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Abstract

We derive a novel computational scheme for functional Renormalization Group
(fRG) calculations for interacting fermions on 2D lattices. The scheme is based
on the exchange parametrization fRG for the two-fermion interaction, with addi-
tional insertions of truncated partitions of unity. These insertions decouple the
fermionic propagators from the exchange propagators and lead to a separation
of the underlying equations. We demonstrate that this separation is numeri-
cally advantageous and may pave the way for refined, large-scale computational
investigations even in the case of complex multiband systems. Furthermore,
on the basis of speedup data gained from our implementation, it is shown that
this new variant facilitates efficient calculations on a large number of multi-core
CPUs. We apply the scheme to the t,t′ Hubbard model on a square lattice to
analyze the convergence of the results with the bond length of the truncation of
the partition of unity. In most parameter areas, a fast convergence can be ob-
served. Finally, we compare to previous results in order to relate our approach
to other fRG studies.

Keywords: functional Renormalization Group, truncated partition of unity,
interacting fermions, hybrid parallelization, Hubbard model

1. Introduction

Having passed through a process of refinement and development that has
taken more than two decades, the functional Renormalization Group (fRG) can
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be rightfully seen as an unbiased method for investigating interacting Fermi
systems. In the medium term, it is conceivable to use the fRG methods to
investigate existing materials in terms of their ground state properties with
quantitative precision regarding energy scales and parameter ranges, as well as
to discover new materials with superior features. While the development process
is far from being completed, with this paper we contribute in pushing the fRG
method forward into this direction.

Our main focus is to show how one can capture the wavevector dependence
of effective two-fermion vertices in a physically meaningful and numerically ad-
vantageous way. The fRG—as we use it in this paper—is based on the Wetterich
equation [1] that describes the evolution of an effective action. Since this equa-
tion results in a full hierarchy of differential equations encompassing all orders
of the vertex functions, a truncation is necessary in order to ensure solvability.
As defined in the review paper by Metzner et al. [2], we build on the level-2
truncation of the fRG equation hierarchy which has become an often-used stan-
dard. In addition to that, self-energies are neglected in the current state of the
method development for the sake of simplicity. Moreover, in most cases further
approximations are indispensable, for example, a discretization of the Brillouin
zone (BZ) using a grid of momentum sampling points. Within the first fRG
studies on Fermi systems [3–5]—those addressed the 2D Hubbard model—the
BZ was discretized by using the so-called Fermi surface patching scheme, where
the vertex dependences on the radial parts of momenta are neglected. This
scheme was further extended to multiband models and applied to systems like
iron superconductors [6–8] or single- and multilayer graphene [9–12].

In terms of a method development, the exchange parametrization fRG—as
introduced in Ref. [13] and used, for example, in Refs. [14–20]—can be seen
as the next important step. Within that scheme, the two-particle coupling
function, which generally depends on three external momenta due to the con-
servation of total momentum, is decomposed into three single-channel func-
tions, where every channel only depends strongly on one momentum. As a
consequence, this parametrization—which can be used for the dependence on
frequencies in a similar way [21]—softens the scaling of the number of cou-
pled differential equations with respect to the momentum grid point number.
While in the Fermi surface patching one has to deal with a third power scaling
behavior, in the exchange parametrization the scaling becomes almost linear.
Although there is some freedom in defining the three channels, usually they
can be interpreted as being responsible for charge, spin and pairing fluctuations
respectively. Hence, the exchange parametrization allows to describe the poten-
tially complex momentum structure of the effective interaction in a fashion that
is physically easier to interpret.

Besides the exchange parametrization fRG, the singular-mode fRG (SM-
FRG) [22] was introduced as another scheme to capture the momentum de-
pendence. Similar to the exchange parametrization fRG, the SMFRG scheme
distinguishes between three different channels, but it uses other quantities to
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represent those and it treats the feedback between these channels differently.1

In this paper we build on the two last-named schemes and take the next step
in the development of the fRG method. In Sec. 2 we present a step-by-step
derivation of a new fRG variant that combines features of both the exchange
parametrization fRG and the SMFRG, and we argue that the new variant is
numerically beneficial compared to the exchange parametrization fRG. In order
to point out the major distinction between the latter and the new scheme, we
name our newly developed variant truncated unity fRG (TUfRG). We comment
on the relation of the TUfRG to the SMFRG in Appendix A.

In order to enlarge the application area of the fRG to more complex systems,
method development has to focus on two parallel research directions: equation
parametrization and parallel implementation. While it is crucial to develop new
meaningful parametrizations and approximations for the flow equations, it is
equally relevant to explore parallelization and performance strategies enabling
the efficient use of massively parallel computing architectures. For instance, as
shown in Ref. [23], fRG can profit highly from a sophisticated hybrid paralleliza-
tion that can achieve a speedup of several orders of magnitude. In Sec. 3, we
discuss our algorithmic choices, their parallel implementation and the speedup
gained by TUfRG when running on parallel computing platforms.

The TUfRG contains an additional approximation compared to the exchange
parametrization fRG—namely the insertion of a truncated partition of unity.
This insertion leads to a simplification of the integrals involved, which are com-
putationally the most challenging tasks in the fRG calculation. In Sec. 4, we
check the quality of this approximation by applying the scheme to the well stud-
ied [15, 19, 24–26] t-t′ Hubbard model. Furthermore, we provide a more analytic
view on this aspect in Appendix B.

2. The TUfRG equations

Since there are comprehensive descriptions of the fermionic fRG already
given in other works (for a recent review, see e.g. Refs. [2, 27]), we will not
explain the basic concept of this method and the derivation of the hierarchy of
flow equations in detail, but briefly mention the important equations to bring
the reader up to speed with our notation. Afterwards, we will derive the TUfRG
from the fermionic fRG equations. For further classification we explain that the
TUfRG equations are strongly related to the ones from the SMFRG [22] and
point out the conceptual differences in Appendix A.

