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Abstract

FOXTAIL is a new hybrid magnetohydrodynamic–kinetic code used to describe interactions between energetic particles and Alfvén
eigenmodes in tokamaks with realistic geometries. The code simulates the nonlinear dynamics of the amplitudes of individual
eigenmodes and of a set of discrete markers in five-dimensional phase space representing the energetic particle distribution. Action–
angle coordinates of the equilibrium system are used for efficient tracing of energetic particles, and the particle acceleration by the
wave fields of the eigenmodes is Fourier decomposed in the same angles. The eigenmodes are described using temporally constant
eigenfunctions with dynamic complex amplitudes. Possible applications of the code are presented, e.g., making a quantitative
validity evaluation of the one-dimensional bump-on-tail approximation of the system. Expected effects of the fulfillment of the
Chirikov criterion in two-mode scenarios have also been verified.
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1. Introduction

Toroidal Alfvén eigenmodes (TAEs) are discrete frequency
MHD waves that exist in the toroidicity induced gap of the
Alfvén continuum spectra in toroidal magnetized plasmas.
TAEs are typically excited by an ensemble of energetic ions
(e.g. coming from auxiliary heating or from fusion reactions)
with an inverted energy distribution along the characteristic
curves of wave–particle interaction in momentum space. If
these waves are excited to large amplitudes, they might eject a
large fraction of energetic ions from the plasma before the ions
transfer their energy to the bulk plasma, causing a significant
reduction of heating efficiency of fast ions [1, 2]. It is there-
fore of great importance to understand the significance of TAEs
in future devices, such as ITER. Accurate modeling is required
that can resolve the nonlinear evolution of the wave–particle
interactions.

Many hybrid MHD–kinetic Monte Carlo codes developed for
this purpose are orbit following, requiring temporal resolutions
well below bounce time scales of the resonant energetic par-
ticles. These are many orders of magnitude shorter than the
time scales for the relevant dynamics of long-lived eigenmodes
in large tokamaks, such as ITER. Relatively simple equations
of motion that can resolve the relevant time scales for wave–
particle interaction more efficiently can be acquired by using
action–angle coordinates [3] of the equilibrium system for the
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phase space of energetic particles. Particles in the unperturbed
equilibrium system then follow straight lines in configuration
space at constant velocities, and their canonical momenta are
constants of motion. This coordinate system has the advantage
that particles exactly remain on their guiding center orbits in the
unperturbed system, independently of the time step length.

In order to get satisfactory convergence of the Monte
Carlo codes describing nonlinear wave–particle interactions, δ f
methods are often used. Although the method is computation-
ally advantageous, it makes the code more difficult to use in
conjunction with existing Monte Carlo codes that use full- f
methods or that use a different background distribution.

FOXTAIL (“FOurier series eXpansion of fasT particle–
Alfvén eigenmode Interaction”-modeL) is a new hybrid
magnetohydrodynamic–kinetic model that both uses action–
angle coordinates for particle phase space and a full- f Monte
Carlo method to represent the resonant energetic particle dis-
tribution. It is based on a model by Berk et al. [4], which is
derived from a Lagrangian formulation of the wave–particle in-
teraction. The use of action–angle variables can give scenarios
where the shortest time scale needed to be resolved in FOX-
TAIL is on the order of ω−1

p , where ωp is the precession fre-
quency of the energetic particles interacting strongly with the
eigenmodes.

A simplification used in FOXTAIL is that the spatial struc-
tures of the eigenmode wave fields are taken to be constant in
time. This limitation means that FOXTAIL is unable to model,
e.g., energetic particle modes. There also exist scenarios where
the time evolution of TAE eigenfunctions is of importance (see
e.g. Ref. [5]). Such scenarios can be modeled by other existing
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codes, not having the limitation of static eigenfunctions, such
as the hybrid MHD–gyrokinetic code, HMGC [6–8], and the
gyrokinetic toroidal code, GTC [9–11].

The structure of this paper is the following: Section 2
presents the mathematical, the physical and the technical back-
ground of FOXTAIL, including derivations of the equations
used in the different parts of the code and the overall struc-
ture of the code. Section 3 describes how some of the result-
ing equations are numerically implemented. Section 4 presents
some of the possible applications of FOXTAIL, including quan-
titative comparisons with the corresponding one-dimensional
bump-on-tail approximation of the system and numerical stud-
ies of the Chirikov criterion in scenarios with two eigenmodes.
Section 5 summarizes the paper.

2. Model description

2.1. Physics overview
The equations used in FOXTAIL are based on a Lagrangian

formulation of the wave–particle system [4]. Each simulation
is formulated as an initial value problem, starting from an ener-
getic particle distribution in a background equilibrium plasma
and a set of eigenmodes with a static spatial structure and a dy-
namical amplitude and phase. Eigenmodes are treated as weak
perturbations of the equilibrium, excluding direct mode–mode
interaction. The nonlinear coupling of eigenmodes is taken into
account only by the energy and momentum exchange between
the modes via the energetic particles.

The physical process of the considered wave–particle inter-
actions is essentially absorption and stimulated emission, and
the interactions are energy and momentum conserving. The to-
tal energy of the eigenmode is proportional to the amplitude
squared. Energy conservation is ensured by the equation∑

particles

Ẇwave +
∑

eigenmodes

C Re(AȦ∗) = 0, (1)

where Ẇwave is the time derivative of the kinetic particle energy,
as accelerated by the wave field, A is the complex amplitude of
the eigenmode, and C is the ratio between the eigenmode en-
ergy and |A|2/2. A Lagrangian formulation of the wave–particle
interaction is presented in section 2.7, which is shown to be
consistent with eq. (1).

The acceleration of a particle by an Alfvén eigenmode con-
vects the momentum of the particles along curves in the phase
space (W, Pφ, µ) according to

dW
ω

=
dPφ

n
, dµ = 0, (2)

where W is the particle kinetic energy, Pφ is the toroidal canon-
ical momentum, µ is the magnetic moment, n is the toroidal
mode number of the eigenmode and ω is the eigenmode fre-
quency. The magnetic moment is unperturbed, since the Alfvén
eigenmodes are low frequency waves (ω � ωc). The curves in
W, Pφ-space specified by eq. (2) are referred to as the charac-
teristic curves of wave–particle interaction. Within certain pa-
rameter limits, FOXTAIL is equivalent with a one-dimensional
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Figure 1: Flowchart of the FOXTAIL code. As input, FOX takes the mass
and charge of the energetic particle species and a grid in the space spanned by
the adiabatic invariants of the equilibrium motion. On this grid, the orbits are
solved using the input equilibrium configuration. External routines are used to
calculate spatial wave field structures and frequencies of a chosen set of Alfvén
eigenmodes. Eigenmode data and orbit data is sent to a routine that integrates
all guiding center orbits along the wave fields of the eigenmodes in order to
obtain a set of interaction coefficients characterizing the particle response with
respect to the wave. A set of particle, eigenmode and wave–particle interaction
data is collected and sent to the TAIL code, along with an initial distribution of
markers and initial complex amplitudes of the eigenmodes. TAIL then solves
the nonlinear time evolution of the markers and the considered eigenmodes.

bump-on-tail model describing the wave–particle interaction
(cf. Ref. [12]). Different characteristic curves are indistinguish-
able in this limit, and the momentum of the 1D model then
corresponds to a variable indexing the location of the parti-
cle along the characteristic curves. From the theory of the 1D
bump-on-tail model, it is apparent that an inverted energy distri-
bution along the characteristic curves at the wave–particle reso-
nance can excite eigenmodes via a process analogous to Landau
damping.

