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Abstract

Lattice-switch Monte Carlo (LSMC) is a method for evalugtithhe free energy between two
given solid phases. LSMC is a general method, being appidaba wide range of problems
and interatomic potentials. Furthermore it is extremeficent, ostensibly morefgcient than
other existing general methods. Here we introduce a packageteswitchwhich can be used
to perform LSMC simulations. The package can be used to atathe free energy fiierences
between pairs of solid phases, including multicomponemisph, via LSMC for atomic (i.e.,
non-molecular) systems in the NVT and NPT ensembles. ltdcalslo be used to evaluate the
free energy cost associated with interfaces and defectsarBieg interatomic potentialsjon-
teswitchcurrently supports various commonly-used pair potentialduding the hard-sphere,
Lennard-Jones, and Morse potentials, as well as the emteddm model. However the main
strength of the package is its versatility: it is designedhsd users can easily implement their
own potentials.
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the free energy dlierence between two solid phases. The package presentellbesel SMC simulations

to be performed for a variety of interatomic potentials,Julding commonly-used pair potentials and the
embedded atom model. Furthermore the package is designdthtsasers can easily implement their
own potentials. The package supports LSMC simulationsénNkT and NPT ensembles, and can treat
multicomponent systems. A version of the main program ikighed which is parallelised using MPI. This
program parallelises the LSMC calculation by simulatingtiple replicas of the system in parallel.
Restrictions: monteswitch cannot treat molecular systems, i.e., sysiamghich the particles exhibit
rotational degrees of freedom, and is restricted to systelmish can be represented within an orthorhombic
supercell. Furthermore, the interatomic potential isdhanded’ in the sense that implementing fiatient
potential requires that the package be recompiled.

Additional commentsmonteswitch includes programs to assist with the creatfomput files and the
post-processing of output files created by the main MontéoGaograms. A user manual, a suite of test
cases, a worked example, and a collection of plug-ins to@mpht various commonly-used interatomic
potentials are also included with the package.

Running time: Depends on the nature of the problem and the underlying congpplatform. For the
Zr EAM example in the manuscript one iteration (i.e., one,060-sweep weight-function-generation
simulation and one 700,000-sweep production simulatiook ta wall-clock time of approximately 1.9
hours on a desktop machine (an iMac14,2 with a 3.2GHz Inte¢ @4570 processor) exploiting 4 cores
for the 384-atom system, and 17.7 hours for the 1296-atotersys-or each ensemble in the hard-sphere
example the 18,000,000-sweep weight-function-generagimulation and two 125,000,000-sweep pro-
duction simulations took a total of approximately 11 howleiting 16 cores on one node of a HPC cluster.

[1] A.D. Bruce, N. B. Wilding & G. J. Ackland, Phys. Rev. Le#9 3002 (1997)

1. Introduction

The stable phase under given conditions is that with thedbivee energy. For this reason,
efficiently calculating free energies is one of the most fund#aigroblems in theoretical ma-
terials science. A plethora offiiérent methods have been developed to this end, each designed
with a particular problem in mind (see, e.g., Ref. [1]). Undmately however, commonly-used
methods for calculating free energies of solid phases ai@mot achieve the accuracy required
for practical applications: an intractable amount of cotaianal éfort would be required. This
problem is by no means limited to ‘complicated’ models oftjgé interactions, but persists even
when simple models are used. For instance it was only relgtiecently demonstrated that the
fcc phase is favoured over the hcp phase in the hard-sphkde-san archetype of a simple
system|[2} 3, 4].

Lattice-switch Monte CarldLSMC) |2, 3]@ is a method which can be used tffigently
evaluate the free energyftirence between two solid phases. It has been applied to a wide
range of systems [2| B, 6,13,14,.7/8/ 9, 10,111,/ 12| 13, 14]nvéng with the hard-sphere solid
[2,5,16,/3], where it was used to resolve the aforementioepdttc problem [2,13]. The method
was later applied to soft interatomic potentials.[4, 11, B¥ktems containing multiple particle
speciesl]7, /8], and molecular systems|[9, 10,/12, 13]. LSME£ digo inspirephase switch
Monte Carlqg a method for calculating the free energyfeience between a solid and a fluid
phasel[15], which has also seen some use [15, 16, 17, /18,181 R®&s well as being versatile,
LSMC is an accurate method: it is ‘exact’ in the sense thaliés upon no approximations other
than those present in the model of particle interactiorsiitsed in conjunction with. Moreover
for the purposes of evaluating the free enerdjetdénce between pairs of solid phases LSMC is

1The reader should be aware that LSMC has also been referesdatticeswitchingMonte Carlo.
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ostensibly more fiicient than other existing general methods [J.l,[?BE However, despite its
strengths, LSMC has unfortunately yet to have gained widssppopularity. This stems in part
from the lack of an LSMC code which is both widely availablel @pplicable to a wide range of
systems.

With this in mind we have developed a packag@nteswitchwhich implements the LSMC
method. The package, written in Fortran 95, can be used toaeafree energy lerences
between pairs of solid phases in the NVT and NPT ensemblethdfmore the package contains
a version of the main executable which is parallelised usiij for HPC applications. Note
that the two ‘phases’ under consideration need not nedlysbar homogeneous crystals; an
interesting prospect is to usgonteswitcho evaluate free energy costs associated with interfaces
and defects — the former is something which has been donéopety using LSMC[5]. A
Furthermoremonteswitcttan treat systems containing multiple species of parti¢iesvever it
should be noted thamonteswitcltan only treat ‘atomic’ systems (i.e., ‘non-molecular’tgyss:
those in which the constituent particles do not have ratafidegrees of freedom), and pairs of
phases which can be represented by orthorhombic unit cells.

While steps have been recently been taken to implement LSM@niexisting general-
purpose coddl we believe thamonteswitchwill fulfil an important ‘gap in the market’ for
the foreseeable future because it was designed from thetdotbe highly-customisable with
regards to the interatomic potential. By contrast genpuapose codes tend to have a fixed set
of interatomic potentials to draw upon. monteswitchall of the procedures pertaining to the
interatomic potential are housed within a single Fortramute. It is intended that users write
their own version of this module which implements the intenaic potential they are interested
in. @ (A similar scheme is utilised in the molecular dynamics paog MOLDY [27]). Tem-
plates are provided witmonteswitchio assist with this. Furthermore modules are included with
monteswitclwhich correspond to some commonly-used interatomic piatentvhich can serve
as examples. Of course these modules can also be used mithiteswitchto perform LSMC
calculations.