2.1. fRG Flow equations
In the following, we consider an effective action of the form

Γ[ψ̄, ψ] =

∫

dξ ψ̄(ξ)Q(k)ψ(ξ) + Γ(4)[ψ̄, ψ] ,

1In a first step the contributions are calculated in a single-channel fashion: only intra-
channel contributions are evaluated. The inter-channel feedback is done in a second step by
a projection of the single-channel results onto the other two.
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where ξ = (k, σ), with k = (k0,k), denotes a collection of frequency (k0),
momentum (k) and spin projection (σ) quantum numbers. As described in
Refs. [2, 28], the two-particle interaction

Γ(4)[ψ̄, ψ] =
1

4

∫

dξ1 . . . dξ4 f(ξ1, ξ2, ξ3, ξ4)

× ψ̄(ξ4) ψ̄(ξ3)ψ(ξ2)ψ(ξ1)

of a charge conserving and SU(2) invariant theory can be parametrized with one
spin-independent coupling function V (k1, k2, k3) according to

f(ξ1, ξ2, ξ3, ξ4) = [V (k1, k2, k3) δσ1,σ4
δσ2,σ3

− V (k2, k1, k3) δσ1,σ3
δσ2,σ4

]

× δ(k1 + k2 − k3 − k4) ,

where the δ-function ensures momentum and energy conservation.
The quadratic part of the effective action is diagonal in spin-space, which

implies

G(ξ1, ξ2) = δσ1,σ2
δ(k1 − k2)G(k1) and Σ(ξ1, ξ2) = δσ1,σ2

δ(k1 − k2)Σ(k1)

for the one-particle propagator G and the 1PI self-energy Σ. Once a regulator is
added to the propagator, we can derive the fRG flow equations. More explicitly,
we replace G by a function GΛ in a way that we get GΛ → 0 for Λ → ∞ and
GΛ → G for Λ → 0. This results in differential equations of 1PI vertex functions
with respect to the regularization scale, which we call Λ in this paragraph. The
flow equation corresponding to the 1PI self-energy reads

Σ̇(k) =

∫

dp S(p) [V (p, k, p)− 2V (k, p, p)] , (1)

with the single-scale propagator S [2]. Note that in the following we will not
mark dependences on the regularization scale with a superscript Λ in order to
simplify the notation. A derivative with respect to this scale is denoted as a
dot above the affected quantity. The scale derivative of the coupling function
V consists of three parts

V̇ (k1, k2, k3) = Tpp(k1, k2, k3) + T cr
ph(k1, k2, k3) + T d

ph(k1, k2, k3) .

The particle-particle contribution

Tpp = −

∫

dp [∂λG(p)G(k1 + k2 − p)]V (k1, k2, p)V (k1 + k2 − p, p, k3) (2)

and the crossed particle-hole part

T cr
ph = −

∫

dp [∂λG(p)G(p+ k3 − k1)]V (k1, p+ k3 − k1, k3)V (p, k2, p+ k3 − k1)

(3)
can each be represented by one diagram (see Fig. 1). Vertex corrections and
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Particle-particle diagram Tpp

Crossed particle-hole diagram T cr
ph

Direct particle-hole diagrams T d
ph

Figure 1: The five diagrams driving the flow of the two-particle interaction V (k1, k2, k3) of an
U(1) and SU(2) invariant theory. For the closed loops in these diagrams, a scale derivative is
implicit. (These figures have been taken from Ref. [28].)

particle-hole screening, however, are accounted for by the direct particle-hole
diagrams depicted in Fig. 1:

T d
ph =

∫

dp [∂λG(p)G(p+ k2 − k3)] [2V (k1, p+ k2 − k3, p)V (p, k2, k3)

− V (k1, p+ k2 − k3, k1 + k2 − k3)V (p, k2, k3)

−V (k1, p+ k2 − k3, p)V (p, k2, p+ k2 − k3)] . (4)

2.2. Channel decomposition

Let us now recapitulate the channel decomposition of Karrasch et al. [21]
for the frequency- and by Husemann and Salmhofer [13] for the momentum-
dependence of the vertices. In these approaches, the coupling function V (k1, k2, k3)
is decomposed into contributions resulting from three different channels. More
precisely, we have

V (k1, k2, k3) = V
(0)
k1,k2,k3

− ΦSC

k1+k2,
k1−k2

2
,
k4−k3

2

+ΦM

k1−k3,
k1+k3

2
,
k2+k4

2

+
1

2
ΦM

k3−k2,
k1+k4

2
,
k2+k3

2

−
1

2
ΦK

k3−k2,
k1+k4

2
,
k2+k3

2

,

with V (0) being the bare interaction, and ΦSC, ΦM, and ΦK representing the cou-
pling functions of the pairing, the magnetic, and the forward scattering channel,
respectively. The first argument of each channel accounts for the dependence
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on the total (k1+k2) or on one of the transfer momenta (k1−k3 and k3−k2).
These momentum combinations appear inside the fermionic loops from Fig. 1
and label the most important momentum dependences at weak coupling. Re-
garding the other two (weak) momentum dependences of each channel, we have
chosen a convention that is more symmetric than in Refs. [22, 29, 30]. These
single-channel coupling functions are generated during the flow according to the
following equations

Φ̇SC

k1+k2,
k1−k2

2
,
k4−k3

2

= −Tpp (k1, k2, k3) (5)

Φ̇M

k1−k3,
k1+k3

2
,
k2+k4

2

= T cr
ph (k1, k2, k3)

Φ̇K

k3−k2,
k1+k4

2
,
k2+k3

2

= −2T d
ph (k1, k2, k3) + T cr

ph (k1, k2, k1 + k2 − k3) .

At the formal level, the channel decomposition may be performed in a different
way. Instead of ΦM and ΦK, the particle-hole channels are accounted for by the
coupling functions ΦC and ΦD, which flow according to

Φ̇C

k1−k3,
k1+k3

2
,
k2+k4

2

= T cr
ph (k1, k2, k3) (6)

Φ̇D

k3−k2,
k1+k4

2
,
k2+k3

2

= T d
ph (k1, k2, k3) (7)

and enter in the effective interaction as

V (k1, k2, k3) = V
(0)
k1,k2,k3

− ΦSC

k1+k2,
k1−k2

2
,
k4−k3

2

+ΦC

k1−k3,
k1+k3

2
,
k2+k4

2

+ΦD

k3−k2,
k1+k4

2
,
k2+k3

2

. (8)

This latter form of the channel decomposition corresponds to the parametriza-
tion of the interaction used in Refs. [22, 29, 30]. In the following, we will work
with the latter variant, while magnetic and forward scattering channels can be
obtained as

ΦM

k1−k3,
k1+k3

2
,
k2+k4

2

= ΦC

k1−k3,
k1+k3

2
,
k2+k4

2

ΦK

k3−k2,
k1+k4

2
,
k2+k3

2

= −2ΦD

k3−k2,
k1+k4

2
,
k2+k3

2

+ΦC

k3−k2,
k1+k4

2
,
k2+k3

2

.