2.2. Overview of the FOXTAIL code

The FOXTAIL code is essentially split into two parts, “FOX”
and “TAIL”, as illustrated in Fig. 1. TAIL is the numerical dy-
namics solver of the eigenmodes and the energetic particles,
solving the wave–particle system as an initial value problem.
FOX can be viewed as a preprocessor of TAIL, calculating or-
bital, eigenmode and interaction related data for a given set of
eigenmodes and energetic particle species in a defined equi-
librium configuration. The distribution of energetic particles
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is represented using a finite set of markers with predefined
weights.

2.3. Action–angle coordinates

The phase space of markers in TAIL is described using
action–angle coordinates of the equilibrium system [3]. The
equations of motion of the system become particularly simple
in this choice of coordinates, which contributes to the compu-
tational efficiency of the solver. In the absence of wave field
perturbations, the “action” coordinates (i.e. the momentum co-
ordinates of the canonical action–angle coordinate system) are
constants of motion, whereas the “angle” coordinates (configu-
ration space coordinates) evolve with constant velocities. The
presence of eigenmodes perturbs this simple dynamics, and the
adiabatic invariants are convected according to eq. (2).

The angle coordinates of the system are given by

α̃ = α +

∫ θ

0
dθ′

ω̄c(P) − ωc(P, θ′)
θ̇(P, θ′)

,

θ̃ =

∫ θ

0
dθ′

ωB(P)
θ̇(P, θ′)

,

φ̃ = φ +

∫ θ

0
dθ′

ωp(P) − φ̇(P, θ′)
θ̇(P, θ′)

,

(3)

where α is the gyro-angle, θ and φ are the poloidal and toroidal
angles, respectively, P ≡ (Pα, Pθ, Pφ) are the action coordi-
nates, canonical to the angles (α̃, θ̃, φ̃). Furthermore, ωc (ω̄c)
is the (time averaged) gyro-frequency and ωB and ωp are the
bounce and precession frequencies, respectively. The integrals
of eq. (3) are evaluated on the poloidal coordinates along the
guiding center orbits.

FOXTAIL uses the adiabatic invariants J ≡ (µ,Λ, Pφ) as
momentum coordinates (Λ = µB0/W is the normalized mag-
netic moment, where B0 is the on-axis magnetic field strength).
These momentum coordinates can be expressed as functions of
P. The angle coordinates (α̃, θ̃, φ̃) are referred to as the trans-
formed gyro-angle, poloidal angle and toroidal angle, respec-
tively. In the equilibrium system, where the momentum coordi-
nates J are constant, the transformed angles evolve at a constant
velocity (ω̄c, ωB, ωp). The dynamics in the FOXTAIL model is
averaged over gyration time scales, and consequently α̃ is an
ignorable coordinate of the system.

The transformed poloidal angle, θ̃, can be viewed as an index
of the location of the particle in the guiding center orbit, where
θ̃ : 0→ 2π is a complete period of the guiding center orbit in the
poloidal plane (θ̃ = 0 is defined as the point where the outer leg
of the orbit intersects with the equatorial plane). In section 2.5,
it is shown that a Fourier expansion of the instant acceleration
of the particle in the wave field is a convenient representation
of the wave–particle interactions.

Complications arise for the θ̃ coordinate close to the bound-
ary ωB = 0, where the particle asymptotically approaches one
of the turning points. In this limit, all points along the orbit
besides the turning points are represented by infinitely narrow
intervals in θ̃, and the representation of the wave–particle in-
teraction using Fourier series expansions in θ̃-space becomes

invalid. These complications can potentially be resolved either
by ad hoc boundary conditions or by more sophisticated co-
ordinate transformations close to this boundary. However, all
of the numerical studies presented in this paper consider sce-
narios where the simulated energetic particle distributions are
sufficiently far from the boundary.

2.4. Orbit solver

FOX contains subroutines that solves the 3D motion of par-
ticles in a given equilibrium field configuration on a grid in J-
space. The equilibrium configuration and the particle orbits are
described in ψ, θ, φ-space, where ψ is the poloidal magnetic flux
per radian. For each orbit on the J-grid, the time evolution of
ψ, θ and φs is calculated, where φs ≡ φ − φ̃ + ωpθ̃/ωB is the
shifted toroidal coordinate (φs is φ shifted such that φs = 0 co-
incides with θ̃ = 0). The equilibrium configuration is taken
to be axisymmetric. Assuming MHD force balance and nested
magnetic flux surfaces, the equilibrium magnetic field can be
expressed as

B = F(ψ)∇φ + ∇φ × ∇ψ. (4)

The guiding center motion consists of a parallel motion and
a drift motion, where the drift is given by the combined E × B,
∇B and curvature drifts according to

vd =
E × B

B2 +
µ(2B0 − ΛB)

ZeΛB3 B × ∇B. (5)

By combining W = mv2
‖
/2+µB with Pφ = mv‖F/B+mvd,φ−Zeψ

and eliminating v‖, it can be shown that the coordinates of the
guiding center orbits in the poloidal plane follow the equation

f (ψ, θ, J) = 0, (6)

where

f (ψ, θ, J) ≡ 1 −
ΛB(ψ, θ)

B0
−

ΛB2(ψ, θ)
2mµB0F2(ψ)

× [Pφ + Zeψ − mvd,φ(ψ, θ, µ,Λ)]2, (7)

vd,φ(ψ, θ, µ,Λ) =
Eψ(ψ, θ)
B2(ψ, θ)

−
µ[2B0 − ΛB(ψ, θ)]

ZeΛB3(ψ, θ)
× [∇B(ψ, θ)]ψ (8)

is the covariant toroidal component of the drift velocity, Eψ and
[∇B]ψ are the contravariant ψ-components of E and ∇B, respec-
tively, and m is the particle mass.

