
ξ 2


, ξ =
x

1 − x
.

(25)

We give a few details about the coefficients Aj(ζ ) and Bj(ζ ) of the expansions in (21). The first ones are given in (25).
First we need coefficients c±

k of the expansions

s = s+ +

∞
k=1

c+

k (u − ib)k, s = s− +

∞
k=1

c−

k (u + ib)k, (26)

where, for 0 ≤ x < 1, b, s± and the relation between s and u are defined by

b =


ζ , s± = ±i arcsin
√
x, s − x coth s = u − b2/s, (27)

with ζ defined in (23), and s± being the saddle points of the s-function and ±ib of the u-function.
Because s(u) is an odd function of u, we have

c−

k = (−1)k+1c+

k , k = 1, 2, 3, . . . . (28)

3 We summarize the results of [4]; see also [5, §VII.7].
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In the following we write c+

k = ck. The first coefficients are

c1 =


x

ζ (1 − x)

 1
4

,

c2 = −
ic12 (3 − 3c1 − 2x + 3xc1)

6
√
x(1 − x)

,

c3 = −
c31

(27c21 − 24c1 + 8)x2 − (54c21 − 60c1 + 12)x + 27c21 − 36c1 + 9


72x(1 − x)

.

(29)

Next we consider the function with expansion

h(u) =
1

χ(ζ )


sinh s
u

−α−1 ds
du

, h(u) =

∞
k=0

dk(u − ib)k, (30)

whereχ(ζ ) is defined in (22). Because h(u) is even, an expansion at the other saddle point−ib has coefficients (−1)kdk; also, d0 = h(ib) =

1. This makes A0(ζ ) = 1, see (25). The coefficient d1 is given by

d1 =
2ibc2x + γ c1x + iγ c21b(1 − x) +


2ibc2 − γ c21b − iγ c1

√
x(1 − x)

c1
√

ζ x
, (31)

where γ = α + 1.
The coefficients in (21) follow from the following recursive scheme

hk(u) = αk + βk/u +

1 + b2/u2 gk(u), hk+1(u) = g ′

k(u) −
α + 1

u
gk(u), (32)

k = 0, 1, 2, . . . , with starting value h0(u) = h(u). The coefficients αk and βk follow from substituting u = ±ib. Because h(u) is even,
β0 = 0, and h1(u) is odd, giving α1 = 0, and so on. Then, the coefficients in the expansions in (21) are given by

Ak(ζ ) = α2k, Bk(ζ ) = β2k+1, k = 0, 1, 2, . . . . (33)
This gives, again with γ = α + 1,

A0(ζ ) = 1, B0(ζ ) = −
b
4


3id1 + 2iγ d1 + 2d2b


,

A1(ζ ) = −
1

32b


48γ bd2 − 46d2b + 24d4b3 − 8γ 2bd2 + 12iγ 2d1 + 24ib2γ d3 − 24iγ d1 − 60ib2d3 + 9id1


,

B1(ζ ) =
1

128b


−572ib2γ d3 + 36iγ 2d1 − 840ib4d5 + 480ib2d3

+ 240ib4γ d5 − 46iγ d1 + 192iγ 2b2d3 − 8iγ 3d1 − 96b3γ 2d4

+ 15id1 − 16bγ 3d2 − 16ib2γ 3d3 + 72γ 2bd2 + 30d2b − 1032d4b3 + 240d6b5 − 92γ bd2 + 672γ b3d4

.

(34)

For small values of xwe need expansions. We can expand in terms of ζ or x. For example, we can write

Ak(ζ ) =

∞
j=0

A(k)
j xk, Bk(ζ ) =

∞
j=0

B(k)
j xk. (35)

The first coefficients are A(0)
0 = 1, A(0)

j = 0 (j ≥ 1), B(k)
0 = 0 (k ≥ 0), and

A(1)
0 = −

1
6
α(α2

− 1),

A(1)
1 = −

1
360

(α − 1)(5α − 7)(α + 3)(α + 2),

A(2)
0 =

1
360

α(α2
− 1)(α − 2)(α − 3)(5α + 7),

A(2)
1 =

1
4536

(α − 1)(α2
− 4)(α − 3)(α + 3)(7α2

− 31),

B(0)
1 = −

1
6
(α2

− 1),

B(1)
1 =

1
360

(α2
− 1)(α − 2)(α − 3)(5α + 7),

B(2)
1 = −

1
45360

(α2
− 1)(α − 2)(α − 3)(α − 4)(α − 5)(35α2

+ 112α + 93).