2.3. Projection onto exchange propagators

Let us now describe the dependence of the coupling functions on the weak
momenta through a complete set of form factors { fm(k) } that are square inte-
grable on the BZ. For the particle-particle channel, we can project the single-
channel coupling function ΦSC onto a matrix P(l) = P̂

[

ΦSC
]

(l) of exchange
propagators. The matrix elements then read

Pm,n(l) = P̂
[

ΦSC
]

m,n
(l) =

∫

dk dk′ f∗

m(k) fn(k
′)ΦSC

l,k,k′

∣

∣

∣

∣

k0=k′

0
=0

, (9)
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and the single-channel coupling function is recovered as

ΦSC
l,k,k′ ≈

∑

m,n

fm(k) f∗

n(k
′)Pm,n(l) . (10)

On a formal level, the momentum dependences are then reproduced exactly,
while the frequency dependences contained in k and k′ are neglected which is
expressed by the approximately-equal sign in Eqn. 10. Additionally, in a nu-
merical calculation, one will be forced to truncate the infinite sum over the form
factors. Note that, if the underlying lattice structure corresponds to a Bravais
lattice, the form factors can always be chosen to be real valued in momentum
representation. Hence, we will leave out the asterisks from Eqs. 9 and 10 in the
following.

Similarly to the particle-particle channel, the exchange propagators of the
particle-hole channels are defined as

C(l) = Ĉ
[

ΦC
]

(l) , (11)

D(l) = D̂
[

ΦD
]

(l) (12)

and the corresponding single-channel coupling functions read in exchange parametriza-
tion

ΦC
l,k,k′ ≈

∑

m,n

fm(k) fn(k
′)Cm,n(l) , (13)

ΦD
l,k,k′ ≈

∑

m,n

fm(k) fn(k
′)Dm,n(l) . (14)

The flow equations for the exchange propagators are obtained by applying
the projection operations from Eqs. (9), (11), and (12) to the respective dia-
grams in the right-hand sides of Eqs. (5)-(7). This yields

Ṗ(l) = −P̂ [Tpp] (l) , (15)

Ċ(l) = Ĉ
[

T cr
ph

]

(l) , (16)

Ḋ(l) = D̂
[

T d
ph

]

(l) , (17)

where the projection operators applied to a test function F read:

P̂ [F ]m,n (l) =

∫

dk dk′ fm(k) fn(k
′)F

(

l

2
+ k,

l

2
− k,

l

2
− k′

)∣

∣

∣

∣

k0=k′

0
=0

, (18)

Ĉ [F ]m,n (l) =

∫

dk dk′ fm(k) fn(k
′)F

(

k +
l

2
, k′ −

l

2
, k −

l

2

)
∣

∣

∣

∣

k0=k′

0
=0

, (19)

D̂ [F ]m,n (l) =

∫

dk dk′ fm(k) fn(k
′)F

(

k +
l

2
, k′ −

l

2
, k′ +

l

2

)∣

∣

∣

∣

k0=k′

0
=0

.

(20)
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B1 B1

Propagator renormalization

B1

B2

Vertex correction

B2 B2

Box diagrams

Figure 2: Diagrams contributing to the flow of B1. Solid lines correspond to fermionic and
wiggly ones to exchange propagators. Fermion-boson vertices (our form factors fm) are repre-
sented by empty circles. B2 denotes a linear combination of exchange propagators that differ
from B1.

Eqs. (15)-(17) can be seen as flow equations of the exchange-parametrization
fRG (see Refs. [13–15] for details on this scheme). By substituting the de-
composed interaction of Eq. (8) in the flow equations (15)-(17), one obtains
three different kinds of diagrams governing the flow of the exchange propaga-
tor B1 ∈ {P,C,D} (see Fig. 2). In the propagator renormalization diagrams,
bosonic lines (exchange propagators) corresponding to B1 appear outside the
loops. Apart from a B1 line outside the loops, vertex correction diagrams
have one bosonic line inside, which corresponds to a linear combination B2

of bosonic propagators. In the box diagrams, both bosonic lines correspond to
B2 and appear inside the loops. In a numerical implementation of the exchange-
parametrization fRG, bosonic lines inside the loops pose a challenge. Since these
exchange propagators may be sharply peaked close to an instability, they can
significantly enhance the computational cost of the loop integrals. In the fol-
lowing we show that one can separate the bosonic from the fermionic lines to
make loop integrations a computationally easier task.
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2.4. Insertion of truncated partitions of unity

We continue with the derivation of the TUfRG equations by inserting par-
titions of unity of the form factor basis

1 =

∫

dp′ δ(p− p′) =

∫

dp′

∑

m

fm(p′)fm(p) (21)

on both sides of the two fermion loops in Eqs. (15)-(17). These equations can
be rewritten as

Ṗ(l) = VP (l) χ̇pp(l)VP (l) , (22)

Ċ(l) = −VC(l) χ̇ph(l)VC(l) , (23)

Ḋ(l) = 2VD(l) χ̇ph(l)VD(l)−VC(l) χ̇ph(l)VD(l)−VD(l) χ̇ph(l)VC(l) ,
(24)

where

χpp
m,n(l) =

∫

dpG

(

l

2
+ p

)

G

(

l

2
− p

)

fm(p) fn(p) ,

χph
m,n(l) =

∫

dpG

(

p+
l

2

)

G

(

p−
l

2

)

fm(p) fn(p)

(25)

and

VP (l) = P̂
[

V (0)
]

(l)−P(l) + P̂
[

ΦC
]

(l) + P̂
[

ΦD
]

(l) , (26)

VC (l) = Ĉ
[

V (0)
]

(l)− Ĉ
[

ΦSC
]

(l) +C(l) + Ĉ
[

ΦD
]

(l) , (27)

VD (l) = D̂
[

V (0)
]

(l)− D̂
[

ΦSC
]

(l) + D̂
[

ΦC
]

(l) +D(l) (28)

are the three different projections from Eqs. (18)-(20) applied to the two-particle
interaction. Via Eqs. (10), (13), and (14), the exchange propagators are inserted
back into the flow equations (22)-(24), which results in a closed system of dif-
ferential equations. The bosonic propagators are now separated from the loop
integrations at the cost of introducing the projections (26)-(28). For instance,
the third contribution of VP (l) can be expressed as

P̂
[

ΦC
]

m,n
(l) ≈

∫

dk dk′ fm(k) fn(k
′)

×
∑

m′,n′

fm′

(

l+ k− k′

2

)

fn′

(

l− k+ k′

2

)

Cm′,n′(k′ + k)

∣

∣

∣

∣

∣

∣

k0=k′

0
=0

(29)