Once the projections of the orbits on the poloidal plane are
solved on the chosen J-grid using eq. (6), the corresponding
time coordinates are calculated according to

t(ψ) =

∫ ψ

ψ0

dψ
ψ̇
, (9)

where

ψ̇ =
JFEθ − gθθEφ

J2B2 −
µF(2B0 − ΛB)

ZeΛJB3

∂B
∂θ
, (10)
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J ≡
(
∂r
∂ψ
×
∂r
∂θ

)
·
∂r
∂φ
, (11)

and ψ(t = 0) = ψ0 is defined as the point where the outer leg of
the guiding center orbit intersects the equatorial plane (θ̃ = 0).
Similarly, the φs coordinates are calculated from the toroidal
velocity according to

φs(t) =

∫ t

0
dt′ φ̇(J, t′), (12)

where

φ̇(J, t) =
Pφ + Zeψ(J, t)

mR2(J, t)
. (13)

When calculating the wave–particle interaction coefficients, the
poloidal velocity is required at each point of the orbit (see
eq. (22)). It is given by

θ̇ =
Pφ + Zeψ − mvd,φ

mJF
−

JFEψ + gψθEφ

J2B2

+
µF(2B0 − ΛB)

ZeΛJB3

∂B
∂ψ

. (14)

2.5. Wave field description
The present version of FOXTAIL describes the dynamics of

low frequency, shear eigenmodes, such as the toroidal Alfvén
eigenmodes (TAEs), but the model can be extended to describe
eigenmodes with, e.g., compressible components as well.

Neglecting plasma resistivity, the general electric wave field
can be represented by the two scalar potentials Φ and Ψ accord-
ing to

δE = −∇⊥Φ +
B × ∇Ψ

B
, (15)

where the first term is associated with magnetic shear, and the
second term is associated with magnetic compression. When
parallel gradients in the plasma are negligible in comparison to
perpendicular gradients, the excitation of the two scalar poten-
tials Φ and Ψ is almost decoupled, and it is sufficient to describe
the shear Alfvén wave using the first term [4].

In an axisymmetric toroidal plasma, the scalar potential of
each eigenmode (indexed by i) can be written on the form

Φi(r, t) = Re
∑

m

Ci(t)eiχi(t)Φi,m(ψ)

× ei(niφ−mθ−ωit), (16)

where Ci and χi are the slowly varying amplitude and phase of
the eigenmode, respectively (Ċi/Ci � ωi, χ̇i � ωi), ni is the
toroidal mode number and ωi is the eigenmode frequency. The
electric wave field therefore given by

δE = Re
∑

i

Cieiχi Ẽiei(niφ−ωit), (17)

where

Ẽi =
∑

m

e−imθ
( [

iΦi,mgψθGi,m −
dΦi,m

dψ

]
∇ψ + iΦi,m

×
[
(gθθGi,m + m)∇θ + (JFGi,m − ni)∇φ

])
, (18)

Gi,m ≡ (niJF − mR2)/(J2R2B2).

2.6. Fourier series expansion of fast particle–Alfvén eigen-
mode interaction

The acceleration of the energetic particle in the wave field is
described by the equation

Ẇ = Zev · δE ≈ Ze〈v · δE〉g, (19)

where 〈·〉g averages over the gyro-motion. Initial versions of
FOXTAIL only consider the lowest order averaging over the
gyro-motion, but gyro-kinetic corrections to the averaging may
be included in later versions. The averaged v ·δE can be written
as

〈v · δE〉g = 〈v〉g · 〈δE〉g +
µ

Ze

∂〈δB‖〉S g

∂t
, (20)

where 〈δB‖〉S g averages the parallel magnetic wave field over
the surface S g enclosed by the gyro-ring (generated by the span
of the gyro-angle. For shear waves, the δB‖ term can be ne-
glected, and we are left with

Ẇ = Ze〈v〉g · 〈δE〉g = Re
∑

i

Cieiχi Viei(niφ−ωit), (21)

where
Vi(J, t) = Ze(ψ̇Ẽψ + θ̇Ẽθ + φ̇Ẽφ), (22)

ψ̇(J, t), θ̇(J, t) and φ̇(J, t) are the guiding center veloci-
ties, given by eqs. (10), (14) and (13), respectively, and
Ẽψ(ψ(t), θ(t)), Ẽθ(ψ(t), θ(t)) and Ẽφ(ψ(t), θ(t)) are given by
eq. (18).

All guiding center coordinates (ψ, θ, φs) and their velocities
can be written as functions of J and θ̃. It is then possible to
write Ẇ on a very compact form using action–angle coordi-
nates:

Ẇ = Re
∑
i,`

Cieiχi Vi,`ei(`θ̃+niφ̃−ωit), (23)

where

Vi,`(J) =
Ze
2π

∫ 2π

0
dθ̃ Vi(θ̃, J)

× exp
[
i
(
ni

[
φs(θ̃, J) −

ωp(J)
ωB(J)

θ̃

]
− `θ̃

)]
(24)

The coefficients Vi,` are the Fourier series expansion of the
wave–particle interaction that named the FOX code. It can be
seen in eq. (23) that a wave–particle resonance is characterized
by the condition `ωB + niωp ≈ ωi. The model is very efficient
in the sense that one can select the relevant modes i and coeffi-
cients ` that are close to resonant with an ensemble of energetic
particles and neglect all other modes and non-resonant Fourier
coefficients. If the relevant coefficients only have ` = 0, θ̃ be-
comes an ignorable coordinate of the system, and the shortest
time scales that need to be resolved in simulations using TAIL
are the precession time scales, ω−1

p .
As was mentioned in section 2.3, complications arise for the

choice of action–angle coordinates when describing the wave–
particle interaction in regions where ωB ≈ 0. This is explicitly
seen in eq. (24), where ωp/ωB → ∞, and the integrand oscil-
lates infinitely fast in θ̃. Vi(θ̃, J) is bounded, and constant for
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all θ̃ in this limit except for the infinitely narrow intervals that
do not represent the turning points. For this reason, it can be
understood that Vi,` tends to zero towards the ωB = 0 bound-
ary surface. Note that the sum of eq. (23) over all integers
` ∈ Z should remain finite, given that particles can be accel-
erated across these surfaces by wave fields.

2.7. Lagrangian formulation of wave–particle interaction

A model for describing the dynamics of the momentum vari-
ables (µ,Λ, Pφ) and the amplitudes and phases of the eigen-
modes remains to be found. Such a model can be derived from
a Lagrangian formulation of the wave–particle system. We con-
sider additions to the equilibrium Lagrangian by power series of
the eigenmode amplitude Ci.