(36)

2.1.4. Expansions for large values of n and α

In [7] we have given expansions for large n in which α = O(n) is allowed; for a summary see [8]. These results can be obtained by using
an integral representation, but they follow also from uniform expansions of Whittaker functions obtained by using differential equations;
see [9]. These expansions include the J-Bessel function, and are valid in the parameter domain where order and argument of the Bessel
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function are equal, that is, in the turning point domain. Because no explicit forms of the coefficients in the expansions are available, we
omit further details.

2.1.5. An algorithm for computing the Bessel functions Jν(z)
The algorithm for computing the Bessel function Jν(z) in the expansions (14) and (20) is based on the following methods of

approximation:
Power series.

The power series given in Eq. (10.2.2) of [10, §10.19(ii)] is used for computing Jν(z) when z is small:

Jν(z) = ( 1
2 z)

ν
∞
k=0

(−1)k
( 1
4 z

2)k

k!Γ (ν + k + 1)
.

Debye’s asymptotic expansions.
Debye’s asymptotic expansions are also used in the algorithm. The expressions are given in Eq. (10.19.3) and Eq. (10.19.6) of

[10, §10.19(ii)]:
When ν < z, we use

Jν(ν sech α) ∼
eν(tanhα−α)

(2πν tanhα)
1
2

∞
k=0

Uk(cothα)

νk
,

and for ν > z

Jν(ν secβ) ∼


2

πν tanβ

 1
2

cos ξ

∞
k=0

U2k(i cotβ)

ν2k
− i sin ξ

∞
k=0

U2k+1(i cotβ)

ν2k+1


.

The coefficients Uk(p) are polynomials in p of degree 3k given by U0(p) = 1 and

Uk+1(p) =
1
2p

2(1 − p2)U ′

k(p) +
1
8

 p

0
(1 − 5t2)Uk(t)dt.

Asymptotic expansions for large z.
For large values of the argument z, we use the Hankel’s expansion given in [10, §10.17(i)]:

Jν(z) ∼


2
πz

 1
2

cosω

∞
k=0

(−1)k
a2k(ν)

z2k
− sinω

∞
k=0

(−1)k
a2k+1(ν)

z2k+1


,

where

ω = z −
1
2νπ −

1
4π.

The coefficients ak(ν) are given by

ak(ν) =
(4ν2

− 12)(4ν2
− 32) · · · (4ν2

− (2k − 1)2)
k!8k

.

Airy-type expansions.
An important ingredient in our algorithm for computing Bessel functions is Airy-type expansions. We use the representation given

in [11, Chapter 8]

Jν(νx) =
φ(ζ )

ν1/3


Ai(ν2/3ζ ) Aν(ζ ) + ν−4/3Ai′(ν2/3ζ ) Bν(ζ )


,

where

φ(ζ ) =


4ζ

1 − x2

 1
4

, φ(0) = 2
1
3 .

The variable ζ is written in terms of the variable x as

2
3ζ

3/2
= ln

1 +
√
1 − x2

x
−


1 − x2, 0 ≤ x ≤ 1,

2
3 (−ζ )3/2 =


x2 − 1 − arccos

1
x
, x ≥ 1.

Three-term recurrence relation using Miller’s algorithm.
The standard three-term recurrence relation for the cylinder functions

Jν−1(z) + Jν+1(z) = (2ν/z)Jν(z) ,

is computed backwards (starting from large values of ν) using Miller’s algorithm.

2.2. Three-term recurrence relation

The generalized Laguerre polynomials satisfy the following three-term recurrence relation

L(α)
n+1(z) =

2n + α + 1 − z
n + 1

L(α)
n (z) −

n + α

n + 1
L(α)
n−1(z). (37)
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Fig. 2. Test of the performance of the simple Bessel-type expansion of Section 2.1.2. The points where the value of ϵ in Eq. (40) is greater than 5 10−12 are plotted.

Fig. 3. Test of the performance of the Bessel-type expansion of Section 2.1.3. The points where the value of ϵ in Eq. (40) is greater than 5 10−12 are plotted.