=
∑

R1,R2,R3

∑

m′,n′

fm

(

−
R1

2
+

R2

2
−R3

)

fn

(

R1

2
−

R2

2
−R3

)

× fm′ (R1) fn′ (R2) Cm′,n′(R3, k0 = 0) e−i 1
2
l·(R1+R2)

(30)
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↓

Figure 3: Graphical representation of the steps in the calculation of the increment for the
interaction in the TUfRG approach. The upper diagram corresponds to the projection in
step i.) and the lower one to steps ii.) and iii.). The brick-stones in the lower part correspond
to the full interaction projected to the respective channel with B1 = P , C, or D. Dashed
lines correspond to simple contractions and not to fermionic or bosonic propagators.

in momentum and position space.
Let us summarize which steps need to be performed in order to calculate the

increment of the interaction in the TUfRG scheme:

i.) Project P(l), C(l), D(l) and the bare interaction to other channels in order
to obtain VP (l), VC(l), and VD(l) according to Eqs. (26)-(28).

ii.) Calculate the form factor projected fermionic loops χ̇pp(l) and χ̇ph(l) in
Eq. (25).

iii.) Evaluate Ṗ(l), Ċ(l), and Ḋ(l) by performing matrix multiplications in the
form factor basis [see Eqs. (22)-(24)].

Fig. 3 graphically represents the calculation steps that are listed above.
For implementing the TUfRG flow we require

a) a suitable grid for the bosonic frequencies and momenta and

b) a finite set of form factors fm(k).

While an inappropriate choice of the former may cause severe parametrization
errors, the form factor expansion should be truncated in a way that avoids large
projection errors. Generically, form factors corresponding to fixed bond lengths
on the direct lattice seem appropriate, as it is likely and in fact known from
previous studies (e.g. [20]) that only small bond lengths (or slowly varying form
factors) contribute significantly.
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Figure 4: Insertion of a unity operator in the form factor basis into a vertex-correction diagram.

2.5. Benefits from the truncated partitions of unity

From a formal point of view, our approach is nothing else than the standard
exchange parametrization method with an additional approximation. Namely,
we have inserted truncated partitions of unity in the form factor basis in order to
pull bosonic lines out of the loops.2 This additional approximation is depicted in
Fig. 4 for a vertex-correction diagram. A suitable truncation of the form factor
expansion is likely to contain more terms than in the exchange parametrization
studies in Refs. [13–15]. However, we still expect fast convergence with increas-
ing maximal bond length. (For a more detailed discussion, see Section 4 and
Appendix B.)

The insertion of truncated unity partitions generates a computational advan-
tage in calculating the right hand side of the flow equations due to the decom-
position of the loop integrals. As a consequence of separating the bosonic from
the fermionic lines, the integrands only consist of a product of two fermionic
propagators and two slowly varying form factors instead of two interaction chan-
nels that can be strongly peaked close to a phase transition. Since integrations
over structures with sharp features are numerically expensive, the replacement
by smooth functions makes the loop integration an easier task. This simplifica-
tion is done at the cost of adding the projection operations i.). As can be seen
from Eq. (29), these additional tasks consist of two nested momentum integrals
involving a product of four form factors and one exchange propagator. If the
form factors correspond to fixed bond lengths, the calculation can be done most
efficiently in position space [22]. In this case, the form factors translate to su-
perpositions of Kronecker deltas that limit the appearing sums to a fixed upper
bond length (see Eq. (30)). This upper length is of course directly related to
the truncation length of the form factor basis.

With these preliminary considerations, the projection step can be imple-
mented in terms of evaluating overlaps of Kronecker-deltas and performing
Fourier transforms of the exchange propagators for a finite set of vectors in
position space. Moreover, it should be mentioned that the exchange propagator
is the only object that depends on the fRG scale: all the other components (e.g.
the non-vanishing Kronecker delta combinations and Fourier exponentials) stay

2Formally, our scheme reproduces the original one-loop flow equations of Sec. 2.1 for a
complete (infinite) set of form factors.
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the same for the whole fRG flow. Such a simplified dependence enables us to
calculate these scale-independent parts only once and to use the result at all
scales instead of repeating the same calculation at every step. We implemented
the reuse of precomputed projection data in the code version for studies on
the honeycomb lattice [31]. In a calculation using 3217 sampling points for
each dependence on momentum l in Eqs. (26)-(28), the recycling of data caused
speedups of 2.6 and 1.7 in the case of truncations after 7 and 13 form factors re-
spectively. Although the total size of those data is of the order of some gigabytes
and this part of the code is not yet optimized in terms of cache lines and load
balancing, the computation time for the projections can be reduced by storing
precomputed data.3 In case of a well behaved loop integrand, the projection
process needs the major part of the computation time. Then, the storing of
data can accelerate the whole fRG flow significantly. In terms of performance,
the latter case might be seen as the optimal area of application for the TUfRG.

3. Towards high-performance fRG

Despite the physically motivated truncations that enter the TUfRG, the de-
velopment of a computationally efficient method, that significantly reduces the
time-to-solution while providing meaningful predictions of ground state proper-
ties, relies on the usage of high-performance computers. In the last decade the
evolution of the building blocks of large computing architectures moved from
single-core CPUs to compute nodes with multiple cores, where large numbers of
them are interconnected in complex and heterogeneous networks. As a conse-
quence of this evolution, it is only natural that a modern fRG implementation
should be able to make use of a large number of compute cores in order to max-
imally exploit the parallelism of modern computing platforms. To this purpose,
in our implementation, we make extensive use of the directive-based OpenMP
as well as the Message Passing Interface (MPI) API, which are the most used
standards for achieving shared memory and distributed memory parallelization,
respectively.

A clear advantage of the TUfRG method lies in the fact that bosonic lines
have been completely pulled out of the loops. Consequently, the integrals in
step ii.) are generically more well behaved than in the exchange-parametrization
approach (see Section 2.5). Furthermore, all the loop integrations for different
form factor and bosonic momentum combinations are completely independent
from each other4, and so embarrassingly parallel. In this step, communication
is only necessary to share the results of the integration tasks between the dif-
ferent MPI processes. When compared to the time spent in computations, the
communication overhead is negligible. In our current implementation we use

3See Appendix C for details on how symmetries can be used for minimizing the memory
consumption.

4Note that the same is true for the bosonic frequencies. However, in the current imple-
mentation we neglect the frequency dependence of the exchange propagators and focus on the
zero frequency terms.
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Figure 5: Speedup gained from shared memory parallelization relative to serial execution.
The data have been produced using one node of a general purpose cluster with 24 physical
cores. For thread numbers higher than 24 more than one thread is executed on one physical
core.