Expressed in action–angle variables, the zeroth order La-
grangian reads [13]

L0 =
∑

k

[
Pα,k ˙̃αk + Pθ,k

˙̃θk + Pφ,k
˙̃φk −H0(Pk)

]
, (25)

where k is the particle index, andH0, satisfying

∂H0

∂P
= (ω̄c, ωB, ωp), (26)

is the equilibrium Hamiltonian. A first order Lagrangian con-
sistent with eq. (23) is

L1 = Im
∑
i,k,`

Ci

ωi
eiχi Vi,`(Jk)ei(`θ̃k+niφ̃k−ωit). (27)

In a low-β plasma, the second order Lagrangian for shear
Alfvén eigenmodes can be expressed on the form [4]

L2 = −
∑

i

χ̇iC2
i

2µ0ωi

∫
dV
|Ẽi(r)|2

v2
A(r)

(28)

when neglecting rapidly oscillating terms (on time scales ω−1
i ),

where µ0 is the vacuum permeability.
Note that the system is invariant under the transformation

Cieiχi → κiCieiχi , Φi,m → Φi,m/κi for any constant κi. A nor-
malization can be imposed by the condition∫

dV
|Ẽi(r)|2

µ0v2
A(r)

= 1 (29)

for each mode i. Then the second order Lagrangian reduces to

L2 = −
∑

i

χ̇iC2
i

2ωi
. (30)

Assuming that the amplitudes Ci are small enough, such that
|L1| � |H0|, the corresponding Hamiltonian for the wave–
particle system isH = H0−L1, with the canonically conjugate
pairs (α̃k ; Pα,k), (θ̃k ; Pθ,k), (φ̃k ; Pφ,k) and (−χi ; C2

i /2ωi). From
this, one can derive all the remaining equations of motion of the
wave–particle system self-consistently.

Defining the complex amplitude Ai ≡ Cieiχi and using that
µ = ZePα/m, the equations of motion of the wave–particle sys-
tem is

µ̇k = 0, ˙̃θk = ωB(Jk),

Λ̇k = −
Λ2

k

µkB0
Re

∑
i

AiUi,k,
˙̃φk = ωp(Jk),

Ṗφ,k = Re
∑

i

ni

ωi
AiUi,k, Ȧi = −

∑
k

U∗i,k,

(31)

where
Ui,k ≡

∑
`

Vi,`(Jk)ei(`θ̃k+niφ̃k−ωit). (32)

2.8. Additional operators

The effects of particle collisions are not covered by the the-
ory presented in the preceding sections. These effects can be
added explicitly to the system, e.g. by using a diffusion opera-
tor in momentum space [14] combined with a momentum drag
[15] derived from the Fokker–Planck operator, which act di-
rectly on the energetic particle distribution. Adding diffusion to
the system transforms the system of ordinary differential equa-
tions in eq. (31) to a system of stochastic differential equations.
The general drag–diffusion operator can be written on Itō form
according to 

dµc = aµdt + bµ · dWt,

dΛc = aΛdt + bΛ · dWt,

dPφ,c = aPφdt + bPφ · dWt,

(33)

where aJ is associated with drag, bJ is associated with diffusion
and the components of Wt are independent Wiener processes in
time. Both aJ and bJ are functions of J and θ̃ in general, but
orbit averaged (i.e. θ̃ averaged) versions of the operators may
be used for simplicity (see e.g. Ref. [16]).

There are other processes external to the energetic particle–
Alfvén eigenmode system which may be included. Depending
on the source of the energetic particle distribution (e.g. neu-
tral beam injection, cyclotron resonance heating or nuclear fu-
sion), operators can be added that continuously supply parti-
cles and/or energy to the system. Particle sources are typically
modeled by dynamical weights and statistical redistribution of
markers. Losses from Bremsstrahlung and cyclotron radiation
can be modeled by additions to the aJ terms in eq. (33).

An additional −γd,iAi term can be added to the amplitude
equation (Ȧi in eq. (31)) in order to model various damping
mechanisms on the eigenmode amplitudes, where γd,i is the
damping rate of the i:th mode. This damping can, e.g., come
from Landau damping in the interaction with thermal particles
or damping due to mode conversion. The −γd,iAi term of the
amplitude equation is here referred to as explicit wave damp-
ing, unlike the Landau damping coming from the interaction
with the energetic particle distribution, which arises implicitly
from the model equations.
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2.9. Lowest order corrections to the angle perturbation
When going from the Lagrangians of eqs. (25), (27) and (30)

to eq. (31), it was assumed that |L1| � |H0|, which allowed
one to neglect corrections of the canonical momenta coming
from the implicit dependence ofL1 with respect to ˙̃θ and ˙̃φ. For
a small enough L1, the final equations for ˙̃θ and ˙̃φ are given
only by the derivatives of the equilibrium HamiltonianH0 with
respect to Pθ and Pφ, respectively. However, the above assump-
tions might not be valid for large amplitude eigenmodes and
for processes affecting the energetic particles or the eigenmodes
that are not direct wave–particle interaction, and one may have
to consider the lowest order correction to ˙̃θ and ˙̃φ due to mo-
mentum perturbation. The correction can be understood from
the fact that θ̃ maps differently to locations on the guiding cen-
ter orbit for different J. Without the correction, one pushes the
particle forwards or backwards along the orbit due to different
mapping of θ̃.

Assuming a minimal perturbation of the guiding center posi-
tion in R,Z-space while perturbing J by the amount dJ, it can
be shown that θ̃ should be corrected by the amount ∂θ̃/∂J · dJ,
where

∂θ̃

∂J
= −

ωB

Ṙ2 + Ż2

(
Ṙ
∂R
∂J

+ Ż
∂Z
∂J

)
, (34)

R is the distance from the symmetry axis and Z is the vertical
guiding center position. Using that φ̃ = φ− φs +ωpθ̃/ωB, it can
be shown that

∂φ̃

∂J
=
φ̇ − ωp

Ṙ2 + Ż2

(
Ṙ
∂R
∂J

+ Ż
∂Z
∂J

)
.

+
∂

∂J

(
ωp

ωB
θ̃ − φs

)
. (35)

All the derivatives with respect to J on the right hand sides of
eqs. (34) and (35) are evaluated while keeping θ̃ constant.

When the J perturbations of any process is stochastic (bJ of
eq. (33) is nonzero), the angle coordinates become stochastic as
well when including the ∂θ̃/∂J and ∂φ̃/∂J corrections. This is
typically how phase decorrelation is introduced to the system.
Such an operator was analyzed for the one-dimensional bump-
on-tail model in Ref. [17].

