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Abstract

Global, i.e., full-torus, gyrokinetic simulations play an important role in ex-
ploring plasma microturbulence in magnetic fusion devices with strong radial
variations. In the presence of steep temperature profiles, grid-based Eulerian
approaches can become quite challenging as the correspondingly varying veloc-
ity space structures need to be accommodated and sufficiently resolved. A rigid
velocity space grid then requires a very high number of discretization nodes
resulting in enormous computational costs. To tackle this issue and reduce the
computational demands, we introduce block-structured grids in the all veloc-
ity space dimensions. The construction of these grids is based on a general
approach, making them suitable for various Eulerian implementations. In the
current study, we explain the rationale behind the presented approach, detail
the implementation, and provide simulation results obtained with the block-
structured grids. The achieved reduction in the number of computational nodes
depends on the temperature profile and simulation scenario provided. In the test
cases at hand, about ten times fewer grid points are required for nonlinear sim-
ulations performed with block-structured grids in the plasma turbulence code
GENE (http://genecode.org). With the speed-up found to scale almost exactly
reciprocal to the number of grid points, the new implementation greatly reduces
the computational costs and therefore opens new possibilities for applications
of this software package.
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1. Introduction

Gyrokinetics is widely regarded as an efficient and adequate model to simu-
late microturbulence in magnetically confined plasmas. However, the multiple
spatial and temporal scales involved in such simulations render them computa-
tionally expensive. One such example is given by the structures in the velocity
space. Here, the characteristic scales of the fluctuations of the distribution func-
tion are associated with the thermal speed vT =

√
2T (x)/m, which is a function

of species temperature T (x) (x – radial coordinate) and mass m. One reason
for the velocity disparities is the inclusion of different species in the simulations;
which require different discretization grids for each species and thus lead to
challenging numerical treatments of collisions [1, 2, 3, 4]. Another important
cause of different velocity scales, which we address in the current study, is the
spatial temperature variation T (x).

A particular adaptation of the velocity grid to the background distribu-
tion function has already been described in a preceding publication [5] where
computational grids consisting of blocks of rectangular regular grids have been
introduced. In these grids, the range and resolution of each block is adjusted
to a given temperature profile. The proposed computational grids were shown
to be accurate and require considerably less computational nodes compared to
the original regular grids. Furthermore, these grids reuse a large amount of the
regular-grid-specific code, which allows constructing grids and extending the
existing physics by different developers simultaneously. The study [5] describes
the theoretical background for the whole velocity space (parallel velocity and
magnetic moment). However, the main results for the global nonlinear gyroki-
netic simulations consider only the parallel velocity direction. In this paper, we
extend the approach to include the magnetic moment direction, which further
reduces the necessary number of grid points. For instance, in the nonlinear
tests presented in this paper, the number of discretization points has been re-
duced up to ten times without loss of accuracy. The construction of these
extended block-structured grids differs significantly from the preceding version
that treated the parallel velocity direction only, because we have to ensure ac-
curacy and efficiency of operations such as the gyro-averaging and integrations
along the magnetic moment direction.

The full velocity space block-structured grids have been implemented and
tested in the Eulerian gyrokinetic code GENE (Gyrokinetic Electromagnetic
Numerical Experiment) [6, 7, 8]. For the particle distribution function in a
five-dimensional position-velocity phase space, GENE solves a set of nonlinear
integro-differential Vlasov coupled to Maxwell equations numerically. In GENE,
phase space and time are discretized separately according to the method of lines.
The time evolution of the distribution function is solved by a fourth-order ex-
plicit Runge-Kutta method. To reduce computational costs, several efficient
techniques targeting the mathematical model are applied, such as a δf -splitting
of the distribution function and a field-aligned coordinate system (see [9, 10]).
Further details on GENE’s mathematical model and implementation are pro-
vided in [11, 12, 13].
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Block-structured grids enable more efficient so-called global simulations by
reducing the number of discretization points. In this global simulation regime,
the radial extent of the simulation domain may cover up to the full fusion device
size, taking into account the radial temperature and density profiles, and investi-
gating the changes in plasma parameters dependent on the radial distance from
the magnetic axis. Alternative multi-scale treatments coupling multiple radially
local (flux-tube) domain simulations have been suggested in [14, 15]. However,
here, cases with turbulence correlation lengths comparable to the length scales
of the background density and temperature profiles are addressed. Radially
global simulations are thus necessary.

The rest of the paper is structured as follows: The gyrokinetic equations
solved in GENE and the mathematical background necessary for the construc-
tion of the grids are introduced in Section 2. Section 3 explains the choice of
the velocity space resolution, range, and position of the computational nodes
according to the radial profiles. Furthermore, we describe the implementation
details and include examples of the computational grids in Section 4. Section 5
presents results of linear and nonlinear global gyrokinetic simulations. The con-
tribution of this work is discussed and summarized in Section 6.

2. The gyrokinetic Vlasov-Maxwell system of equations

In this section, we introduce the fundamental notions that lie at the basis of
the following sections. To this purpose, we provide a brief introduction to the
gyrokinetic system of equations solved numerically by GENE and other similar
codes to simulate microturbulence in magnetically confined fusion plasmas. Due
to their high temperatures and therefore low collisionalities such plasmas do not
thermalize. A fluid description is hence no longer sufficient, and kinetic effects
have to be considered. A proper mathematical model is given by the Boltzmann
equation or, in case of collisionless limit, the Vlasov equation. The correspond-
ing approach is called kinetic and describes the evolution of a distribution func-
tion of all species involved in plasma in a six dimensional phase-space. Three of
the coordinates define the position space and another three the velocity space.
Due to several reasons, such as the high dimensionality of the model, computer
simulations based on the kinetic model are prohibitively expensive for many
important physical scenarios.

Fortunately, for such strongly magnetized plasmas the mathematical model
can be simplified significantly. The gyration of the charged particles in this type
of plasmas is much faster than the dynamics of interest. Therefore, information
about the exact position of the particle on its orbit is irrelevant and can be
discarded. By means of mathematical operations such as gyro-phase averaging

Ā(X) ≡ 1

2π

∮
dθ A(X + r(θ)) (1)

along the gyrophase angle θ and near identity Lie-transformations (see [16, 17]),
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we obtain a full-F five dimensional gyrokinetic equation (for species s)

∂Fs
∂t

+
dX

dt
·∇Fs +

dv‖
dt

∂Fs
∂v‖

+
dµ

dt

∂Fs
∂µ

= 0 (2)

where the distribution F is a function of the gyrocenter coordinate X, the veloc-
ity component parallel to the background magnetic field v‖, and the magnetic
moment µ = mv2