Here we provide an introduction tnonteswitch Note that much of what follows is elabo-
rated upon ilmonteswitcls user manual (included with the package), where we dirgetésted
readers for more details. The layout of this work is as foioin the next section we describe the
theory which underpinsionteswitchin Sectiori B we provide an overview of what is included in
the monteswitctpackage. In Sectidd 4 we describe how interatomic poterdia implemented
in monteswitchlist the various interatomic potentials included wittonteswitchand describe
how users can implement their own potentials. In Sedflon Sleseribe the main Monte Carlo
programs withinmonteswitch In Sectior 6 we describe the various utility programs ideldi
with monteswitcHor the creation of input files and post-processing of oufjes. In Section

2We do not include methods rooted in the harmonic approximatincluding the quasi-harmonic approximation
[22,123]) within the class of ‘general methods’ mentionedeheéhese methods are not ‘general’ in the sense that they
break down in the anharmonic regime.

3To elaborate, in Refs|_[1Ll, 9] LSMC was shown to significantiyperform thermodynamic integration (TIlj [1) 24].
However the claim that LSMC outperforms Tl has proved caites [5,/25]. Of course, like-for-like comparisons
between the two methods arefdiult, since diterent implementations of LSMC or TI may be more or le§sient than
other implementations. We believe that the claim that LSKI&t leastas dficient as Tl reflects the findings of studies
up to the present time.

“We describe how LSMC can be used to evaluate interfacialeineegies in Sectidf 8.

5Specifically, LSMC is earmarked for inclusion in the gengratpose Monte Carlo codeL_MONTE[26].

60f course, in doing this the user's module is free to interfaith ‘external’ modules, or even external programs.
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[[we provide two examples to elucidate howenteswitcttould be used in practice. In the first
example we applynonteswitchto the hard-sphere solid, and tesbnteswitchagainst known
LSMC results for this system; in the second we osmteswitchio determine the hcp—bcc tran-
sition temperature and related quantities for an embedibed model of Zr. Finally in Section
we present our conclusions and outlook.

2. Theoretical background

2.1. Calculating free energy fierences

Consider a system which is free to visit two phases 1 and 2 ¢afydphases 1 and 2). The
equilibrium phase is that with the lower free enefywhere¥ is the Helmholtz free energy
in the NVT ensemble and the Gibbs free energy in the NPT enlgenibis the free energy
difference between the phas&$ = F; — > which we wish to evaluate, wherg and ¥,
denote the free energies of phases 1 and 2. It can be shown that

AF =gt In(&), (1)
P1
wherep; and p; denote the probability of the system being in phase 1 andpzotisely,s =
1/(ksT), kg denotes Boltzmann’s constant, afidlenotes the temperature of the system. For a
simulation which samples the ensemble under consideratign molecular dynamic$y,/ p:
can be determined: measure the relative tifrendt, which the system spends in each phase 1
and 2 during the simulation, and substitute these quasiiti® the above equation, bearing in
mind thatt,/t; = p»/ps for a suficiently long simulation.Henc&¥ can in principle be obtained
from such a simulation via the above equation. However,tieshod is usually intractable in
practice for two solid phases, because the time taken fosykem to transition between the
two phases is too long to allow a reasonable estimatg, b, to be deduced in a reasonable
simulation time. It may even be the case that, regardledsegbhase in which the simulation is
initialised, the systemevertransitions to the ‘other’ phase during the course of theuttion.
The problem is that, while the regions of phase space carnglpg to phase 1 and phase 2
both correspond to probable states of the system at themmaoaig equilibrium, these regions
are separated by faee energy barrie~ a region of phase space associated with states which
are very improbable at thermodynamic equilibrium. Thigieainhibits transitions between the
regions of phase space associated with phase 1 and phase 2.

This problem can in principle be circumvented with the Md@gelo method. In the original
incarnation of Monte Carlo, which we refer to @anonical Monte Carlf28] (which we contrast
with multicanonicalMonte Carlo later), the system is evolved during the simoteas follows.
Each time step we generate a trial state of the systgmand attempt to change the system to
the trial state from its current state The traditional approach for NVT ensembles is to perform
a ‘particle move’ to generate a trial state. Here, one pariit o is moved to yieldo’. In
NPT ensembles particle moves are supplemented by ‘volunveshan which the volume, and
potentially the shape, of the entire system is altered galdth a commensurate rescaling of the
particle positions. We accept the change of state fsota o with a probabilityp,_,.,-, which
is a function of the energies of the stateando”’ in the NVT ensemble, and the enthalpies and
volumes of the states ando”’ in the NPT ensemble. The function also depends on the specific
scheme used to generate statdrom o (see, e.g., Ref.l[1]). The end result is that each state
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Figure 1: Schematic diagram illustrating a lattice switahnf a state in the square phase of a notional two-dimensional
system to a state in the triangular phase. In the latticechvtite underlying square lattice (red crosses) is trangfdrm
into a triangular lattice (blue crosses), while the disptaents of the particles from their lattice sites (black ag)pis
unchanged — the displacement for each partidkethe same before and after the lattice switch. Note alddltledattice
switch here transforms the shape of the system: the red linisformed into the blue box.

o is sampled with a probabilitp, which reflects the underlying ensemble, e.g., for the NVT
ensemble:
po_ o e_ﬁErr’ (2)

whereE,, denotes the energy of state However, in canonical Monte Carlo one has considerable
freedom as to how trial states are generated; one is by nostiegited to the aforementioned
‘traditional’ move set. The prospect therefore exists ofggating trial states in a manner which
results in the system traversing a path in phase space whistisaAF to be calculated in a
reasonable simulation time. Such a path would involve feagtransitions between both phases
1 and 2 by ‘tunnelling’ through the free energy barrier safing them.

2.2. Lattice-switch moves

In LSMC a new type of move, kttice switch is introduced to supplement the traditional
move set mentioned above. A lattice switch move takes theesydirectly from one phase to
the other, bypassing any free energy barriers separatingttases. Every time a lattice switch
is accepted, the system transitions to the ‘other’ phase. sHtient feature of the move is that
the underlying ‘lattice’ which characterises the currehage is ‘switched’ for a lattice which
characterises the other phase, whiledrsplacementsf all particles from their associated lattice
sites are preserved. This is illustrated in FFig. 1 for theasgand triangular phases of a notional
two-dimensional system.