2.10. Summary of the TAIL model equations
To summarize, the model equations used by TAIL are

dθ̃k = ωB(Jk)dt +
∂θ̃(θ̃k, Jk)

∂J
· dJk,

dφ̃k = ωp(Jk)dt +
∂φ̃(θ̃k, Jk)

∂J
· dJk,

dµk = dµc(Jk),

dΛk = −
Λ2

k

µkB0
Re

∑
i

AiUi,kdt + dΛc(Jk),

Ṗφ,k = Re
∑

i

ni

ωi
AiUi,k + dPφ,c(Jk),

Ȧi = −
∑

k

wkU∗i,k − γd,iAi,

(36)

where k is now the marker index with weight wk, and
(dµc, dΛc, dPφ,c) represents additional differential operators act-
ing on the momentum space of markers. The total wave–
particle energy of the system can be defined as

Wtot ≡
∑

k

wkWk +
∑

i

|Ai|
2

2

=
∑

k

wk
µkB0

Λk
+

∑
i

|Ai|
2

2
. (37)

In the absence of explicit wave damping and particle sources
and sinks, it can easily be shown that

Ẇtot = −
∑

k

wkµkB0

Λ2
k

Λ̇k + Re
∑

i

AiȦ∗i = 0, (38)

which is consistent with the condition for energy conservation
in eq. (1).

3. Code implementation

As input, FOX takes a file that contains all information char-
acterizing the equilibrium configuration on a format compat-
ible with Integrated Tokamak Modelling standards [18]. All
scalar fields, such as B, J and F, are specified on a grid in ψ, θ-
space. The user defines an equidistant grid in J-space, where
all guiding center orbits are to be solved in the given equilib-
rium. Equation (6) is then solved for each J on the grid by
bilinear interpolation of f in ψ, θ-space. An example of such
a solution is shown in Fig. 2. The solution method is optimal
for wide orbits, whereas thinner orbits require a large enough ψ
resolution of the equilibrium.

Once the guiding center orbit points are found in the poloidal
plane, the time dependence of the orbit is calculated using
eq. (9). Numerically, the integration is performed by assuming
ψ̈ to be constant between adjacent points of the guiding center
orbit. This assumption generates the approximation

t j =

∫ ψ j

ψ0

dψ
ψ̇
≈ 2

j∑
k=1

ψk − ψk−1

ψ̇k + ψ̇k−1
, (39)

where (ψ j, θ j) is the j:th ψ, θ-point along the orbit and ψ̇ j is
ψ̇ evaluated at (ψ j, θ j). Equation (39) becomes singular at the
points where ψ̇ j = −ψ̇ j−1. Close to such a singularity, or when
the ψ, θ-grid is coarse, large or even non-monotonous time coor-
dinates may result. When these events are identified,1 FOX suc-
cessively eliminates points along the guiding center orbit until
all time steps are small and monotonous. The φs coordinates of
the orbit are then solved simply by using the trapezoidal method
on eq. (12).

The eigenfunctions of the wave field, Φi,m(ψ) and the cor-
responding mode frequencies ω are solved by using the ana-
lytical approximations presented in Ref. [19]. Future versions

1“Large” time steps are identified by FOX using the condition |ψ̇ j | >
C|ψ j+1 − ψ j |/|t j+1 − t j |, where the constant C = 4.
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Figure 2: Guiding center orbit in the poloidal plane solved by FOX in an ITER
equilibrium, using a deuterium ion with µ = 4 MeV/T, Λ = 0.85 and Pφ =

5 eVs (1 eV = 1.6022 × 10−19 J).

of FOXTAIL intend to use the MHD eigenmode analyzer code
MISHKA [20–23] to solve the TAEs numerically. Besides ideal
MHD effects, MISHKA also considers effects from finite ion
Larmor radii, ion and electron drift, neoclassical ion viscosity
and bootstrap current, indirect energetic ion effects and the col-
lisionless skin effect. The interaction coefficients Vi,` are calcu-
lated from eq. (24) on each point on the J-grid also by using
the trapezoidal method.

The user specifies which mode–Fourier coefficient pairs
to be calculated by FOX. All bounce frequencies, preces-
sion frequencies, interaction coefficients, mode frequencies and
toroidal mode numbers are then collected in a single output file.
A separate output file is generated that contains all initial con-
ditions used in a specific TAIL simulation, which contains the
initial energetic particle distribution, flags on the mode–Fourier
coefficient pairs to be active in the simulation, initial mode am-
plitudes, etc.

In the absence of collisions, the TAIL model equations of
eq. (31) defines a system of ordinary differential equation,
which is solved numerically using the standard 4th order Runge-
Kutta method. When momentum diffusion is present, the model
equations instead become a system of stochastic differential
equations, which can be modeled numerically, e.g. by using an
Itō–Taylor numerical scheme [24].

4. Numerical studies

4.1. Comparison with the 1D bump-on-tail model

One of the possible applications of FOXTAIL is to determine
whether a one-dimensional bump-on-tail approximation of the

system is sufficient to capture the essential wave–particle dy-
namics, such as growth rate and saturation amplitude. A higher
computational efficiency typically follows from the lower di-
mensionality of the approximation. However, the 1D bump-
on-tail model is only valid within certain parameter regimes.
Section 4.1 presents a quantitative numerical study of these
regimes.

4.1.1. Theoretical comparison
A simple bump-on-tail model, neglecting collisions, explicit

wave damping and particle sources and sinks, can be written on
the form [17]

dξk

dτ
= uk,

duk

dτ
= Re(Ãeiξk ),

dÃ
dτ

= −
∑

k

e−iξk , (40)

where τ is the time coordinate, ξ is the particle phase, u is the
particle momentum and Ã is the complex eigenmode amplitude.

Now, consider the FOXTAIL model, only including a single
mode i and a single Fourier coefficient `. We define the particle
phase as

ξk ≡ `θ̃k + niφ̃k − ωit, (41)

and the relative wave–particle frequency as

Ω(Jk) ≡ ξ̇k = `ωB(Jk) + niωp(Jk) − ωi. (42)

Next, we define a new momentum coordinate system K ≡

(µ, S ,W), where both µ and

S ≡ W −
ωi

ni
Pφ (43)

are constants of motion as particles move along the wave–
particle characteristic curves of mode i.

Assuming that the energetic particle distribution is located in
a neighborhood around the wave–particle resonance Kres (such
that Ω(Kres) = 0) where Ω′ = ∂Ω/∂W and the interaction coef-
ficient Vi,` is constant in K, the coordinate substitution

τ ≡ t/t̃, Ã ≡ t̃2Ω′(Kres)Vi,`(Kres)Ai,

uk ≡ t̃Ω(Kk), t̃ ≡
(
Ω′|Vi,` |

2
)−1/3

Kres
,

(44)

transforms the FOXTAIL model exactly to the 1D bump-on-tail
model of eq. (40). Note that the substitutions of eq. (44) can
be made for any FOXTAIL scenario, as long as one chooses
a relevant eigenmode–Fourier coefficient pair and a resonant
point Kres.