⊥/2B.
In Section 5, we provide results obtained from electrostatic simulations. In

case of this limit, time derivatives of the introduced coordinates are given by

dX

dt
= v‖b0 +

B0

B∗0‖
(vE + v∇B + vc)

dv‖
dt

= −dX/dt

msv‖
·
(
qs∇φ̄1 + µ∇B0

)
dµ

dt
= 0

(3)

where B0 denotes the modulus of the magnetic field vector B0, b0 = B0/B0

the corresponding unit vector, B∗0‖ = b · B∗0 the parallel component of B∗0 =

B0 +∇× (B0v‖/Ωs), and Ωs = qsB0/msc is the gyrofrequency of species s
with mass ms. Moreover, three characteristic drift terms appear: the E × B
velocity vE = c

B2
0
B0 × ∇φ̄, the gradient-B drift v∇B0

= µc
qsB2

0
B0 × ∇B0, and

the curvature drift velocity vc =
v2‖
Ωs

(∇× b0)⊥.
In the case of the electrostatic limit, we need to compute the electric potential

φ, by solving the Poisson equation

−∇2φ = 4π
∑
s

qsns (4)

where the Coulomb gauge is used, qs and ns are the charge and density of species
s, respectively. The density is the zeroth order velocity space moment of the
distribution function n(x) = M00(x). A velocity space moment of an arbitrary
order is computed by

Mab(x) =

∫
δ (X− x + ρ)T ∗F

(
X, v‖, µ

) B∗‖ (X, v‖)
m

va‖v
b
⊥ d3X dv‖ dµdθ (5)

where T ∗ is a pull-back operator transforming the gyrocenter distribution func-
tion, whose evolution is described by (2), to the particle distribution function,
and (X, µ, v‖, θ) are guiding center coordinates (see [18]). For the exact expres-
sion of the pull-back operator used in GENE we refer to [12, 19]. In practice,
the velocity space moments can be efficiently computed in three steps: an inte-
gration over v‖, gyro-phase averaging given by

〈F 〉 =
1

2π

∫
δ (X− x + ρ)F (X) d3X dθ (6)
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and then an integration over the magnetic moment coordinate.
GENE belongs to the class of δf -codes, in which the gyrokinetic Vlasov

equation is further simplified by splitting the distribution function F into a
local Maxwellian background F0 and a fluctuating part f1 (for details on this
technique see [20, 21]). The fluctuating part is by one order smaller than the
background f1s/F0s ∼ ε, according to the gyrokinetic ordering described in [16].

The background distribution function exploited in GENE depends on the
species density ns(x) and temperature Ts(x) radial profiles

F0s(x, v‖, µ) =
ns(x)

π3/2v3
T (x)

exp

[
−
mv2
‖/2 + µB

Ts(x)

]
. (7)

This expression describes how the equilibrium temperature, density and thermal
speed appear in the gyrokinetic equation. In the following section, we rely on
this choice of the background distribution function to construct block-structured
grids in the velocity space.

To make grid-based gyrokinetic simulations more efficient, some further sim-
plifications of the underlying equations are realized in the δf -code GENE. To
start with, only the first order nonlinearity E×B is retained. Furthermore, the
parallel nonlinearity and some other higher order terms can be switched on for
testing, but they are usually found to be insignificant, e.g., see [22]. Significant
savings in the number of grid points are achieved in the position space by in-
troducing curvilinear field-aligned coordinates. These coordinates help exploit
the high anisotropy of plasma turbulence and avoid some derivatives along the
magnetic field lines. Other details on the final version of the resulting system
of equations, including collisions and electromagnetic effects, can be found, e.g.,
in [11, 12, 13]. These are, however, not relevant to the following discussion.

3. Velocity space discretizations

3.1. Default grids in GENE

Eulerian gyrokinetic codes employ five-dimensional grids to simulate plasma
turbulence. Three dimensions span the position space and two others the ve-
locity space.

GENE exploits field-aligned coordinates in the position space (x, y, z), where
x is the radial, y the binormal, and z the direction following the magnetic field
line. These coordinates are optimal to resolve strongly anisotropic fluctuations,
whose parallel correlation length exceeds the perpendicular one by several orders
of magnitude. Details on the position space discretization in GENE can be
found in [23], and general information about field-aligned coordinates in [24].
In the rest of the paper, the radial direction will be the most relevant position
space coordinate since equilibrium quantities such as temperature and density
are constant along y and z in toroidal devices but not in x which affects the
equilibrium thermal velocities that need to be covered by the corresponding
grids. To discretize the radial distance coordinate, GENE employs a finite
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difference scheme in combination with Dirichlet and von Neumann boundary
conditions. Furthermore, to avoid potential numerical instabilities close to the
boundaries due to the Dirichlet condition a Krook-type buffer zone is introduced
(cf. [12, 13, 19]).

For the two-dimensional velocity space, a grid with parallel velocity v‖ and
magnetic moment µ coordinates is chosen. Here, the magnetic moment is de-
fined by µ = mv2

⊥/2B, where v⊥ is the perpendicular velocity component, m
the species dependent mass, and B the strength of magnetic field. In GENE,
v‖ is discretized via a finite difference scheme on an equidistant mesh with ho-
mogeneous Dirichlet boundary conditions f = 0. During collisionless plasma
simulations, GENE performs only integration-like operations in the µ direction.
This is reflected in the type of grids chosen for the magnetic moment coordinate.
The default option is Gauss-Laguerre nodes, which are optimal for quadratures
of exponential multiplied by polynomial function. The choice is motivated by
the exponential shape of the background distribution function and by the fact
that the perturbed part approximately retains a similar shape. In many nu-
merical experiments, the Gauss-Laguerre quadrature requires tremendously less
(up to 32 times) discretization nodes in the magnetic moment direction than
a counterpart equidistant mesh to converge to the same precision results. An
example of the default velocity space grid at fixed position space coordinates is
provided in Figure 1.
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v ‖

Figure 1: An example of a discretization grid in the velocity space.

3.2. Grid adaptation to temperature profiles

As was shown in [5], adjusting computational grids to the background dis-
tribution function leads to a substantial reduction of grid points without a
significant loss of precision. The reason for this is that the perturbed distribu-
tion function approximately follows the shape of the background distribution
function when it is not localized at a certain radial distance.
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In GENE, the Maxwellian distribution is chosen as the background distribu-
tion by default. It yields the following distribution functions in the x – v‖ and
x – µ subspaces:

F0

(
x, v‖

)
= n(x)

√
m

2πT (x)
exp

[
−
mv2
‖

2T (x)

]
, (8)

F0(x, µ) = n(x)
B

T (x)
exp

[
− µB

T (x)

]
= n(x)λe−λµ. (9)

Obviously, they become radially dependent through the plasma density and
temperature profiles n(x) and T (x). Furthermore, the temperature appears in
the exponential factors and, thus, strongly influences the shape of the back-
ground distribution function. For example, F0(x, v‖) takes a form of a Gaussian
bell curve with a wide peak at high temperatures and a sharp peak at low tem-
peratures. Therefore, compared to the case of regions with low temperatures,
at high temperatures we need velocity grids with a relatively wide range and
low resolution. The velocity range can be computed at each radial distance as a
confidence interval of a fixed probability. If there is no data from previous simu-
lations, the simulation may be started with a minimum range of three standard
deviations, which corresponds to a probability of 99.7%. Figure 2 (bottom)
shows an example of the domain in the x – v‖ – µ subspace, obtained by fixing
the probability of the confidence interval to 99.7% and using temperature pro-
files (see Figure 2 (top)) of a particular “Tokamak à Configuration Variable”
(TCV) discharge [19].