MPI for distributing the bosonic momenta across the available compute nodes,
i.e. the largest computation unit whose constituents share one block of mem-
ory, and OpenMP for parallelizing the form factor combinations of each bosonic
momentum. To perform a single integration, for fixed form factor indices and
momentum, we use the adaptive quadrature routine DCUHRE [32].

For our implementation of step i.) we used the position space representation
from Eq. (30) in the variant that avoids large memory consumptions. Here we
decided to accept a longer runtime for this part of the calculation, since in the
t-t′ Hubbard model at van Hove filling step ii.) consumes the major part of the
total computation time. As in step ii.) we use a hybrid parallelization, where
the sum over m′ and n′ from the right-hand side of Eq. (30) is distributed over
the nodes with MPI, and the different components of the exchange propagators
regarding the form factor indices m and n on the left-hand side are calculated
in parallel using OpenMP.

The matrix multiplications in iii.) are of minor relevance in terms of com-
pute time and their implementation is therefore not optimized yet. It is based
on nested for -loops, where those over external indices are parallelized using
OpenMP. For calculations using up to 128 nodes, the compute time needed by
this step is negligible compared to the ones of steps i.) and ii.), due to the
shared memory parallelism of the for -loop iterations.

As explained above, by performing the steps i.) - iii.) we calculate the
derivative of the exchange propagators with respect to the regularization scale.
Since we aim to obtain these propagators at lower scales, we are left with solving
ordinary differential equations (ODEs) of order one, which is a standard task
that we have implemented with the use of an explicit ODE solver from the
‘Odeint’ library [33].

We analyzed our implementation of the TUfRG in terms of parallelization
speedup using the JURECA compute cluster, which is located at the Jülich
Supercomputing Centre. Every node consists of two Intel Xeon E5-2680 v3
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Figure 6: Speedup gained from distributed memory parallelization relative to an execution
on one node. The data have been produced using a general purpose cluster with 24 cores per
node.

Haswell CPUs with 12 cores each, working at 2.5GHz. Due to simultaneous
multithreading (SMT), every JURECA node supports 48 threads in total. While
there are nodes with larger main memory available within the cluster, we only
used nodes with 128GB as this appeared to be more than enough for our needs.
For the following tests, we apply the implementation to the t-t′ Hubbard model
at van Hove filling with model parameters t′ = −0.3 t and U = 3.0 t. In this
first application of the scheme, we neglect the self-energy feedback and use the
Ω-cutoff [13] as regulator. The form factor basis is chosen in a way that every
element corresponds to a certain bond length5 and the truncation of that basis is
introduced by an upper limit in the bond length. More precisely, a truncation at
the nth nearest neighbor means that we only take form factors into account that
correspond to the nth nearest neighbor bonds or to shorter bonds. Fig. 5 shows
how the runtime for one calculation of the ODEs’ right-hand side decreases
with increasing number of threads running on one node, or in other words it
shows the performance of our shared memory parallelization. In this context the
quantity ‘speedup’ can be understood as the quotient of the runtime using the
reference configuration, i.e. one thread, and the runtime using the respective
number of threads. For these data we used a truncation of the form factor basis
at the fourth nearest neighbor and compared to the data from Section 4 we have
reduced the density of sampling points for bosonic momenta in order to get a
runtime below 24 hours for the serial execution. As it can be seen from Fig. 5,
the speedup scales well with the number of threads in the region where the
number of threads is less or equal to 24 and each thread runs exclusively on a
physical core. With 24 threads and one thread per core we achieve a speedup of
19.5, while by harvesting the additional underlying hardware parallelism when
putting two threads on a physical core we arrive at a speedup of 24.5.

5This still leaves some freedom for the specification of the form factors. In the current
implementation these basis functions are chosen to transform according to the irreducible
representations of the C4v point group, i.e., they fulfill s-, p-, d-, and g-symmetry, respectively.
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At the next level we can further enhance this result by using the distributed
memory parallelization. In Fig. 6 the speedup is plotted against the number
of nodes, where the point of reference is the runtime when using 48 threads on
one node. Since we want to analyze the performance of our implementation
under production conditions, we now choose the same resolution of the bosonic
momenta as in Section 4 (see Fig. 7) and a truncation at the fifth nearest
neighbor. Due to huge consumptions of time, these conditions have not been
feasible for the program executions for Fig. 5. However, this does not diminish
the validity of our analysis, since an increase of the resolution will lead to an
enlarged number of parallelizable work packages, which in turn rather supports
parallelizability. Our implementation scales very well up to 64 nodes and for
128 nodes we still find a very reasonable speedup of 98.4, as shown in Fig. 6.

4. The t-t′ Hubbard model as a test case

We have applied our implementation of the TUfRG to the t-t′ Hubbard
model on the square lattice, which is well studied [15, 19, 24–26] but still contains
some regions in the parameter space with unclear ground state properties. The
single particle dispersion is given as

ǫ(k) = −2 t (cos(kx) + cos(ky))− 4 t′ cos(kx) cos(ky)− µ (31)

which contains three free parameters in general. In addition a fourth parameter
in the Hubbard model is given by the onsite density-density interaction strength
U . A simultaneous rescaling of these four parameters will leave the physics of
the system invariant, but will rescale all physical energies. To take this into
account we measure all energies relative to the parameter t and leave the value
of t undefined. Furthermore, we restrict ourselves to van Hove filling µ = 4 t′

and use U = 3 t which leaves us with only one free parameter t′.
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Figure 8: The critical scales for different truncation (bond) lengths of the form factor basis are
plotted against the second nearest neighbor hopping t′ for the t-t′ Hubbard model at van Hove
filling with U = 3.0 t. Nearest neighbor bonds that correspond to the different truncations
are shown in the inset. The gray bars separate the parameter regimes of the three observed
instabilities, those are spin density wave (SDW) with l ∼ (π, π), d-wave superconductivity
(dSC) with zero total momentum and ferromagnetism (FM).

Fig. 7 shows the discretization of the momentum space that we have used for
the calculation of the exchange propagators. Inside the areas of high grid point
density we have expected strong peaks of the exchange propagator values that
need to be resolved more accurately. Those areas have been chosen according
to the results of previous studies on this model and can also be motivated by
simple single channel deliberations.