According to the theory of the 1D bump-on-tail model, the
linear growth rate of the mode (|Ã(τ)| ≈ Ã0eγLτ) is [17]

γL =
π

2
dF̃0

du

∣∣∣∣∣∣
u=0

, (45)

where F̃0 is the initial distribution function in u. The growth
rate in time t can be approximated by

γL =
π

2
|Vi,`(Kres)|2

Ω′(Kres)
dF0

dW

∣∣∣∣∣
Wres

, (46)
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where F0 is the W distribution of energetic particles along the
characteristic curves of wave–particle interaction (F0(W) =∫

dµ dS f0(K)). In the 1D bump-on-tail model, particles deeply
trapped by the wave field oscillate in ξ, u-space around the res-
onance with the frequency2

ωb ≈

√
|Ã|
t̃

=

√∣∣∣Ω′(Kres)Vi,`(Kres)Ai

∣∣∣. (47)

By comparing the numerical growth rates and other system
properties of the 1D bump-on-tail model and FOXTAIL, one
can make estimations of the effects of having non-constant
Ω′ and interaction coefficients, and of having multiple modes
and/or Fourier coefficients.

4.1.2. Simulation parameters
In this study, we consider an ITER equilibrium configura-

tion with an energetic particle distribution consisting of 3He2+

ions. For simplicity, we neglect collisions, explicit wave damp-
ing and particle sources and sinks. In such scenarios, the ampli-
tudes of the modes are expected to grow exponentially until sat-
uration at an amplitude proportional to the growth rate squared
[25], assuming that the modes interact more or less indepen-
dently with the energetic particle distribution. Since the mag-
netic moment is not a dynamical variable in this system, the
dimensionality of the problem can be reduced by considering
an energetic particle distribution on a µ = const. surface. An
ad hoc energetic particle distribution functions is constructed,
with µ = 0.5 MeV/T (1 eV = 1.6022 × 10−19 J). The distribu-
tion in W and S are chosen to be Gaussians localized near the
two resonances defined by (ni, `) = (5, 1) and (ni, `) = (6, 1).

The chosen J-grid to calculate the guiding center orbits is
in the region of trapped particles (category V- and VII-orbits
in Fig. 3.a) on the µ = 0.5 MeV/T surface. The corresponding
bounce and precession frequencies, presented in Figs. 3.b and
3.c, respectively, are found from the time dependence of the
guiding center orbits, which are solved using eqs. (9) and (12).

Two TAEs are chosen for this study: the first mode with a
toroidal mode number n = 5, and the second one with n = 6.
The energetic particle distribution is placed close to the reso-
nance (i, `) = (1, 1), i.e., the surface defined by ωB + 5ωp = ω1,
where ω1 is the frequency of the first TAE. Figure 4 shows
the calculated interaction coefficients Vi,`(J) for (i, `) = (1, 1),
Fig. 4.a, and (i, `) = (2, 1), Fig. 4.b. The frequencies of the two
modes are 38.2 kHz and 40.2 kHz, respectively. Since the pre-
cession frequency is small compared to the bounce frequency
at the (1, 1) resonance, the (1, 1) and the (2, 1) resonances are
almost the same in Λ, Pφ-space.

A reference point is chosen on the (1, 1) resonance, as shown
in Fig. 5.a. Around this point, the bounce and precession fre-
quencies are approximated to first order in W, Pφ-space, and
V1,1 is approximated to zeroth order, when transforming from
the FOXTAIL to the 1D bump-on-tail coordinate system. Two
different initial distribution functions are used in these studies:

2The frequency of eq. (47) is in real time, t. For the frequency in the nor-
malized time, τ, the expression should be multiplied by t̃.

Figure 3: The orbit categories, the bounce and the precession frequencies of
trapped 3He2+ ions on a Λ, Pφ-grid with µ = 0.5 MeV/T. Category 0 orbits
cross the last flux surface. For other categories, the convention of Ref. [26] is
used.

one localized around the reference point and one that is more
spread along the resonance. The two distributions transform to
the same distribution in the 1D bump-on-tail model, shown in
Fig. 5.b. The initial distributions are chosen such that there is
a positive derivative of the energy distribution at the resonance,
giving a positive linear growth rate according to eq. (45).
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Figure 4: The interaction coefficient |Vi,` | plotted in J-space, with µ =

0.5 MeV/T. The bold purple curves are the resonant curves `ωB + niωp = ωi
for ` = 1 and i = 1 (Fig. 4.a), i = 2 (Fig. 4.b). The thin black curves are
the same resonant curves, but for ` = {−2,−1, 0, 2}. The dashed curves are the
wave–particle characteristic curves for the corresponding mode.

An energetic particle distribution consisting of 2.5 · 1016

3He2+ ions are distributed on 2.5 ·105 markers. The markers are
spread out in phase space using quasi-random low-discrepancy
sequences (a Sobol’ sequence [27] combined with the Ma-
toušek scrambling method [28]). They are placed as a Gaussian
in W-space centered around the resonance, and then the marker
weights are set such that they represent the shifted Gaussian as
in Fig. 5.b. This is done in order to improve the statistics of
markers around the resonance as compared to a scenario with
equal weights.

4.1.3. Numerical comparison with the 1D bump-on-tail model
Here, different FOXTAIL scenarios are compared with the

corresponding 1D bump-on-tail scenario by varying initial pa-
rameters such as the width of the initial energetic particle distri-
bution along the resonances and the number of eigenmodes and
Fourier coefficients to include in the simulations. Besides the
1D scenario, four FOXTAIL scenarios are presented. In the first
two scenarios (referred to as cases #1 and #2), a narrow initial
distribution is used (see Fig. 5.a), whereas the two latter sce-

Figure 5: The energetic particle distributions of this study is placed close to the
` = 1 resonant curves. Figure 5.a shows the 3σ curves for the Gaussian distri-
butions of the energetic particles (97 % of the particles are contained within the
3σ curves). The solid black curve is the “narrow” initial distribution, and the
dashed black curve is the “wide” initial distribution. The solid purple curve is
the (i, `) = (1, 1) resonance, and the dashed purple curve is the (i, `) = (2, 1) res-
onance. The reference point (blue dot) used for transforming to the 1D bump-
on-tail coordinate system is placed on the (1, 1) resonance. Both initial distri-
butions have the same corresponding 1D bump-on-tail distribution, shown in
Fig. 5.b, where NEP is the total number of energetic particles. The Gaussian
bump-on-tail distribution is centered at W −Wres = 3 keV, and it has a width of
σ = 3 keV.

narios (cases #3 and #4) use the wide initial distribution. Fur-
thermore, cases #1 and #3 include both of the TAEs presented
in section 4.1.2 and a range of Fourier coefficients −2 ≤ ` ≤ 2
for both eigenmodes. Cases #2 and #4 only include the first
eigenmode (n = 5) and a single Fourier coefficient ` = 1. For a
complete list of initial parameter values used in the FOXTAIL
simulations presented in this paper, see Table 1.