Furthermore, it is not just the velocity space grid that has to be adjusted
due to the temperature radial variations. The thermal gyro-radius, responsible
for the scales of the drift wave turbulence, is influenced as well. Therefore, the
radial and binormal coordinates require a finer resolution in the low temperature
regions. In the current study, we do not adapt the x and y discretization to the
temperature variations, and use sufficiently resolved grids in the whole position
space in the examples provided. This kind of adjustment is part of our future
work.

A simple theoretical way to solve the problem of the radial temperature
variations would be the normalization of the velocity coordinates by the ther-
mal speed vT =

√
2T (x)/m. After the change of variables vnorm

‖ = v‖/vT and

µnorm = µ/v2
T , one may remove the explicit temperature dependence from the

background distribution function. Furthermore, with the new coordinates, one
automatically obtains correct ranges and resolution of the physical velocity co-
ordinates, by keeping the same new velocity grid at each radial position. The
simplicity of this approach comes nonetheless at high costs: it demands the
change of the mathematical model and introduces a large number of additional
terms in the governing equations, some of which are nonlinear. All x-derivatives
are changed according to d/dx→ d/dx+C1(x)·d/dv‖+C2(x)·d/dµ. In addition,
many other terms (such as the background Maxwellian and the effective poten-
tial χ) pick up additional x dependencies. The combination of these effects leads
to a significant increase in the overall complexity of the equations. Moreover,
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Figure 2: The TCV electron temperature profile (top) and an example of the simulation
domain in the x – v‖ – µ subspace (bottom). The radial distance is shown in the minor radius
units, the temperature values are shown in units relative to the reference values Tref taken at
the reference radial distance (xref = 0.5).

due to the changes in the set of equations, the whole application would have to
be reimplemented from scratch. This prohibits simultaneous improvements of
the grids and extensions of the physics by several developers, which is essential
for heavily-used codes such as GENE.

3.3. Block-structured grids

To achieve the same effect as the normalization by thermal speed and keep
the original mathematical model, we introduce block-structured grids in the
velocity space. The idea is to approximate the desired simulation domain in
the velocity – radial distance subspace, see Figure 2 (bottom), by rectangular
cuboid-shaped blocks, as shown in Figure 3. To obtain an appropriate ratio of
resolutions in all cuboids, each block should contain the same number of velocity
grid points.
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Figure 3: Approximation of a simulation domain in the x – v‖ – µ subspace by rectangular
cuboid-shaped blocks.

The effect of the blocking is clearly visible in the examples provided in Fig-
ure 4, showing grids in the x – v‖ subspace. The four top subplots (A, B, C,

D) display the v‖ coordinate lines of the normalized grid (A), the default regular
grid (B), the block-structured grid with the same resolution in each block (C),
and the block-structured grid with a fixed number of grid points (D); the hor-
izontal axis is the physical (non-normalized) parallel velocity coordinate. The
same coordinate lines (but with the horizontal axis corresponding to the normal-
ized parallel velocity) are shown in the four bottom subplots (E, F, G, H) of
Figure 4. The coordinate lines are shown for the same TCV temperature profile
as in the previous examples. From these figures, we observe that if the default
regular grid has both a sufficient extent and a resolution fine enough to satisfy
both high and low temperature regions, it then consumes more grid points than
the grid with the normalized parallel velocity. This happens because we invest
too many v‖ nodes in the high temperature region and take too wide a range in
the low temperature region, which is apparent from Figure 4 (F). The problem
with the unnecessary wide range in the low temperature region can be solved by
cutting away the insignificant grid points, as shown in Figure 4 (C). However,
the high temperature region is still overresolved, see Figure 4 (G). Finally, we get
appropriate ranges and resolutions if we keep the same number of v‖ grid points
in each block as in Figure 4 (D, H). Furthermore, in the last example with just
six blocks, we obtain practically the same number of v‖ grid points as in the case
of the normalized velocity grid. The latter approach was first introduced and
described for the v‖ coordinate in [5]. In the following, we extend this method
to include the µ direction and provide theoretical and implementation details.
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Figure 4: Coordinate lines v‖ of the normalized grid (A, E), default regular grid (B, F), block-
structured grid with the same resolution in each block (C, G), and block structured grid with
a fixed number of grid points (D, H). Top subplots (A, B, C, D): horizontal axis — physical
parallel velocity coordinate. Bottom subplots (E, F, G, H): horizontal axis — normalized
parallel velocity coordinate.

Magnetic moment discretization

As was mentioned before, the main operations performed in the magnetic
moment direction are integration and gyro-averaging and, therefore, we em-
ploy the Gauss-Laguerre quadrature rule to efficiently compute integrals with
a minimum number of grid points. We fix the position of quadrature nodes
(grid points) for all radial distances in the default regular grids in GENE. These
nodes µm and weights wm are computed for integrals of the type

∞∫
0

e−µp(µ) dµ =

nw0∑
m=1

wmp(µm) (10)
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with the weight function e−µ. Here, nw0 is the number of µ nodes and p(µ) is
a polynomial of maximum degree 2 · nw0 − 1. For the profiles with significant
temperature variations, however, this quadrature rule works fine only at the
reference point (xref = 0.5), due to the temperature normalization T/Tref , which
yields the exponential factor λ = 1 at xref in (9). At all other radial points, the
precision of the quadrature rule deteriorates drastically, as shown in Figure 5
for the dash-dot-line. Here, we plotted the error of the Gauss-Laguerre rules

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 5: Dependence of Gauss-Laguerre quadrature error on the radial distance coordinate,
for quadrature rules with number of nodes nw0 = 8. Solid line — ideally adjusted quadrature
rule at each radial point. Dash-dot-line — the quadrature rule is fixed for the reference point
(xref = 0.5). Dot-line — the quadrature rule is separately chosen for each block in the radial
direction.

at different radial distances for the integration of the background distribution
function.

Adjusting the quadrature rule to each radial position makes the integration
precise again, see Figure 5 (solid line). However, it leads to different µ nodes at
each x and makes the radial derivative computations too complicated. Another
solution is to prescribe a different set of µm nodes and weights wm in every
block of the block-structured grid described previously. With just six blocks we
get quadratures with the precision close to the ideally adjusted rule, as shown
in Figure 5 for the dot-line. Furthermore, the radial derivative computations re-
quire no modifications within the blocks and only a few additional computations
on the boundaries are necessary, see Section 4.