In order to investigate the applicability of the insertion of truncated unity
partitions, we have checked how the results change with increasing truncation
length. To this end, we have performed the fRG flow in the parameter range
from t′ = −0.10 t to t′ = −0.45 t with different truncations of the form factor
basis. Starting from a truncation at the first nearest neighbor, we have suc-
cessively increased the number of form factors until a sixth nearest neighbor
truncation. The calculations have been started at an initial scale two orders of
magnitude larger than the bandwidth and have been stopped when the largest
absolute value of the exchange propagators has become one order of magnitude
higher than the bandwidth. It turns out that the results do not depend on the
precise values of the initial scale and the largest exchange propagator compo-
nent. For each data point, the ground state type has been determined by the
largest exchange propagator value by means of the corresponding channel (pair-
ing, magnetic or charge), ordering vector, and form factor symmetry. Fig. 8
shows the critical scales as functions of t′ and exhibits three different kinds
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of ground states. Spin density wave (SDW) and ferromagnetic (FM) instabili-
ties manifest in the magnetic channel with an s-symmetry and ordering vector
l ∼ (π, π) and l = (0, 0), respectively. The observed d-wave superconductivity
(dSC) appears in the pairing channel with zero total momentum. By reason of
clarity the transitions between the different phases are only shown sketchily in
this plot. However, the transition values of t′ turn out to change very mildly
with the truncation length for both transitions.

Focusing on the SDW regime, it becomes obvious that the critical scales are
nearly unchanged by increasing the number of form factors. This shows that
the important feedback from other channels—which lowers the critical scales
compared to those from single channel calculations—is already contained in the
TUfRG using a nearest neighbor truncation. Within the dSC regime we find
a change of the critical scales by including the fourth nearest neighbor form
factors. But this correction is small until we do not get too close to the phase
transition to FM. Moreover, it can be seen from Fig. 8 that numerically the last-
named parameter region around t′ ≈ −0.34 t is the most difficult one. These
difficulties are directly connected to the fact that the nature of this transition
is highly unclear in general. There are fRG studies that find a quantum critical
point between the two phases [15, 25] while others—like the present one—do
not indicate such a phenomenon [13]. By further decreasing t′ we enter the
FM region, where a larger jump occurs between the scales of a first and a
second nearest neighbor truncation. Beyond that, the inclusion of longer bond
form factors has only a small impact on the results. Taken together we find
a fast convergence of the critical scales—more precisely the influence of form
factors beyond second nearest neighbor is rather low—within the investigated
parameter regime except for values of t′ close to the phase transition between
dSC and FM.

Besides comparing different truncations with each other, a comparison to
findings from other studies is necessary to validate the insertion of a truncated
partition of unity into the flow equations. In Fig. 6 of Ref. [13] and in curve (i) in
the left part of Fig. 3 of Ref. [14] the same model has been studied using exchange
parametrization fRG in the same truncation of the flow equation hierarchy. The
findings from those studies are very similar to our results in both the SDW and
the dSC parameter regime, but in the region with a FM ground state those
scales are closer to our results from first nearest neighbor truncation than to
the higher order findings. Generally, it is not surprising that critical scales are
reduced by increasing interchannel feedback—which is the consequence of taking
more form factors into account—when the influence of the subleading ordering
tendency (dSC) on the dominant one (FM) has destructive character. Hence,
our higher order truncation results can be seen as quantitative corrections to
the critical scales from the two previous investigations within the FM region.

5. Conclusion

We have derived the TUfRG equations on the basis of an exchange parametriza-
tion in Sec. 2. As argued in Sec. 2.5, the loop integration in the TUfRG is
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much easier from a computational viewpoint than in a conventional exchange
parametrization approach. This advantage has been obtained at the cost of
adding a projection task which turns out to be of minor importance for the total
computation time in many cases and can be accelerated by reusing precomputed
data in the other cases. The convenience in numerics originates from a sepa-
ration of fermionic and exchange propagators that at the same time simplifies
the parallelization of the program code. Benefits from a hybrid parallelization
in terms of speedup have been illustrated in Sec. 3. As a consequence of accel-
erating the calculation by using many compute cores, it has been possible to
access a large set of form factors in the TUfRG approach. Most importantly, a
high-performance implementation combined with an efficient parametrization of
the coupling function, as it is done in the TUfRG—originating from its relation
to the exchange parametrization fRG—, should make applications to complex
multiband systems possible.

A convergence check for the case of the t-t′ Hubbard model at van Hove filling
has shown that the results converge fast with the number of form factors except
for parameters close to the phase transition between d-wave superconductivity
and ferromagnetism. In addition, we have seen a good agreement with results
from previous exchange parametrization studies when using a comparable set of
form factors. It has further been possible to take more form factors into account
for producing results of higher accuracy.
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Appendix A. Relation to the SMFRG

In the following we describe the relation of the TUfRG equations to the ones
used in the SMFRG, which was introduced in Ref. [22]. Instead of exchange
propagators, the core objects now are three complementary approximate repre-
sentations of the two-particle interaction V (k1, k2, k3):

V (k1, k2, k3) ≈
∑

m,n

fm

(

k1 − k2

2

)

fn

(

k4 − k3

2

)

V P
m,n (k1 + k2) ,

V (k1, k2, k3) ≈
∑

m,n

fm

(

k1 + k3

2

)

fn

(

k2 + k4

2
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V C
m,n (k1 − k3) ,

V (k1, k2, k3) ≈
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m,n

fm

(

k1 + k4

2

)

fn

(

k2 + k3

2

)

V D
m,n (k3 − k2) .
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The form of these three representations is reminiscent of the exchange parametriza-
tion of the single-channel coupling functions in Eqs. (10)-(14). However, we are
dealing with three different approximations of the same coupling function in the
present case, and it depends on the context which one is used.

Formally, the bond length representations

VP (k1 + k2) = P̂ [V ] (k1 + k2) ,

VC (k1 − k3) = Ĉ [V ] (k1 − k3) ,

VD (k3 − k2) = D̂ [V ] (k3 − k2)

can be projected out from V by applying the projection rules (18)-(20). From
these relations one can directly see that those are the same objects as the ones
calculated in Eqs. (26)-(28) as part of the TUfRG procedure. In contrast to
Refs. [22, 29, 30], the conventions used here render the matrices VP , VC , and
VD hermitian due to the Pauli principle and positivity. Their flow arises from
a projection of all five one-loop diagrams of Fig. 1 to the respective channel:

V̇P (l) = P̂
[

Tpp + T cr
ph + T d

ph

]

(l) ,

V̇C (l) = Ĉ
[

Tpp + T cr
ph + T d

ph

]

(l) ,

V̇D (l) = D̂
[

Tpp + T cr
ph + T d

ph

]

(l) .