More formally, we can characterise a given state of the sysie belonging to a solid phase
«a if the positions of the particles ‘approximately’ form atlaé characteristic ofr. Let {Ri(“)}
denote the positions of the sites on this lattice, andri¢tdenote the positions of the particles,
wherei ranges from 1 to the number of particles in the system. Thiipos; of particlei can
be expressed as follows:

Iy = Ri(a) + Uj, (3)

wherevu; is the displacement af from that lattice site. Note that the displacemehtsg are

necessarily small since the particle positions form an@giprateq lattice (and we have chosen
to label particles and lattice sites in a ‘sensible’ mansach thaR; is the closest lattice site to
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ri). Now, in a lattice switch from phaseto the ‘other’ phase’ we transform the underlying
Iattice{Ri(")} to {Ri("’)}, while keeping the particle displacemefits} unchanged The result is
that the trial state belongs to phasge the positions of the particles in the trial state form an
approximatey’ lattice.

Of course, the above description of a lattice switch is nadrafete account of how lattice
switches are implemented monteswitch- which supports lattice switches which change the
shape and size of the supercell, as well as the species ofattielg. Details of how lattice
switches are implemented monteswitcltan be found in the user manual.

2.3. Multicanonical Monte Carlo

One might expect that by regularly making lattice switctibs, system will regularly tran-
sition between phases, and hence allg# to be dficiently evaluated as described above. Un-
fortunately using canonical Monte Carlo one finds thatdatgwitches are too rarely accepted
for this approach to be useful. The problem is that the ttatks~” generated by a lattice switch
is almost always of much higher energy than the current statend hence will almost always
be rejected[] The solution to this problem is to useulticanonical Monte Carli2d, [30,31]
instead of canonical Monte Carlo. Multicanonical Monte IGaran be regarded as canonical
Monte Carlo, but if the energy for each statavere

Eo’ =E, - 770'/,8 (4)

instead ofE,., wheren,, known as theveight functionis chosen according to the aims of the
simulation. Note that ify, > 0 then stater is sampled more frequently than would be the case
for the ensemble of interest; andyif < 0 theno is sampled less frequently. The strength of this
approach is that through judicious choice of the weight fismg one can ‘control’ the path the
system traverses through phase space.

Of course, in a multicanonical simulation the states areongér sampled with probabilities
corresponding to the true ensemble in question — whithe case for canonical Monte Carlo.
Accordingly the time average of some physical quan¥tyhroughout a long multicanonical
Monte Carlo simulation is not equivalent to the equilibrivatue ofX for the true ensemble, as it
is in a canonical Monte Carlo simulation. Nevertheless @reabtain the equilibrium value ¢
from a multicanonical simulation by exploiting the factthsince the weight function is known,
then so is the degree of over- or under-sampling of each Statelaborate, the equilibrium value
of X in a multicanonical Monte Carlo simulation is given by

T

> e
Xyr E (5)
Z e’n(t)
t=1

whereX(t) denotes the quantitq corresponding to the state sampled at timestapdr denotes
the total number of timesteps.

"The situation is slightly more complicated for lattice sshiés which change the system volume. In this case the ex-
tent to which the volume of the system is expardedtracted influences how likely the lattice switch is to becgssful.
Accordingly the order parameter defined later in Eq@. (7)$etecting’ gateway states (defined in a moment) takes a
slightly different form for volume-altering lattice switchesnmonteswitch- see themonteswitchuser manual for more
details. Aside from that the forthcoming discussion apptienerally: to both volume-altering and volume-preseyvin
lattice switches.
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2.4. Multicanonical Monte Carlo in LSMC

How does multicanonical Monte Carlo resolve the problemlgttice switch moves are too
rarely accepted to be useful? Recall that lattice switchesisually rejected because they result
in a trial state with a much higher energy. There are, howevemall number of states ‘close’
to those realised at equilibrium for each phase from whichttice switch yields a trial state
o’ which is of comparable energy t8. From such states a lattice switch has a good chance
of being accepted. We refer to such stategateway statessince they provide the key to
jumping between both phases. It is these states which wetwishier-sample, and we set the
weight function accordingly. The idea is that by over-sampthese states, lattice switches are
accepted reasonably often, enabling both phases to beredpioa reasonable simulation time.
This in turn allows us to determing and p,, and henc&¥ via Eqn. [1). Specificallyp; and

p2 are obtained via Eqn[{(5):
Z &g, (1)

Po = (ba) = tle—, (6)
Z e_n(t)
t=1

wheref, (t) takes the value 1 if the system is in phasat timestef and 0 otherwise.

How should the weight function be engineered such that gatestates are over-sampled?
Consider a state, and leto” denote the state which results from a lattice switch peréatfnom
o. Let us define the state-dependent quantity

M, =

{(Ea - E»~) if o belongs to phase 1 e

—(Es - E») if o belongs to phase 2

This quantity provides a practical means for resolving watestates, states corresponding to
equilibrium (for the true ensemble under consideratiom)pioase 1, and states corresponding
to equilibrium for phase 2. Accordingly we refer M as theorder parameter Consider first
gateway states. Above we illustrated that gateway stateespmond to the conditioR, ~ E,.

As can be seen from the above this corresponds to statedAyith 0. By contrast, if M| > 0,
then the two states have significantlyfdrent values oE. In this case, while switching from the
state with the higher value & to that with the lower value dt is guaranteed, the converse is not:
the two states are not concordant with switchim@nd fromboth phasegE, | therefore provides

a measure of how ‘un-gateway-like’ statels, with zero corresponding to ‘very gateway-like’.
Consider now phase-1-equilibrium states. From such stetegenerally expect a lattice switch
to be unsuccessful, and hengg > E,. Therefore for such statdd, < 0. Finally consider
phase-2-equilibrium states. Similarly we generally exetattice switch from such states to
be unsuccessful, and henEg. > E,. However this timeM, > 0. We therefore have three
regimes: M, < 0 corresponds to phase-1-equilibrium stafés; ~ 0 corresponds to gateway
states; andW,, > 0 corresponds to phase-2-equilibrium states.