In the case of global gyrokinetic simulations, it is often necessary to take more
µ quadrature nodes than it would be required for a quadrature of some analytic
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function. This happens because of the oscillatory nature of the perturbed distri-
bution function and gyro-averaging, which is a more complicated operation than
the mere integration in the magnetic moment direction. A high number of the
quadrature nodes yields not only a better resolved grid close to µ = 0 axis, but
also large values of the last µm points. The background distribution function
at large µm takes very small values. According to the gyrokinetic ordering, the
fluctuating part is by an order smaller than the background. Therefore, due to
numerical round-off errors the values of the fluctuating part at particulary high
µ do not contribute a lot to the computations of the integrals. Taking all this
into consideration, we rescale the given nodes to ensure that they all fit in the
prescribed range. Moreover, to keep the Gauss-Laguerre quadrature rule valid,
we rescale the weights by the same factor. Such an operation, however, modifies
the quadrature rule, which was ideally adjusted for the background distribution
at the given radial point.

In this paper, presented results (Section 5) are obtained with rescaled mag-
netic moment nodes and weights. For the sake of completeness, however, we
describe an alternative approach, which keeps the quadrature rule optimal for
the given background and the grid nodes within the given magnetic moment
range. Instead of integrating from zero to infinity in (10), we take a finite range
integral

µmax∫
0

e−µp(µ) dµ =

nw0∑
m=1

wmp(µm) (11)

where µmax is sufficiently large and usually computed as a confidence interval
of a prescribed probability p (µmax = − ln(1− p)). When the exponential decay
factor λ 6= 1, we look for weights and nodes of the following quadrature rule:

− ln(1−p)/λ∫
0

e−λµp(µ) dµ =

nw0∑
m=1

w(λ)
m p(µ(λ)

m ) (12)

This quadrature rule can be directly obtained from (11) by change of variable
x = µ/λ in the integral:

− ln(1−p)/λ∫
0

e−λµp(µ) dµ =
1

λ

ln(1−p)∫
0

e−xp(x) dx =

nw0∑
m=1

wm
λ
p
(xi
λ

)
(13)

Hence, we conclude that w
(λ)
m = wm/λ and µ

(λ)
m = µm/λ. Efficient computations

of the generalized Gauss quadrature are explained in [25], see also Chapter 18
in [26]. The same scaling rule is valid for integrals from zero to infinity.

Besides the integration, the gyro-averaging numerical procedure is also af-
fected by the discretization of the magnetic moment direction. The details on
how this is done for the block-structured grids are provided in AppendixA.
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4. Implementation details of block-structured grids

The block-structured grids reuse the code already written and tested with the
regular grids in GENE. The changes introduced by the new grids are classified
in three categories: prefactors, block boundaries, and parallelization.

The prefactors, which have to be modified, correspond to different coef-
ficients in the set of equations. These coefficients depend on the mesh size
dv‖, and the nodes and weights from the Gaussian quadrature rule (µm and
wm). In the regular grids, the velocity mesh size and the quadrature rule are
kept constant for all radial positions. In the block-structured grids, however,
these quantities differ in each block. Therefore, they have to be adjusted corre-
spondingly. In most cases, this is a simple and straightforward procedure. The
technically most challenging modification is the computation of the gyro-matrix
for the modified magnetic moment grids, see AppendixA. The rows of the gyro-
matrix G are blocked in the same way as the radial distance and each block of
rows is computed with its own set of the magnetic moment nodes and weights.

4.1. Treatment of block boundaries

Modifications are also necessary on the boundaries of the grid blocks. For
regular grids, GENE uses a finite difference scheme to discretize the radial
derivative. In our scheme, when all grid points lie inside the blocks, we ap-
ply the same derivative computations within the blocks. However, due to the
misalignment of the grid points on the block boundaries, additional nodes have
to be added for the finite difference scheme. A sketch of such a misalignment
is shown in Figure 6, where two velocity grids are taken from neighboring grid
blocks.
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Figure 6: An example of two overlapping grids in the velocity space. One of the grids is
marked by solid coordinate lines, another by dashed ones. These two grids are taken from
adjacent blocks.

This problem is addressed by interpolating values at the missing locations
and using the interpolated values in our finite difference scheme. We apply
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local polynomial interpolation — the polynomials are defined only around a
corresponding interpolation point. For instance, to compute the value at the
node surrounded by a circle in Figure 6 on the grid with dashed coordinate
lines, for the fourth order interpolation scheme we span a polynomial through
those points enclosed by squares. In real life simulations, the resolution of the
grid in the velocity space is much finer than in the provided example and the
nodes used for the interpolation are more localized.

To interpolate efficiently at missing locations, we introduce ghost grids for
saving the interpolated values. The ghost grids are prolongations of the blocks
to the neighboring blocks, where the values have to be interpolated for the finite
difference scheme. Basic examples of the x – v‖ and x – µ subspace grids with
and without ghost layers are shown in Figure 7. The ghost grids are used only to
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Figure 7: Examples of grids in the x – v‖ and x – µ subspaces, with (right plots) and without
(left plots) ghost grids for interpolation.

save the interpolated values and not to have the simulation run on their nodes.
Therefore, the ghost grids do not increase the computational complexity, but
only the memory requirements to a small extent. For example, in the grids
consisting of five blocks used for the nonlinear test in Subsection 5.2, the nodes
of the ghost grids amount to only three percent of the total number of the grid
points. In view of the final reduction of the number of the grid nodes, which
totals up to around ten times less in comparison to the regular grid, the memory
additional costs due to the ghost grids are negligible.

The m-order polynomial interpolation leads to errors of order O(∆vm‖ /∆x)+

O(∆µm/∆x) in the radial derivative computations, where ∆µ, ∆v‖, and ∆x are
the mesh sizes in the magnetic moment, parallel velocity, and radial distance
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directions. If the mesh sizes in the velocity space and radial distance are of
comparable scales, we consider these inaccuracies of order m − 1. If necessary,
these errors can be eliminated by the method described in [27]. However, in this
case, simulations also have to be run on the introduced ghost grids.

4.2. Parallelization with block-structured grids

Most of the parallelization schemes developed for the regular grids remain the
same. Only the exchange in the radial direction, which is necessary to compute
radial derivatives, undergoes modifications. The radial exchange is schemati-
cally represented by arrows in Figure 8 for the x – v‖ and x – µ subspaces.
The communication marked by vertical arrows (vertical exchange) is inherited
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Figure 8: A schematic demonstration of the radial exchange in the x— v‖ and x— µ subspaces
of a two-blocks grid. The gray lines represent the outlines of the grid blocks, the black lines
are the boundaries of the process grid. The arrows show which processes are communicating.

from the regular grids. The slanted arrows (side exchange) represent the ex-
change introduced due to the misalignment of the process grids in the different
blocks of the discretization grid. The side exchanges typically require less data
to be sent than the vertical ones, but are more difficult to implement. There
are several possible ways to organize the radial exchange, for instance by com-
bining the side exchanges with the exchanges in the velocity space directions,
and then have the vertical exchange performed the same way as in the regular
grid. This, nevertheless, does not keep the radial exchange decoupled from the
communications in the velocity space directions, nor does it hide the complexity
of the radial derivative computations in the specially developed data structures.
Therefore, we start the computations of the radial derivative and initialize the
side exchanges after the vertical exchange is done. In the ideal case, these com-
putations have already been performed before we start computing derivatives
near the block boundaries.