This recurrence relation is not ill conditioned in both backward and forward directions. Therefore it can be used with starting values
L(α)
0 (z) = 1 and L(α)

1 (z) = 1+α − z, to compute the generalized Laguerre polynomials when n is small/moderate. As n increases, it is more
efficient, as we later discuss, to use the asymptotic expansions described in the previous sections.

3. Overview of the software structure

The Fortran 90 package includes the main module LaguerrePol, which includes as public routine the function laguerre.
In the module LaguerrePol, the auxiliary modules Someconstants (a module for the computation of the main constants used in the

different routines), BesselJY (for the computation of Bessel functions) and AiryFunction (for the computation of Airy functions) are used.

4. Description of the individual software components

The calling sequence of this routine is

laguerre(a,n,z,lagp,ierr)

where the input data are: a, n and z (arguments of the Laguerre polynomial). The outputs of the function are error flag ierr and the value
of the Laguerre polynomial value lagp. The possible values of the error flag are: ierr = 0, successful computation; ierr = 1, computation
failed due to overflow/underflow; ierr = 2, arguments out of range.

5. Testing the algorithms

The performance of the asymptotic expansions for the Laguerre polynomials has been tested by considering the relation given in Eq.
(18.9.13) of [12] written in the form

ϵ1 =

 L
(α+1)
n−1 (z) + L(α)

n (z)

L(α+1)
n (z)

− 1

 . (38)

This check fails close to the zeros of L(α+1)
n ; in this case, we can consider the alternative test

ϵ2 =

 L
(α+1)
n (z) − L(α+1)

n−1 (z)

L(α)
n (z)

− 1

 . (39)

Notice that, because the zeros of L(α)
n and L(α+1)

n are interlaced, both tests will not fail simultaneously. We can therefore take

ϵ = min(ϵ1, ϵ2). (40)

A test for the accuracy obtained using the Bessel-type and Airy-type expansions for n large is shown in Figs. 2–4, respectively. In these
figures, the points where the value of ϵ in Eq. (40) is greater than 5 10−12 are shown. Parameter values have been randomly generated in
the oscillatory region of the Laguerre polynomials with (α, n) ∈ (−1, 10) × (200, 10 000).
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Fig. 4. Test of the performance of the Airy-type asymptotic expansion. The points where value of ϵ in Eq. (40) is greater than 5 10−12 are plotted.

Table 1
Comparison of the efficiency of the asymptotic expansions (AE) vs the use of the
three-term recurrence relation (TTRR) given in Eq. (37) for computing the Laguerre
polynomials L(1.5)

n (z). Values of CPU times shown correspond to 20000 function
evaluations. The parameter ν is given in Eq. (2).

n z/ν CPU time AE (s) CPU time TTRR (s)

125 0.001 0.12 0.046
0.15 0.047 0.046
0.7 0.078 0.047

200 0.001 0.047 0.078
0.15 0.047 0.078
0.7 0.078 0.078

500 0.001 0.047 0.2
0.15 0.047 0.2
0.7 0.078 0.2

1000 0.001 0.031 0.39
0.15 0.047 0.39

10000 0.001 0.031 3.82

As can be seen, the Bessel-type expansions (Figs. 2 and 3) are valid for small values of the variable z/ν; in particular, the simple Bessel-
type expansion works well when the argument of the Laguerre polynomials is very close to the origin. On the other hand, the domain
of applicability of the Airy-type expansion extends well beyond the transition between the oscillatory and the monotonic regions of the
functions, as Fig. 4 shows for the oscillatory region. The validity of the three asymptotic expansions is, in all cases, limited by the value of
the parameter α, as commented in Section 2.1.4. In the Fortran 90 module, we restrict the values of this parameter to the interval (−1, 5)
in order to avoid the use of the recursion relation (37) for large n.

We have also tested the efficiency of using the asymptotic expansions in their region of applicability in comparison with the use of the
three-term recurrence relation given in Eq. (37) for computing the functions. Our tests show that for n > 200 it is more efficient to use
the asymptotic expansions than the recurrence relation. As an example, Table 1 shows few of the test values for particular choices of the
parameters.

6. Test run description

The Fortran 90 test program testlag.f90 includes the computation of 25 function values and their comparison with the corresponding
pre-computed results. Also, the relation given in (38) is tested for several values of the parameters (z, α, n).
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