Figure 6 shows the amplitude evolutions of the first eigen-
mode for the bump-on-tail simulation and FOXTAIL simula-
tions #1 – 4. The amplitude of the second mode never grows
larger than ≈ 0.8 % of the amplitude of the first mode after sat-
uration in case #1, and up to 5 % in case #3. It can immediately
be seen that the two FOXTAIL scenarios with a narrow initial
distribution (cases #1 and #2) agrees well with the correspond-
ing 1D bump-on-tail scenario, both in growth rate and in satura-
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Case Eigenmodes Fourier coefficients σS [keV] σW [keV] V2,1 factor ∆ω/2π [kHz] Npart [1016]

#1 i = {1, 2} ` = {−2, . . . , 2} 5.7 3.0 1 2.0 2.5
#2 i = 1 ` = 1 5.7 3.0 – – 2.5
#3 i = {1, 2} ` = {−2, . . . , 2} 22.7 3.0 1 2.0 2.5
#4 i = 1 ` = 1 22.7 3.0 – – 2.5
#5 i = {1, 2} ` = 1 5.7 3.0 10.1 2.0 2.5
#6 i = 2 ` = 1 5.7 3.0 10.1 – 2.5
#7 i = 1 ` = 1 5.7 4.0 – – 3.0
#8 i = {1, 2} ` = 1 5.7 4.0 13.2 6.1 3.0
#9 i = 2 ` = 1 5.7 4.0 13.2 – 3.0

Table 1: Summary of the initial parameters used in the FOXTAIL simulations presented in Figs. 6 – 8, where σS and σW are the energy widths of the Gaussian
energetic particle distribution along the resonance curve and along the characteristic curves for wave–particle interaction, respectively, ∆ω is the frequency separation
between the two modes and Npart is the amount of energetic particles that the markers represent.

tion amplitude. On the other hand, the wider distribution (cases
#3 and #4) gives a different growth rate and saturation level of
the amplitude. This is presumably due to the fact that the wide
distribution spans over regions where the interaction coefficient
V1,1 is considerably lower than in the reference point, giving a
lower growth rate on average.

Including multiple eigenmodes and Fourier coefficients in the
simulations seem to have negligible effects on the system in
the considered scenarios, both for the narrow and the wide ini-
tial distributions. The reason for why the second mode does
not influence the system considerably is because it has an ex-
pected growth rate of approximately 100 times lower than the
first mode, which is due to the comparably lower values of the
interaction coefficient V2,1 in the region of the initial distribu-
tion function (recall that the growth rate scales as |Vi,` |

2, see
eq. (46)).

When comparing growth rates of the different scenarios, it
should be noted that γL of the 1D bump-on-tail scenario is
approximately 81 % of the analytical growth rate of eq. (45),
whereas the growth rates of cases #1 and #2 are 77 % of the an-
alytical growth rate, and 68 % for cases #3 and #4. The reason
why the growth rate of the 1D bump-on-tail scenario is consid-
erably lower than the analytical one is primarily because of the
finite extension of the energetic particle distribution along the
characteristic curves (this issue was analyzed in more detail in
Ref. [17]).

4.2. Numerical multi-mode studies

The presence of multiple eigenmodes proved to have neg-
ligible effect on the system in the scenarios presented in sec-
tion 4.1.3 due to the low interaction coefficient of the second
mode in the considered part of Λ, Pφ-space, compared to the
interaction coefficient of the first mode. Scenarios with signif-
icant multimode dynamics can be constructed by adding an ad
hoc scaling factor to the interaction coefficient of the second
mode. Multiplying V2,1 by a factor of 10.1 gives approximately
the same linear growth rate of the two modes. This has been
done for cases #5 and #6, presented in Fig. 7, along with the
previous case #2. The three scenarios are the same, except that
in cases #2 and #6 the eigenmodes are simulated individually,
whereas in case #5 both modes are included to the system. Such
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Figure 6: Amplitude evolution of the first mode (n = 5). ωb ∝
√
|Ai | is the

bounce frequency of particles deeply trapped by the wave field, and γL is the
analytical linear growth rate of the mode, calculated from the value of |Vi,` |

and ∂Ω/∂W in the reference point. The solid black curve uses the 1D bump-
on-tail model, which is analogous to FOXTAIL using a single mode–Fourier
coefficient pair (in this case (i, `) = (1, 1)) and constant Vi,` and Ω′ in Λ, Pφ-
space. Cases #1 and #2 use a narrow initial energetic distribution function along
the (i, `) = (1, 1) resonance curve in Λ, Pφ-space, whereas cases #3 and #4 use
a wide initial distribution. Cases #1 and #3 include both TAEs and Fourier
coefficients −2 ≤ ` ≤ 2, whereas cases #2 and #4 only include the (i, `) = (1, 1)
mode–Fourier coefficient pair. See Table 1 for a list of parameter values used
in all FOXTAIL simulations.

a comparison allows one to isolate the nonlinear effects of mode
interaction via the energetic particle distribution.

Comparing the multimode scenario with the scenarios where
the modes are included individually, it can be seen that the indi-
rect interaction between the modes via the energetic particles
has significant macroscopic effects on the system. This can
partly be understood as a consequence of stochastization of par-
ticle trajectories in phase space due to resonance overlap of the
two eigenmodes. Stochastization of trajectories causes a locally
enhanced transport of energetic particles around the resonances,
allowing the eigenmodes to exhaust more energy from the en-
ergetic particle distribution (see e.g. stochastization from res-
onance overlap, [29, 30], and from phase decorrelation, [17]).
This results in a wider portion of the energetic particle distri-
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Figure 7: Figure 7.a shows the mode amplitude evolution for a set of FOXTAIL
simulations using the narrow initial distribution function. Case #4 includes both
TAEs, and the Fourier coefficient ` = 1 for each mode. Only the evolution of
the first mode is presented. Case #5 is the same as #4, but the interaction coeffi-
cient V2,1 is scaled up by a factor of 10.1, such that the linear growth rates of the
two modes approximately match. Case #6 is the same as #5, but the first mode
is deactivated in the simulation. See Table 1 for a list of parameter values used
in all FOXTAIL simulations. Figure 7.b shows the corresponding 1D bump-on-
tail distribution of the above simulations (the final distribution is at t = 10 ms).
Figure 7.c tests the Chirikov criterion for case #5 by dividing the average res-
onance width in W-space and divide by the average energy separation between
the resonances along the two characteristic curves.

bution being flattened around the resonances, compared to the
individual eigenmode cases, as seen in Fig. 7.b.