To illustrate the communication during the side exchange, we provide in
Figure 9 two grids in the velocity space from adjacent blocks, where the radial
direction is orthogonal to the plane of the figure. When we compute the radial
derivative on the smaller grid (marked by dash-lines), we take values from the
larger grid (marked by solid lines). For example, if we compute the radial
derivative in the region marked by a circle, we have to obtain values from the
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process with index 1.1, in the region marked by the cross from process 1.2, in
the region marked by the square from process 2.1, and in the region marked by
the diamond from process 2.2. The mentioned processes (1.1, 1.2, 2.1, and 2.2)
keep the parts of the ghost grids of the neighbor blocks, which overlap with their
local domains. The interpolated values on the ghost grid are precomputed when
the computational grid values are available, so they can be directly used for the
radial derivative computations. Close to the boundary of the process grid, a
process might not possess all computational grid nodes necessary to compute
the interpolated values on the corresponding ghost grid. In this case, the process
computes only a part of the interpolation sum. Then, the process computing the
radial derivative collects and sums up all partly computed interpolation sums.

5. Results

GENE is capable of simulating both linear and nonlinear scenarios. The
linear simulations do not include the nonlinear terms of the gyrokinetic set of
equations, which results in computationally much cheaper runs. Of course, this
type of operation cannot be used to study turbulence but is sufficient to inves-
tigate the underlying microinstabilities. The latter are mainly characterized by
their linear growth rates and real frequencies which can easily be determined.
Both the relatively inexpensive type of simulation and the small and easy ac-
cessible number of observables make linear simulations a prime testing tool for
the newly developed grids. However, the nonlinear turbulence simulations are
the ultimate target of the block-structured grids, because they are extremely
demanding in computational resources. Therefore, improving the nonlinear sim-
ulations in terms of speed and memory footprint is a prerequisite for many in-

16



teresting scenarios. The results of the linear and nonlinear simulations obtained
with the block-structured grids are provided in the following subsections.

5.1. Linear Simulations

In the linear simulations, we compute the linear growth rate (γ) and fre-
quency (ω) of the dominant mode. There are two main ways to obtain these
observables: by finding the eigenvalues of the linearized right hand side of the
system of gyrokinetic equations or by simulating the initial value problem. The
comparison of these two approaches is described in [28]. The nonlinear initial
value problem comprises the linear problem and several additional nonlinear
terms. By developing and testing the block-structured grids with the linear
initial value solver, we automatically partly address the target nonlinear simu-
lations. Therefore, in this subsection, we present results obtained by simulating
the initial value problem. The eigenvalue solver, nevertheless, also benefits from
our approach, due to smaller resulting matrices; details about the eigenvalue
solver in GENE are provided in [29].

In all the tests involving linear simulations presented in this section, we
choose a circular magnetic geometry with concentric flux surfaces and a safety
factor profile given by

q(r/a) = 2.2(r/a)2 + 0.868 (14)

where a is the minor radius, the aspect ratio at the last flux surface is set to
a/R = 0.35 (R — major radius), and ρ∗ = ρref/a = 1/80 (ρref — reference
gyroradius). The choice of the circular magnetic geometry is motivated by the
fact that the position space grid requires less discretization nodes for this simple
geometry than for realistic configurations based on arbitrary magnetohydrody-
namics (MHD) equilibria. As a result, we obtain less expensive simulations. To
further reduce the computational costs, we simulate only collisionless electro-
static plasma.

The fluctuating part of the distribution function stemming from linear sim-
ulations might appear localized in the direction of the radial distance (see [5]).
In such cases, not all the beneficial properties of block-structured grids are ap-
parent, because the simulation results are sensitive mostly to the grid resolution
and range in the localization region. The localization of the perturbed distri-
bution function can be controlled by the temperature and density profiles of
each of the two species involved in our specific simulations (electrons and pro-
tons). For the sake of having a simpler control and also the ability to use the
same block-structured grid for each of the two species, in our linear simulations,
electrons and protons have the same temperature and density radial profiles.
Furthermore, we set the same radial function, which is shown in Figure 10, to
compute the temperature and density profiles. The corresponding initial value
computation yields a perturbed distribution function with a wide structure in
the radial direction as shown in Figure 11. These plots show the absolute values
of the distribution function projections on the radial distance – parallel velocity
(left plots) and the radial distance – magnetic moment (right plots) subspaces.
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Figure 10: Radial temperature profile used for testing block-structured grids with linear sim-
ulations.

The resulting perturbed distributions were obtained using block-structured grids
and are shown here for both electrons (top plots) and protons (bottom plots).
The color map used in the right plots is logarithmic, to make the shape of the
distribution function clearly visible. As a result, the block shapes also become
manifest.

To compare block-structured grids with regular ones, we check how quickly γ
and ω converge with respect to the numbers of grid points (nv0 and nw0) in the
parallel velocity and magnetic moment directions. To minimize the discretiza-
tion errors stemming from other directions, we fix the number of grid points in
these directions to relatively high values (nx0,nz0) = (256, 16). Moreover, in
this linear test scenario, the toroidal mode number is set to ky = 0.3. The con-
vergence plots are obtained in two stages. First, to find at which nv0 the results
converge, we fix the number of magnetic moment nodes to a sufficiently large
number (nw0 = 96) and keep the grid in the radial direction – magnetic moment
regular. The convergence plots for nv0 are provided in Figure 12. The values
of γ and ω are here normalized to the results converged to a precision of three
digits after the decimal point, γconv = 4.810 and ωconv = 1.376. Apparently,
nv0 = 158 grid points are sufficient in the block-structured grid whereas the
regular grid requires nv0 = 266. This result demonstrates that we can already
remove around 41% of the grid points without a loss of accuracy. Next, we fix
the resolutions for the block-structured grid (nx0,nz0,nv0) = (256, 16, 158) and
for the regular grid (nx0,nz0,nv0) = (256, 16, 268), and compute the growth
rate and frequency for different numbers of grid points in the magnetic moment
direction nw0. The convergence plots for nw0 are provided in Figure 13 (left). In
this case, the block-structured grid converges to a slightly different growth rate
γ = 4.809 and frequency ω = 1.375, the differences compared to the reference
grid being ∆γ = 0.02% and ∆ω = 0.07%. Possible reasons for this deviation
are the removal of a significant part of the x — µ subspace from the simulations
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Figure 11: The absolute value of the perturbed distribution function in the radial distance —
velocity subspaces. The top plots correspond to electrons, the bottom plots to protons.

with the block-structured grids, see Figure 11 (right), and more significant mod-
ifications of the numerical implementation due to the blocking in the magnetic
moment direction compared to the modifications due to the parallel velocity
blocking. Deviations of similar orders are nevertheless observed in the case of
the regular grids as well, when starting the initial value solver with different
initial perturbed distribution functions. The deviation is therefore negligible.