With this in mind, if we choose the weight functigp to take the same valug; for all states
with the sameM and also choosgy, to be peaked atl = 0 and to decay monotonically with
M|, then the weight function corresponds to a ‘force’ whiclvdsithe system towards gateway
states, allowing the system to transition between the phasel phase-2 regions of phase space,
corresponding tiM < 0 andM > O respectively, in a reasonable simulation time. This is, of
course, just aualitativedescription of a form fory which is suficient for our purposes. As
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one might expect, the quantitative details of the weightfiom )y strongly dfect the diciency
of the path traversed though phase space with regards tdatihg A7 ; a ‘bad’ weight function
might result in the system getting stuck in one phase, or &mportant region of phase space,
for a long time. Furthermore, it is not obvioaspriori what a suitable weight function for a
given system should be. Hence one nyeeratea weight function which leads to affieient
sampling of phase space. After thigight function generation simulatipthe resulting weight
function can be used in@roduction simulatiorio calculateA¥ as described earlier.

However in practice one cannot trddtas an unbounded continuous variable as above; one
cannot define an arbitrary weight function in computer mgnwia this scheme. Hence in prac-
tice one considers a finite range Mf which is divided intoNmacro bins, each corresponding to
a distinct range ofM-space’. Each bin itself corresponds to a macrostate: tloeastate is the
collection of states corresponding to the rang®e$pace covered by the bin. We will henceforth
explicitly take this discretisation dl into account, and leé denote the macrostate correspond-
ing to the Mth bin, whereM = 1,2,. .., Nmacro Accordingly letny denote the weight function
for macrostateM.

2.5. Weight function generation

The weight function can be generated in manffedtent ways, some of which are moré-e
cient than others. We now list the methods implementeddmteswitch All of these methods
share the same notion of the ‘ideal’ weight functigp, which leads to all macrostates within
the considered order parameter range to be sampled witt gaplability in the multicanonical
Monte Carlo simulation.

2.5.1. Visited states method

The visited states methogbee Ref. |[31] and references therein) is arguably the sisnpl
method for generating the weight function. In the visiteatess method, the simulation consists
of a number of ‘blocks’, which themselves consist of a largenber of Monte Carlo sweeps.
Multicanonical sampling is used throughout, and the wefghttion is updated at the end of
each block. The weight function isféiérent — closer to the ideal — in each subsequent block, and
the number of visits to all macrostates during each bloclseduto inform the weight function
to be used in the next block. Eventually the weight functionverges on the ideal: it provides
a ‘flat’ macrostate histogram; the weight function is suddt @l macrostates are sampled with
equal probability. Specifically, the following scheme id$o update the weight function at the

end of each block: .
Ccy+1
(+1) _ () _ In{ M } +k 8
Ma =N 72/\/(’(053 ) (8)

where where()f”w) denotes the number of states belonging to macrogtatesited during block

n; 775”\4) denotes the weight function for bloek the summation oveM’ on the denominator of
the fraction is over all macrostates?].. . ., Nmacro @ndk is an inconsequential arbitrary constant,
which we choose such that the minimum value&f) over allMis 0.

2.5.2. Transition matrix method
A more sophisticated method than the visited states methbith is significantly more
efficient, is thetransition matrix method31,/32]. This method exploits the fact that the ideal



weight functiony, , is related to theanonicalprobability py of the system being in macrostate
M via the equation
My =A-Inpy, (9)

whereA is an arbitrary constantp, in turn can be determined from timeacrostate transition
probability matrix7 (¢, Which describes the probability that the system, curyéntinacrostate
M, transitions to macrostat®!’ in the canonical ensemblén the transition matrix method we
determine7 ,y¢, and then use this to obtajsy,, and finally the ideal weight functiom,  via
Eqgn. [9).

Tmmr is determined as follows. During the simulation we keepkratthe number of
transitions between all pairs of macrostates, which weestol matrixC ¢ — wWhereC ¢
denotes the number of transitions from macrosfettéo macrostateM’. We then us€ v to
obtain an estimate foF ¢ Vvia the equation

Cym +1

Z(CMM” +1)

M

Trmm = (10)

HoweverC e is not simply the number ofbservedtransitions fromM to M’ during the
simulation, but rather the number offerred transitions. To elaborate, consider a trial state
o’ generated from a state which, if accepted, would take the system from macrosttéo
macrostateM’, and let thecanonicalprobability of the move being accepted pg.,, . Instead

of performing the updat€ yipr — Canr + 1 if the move is accepted a@hpr — Cape ifitis

not — which would result i@y being the number of observed transitions frdvfito M’ — we
perform the update

Cymm = Cymr + Pooor

(11)
Cwvm = Cam + 1= Prosor

regardless of whether it is accepted or not. Note that therdaal quantityp,_,~ is always used
in the update procedure, which lead€Xtpy¢ being the inferred number of canonical transitions
betweenM and M’. Because of this one can use any method for expldvirgpace: canonical,
multicanonical, or something else. We elaborate on thistgnia moment.

Having determined/ ¢, our task is to now calculatpy. It can be shown that the
macrostates obey the following detailed balance condj8dh

TmmPsm =T pm P (12)
SettingM’ = M + 1 and rearranging the above gives

T MM+1)

13
T M+1M (13)

Pm+1) =
Using this equationp,, can be obtained from the matriky, via the following procedure.
Firstly, one chooses some arbitrary value [ﬁ@rﬁ With this p, can be obtained from the above
equation M = 1 in Egn. [I38)). This in turn can be used to obtain(M = 2 in Eqn. [I3)),

8In this sectionp; and p, denote the probability of the system being in macrostatasdi2anot the probabilities of
the system being in phases 1 and 2.
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which in turn can be used to obtam, etc., untilpy,,,. iS obtained. Finally, one normalises the
resulting functionp, such that

Nmacro

Pm=1 (14)
M=1
as is required. The final step is to ugg to obtain an estimate for the ideal weight function.
This is done simply by substitutingy into Eqn. [9).

2.5.3. Methods for exploring M-space

As alluded to above, since the update<tye always use the canonical probabilities of
transitioning between states, with the transition matrettmd one cachoosehow M-space is
explored.monteswitclsupports a number of ways of doing this.

The first method is to use multicanonical sampling to expMrspace with a continuously
evolving weight function, where the weight function at aeagitime is the current estimate for
the ideal weight function derived from the curréhi; v as described above. This is the ‘natural’
way of applying the transition state method.