The resonance width of an eigenmode can be estimated as the
separatrix width of the unperturbed mode (i.e. in the absence
of other modes) along the characteristic curve in W-space, us-
ing the 1D bump-on-tail approximation. When the resonance
widths of the two modes are comparable, the resonance-overlap
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Figure 8: The same as Fig. 7, but for slightly different scenarios. The frequency
separation between the two modes is increased by a factor of 3, the width of
the Gaussian energetic particle distribution along the characteristic curve of
the first mode is increased from σ = 3 keV to σ = 4 kev and the number of
particles is increased from 2.5 × 1016 to 3.0 × 1016. The scaling factor of the
interaction coefficient V2,1 is increased from 10.1 to 13.2 in order to match
the linear growth rates of the two modes. The amplitude evolutions of the
second mode (A2) in Fig. 8.a are smoothened in order to remove high frequency
amplitude oscillations coming from the interactions with off-resonant particles
and from statistical fluctuations. ∆F(W) of Fig. 8.b is the difference between
the final and the initial corresponding bump-on-tail distributions.

parameter [31] (English translation: Ref. [32]), estimated as the
average resonance width of the two modes divided by their dis-
tance in phase space, is an approximate measure of the level
of stochastization of particle trajectories. The Chirikov crite-
rion for stochastization is satisfied when the resonance-overlap
parameter is larger than unity. The full separatrix width in W-
space, Wsep, is 4ωb/Ω

′(Kres), with ωb given by eq. (47). As
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seen in Fig. 7.c, the Chirikov criterion is well satisfied for case
#5 after t & 1.3 ms.

Slightly different scenarios are tested in the simulations pre-
sented in Fig. 8. Cases #7, #8 and #9 are the same as cases #2,
#5 and #6, respectively, except that the frequency separation be-
tween the two eigenmodes is artificially increased by a factor of
3, and the width of the energetic distribution function along the
characteristic curves of the first mode is increased to σ = 4 keV
instead of 3 keV. The scaling factor of the interaction coeffi-
cient is also adjusted such that the linear growth rates of the
two modes approximately match. As can be seen in Fig. 8.c,
the Chirikov criterion is never satisfied for case #8, although
the resonance-overlap parameter is of the order of unity. Com-
paring the amplitude evolutions in Figs. 7.a and 8.a, the two
modes of case #8 evolves more similarly to the corresponding
individual mode scenarios than case #5 does. This is especially
seen in Fig. 8.b, where the modes of case #8 flattens two sepa-
rate regions of the energetic distribution function, matching the
flattening regions of the individual mode scenarios.

5. Summary

This paper presents the theoretical framework of the FOX-
TAIL code, which is used to describe the nonlinear interaction
between Alfvén eigenmodes and energetic particles in toroidal
geometries. FOXTAIL is a hybrid magnetohydrodynamic–
kinetic model based on a model developed by Berk et al. [4],
where each simulation is formulated as an initial value prob-
lem. Eigenmodes are treated as perturbations of the equilib-
rium system, with temporally constant eigenfunctions and dy-
namic complex amplitudes that vary on time scales longer than
the inverse mode frequency. The energetic particle distribution
is modeled by a finite set of markers in an action–angle phase
space of the unperturbed system. The use of action–angle coor-
dinates rather than conventional toroidal coordinates simplifies
the equations of motion of the individual markers, and it al-
lows for efficient resolution of time scales relevant for resonant
eigenmode–particle interaction in numerical simulations.

The particle response with respect to the wave field is quan-
tized by a Fourier series expansion of the kinetic energy change
qv · δE along the transit period of the unperturbed guiding cen-
ter orbit, where q is the particle charge, v is the guiding center
velocity and δE is the electric wave field at the guiding cen-
ter position. A Lagrangian formulation of the wave–particle
system, consistent with the derived particle response with re-
spect to the wave, is used to derive equations for the eigenmode
amplitudes and phases. The resulting system of equations de-
scribing direct wave–particle interaction has a phase space with
four particle dimensions and two eigenmode dimensions (am-
plitude and phase). When including mechanisms that perturb
the magnetic moment of energetic particles, the particle phase
space extends to five dimensions.

When splitting the interaction in the Fourier terms along the
transit period, each term contributes to resonant nonlinear in-
teraction mainly in a narrow region around surfaces in the adia-
batic invariant space, referred to as resonant surfaces. These
surfaces are given by `ωB + nφωp = ωmode, where ` is the

Fourier index of interaction, ωB is the bounce frequency, nφ
is the toroidal mode number of the eigenmode, ωp is the pre-
cession frequency and ωmode is the eigenmode frequency. The
width of the relevant region around the resonant surfaces de-
pends on the amplitude of the eigenmode, the strength of wave–
particle interaction at the resonant surfaces (quantified by the
Fourier coefficients of interaction) and the variation of bounce
and precession frequencies of particles along the characteris-
tic curves of wave–particle interaction (the curves in adiabatic
invariant space along which a given eigenmode accelerates par-
ticles).

The presented multi-dimensional model can be approximated
with a conventional 1D bump-on-tail model. For the 1D ap-
proximation to be valid, three approximate criteria must be met:

• No more than one eigenmode–Fourier coefficient pair in-
teracts significantly with the energetic particle distribution.

• The complex Fourier coefficient of interaction is approxi-
mately constant in adiabatic invariant space throughout the
resonant part of the energetic particle distribution.

• The bounce and precession frequencies of the energetic
particles vary approximately linearly in kinetic energy–
toroidal canonical momentum space across the region of
the resonance where the energetic particle distribution is
located.

All these conditions can be quantitatively evaluated with FOX-
TAIL.

Effects of the fulfillment of the Chirikov criterion in scenar-
ios with two active eigenmodes have been studied numerically
using FOXTAIL. It has been verified that eigenmodes can be
treated independently in scenarios where the criterion is not sat-
isfied. On the other hand, when the resonance-overlap parame-
ter becomes larger than unity, indirect mode–mode interaction
via the energetic particle distribution becomes significant, and a
larger portion of the inverted energetic particle distribution be-
comes flattened in energy space due to stochastization of parti-
cle trajectories in phase space.
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