From Figure 13 (left), we observe that the results converge very fast for
both the block-structured grid (around 8 – 10 µ grid points) and the regular
grid (around 12 – 14 µ grid points). The important effect of the block-structured
grid in this case is that it allows to significantly reduce the error coming from
the grids with a very coarse resolution in the magnetic moment direction. In
the scenario represented by Figure 13 (left), the regular grid has a lot more grid
points in the parallel velocity direction than the block-structured grid. The
accuracy gap between these two grids is more evident when we consider the
same coarse parallel velocity resolution corresponding to nv0 = 24, see Figure 13
(right). This ability of the block-structured grid to preserve accuracy even with
very coarse velocity space resolutions is useful for the methods that combine the
results from simulations on coarse grids to get an overall accurate result (details
on such methods applied in GENE are explained in [30, 31, 32, 33]).

To get more insight into the performance improvement due to the block-
structured grids, we compare the simulation time of the regular grid ((nv0,nw0) =
(268, 14)) with that of the block-structured grid ((nv0,nw0) = (158, 10)). To ob-
tain these measurements, we used the same compiler optimization flags as those
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direction nv0. Solid lines correspond to the block-structured grid and dashed lines to the
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Figure 13: Convergence plots of γ and ω for the number of grid points in the magnetic
moment direction nw0. Solid lines correspond to the block-structured grid and dashed lines
to the regular grid. The left plot corresponds to simulations with nv0 = 158 for the block-
structured grid and nv0 = 268 for the regular grid, the right plot corresponds to simulations
with nv0 = 24 for the both types of grids.

applied in GENE for production runs. Hence, we ensure that our measurements
are as close as possible to real-life situations. According to the convergence plots,
the two grids yield results of the same accuracy. The initial value solver run-
ning on 32 CPUs converged in 19 429 s with the block-structured grid and in
39 346 s with the regular grid. This corresponds to a speedup of 2.03, which
is slightly smaller than the ratio of the number of grid points (which is 2.36).
The difference is caused by the computation and communication overhead on
the block boundaries of the block-structured grid, as code optimizations for the
newly introduced grids are still part of future work.

5.2. Nonlinear Simulations

The comparison of the nonlinear simulation results is more challenging than
for the linear simulations. First, the nonlinear runs are very sensitive to the
choice of initial conditions. Therefore, it does not make sense to compare re-
sults stemming from different grids at a fixed simulation time. Instead, we are
interested in a quasi-stationary state and consider results that are time-averaged
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over a sufficiently large time interval. Second, there is a big number of observ-
ables that can be compared, for example, particle, heat, or momentum fluxes.
These observables are computed by integrating in the five-dimensional phase
space. As a result, a lot of information is lost and some import effects may re-
main unnoticed. Therefore, we compare not only the heat fluxes computed from
the reference and block-structured grids, but also the fluctuating part of the dis-
tribution function. The simplest way to compare the distribution function is to
plot its absolute value along a line that spans the entire radial range and goes
through the region with the strongest fluctuations. In the case studies provided
here, the best choice (due to the most prominent fluctuations) is the line at the
middle of the parallel direction interval (outboard midplane position), at the
fixed parallel velocity v‖ = 0 and the smallest magnetic moment µmin, which is
determined by the Gauss-Laguerre quadrature rule. For the physics scenario at
hand, the toroidal mode number corresponding to the strongest fluctuations is
typically ky = 0; the turbulent transport is, however, driven by the dominant
component ky 6= 0. Hence, we compare the perturbed distribution function for
both ky = 0 and the dominant finite toroidal mode.

As a nonlinear case study, we simulate adiabatic electrons (one-species sim-
ulations) and use the TCV electron profiles showed in Figure 2 (top); a compre-
hensive description of the corresponding TCV discharge can be found in [19].
Furthermore, to reduce computational costs we use the same circular magnetic
geometry as described in the linear results subsection. To obtain a spectrum
with a dominant toroidal mode, we suppress the electron scale instabilities by
adding hyper-diffusion in the x and y directions.

We convey four different numerical experiments to estimate the effect of
blocking of the velocity space grid. The outlines of grids for these experiments
are shown in Figure 14 and denoted by (R, B, 1A, 2A) correspondingly. First,
we choose a very well-resolved regular grid as a reference, which has the follow-
ing number of grid points (nx0,nky0,nz0,nv0,nw0) = (512, 16, 16, 82, 64); the
outline of this grid is denoted by (R). Then, we set up a block-structured grid
with five blocks and a coarsened velocity subgrid (nv0,nw0) = (34, 16) with the
outline marked by (B). Moreover, we also run simulations with two alternative
regular grids, which have the same number of grid points in the velocity space
as the block-structured grid. With the first alternative coarse regular grid, we
check whether mere coarsening of the reference grid can yield acceptable re-
sults. This grid, therefore, has the same velocity space ranges (the grid outline
denoted by (1A)) as the reference grid. The second alternative regular grid has
the same ranges in v‖ and µ directions as the upper block of the block-structured
grid (the grid outline is given by (2A)). Consequently, it has fine velocity space
resolutions — comparable to the resolutions of the reference grid — but narrow
velocity grid ranges. This grid, thus, allows to check whether it is sufficient to
reduce the velocity space ranges for the regular grid, but without changing the
resolution to speed up the proposed simulation without a loss of accuracy.

For the presented four grids, we compare the heat fluxes averaged over a
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Figure 14: The outlines of grids in the x – v‖ – µ, which are used for the comparison of
nonlinear results. The top left plot (R, 1A) corresponds to the outline of the reference grid
and the regular grid with coarse resolution in v‖ and µ directions. The top right plot (B)
corresponds to the block-structured grid and the bottom plot (2A) to the regular grid with
short ranges in the velocity space directions and fine resolution.

time interval of 35 (R/cs)
1 and provide the results in Table 1. From the table,

Table 1: Heat fluxes in gyro-Bohm units averaged over a time interval of 35 (R/cs) stemming
from four different grids.

grid type
regular block-structured 1st alternative 2nd alternative

(R) (B) (1A) (2A)

Qgb 1.92 1.83 1.64 0.78

we observe that it is the block-structured (B) grid that achieves the closest result
to the reference grid (R). The second best result belongs to the first alternative
grid (1A), which has a wide range and coarse velocity grid resolutions. The
second alternative grid (2A) yields too small a heat flux.