The second method is to use what we refer tawiicial dynamicsto force the system to
explore all macrostates in a reasonable amount of time.idmikthod, the system is first locked
into a macrostate for a certain period of time. After thaiqeof time has elapsed, the ‘barriers’
preventing the system from moving into an adjacent mad®$tanoved such that the system
is free to transition into an adjacent macrostate. Onceditisirs, the system is locked into this
new macrostate, and the procedure starts again. Theredsisfecthe question of which adjacent
macrostate to ‘open’ to the system. Assuming we are not irroséateM = 1 or Nmacro then
there are two options:M + 1) and (M — 1). In monteswitctone can specify whether to select
the new macrostate at randaml[33], or whether to sweep thrtheymacrostates systematically,
e.g., to explore macrostatesA35, . . ., (Nmacro— 1), Nmacro (Nmacro— 1), -.-,3,2,1,2,3,.... This
method is faster than the ‘natural’ method just describerhbge one does not have to wait for
the weight function to evolve such that it pushes the systemexplore macrostates which are
unlikely to be visited in the canonical ensemble.

3. Package structure

The monteswitchpackage consists of a number of programs, as well as a usaraman
suite of test cases, a worked example, and a suite of Fortoalules corresponding toféerent
interatomic potentials. The programs are:

e monteswitch

e monteswitch.mpi

e monteswitch_post

e lattices_in hcp_fcc

lattices_in_bcc_fcc

lattices_in_bcc_hcp

10



monteswitch and monteswitchmpi are the key programs of the package: they per-
form Monte Carlo simulations. By contrasbnteswitch post, lattices_in hep_fec,
lattices_in bcec_fcc andlattices_in bee hep are utility programsmonteswitch post

is for post-processing one of the output files created by th&nnprograms; and
lattices_in hcp_fec, lattices_in bec_fcc andlattices_in_bec hep are for generating
one of the input files for the main programs. We elaborate upese programs in later sections.

4. Interatomic potentials

The fileinteractions.£95in the main directory of the package contains the Fortran-mod
ule, namedinteractions mod, which determines the interatomic potential to be utilitbgd
themonteswitclprogramsnonteswitch, monteswitch mpi andmonteswitch post after the
package is compiled. By defaulhteractions.f95 corresponds to the embedded atom model
(EAM) [34]; to implement a specific interatomic potentialeomust copy the corresponding
interactions.f95 file to interactions. 95 in the main directory of the package, and then
compile the package.

4.1. Structure ofnteractions_mod

The moduleinteractions mod contains the following procedures which interface with the
mainmonteswitctprogramsnonteswitch andmonteswitch mpi:

e initialise interactions, which initialises the variables within the module, po$sib
by reading variables from one or more input files, for ‘newnslations;

e export_interactions, which exports the module variables to a file for the purpases
checkpointing the simulation;

e import_interactions, which importsthe module variables from the aforementitfile
to resume a checkpointed simulation;

e after_accepted part_interactions, after_acceptedvol_interactions and
after _accepted lattice_interactions, which perform any housekeeping tasks
required by the module (e.g., updating neighbour listsgraftespectively, a particle,
volume and lattice switch move has been accepted,;

e after_all interactions, which performs any housekeepingtasks required by the mod-
ule after all moves, including rejected moves;

e calc_energy.scratch, which calculates the energy of the system ‘from scratch’afo
specified state;

e calc_energy_part_move, Which calculates the energy of the system given that orté par
cle has moved.

Users wishing to write their own versions afnteractions.f95 to implement their
own interatomic potentials must write their own versions e#ch of the above proce-
dures. To assist with this, two templates foiteractions.f95 are provided withmon-
teswitch These can be found in the directolyteractions within the package. The file
interactions TEMPLATEminimal.f95 contains a ‘bare’ version ointeractions.f95,
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i.e., it leaves the above procedures empty to be filled in by tlser.  The file
interactions TEMPLATE pair.f95 allows quick generation afnteractions.f95 files for
pair potentials, something which we elaborate upon beloath Bemplates contain comments
which provide guidance to the user.

Note that there is freedom in how the module variables atiaiisied for a new simulation —
via the procedurénitialise_interactions. Normallyinitialise_interactions would
read the variables — which parametrise the potential unodesideration — from one or more
input files. We emphasise that these input files, and theindts, depend on the specific version
of interactions.f95 which monteswitchs used in conjunction with.

4.2. Potentials included witmonteswitch

The Interactions directory within the package contains a number of versiohs o
interactions.f95, which correspond to various interatomic potentials. Thesnimportant
of these are as follows.

4.2.1. Embedded atom model
The file interactions EAM. 95 implements the embedded atom model (EAM) [34] for
metals (but not alloys). Here the energy of the system isgiye

E= %Z(ﬁ(rij)"‘ZF(Pi)» (15)

i,j#i i

pi= > p(rip), (16)
J#1
whererj; is the separation between particlesd j, andg, F andp are functions which must be
specified and constitute the parametrisation of the EAMig@k If interactions EAM.f95
is used then one input file, namenltteractions_in, is required by the programgnteswitch
andmonteswitch mpi to input the potential for new simulations. This file must leacription
of the EAM potential to be used in DYNAMQAMMPS ‘setfl’ format [35].

4.2.2. Soft pair potentials

Table[4.2.P gives a list of soft pair potentials includedchmitonteswitchalong with the name
of the correspondingnteractions.f95 file in Interactions. All of these potentials are
implemented in the same way. Firstly, the pair poteni{a) is assumed to be O for inter-particle
separations greater than some cuffadistancer.. In other words the potential isuncated
atr.. Secondly, only pairs of particles within a distangg of each other at the start of the
simulation interact with each other throughout the entineutation. To clarify the diference
betweerr¢ andrjis;: the former is the distance at which the potential is truedatvhile the latter
determines which particles are in each othaeighbour list which remains constant throughout
the simulation.