This is nothing but the derivatives of Eqs. (26)-(28) with respect to the regu-
larization scale:

V̇P (l) = −Ṗ(l) + P̂
[

Φ̇C
]

(l) + P̂
[

Φ̇D
]

(l) , (A.1)

V̇C (l) = −Ĉ
[

Φ̇SC
]

(l) + Ċ(l) + Ĉ
[

Φ̇D
]

(l) , (A.2)

V̇D (l) = −D̂
[

Φ̇SC
]

(l) + D̂
[

Φ̇C
]

(l) + Ḋ(l) . (A.3)

Scale derivatives of single channel coupling functions ΦSC, ΦC and ΦD can be
expressed by derivatives of exchange propagators as implied by Eqs. (10)-(14).
Using Eqs. (22)-(24) we obtain a closed system of differential equations for VP ,
VC , and VD. While in the TUfRG the exchange propagators are the central
objects that are stored during the whole fRG calculation, in the SMFRG only the
derivatives can be known. Those values have to be calculated in every SMFRG
step, since they are needed temporarily for calculating the right-hand sides of
Eqs. (A.1)-(A.3). In summary, calculating the increment in the SMFRG flow of
the interaction involves the following steps (for a graphical representation, see
Fig. A.9):

1.) Calculate the form factor projected fermionic loops χ̇pp(l) and χ̇ph(l) in
Eq. (25).

2.) Evaluate Ṗ(l), Ċ(l), and Ḋ(l) by performing matrix multiplications in the
form factor basis [see Eqs. (22)-(24)].
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↓

Figure A.9: Graphical representation of the steps in the calculation of the increment for the
interaction in the SMFRG approach. The upper diagram corresponds to steps 1.) and 2.)
and the lower one to the projection in step 3.). The brick-stones in the upper part correspond
to the full interaction projected to the respective channel with B = P , C, or D. Dashed lines
correspond to simple contractions and not to fermionic or bosonic propagators.

3.) Project Ṗ(l), Ċ(l), and Ḋ(l) to other channels and obtain V̇P (l), V̇C(l),
and V̇D(l) according to Eqs. (A.1)-(A.3).

From a computational viewpoint these steps are the same as the ones from
Sec. 2.4, just in a different order of execution. Therefore, the computational
effort is the same for both schemes.

Taken together, the main difference between TUfRG and SMFRG is the
choice of the core objects. Within the TUfRG framework we permanently store
the exchange propagators during the flow, as it is done in exchange parametriza-
tion studies like [13–15]. In contrast, the three different projections of V play
this role within the SMFRG. From Eqs. (26)-(28) we can directly obtain the
projected V s from the exchange propagators in the TUfRG scheme and thus
should be able to recover the SMFRG results. Vice versa, it would be necessary
to invert those equations in order to extract the TUfRG results from the SM-
FRG. This is nothing but a matrix inversion, which is a very expensive task,
since the dimension of that matrix is equal to the total number of components
of the projected couplings or of the exchange propagators, respectively. E.g., in
the case of a truncation at the fifth nearest neighbor and the same momentum
resolution as in Section 4 one would need to invert a matrix with a dimension
of about 8.9× 106.

Let us now compare the applicability of the projected couplings and the
exchange propagators in the context of recovering the full coupling function,
which is needed for self-energy calculations, e.g.. On the side of the TUfRG
there is a unique way of calculating the single-channel coupling functions from
the exchange propagators and from those the full coupling. The three strong
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momentum dependences, one from each channel, directly enter the resulting
object, since it is just a sum of the three channels. On the side of the SMFRG
there are three different possibilities to undo the projection, i.e. we can use VP ,
VC , or VD to get V . The result will strongly depend on the choice we have
used for the calculation, since the projected couplings only contain one of the
three important momentum dependencies while the other two are smoothened
out by the projection process and can not be recovered due to a truncated form
factor basis.

With the last two paragraphs in mind and in view of the fact that the
numerical effort is the same, we see a clear advantage in using the exchange
propagators as central objects instead of the projected couplings.

Appendix B. Applicability of the truncation of form factor unity op-

erators

In the following, an argument for the applicability of the insertion of trun-
cated unity partitions in vertex-correction and box diagrams is given.

For this purpose, let us rewrite the rule (20) for the projection to the direct
particle-hole channel in the following way:

D̂ [F ]m,n (l) =

∫

dk′ fn(k
′) ÊD [F ]m (l, k′)

∣

∣

∣

∣

k′

0
=0

, (B.1)

where the external projections

ÊD [F ]m (l, k′) =

∫

dk fm(k)F

(

k +
l

2
, k′ −

l

2
, k′ +

l

2

)
∣

∣

∣

∣

k0=0

(B.2)

have been defined in a similar way as in Ref. [15]. While the contractions of
the coupling function F with the two form factors fm(k) and fn(k

′) have been
treated on equal footing in Eq. (20), the contraction with the form factor fn(k

′)
resulting from the insertion of a truncated partition of unity is performed after
the external projection ÊD[F ]m(l, k′) in Eq. (B.1). In the following, we will
argue that, for external form factors corresponding to short bond lengths, the
external projections ÊD[F ]m(l, k′) vary slowly in k′. The sum over the inserted
form factors fn(k

′) can therefore be truncated after a certain bond length, since
contributions from longer bonds vanish.

Here, we focus on the feedback of the particle-particle and the crossed
particle-hole channels on the direct particle-hole channel. We therefore con-
sider Eq. (B.2) with

F (k1, k2, k3) =
∑

c,c′

fc

(

k1 − k2

2

)

fc′

(

k4 − k3

2

)

Pc,c′ (k1 + k2)

+
∑

c,c′

fc

(

k1 + k3

2

)

fc′

(

k2 + k4

2

)

Cc,c′ (k1 − k3)

∣

∣

∣

∣

∣

∣

k4=k1+k2−k3

.
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However, this example is generic for the feedback between different interaction
channels. For the external projection, we then have

ÊD [F ]m (l, k′) =

∫

dk fm(k)





∑

c,c′

fc

(

k− k′ + l

2

)

fc′

(

k− k′ − l

2

)

Pc,c′ (k + k′)

+
∑

c,c′

fc

(

k+ k′ + l

2

)

fc′

(

k+ k′ − l

2

)

Cc,c′ (k − k′)





k0=0

.