The dominant mode of the described simulations corresponds to ky = 5.319.
The cross sections of the perturbed distribution function, which was time-
averaged over the same interval (with a minimum of 45 samples at different

1R — major radius, cs — ion sound speed
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time steps) are shown in Figure 15. The top plot corresponds to the ky = 0
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Figure 15: Plots over line of the perturbed distribution function for four different grids. The
top figure corresponds to the toroidal mode number ky = 0, the bottom to ky = 5.319. The
solid line corresponds to the reference regular grid (R), the dash-line to the block-structured
grid (B), the dot-line to the first alternative regular grid (1A) (wide velocity grid ranges, coarse
resolutions), and the dash-dot-line to the second alternative grid (2A) (narrow velocity grid
ranges, fine resolutions).

toroidal mode, which yields the highest fluctuations. The bottom plot corre-
sponds to the dominant mode with ky = 5.319. From these plots, we observe
that the first alternative grid (1A) (dash-line), despite the accurate heat flux
result, does not sufficiently resolve fluctuations at the low temperature regions
(radial distance x ∈ [0.55, 075]).

From the obtained results we draw the following conclusions: To start with,
the first alternative regular (1A) grid with the wide velocity ranges and coarse
resolutions yields an acceptable heat flux, but does not resolve the fluctuations
in x ∈ [0.55, 075]. Furthermore, the second alternative grid (2A) with the narrow
velocity ranges and fine resolutions yields an incorrect heat flux, but the plots
over line are quite close to the reference ones. It is only the block-structured
grid (B) (having the same number of grid points as the alternative regular grids)
which succeeds to both resolve well the perturbed distribution function at all
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radial distances and give a correct value of the heat flux.
To estimate the speedup gained from the block-structured grid approach,

we compare the average time of a time step for one simulation, for both the
reference grid (R) and its block-structured counterpart (B). As for the perfor-
mance comparison of the linear simulations, we used the compiler optimization
flags applied in GENE for production runs. The simulations with the refer-
ence grid need 64.8 s and the simulations with the block-structured 6.2 s for
one time step. These results were obtained from simulations running on 128
CPUs and using 100 time iterations to compute the averages. The correspond-
ing speedup is 10.5, which is bigger than the ratio of the number of the grid
points (82 · 64)/(34 · 16) ≈ 9.4. The possible reason for the superlinear speedup
is a cache effect, which outweighs the computational overhead due to the block
boundaries in the simulations using the block-structured grid.

6. Conclusions

The study at hand explained the rationale behind the block-structured grid
construction in full velocity space (v‖ and µ) and detailed the implementation.
The main focus of block-structuring the parallel velocity direction was the cor-
rect choice of grid ranges and resolution in each block along the radial direction.
In the magnetic moment direction, only quadrature-like numerical operations,
such as gyro-phase averaging, were performed. Hence, the main concern of the
computational grid in this direction was an accurate integral computation with
a minimum number of grid nodes.

We demonstrated the benefits of applying the block-structured grids in full
velocity space to a grid-based gyrokinetic code. First of all, we showed that this
type of grids allows reducing the number of grid points in the velocity space
significantly without a loss of accuracy. The number of floating point opera-
tions in the gyrokinetic code is proportional to the number of grid points in
the velocity space. As a consequence, reducing the number of grid points by a
certain factor leads in the ideal case to a speedup equal to this factor. In the
presented examples, the achieved speedups were close to the expected values:
for the linear simulations, a 2.36 reduction in the number of grid points lead
to a speedup of 2.03, while, in the case of nonlinear simulations, a reduction
of 9.4 lead even to a superlinear speedup of 10.5. Moreover, we illustrated
how block-structured grids reduce significantly the error of coarse velocity grids
and perform reliably at a level where the regular grids are rendered useless. The
block-structured grids help reduce the memory footprint, which is especially rel-
evant to nonlinear simulation, as these simulations require usually considerably
more grid points than linear simulations do. Furthermore, during the nonlinear
simulations, time-averaged values characteristic for the quasi-stationary states
are of interest, requiring diagnostic data to be saved at different time steps. The
block-structured grids permit reducing the amount of this output tremendously.

Our proposed technique was based on a general approach that did not re-
quire the modification of the governing set of equations. This means that port-
ing the code is straightforward in most cases, which is of crucial importance
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for codes such as GENE, whose regular grid version has been continuously en-
hanced over the last decade. The block-structured grid is not an alternative to
parallelization, but an additional improvement. Furthermore, because the tech-
nique was shown to be minimally invasive, the block-structured grid inherits the
good parallelization characteristics of the default GENE grids. The additional
communication overhead stemming from the side exchanges can be minimized
further, since much less data is sent than for the exchanges originating from the
regular grid.

In the future, we plan to include collisions between different species, which
are simulated with different velocity space block-structured grids. To capitalize
further on the advantages of the developed technique, we plan to adjust the grid
resolutions in the radial and binormal directions to achieve an extra reduction
in the number of grid points.
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AppendixA. Gyro-Phase averaging

In GENE, along with a simple quadrature in µ direction, the gyro-phase
averaging is computed. In the following, we define the gyro-averaging operations
and explain how they can be performed in the case of block-structured grids.
There are two types of gyro-averaging that appear in the gyrokinetic set of
equations, see [12, 19]. The gyro-phase averaging in the Vlasov equation acts
on the fields and is given by

φ̄(X) =
1

2π

2π∫
0

φ(X + ρ(X))dθ (A.1)

where X = (X,Y, Z) is the gyro-center position, ρ the gyro-radius, and θ the
gyro-phase angle.

Another type of gyro-averaging that appears in the field equations and acts
on the distribution function and on φ̄(X) is defined by

〈f〉 (x) =
1

2π

∫
δ(X + ρ(X)− x)f(X)d3Xdθ (A.2)

As shown in [12, 19], the discretized versions of both types of the gyro-phase
averaging are related. Therefore, we restrict the discussion to the discretization
of (A.1) in the following.
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The binormal direction Y in GENE is discretized in the Fourier space. There-
fore, the potential φ is computed by

φ(X) =
1

2π

∑
ky

φ(X, ky, Z)eikyY (A.3)

From this follows:

φ̄(X) =
1

2π

∑
ky

2π∫
0

φ(X + ρx(X), ky, Z))eiky(Y+ρy(X))dθ (A.4)

where ρz = 0 due to the field-aligned position space coordinate system.
Function φ is known only at the computational grid points. To be able

to carry on the integration in equation (A.4), we approximate this function by
using finite-element like base functions with local support. Hence, φ is expressed
as a linear combination of the base functions:

φ(X, ky, Z) =
∑
i

φ(Xi, ky, Z)Λi(X) = Λ · φ (A.5)

where ky and Z are fixed to some particular values. After inserting (A.5) into
(A.4), we obtain the gyro-averaged function at the gyro-center position Xk =
(Xk, Y, Z):