As for the EAM potential just described, for the soft potal#i an input file
interactions_in, is required by the programsnteswitch andmonteswitch mpi to in-
put the potential for new simulations. The format of this fdes follows: each variable which
parametrises the potential corresponds to a specific linemteractions_in, and each line
must contain a string (we recommend the name of the varialiesed immediately by an=’
character with no spaces), followed by whitespace, folthlre the value of the variable. The
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final column of Tablé_4.2]2 gives the order of variables ay gteuld appear, one per line, in
interactions_in for each potential. Note that in all casesandrjs; are included as input
variables. Furthermore there is a variablg;, which determines the size of the array used in
the program to store the neighbour lists. Details regartlirgvariable can be found in the user
manual. To illustrate the above, here is an exanipteeractions_in file for the Lennard-Jones
potential (nteractions LJ.f95):

1lj_epsilon= 1.0
lj_sigma= 1.0
1j_cutoff= 1.5
list_cutoff= 1.000000001
list_size= 14

13



Table 1: Soft interatomic pair potentials included witionteswitch

14

Potential File name Expression for potential Order of \aega in
interactions_in

12-10 interactions_12-10.f95 A/r2—B/r0 A, B, re, list, Niist
12-6 interactions_12-6.f95 A/ri2 _B/rb A, B, re, Nist, Niist
Buckingham interactions Buckingham.f95 Aexp(-r/p) - C/r8 A p, C, r¢, Tist, Niist
Gaussian interactions_Gaussian.f95 —Aexp(Br?) A, B, re, Nist, Niist
Lennard-Jones interactions LJ.f95 4ef(a/r)*2 - (o/r)8] €, 0, T, Nist, Niist
9-6 Lennard-Jones interactions_LJ_9-6.f95 4¢e(o/r)° = (/18] €, 0, T, Nist, Niist
Morse interactions_Morse.f95 Eo{[l —exp(=k(r - I’o))]2 - 1} Eo. K, ro, rc, Nist, Nist
n-m interactions.n-m.f95 [Eo/(n— m)][M(ro/r)" = n(ro/r)™ N, m, ro, e, Mist, Nist
Yukawa interactions_Yukawa.f95 Aexpkr)/r A, K, re, Tist, Niist



4.2.3. User-defined pair potentials

As mentioned above, the filenteractions TEMPLATE pair.£95 is a template which can
be used to easily creaimteractions.£95 files for user-defined pair potentials. Instructions
are provided in the file regarding how the file should be modifeerealise the user’s potential
of interest. In fact this template was used to create theffilealmost all of the pair potentials
described above.

4.2.4. Hardpenetrable spheres

The fileinteractions HS_multi.f95 implements the penetrable (including hard) spheres
model, where the sphere diameter is allowed to vary withigdapecies. Here, the pair potential
between two particles belonging to specsemndt is given by

e ifr< %(0'3+0'1)

. (17)
0 otherwise

Psi(r) = {

whereos denotes the diameter of spheres belonging to speci&gain, the input file for the new
simulations in the progranm®nteswitch andmonteswitch mpiis namedinteractions_in,

and its format is similar to thenteractions_in files for the soft pair potentials described
above. In this case however the order of the variablesNgpecies 0, list, @ndNjist, WhereNspecies

is the number of species to consider, ani$ anNspeciesdimensional vector (to be specified on a
single lineinteractions_in) containing the diameters for each specig® 1 ., Nspecies NOte

that hard spheres correspond to the lifiit— oo, and hence hard spheres can be implemented
by settinge to a high value.

5. Monte Carlo simulation programs

The key programs in the package ammteswitch andmonteswitch mpi. The main pur-
pose of these programs is to perform LSMC simulations, thahgy can also be used to perform
‘conventional’ Monte Carlo simulationsionteswitch mpi is the MPI-parallelised analogue of
monteswitch. While inmonteswitch one simulation is performed, fibnteswitchmpi mul-
tiple simulations are performed in parallel. These simaoiet are identical except for the seed
used for the random number generator. Hemgeteswitch mpi is sSimply a convenient means
to exploit parallelisation in order to obtain results quyckin terms of usage and simulation
methodologynonteswitch andmonteswitch mpi are almost identical. For this reason we fo-
cus onmonteswitch below, where it should be assumed that what is saiddéateswitch mpi
also applies fomonteswitchmpi unless otherwise stated.

5.1. Overview of functionality

monteswitch can treat phases which can be represented by orthorhongeccslls in the
NVT and NPT ensembles, where in the NPT ensemble both isotvojume moves and volume
moves which allow the shape of the system to alter are sugghomlulticomponent systems
are allowed, howevetonteswitch cannot treat ‘molecular’ systems in which the particles
have orientational degrees of freedom: rotational MontdadOaoves are not implemented in
monteswitch.

monteswitch supports both canonical and multicanonical sampling, eliee multicanon-
ical sampling is performed over the LSMC order parametecritesd in Sectiof 2]4. Regarding
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weight function generatiomonteswitch supports all of the methods described in Sedtioh 2.5.
Note that the option to perform canonical sampling enabbesentional Monte Carlo simula-
tions to be performed. Note also that, like all other LSMC liampentations the authors are aware
of, monteswitch explicitly keeps track of two states of the system duringrauation, one cor-
responding to phase 1 and one corresponding to phase 2. Abamyduring the simulation only
one of these is the ‘actual’ state of the systenmwhile the other is the state’ which would result
if a lattice switch were performed fromn. For instance if the system were in phase 1, then
would belong to phase 1 and would belong to phase 2. During a simulation the actual state
is evolved via particle moves, and additionally volume neofge the case of the NPT ensemble,
in the conventional manner. However the ‘other’ statés evolved contemporaneously with
so thato” is always what would result if a lattice switch were perfodfimm o It is necessary
to continuously track’ in this manner because the LSMC order parameter-fdepends on the
energy, and possibly also the volumegdf(see Sectioh 214 for details). Regarding lattice switch
moves, if such a move is accepted, then the actual state [dysiglabelled fronu- to o, while
o is relabelled as the ‘other’ state.

monteswitch also supports on-the-fly evaluation of physical quantiied their uncertain-
ties during the simulation via block averaging (see, e.gf, I&]). It also supports the ability to
check whether or not the system has ‘melted’, i.e., wheth@obone or more of the particles
have strayed ‘too far’ from their lattice sites. In a simiain, it is possible imonteswitchto
perform simulations in the centre-of-mass reference fravhéch provides a means of suppress-
ing spurious melting due to ‘drift’ in the centre-of-masgioé system during the simulation.

The random number generator utiliseddwnteswitchis the Mersenne Twister (MT19937)
[36].

5.2. Command-line argument usage

The command-line arguments passe@dateswitch determine the nature of the invoked
simulation. Usage afionteswitchis as follows:

monteswitch [-seed <seed>] -new [-wf]
monteswitch [-seed <seed>] (-resumel|-reset)

The function of each of these arguments is described below.