Apparently, if the exchange propagators P and C are slowly varying functions
of the total and transfer momenta, the dependence of ÊD [F ]m (l, k′) on k′ is
smooth. But also if these exchange propagators are strongly peaked, the strong
dependence on k′ is washed out by the above convolution-like integral. This
can be more clearly seen after a substitution of the integration variable:

ÊD [F ]m (l, k′) =

∫

du fm(u− k′)
∑

c,c′

fc

(

u− 2k′ + l

2

)

fc′
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u− 2k′ − l

2

)

Pc,c′ (u)

∣

∣

∣
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∣
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u0=k′

0

+

∫

du fm(u+ k′)
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)
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u+ 2k′ − l

2

)

Cc,c′ (u)

∣

∣
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∣

∣

∣

u0=−k′

0

.

Let us now consider form factors

fr(q) =
∑

R

fr(R) e−iq·R

corresponding to fixed bond lengths. This means that fr(R) only contributes
for a fixed value of |R|, which is given by r. We then can easily observe that
the external projection ÊD [F ]m (l, k′) varies smoothly with k′. More formally,

in the internal projection D̂[F ]m,n(l) in Eq. (B.1), contributions with values
of n that correspond to a large bond length will be absent. In particular, the
projection integral vanishes once the bond length of fn(k

′) exceeds the sum of
the maximal bond lengths of the form factors labeled with m, c, and c′.

This argument can be straightforwardly carried over to all other inter-channel
feedback contributions in the vertex-correction and box diagrams in the fRG flow
equations. Therefore, a numerically tractable truncation of the unity operators
inserted between internal fermionic and bosonic lines should be applicable.

Appendix C. Useful symmetries

The spin-independent coupling function V (k1, k2, k3) obeys the relation

V (k1, k2, k3) = V (k2, k1, k1 + k2 − k3)
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stemming from the Pauli principle and the positivity of the action corresponding
to the Hermiticity of the Hamiltonian requires

V (k1, k2, k3) = V (k̂1 + k̂2 − k̂3, k̂3, k̂2)
∗ ,

where k̂ = (−k0,k) (see Appendix A of Ref. [35] for a discussion). In the channel
decomposed form this results in

ΦSC
l,q,q′ = ΦSC

l,−q,−q′ = ΦSC
l,q′,q ,

ΦC
l,q,q′ = ΦC

−l,q′,q = ΦC
l,q′,q ,

ΦD
l,q,q′ = ΦD

−l,q′,q = ΦD
−l,q,q′ ,

where the first equality sign in each line corresponds to the Pauli principle and
the second one to positivity. Note that, for the latter, we have already exploited
that all coupling functions are mapped to their complex conjugates under fre-
quency inversion. Using these relations with regard to exchange propagators it
can be shown that the matrices P, C, and D are symmetric (cf. Ref. [13]):

Bm,n(l) = Bn,m(l) , where B ∈ {P,C,D} .

In addition, the constraints

Pm,n(l) = πmπn Pm,n(l) ,

Cm,n(−l) = Cm,n(l) ,

Dm,n(−l) = Dm,n(l)

hold, where πm denotes the parity eigenvalue of the m-th form factor, i.e.,
fm(−k) = πm fm(k). If the form factors are chosen to transform with irreducible
representations of the point group, some matrix elements of P, C, and D vanish
at points of high symmetry due to Schur’s second lemma. [20] Under frequency
inversion, all three exchange propagators behave as

Bm,n(l̂) = Bm,n(l)
∗ , where B ∈ {P,C,D} .

For the aforementioned possibility of calculating the scale independent parts
of the projection operations at the start of the flow and storing them, exploiting
symmetries can reduce the substantial increase in memory usage. Such projec-
tion operations can be expressed as

B̂
[

ΦB′

]

m,n
(l) =

∑

m′,n′

q

AB,B′

m,n,m′,n′(q, l)B
′

m′,n′(q, q0 = 0) ,

where—compared to Eqn. 30—we have replaced the exchange propagator in
position space by its Fourier series. AB,B′

is constant during the flow, and
corresponds to

AP,C
m,n,m′,n′(q, l) =

∑

R1,R2,R3

fm

(

−
R1

2
+

R2

2
−R3

)

fn

(

R1

2
−

R2

2
−R3

)

× fm′ (R1) fn′ (R2) e
iqR3 e−i 1

2
l·(R1+R2)
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in the example case of feedback from the C channel to the P channel. The
objects AB,B′

are all real valued, and the 6 possible combinations of B,B′ are
related in pairs

AP,C = πnA
P,D ,

AC,P = πn′AD,P ,

AD,C = AC,D

so that only three of them have to be computed and stored. Furthermore,
each of these three objects has given symmetries with respect to exchange of
form factor indices or momentum inversion. For the previous example those
symmetries can be written as

AP,C
n,m,m′,n′(q, l) = πmπnA

P,C
m,n,m′,n′(−q, l) ,

AP,C
m,n,n′,m′(q, l) = πmπnA

P,C
m,n,m′,n′(−q, l) ,

AP,C
m,n,m′,n′(−q,−l) = πmπnπm′πn′AP,C

m,n,m′,n′(q, l) .

The last-named equation can further be generalized by using the point group’s
symmetry operations. In a first step for each operation Ŝ a matrix has to be set
up that contains prefactors of the linear combination of form factors necessary

to compose fm

(

Ŝ k
)

, i.e.,

fm

(

Ŝ k
)

=
∑

m̃

CŜ
m,m̃ fm̃ (k) .

As a second step we can relate the elements of AB,B′

to the symmetry trans-
formed ones, e.g.,

AP,C
m,n,m′,n′(Ŝ q, Ŝ l) =

∑

m̃,ñ,m̃′,ñ′

CŜ
m,m̃ CŜ

n,ñ C
Ŝ
m′,m̃′ CŜ

n′,ñ′ A
P,C
m̃,ñ,m̃′,ñ′(q, l) .

The definitions of the form factor projected loops from Eqn. 25 directly
indicate that the matrices χpp and χph are symmetric

χpp
n,m(l) = χpp

m,n(l) ,

χph
n,m(l) = χph

m,n(l) ,

and an inversion of the integration variable shows that in the particle-particle
case only elements corresponding to form factors with the same parity may be
nonzero

χpp
m,n(l) = πm πn χ

pp
m,n(l) .

The usage of point group symmetries yields

χpp/ph
m,n

(

Ŝ l, l0

)

=
∑

m̃,ñ

CŜ
m,m̃CŜ

n,ñ χ
pp/ph
m̃,ñ (l, l0) .
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