φ̄(Xk) =
1

2π

∑
i,ky

2π∫
0

φ(Xi, ky, Z)Λi(Xk + ρx(Xk))eiky(Y+ρy(Xk))dθ

=
∑
i,ky

eikyY Gk,iφi =
∑
ky

eikyY G · φ (A.6)

where matrix G is called the gyro-averaging matrix and is defined by

Gki(ky, z, µ) =
1

2π

2π∫
0

Λi(Xk + ρx(Xk))eikyρy(Xk)dθ (A.7)

Gyro-radius projections on x and y axis are given by

ρx(Xk) = ρ(Xk)
√
gxx(Xk) cos θ

ρy(Xk) =
ρ(Xk)√
gxx(Xk)

(gxy(Xk) cos θ −√γ1 sin θ)
(A.8)

According to [12], the choice of base functions relies on an expansion with
polynomials of odd degree p:

φ(x) =

nx0∑
n=1

(p−1)/2∑
m=0

∂mφ(x)

∂xm

∣∣∣∣
x=xn

Pm,n(x) (A.9)
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where nx0 is the number of grid points in the radial direction. The local support
polynomials are defined by

∂uPm,n
∂xu

∣∣∣∣
x=xj

= δjnδum, j = n, n+ 1, u = 0, . . . ,
p− 1

2
(A.10)

We do not know the exact derivatives of the discretized function φ. There-
fore, we use a finite differences scheme to compute the derivatives. Stencils for
derivative computations correspond to those used to discretize the governing
equations. If we introduce a vector of polynomials

Pm = (Pm,1, . . . , Pm,nx0) (A.11)

then the polynomial expansion is

φ(x) =

(p−1)/2∑
m=0

PmDmφ (A.12)

where Dm is the m-order derivative band matrix (rows correspond to stencil)
and φ = (φ1, . . . , φnx0)

ᵀ
is a vector with discretized function values.

By comparing expressions (A.5) and (A.12), we conclude that the base func-
tions are

Λ =

(p−1)/2∑
m=0

PmDm (A.13)

Using the base function expression (A.13) and (A.7), we write down the row
of the gyro-averaging matrix:

Gk∗(ky, z, µ) =
1

2π

(p−1)/2∑
m=0

 2π∫
0

Pm(Xk + ρx(Xk))eikyρy(Xk)dθ

Dm (A.14)

Here, we introduce the θ-integral-matrix notation Qm, with elements com-
puted by

Qmkn =
1

2π

2π∫
0

Pm,n(Xk + ρx(Xk))eikyρy(Xk)dθ (A.15)

Then the gyro-matrix can be written simply as

G(ky, z, µ) =

(p−1)/2∑
m=0

QmDm (A.16)

Due to the band structure of the Q and D matrices, G is also a band matrix.
As shown in [19], the gyro-phase averaging defined by (A.2) can be approx-

imated by G†.
The physical interpretation of the (A.1) gyro-phase averaging is an integral

over a particle trajectory projection in the x – y subspace with a gyro-radius
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ρ = (c/q)
√

2µ/B. In Figure A.16 (left), we show a set of such gyro-trajectories
for a given discretization of the magnetic moment µ in the default regular grid.
In the case of block-structured grids, see Figure A.16 (right), we cannot compute
the (A.1) gyro-phase averaging in the same way as for the regular grid due
to different µ nodes at different radial positions. However, this type of gyro-
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Figure A.16: Examples of gyro-trajectories for a particular set of µ. Left plot — regular
rectangular grid, right plot — two-block grid with the block boundary at x = 5.

averaging is performed only for the fields, which are functions of the position
space coordinates and do not depend on µ. Therefore, one can compute gyro-
averaged fields at any magnetic moment coordinate, irrespective of the µ nodes
chosen for the discretization of the distribution function.

The second type of gyro-averaging (A.2) is applied on the distribution func-
tion. For this reason, we cannot ignore the discretization of the magnetic mo-
ment coordinate anymore. Nevertheless, we can still avoid the integration on
the closed gyro-trajectories and interpolating in µ direction by combining gyro-
phase averaging with µ quadrature. These two operations always appear to-
gether in gyro-kinetic simulations. In the case of the regular grid, the combined
operation can be written in the schematic way:∫

〈f〉 (x) dµ =

nw0∑
m=1

wmG†(µm)f(µm) (A.17)

where f = (f1, . . . , fnx0)
ᵀ
. This operation is valid as long as all elements of f

are computed at the same µm. It does not hold for the block-structured grids.
When we fix the m index, we obtain the following distribution function vector
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for the case of a two-block grid:

fm =
(
f

(1)
1 · · · f

(1)
k f

(2)
k+1 · · · f

(2)
nx0

)ᵀ
(A.18)

where the superscript index refers to the corresponding block. For the two-block
grid, the operation (A.17) is given by∫

〈f〉 (x) dµ =

nw0∑
m=1

(
w

(1)
m · G†(1)

∗,1...k(µ
(1)
m ) w

(2)
m · G†(2)

∗,k+1...nx0(µ
(2)
m )

)
·



f
(1)
1
...

f
(1)
k

f
(2)
k+1
...

f
(2)
nx0


(A.19)

In the last expression, we denote by G†(b)∗,l...k(µ(b)) a submatrix corresponding

to G† columns, with indices from l to k. This submatrix is computed with
regards to the b-block at µ(b).

To summarize, in the case of the block-structured grid, we compute for
each block columns with corresponding µ nodes and apply (A.19) to compute
gyro-phase averaging in combination with quadrature for the magnetic moment
coordinate.

To compute the gyro-phase averaging of the fields defined by (A.1) with a
correct set of magnetic moments at radial distances corresponding to a certain
block, we use the following expression

φ̄(X, µm) =

(
G(1)

1...k,∗(µ
(1)
m )

G(2)
k+1...nx0,∗(µ

(2)
m )

)
· φ (A.20)

Here G(b)
l...k,∗(µ

(b)) is a submatrix corresponding to G rows, with indices from l to

k. Due to the relation G(b)
l...k,∗(µ

(b)) = Gᵀ(b)
∗,l...k(µ(b)), we do not have to compute

separately the G and G† matrices for the block-structured grids. Like for the
regular grid, G† is the complex conjugate transpose of G.
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[31] D. Pflüger, H.-J. Bungartz, M. Griebel, F. Jenko, T. Dannert, M. Heene,
A. Parra Hinojosa, C. Kowitz, P. Zaspel, Exahd: An exa-scalable two-level
sparse grid approach for higher-dimensional problems in plasma physics
and beyond, in: Euro-Par 2014: Parallel Processing Workshops, Lecture
Notes in Computer Science, Springer-Verlag, 2014.

[32] A. Parra Hinojosa, C. Kowitz, M. Heene, D. Pflüger, H.-J. Bungartz, To-
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