5.3. Seeding the random number generator

The command-line argumenteed allows the user to specify the seed for the forthcoming
simulation explicitly. If the argumentseed is absent then a seed is generated using the system
clock.

5.4. Running a new simulation

The command-line argumenrhew invokes a new simulation ‘from scratch’. In this case
the simulation is initialised using information containedinput files located in the current
directory. The input files required hyonteswitch will depend on the specific version of
interactions.f95 utilised when compilingnonteswitch{see Sectiohl4). However it is only
the input files which contain information pertaining to theeratomic potential which are
version-dependent; the remaining information used tdaiise a simulation are read from in-
put files which are universal to all versionsmfnteswitch, namelylattices_in, params_in
andwf_in. The first two of these are compulsory: they are read by all sienulations. By
contrastif_in is optional, only being read if the command-line argumettt is present.
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5.4.1. Inputfile:lattices_in

We now describe these files, beginning witittices_in. This file contains specifications
for two states (i.e., supercell dimensions and particlétipns), one for each phase. These two
states serve two purposes. Firstly, they act as prospenttiad state for the simulation: if the
system is to be initialised in phase 1, then the phase-1wiitee used as the initial state, and
similarly if the system is to be initialised in phase 2. Satlgnthey determine the nature of the
lattice switch. The fractional position of partidléor phaser specified inLattices_in is used
as the lattice site farin phasex during lattice switches. Furthermore the supercell dirraTs
specified for each phase attices_in determine how the supercell is transformed during
lattice switches. Specifically, £, L§,“) and L' denote the supercell dimensions specified
for phasex in lattices_in, then thex-, y- andz-dimensions of the supercell are multiplied
by factorsL?/LY, L& /LY and LP /LY respectively during a lattice switch from phase 1 to
phase 2, and by"/L?, LP/LP andLP/LP during a lattice switch from phase 2 to phase 1.
Below is a pedagogical example ofiattices_in file, which corresponds to phase 1 being an
8-particle bcc supercell and phase 2 being an 8-particleshpprcell, where the phase-1 state
consists entirely of particles belonging to species ‘1'#relphase-2 state consists of a mixture
of species ‘1’ and ‘2’. Note that in this case the species afsof the particles is transformed
during lattice switches.

bcc-hcp, rho = 0.5, nx,ny,nz =1, 1, 2 # Comment line

8 # Number of particles
2.2449241 # x-dimension for phase 1
1.5874012 # y-dimension for phase 1
4.4898482 # z-dimension for phase 1

0.0000000  0.0000000  0.0000000 1 # Coords and species for phase 1

0.5000000 0.5000000 0.0000000 1

0.5000000 0.0000000 0.2500000 1

0.0000000  0.5000000 0.2500000 1

0.0000000  0.0000000 0.5000000 1

0.5000000 0.5000000 0.5000000 1

0.5000000 0.0000000 0.7500000 1

0.0000000  0.5000000 0.7500000 1
2.4494897 # x-dimension for phase 2
1.4142136 # y-dimension for phase 2
4.6188021 # z-dimension for phase 2

0.0000000  0.0000000  0.0000000 1 # Coords and species for phase 2

0.5000000 0.5000000  0.0000000 2

0.3333333 0.0000000 0.2500000 1

0.8333333 0.5000000 0.2500000 2

0.0000000 0.0000000 0.5000000 1

0.5000000 0.5000000 0.5000000 2

0.3333333 0.0000000 0.7500000 1

0.8333333 0.5000000 0.7500000 2

5.4.2. Inputfile:params_in
The second compulsory input file for a new simulatiopasams_in. This file contains the
variables which determine the nature of the simulation.hBagiable corresponds to a specific
17



single line in the file, and each line must consist of an aabjtstring (we recommend the name of
the variable followed immediately by ar™* character with no spaces), followed by whitespace,
followed by the value of the variable. To illustrate this]dwve is an excerpt from @arams_in
file:

init_lattice= 1
M_grid_size= 100
M_grid_min= -82.0
M_grid_max= 48.0
enable_multicanonical= T
beta= 9.403
p= 0.0
enable_lattice_moves= T
enable_part_moves= T
enable_vol_moves= T
part_select= "rand"
part_step= 0.3
enable_COM_frame= T
vol_dynamics= "UvM"
vol_freqg= 1
vol_step= 0.03
stop_sweeps= 160000
equil_sweeps= 0
enable_melt_checks= T
melt_sweeps= 100
melt_threshold= 3.0
melt_option= "zero_current"

A full list of the variables which must appear inparams_in, as well as a description of their
function, is provided in the user manual included with thekaaye. The key variables are listed
in Table[5.4.2. Numerous examplesirams_in files are included witmonteswitchwhich
serve as templates for users.
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Table 2: Important control variables fabnteswitch to be specified in
theparams_in input file.

Variable Type Description

init _lattice INTEGER Starting phase for the simulation (1 or 2).

M _grid _size INTEGER Number of macrostates to divide the considered order paeanmange ¥ _grid_min to
M _grid _max) into.

M _grid _min REAL Minimum of considered order parameter range.

M _grid _max REAL Maximum of considered order parameter range.

enablemulticanonical LOGICAL T enables multicanonical sampling using the current weightfion;F enables canonical
sampling.

beta REAL Inverse temperatur@. = 1/(kgT).

P REAL Pressure (only relevant in NPT ensemble simulations).

enablelattice_moves LOGICAL T enables lattice switch moves (performed after every gardéind volume move).

enablepart_moves LOGICAL T enables particle moves.

enablevol_moves LOGICAL T enables volume moves and selects the NPT enserildelects the NVT ensemble. A
volume move will be attempted on averags_freq times per sweep.

part_select CHARACTER(30) Flag determining how the next particle to move is selectedicle" selects particles se-
quentially,"rand" selects particles at random.

part_step REAL Particle move maximum size; particles are moved accordirrgrandom walk, with a maxi-
mum move size opart _stepin any Cartesian direction.

enable COM _frame LOGICAL T performs the simulation in the centre-of-mass refereramaé;F uses the lab frame. Using
the centre-of-mass frame prevents ‘drift’ in the centrevafss, which is convenient because
it keeps particles close to their lattice sites.

vol_dynamics CHARACTER(30) Flag determining which type of volume moves are performadiM" (fixed volume move)
keeps the supercell shape unchanged during a volume mavE! (unconstrained volume
move) allows the x-, y- and z-dimensions to move indeperigent

vol_freq INTEGER Number of volume moves performed per sweep on average im@lmoves are enabled. We
recommend that this be setto 1.

vol_step REAL Volume move maximum step size; the volume is moved accotdingandom walk in ‘InY/)-
space’, with a maximum move size vbl_step.

stop_sweeps INTEGER Total number of Monte Carlo sweeps to perform in the simatati
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equil_sweeps

enablemelt_checks

melt_sweeps
melt_threshold
melt_option

enable divergencechecks

divergencesweeps
divergencetol

output _file_period
output_stdout_period
checkpoint_period

update eta
update_eta_sweeps
update_trans

update_eta method

enablebarriers

INTEGER

LOGICAL

INTEGER
REAL
CHARACTER (30)

LOGICAL

INTEGER
REAL

INTEGER
INTEGER
INTEGER

LOGICAL
INTEGER
LOGICAL

CHARACTER (30)

LOGICAL

Number of sweeps to disregard before the system is congidetse equilibrated; statistics
are not gathered during these sweeps for block averagirdédew).

T enables periodic checks of whether the system has ‘melted’if one or more of the par-
ticles has moved more than a distancer@t_threshold from its lattice site in any Cartesian
direction then the system is considered to have ‘melted’.

Period (sweeps) to check for melting.

Seeenablemelt_checks

Flag determining what the simulation does if the system mslted: "zero_1" and
"zero_2" move the system to the zero-displacement states in phagses 24, aespectively;
"zero_current" does the same but for the current phass;op" stops the simulation. For
"zero_1", "zero_ 2", "zero_current" the system is allowed to re-equilibrate before statis-
tics are gathered for bock averaging. Also, the currentibisdisregarded for the purposes
of block averaging.

T enables periodic checks of whether the energy of the systerariect, given that during
particle moves the energy of the systemaimmendedas opposed to being calculated from
scratch every move. If the energy of the systefffieds from its ‘true’ energy by an amount
divergencetol then the simulation is stopped.

Period (sweeps) to perform energy checks as just mentioned.
Seeenabledivergencechecks

Period (sweeps) at which information about the simulatiooLitput to the filelata.

Period (sweeps) at which information about the simulatsooutput to stdout.

Period (sweeps) at which the simulation is checkpointed, fiow often all simulation vari-
ables are output to the fikecate.

T results in the weight function being periodically updateerg update_eta_sweepsweeps,
according to the method specified uipdate eta method; F results in the weight function
not being updated — it remains frozen at its current state.

Period (sweeps) at which the weight function is updated.

T results in the transition matrix being updat&dgesults in it not being updated.

Method used to update the weight functiéws" uses the visited states methddhooting"
uses the transition matrix method.

T enables artificial dynamics; farthe system is free to explore any macrostate, but is con-
strained to reside within the considered order parametgier§l _grid _min to M _grid _-max).
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barrier _dynamics

lock_moves
calc_equil_properties

block_sweeps

CHARACTER (30)

INTEGER
LOGICAL

INTEGER

Flag determining how the macrostate barriers will evolverdy artificial dynamics. All
methods lock the system into a single macrostatddok_movesmoves, before unlocking
an adjacent macrostate. Once the system has moved into jdee=admacrostate, the sys-
tem is then locked into that macrostate, and the procedarts sigain."random" evolves
the macrostate the system is locked into via a random watknéxt macrostate is decided
with equal probability to be that above or that below the entrmacrostate."pong up"
moves to increasingly higher macrostates until the uppat 6f the supported order param-
eter range is encountered, at which point it reverses direeind proceeds to increasingly
lower macrostates until it reaches the lower limit of theesrgarameter range, at which
point it reverses direction, etc'pong down" instead moves initially to increasingly lower
macrostates.

The number of moves to lock the system into one macrostateddificial dynamics is used.
T enables internal calculation of various physical quaggijtand associated uncertainties, via
block averaging.

The number of sweeps which comprise a ‘block’ which will bediso evaluate physical
guantities and their associated uncertainties via bloekaaing.



5.4.3. Inputfile:wf-in

The command-line argument f allows one to specify the initial weight function to be used
in the simulation: if-wf is present, then the initial weight function is read fromfitewf _in. If
-wf is absent thenf_in is not read, and the weight function is initialised to O fdmahcrostates.
wf_in must containM _grid _size lines (whereM _grid _sizeis specified inparams_in), each
containing two tokens (extra lines and tokens are ignosgdich both should be of typeEAL.
The first token on each line is ignored, while the second tekee treated as the weight function:
the value of the weight function for macrostats initialised to the value of the second token
on linei in wf_in. Note that the format o&f_in is analogous to that output by the program
monteswitch_post in conjunction with the-extract_wf argument — see Sectibn b.2.

5.5. Simulation output

During a simulation information is periodically output tdile data and (optionally) stdout.
Exactly what information is output is controlled by flags retinput fileparams_in. data can
be used to deduce how the system evolves with time duringitingation. The format of this
file is transparent: each line contains a simulation vagigblg., energy, volume), followed by
the sweep number, followed by the value of the variable. [Ustitate this, below is an excerpt
from adata file:

Lx: 250 20.506880155055160 22.375541637220159
Ly: 250 21.983483940969180 19.585057663268277
Lz: 250 20.142474063147095 20.720990682970093
V: 250 9080.4825242547813

lattice: 250 2

E: 250 -2420.3817246101821

M: 250 12.808541584236991

eta: 250 9.9865126253137664

barrier_macro_low: 250 84

Lx: 500 20.470022712854778 22.335325610873863
Ly: 500 21.965084799027686 19.568665891297709
Lz: 500 20.294516764376276 20.877400237511747
V: 500 9124.9380258152232

lattice: 500 2

E: 500 -2409.3469532112986

M: 500 1.1974997526594968

eta: 500 54.025947498280964

barrier_macro_low: 500 84

Lx: 750 20.472567199702674 22.338101960615028
Ly: 750 21.653559219100391 19.291128151472556
Lz: 750 20.503721368631055 21.092613455213190
V: 750 9089.3805950278784

lattice: 750 1

In addition todata, a file state is also created by the program periodically throughout a
simulation. This file contains a snapshot of all the simolatvariables, and can be used for
checkpointing (discussed in a moment), or to extract theults’ of the simulation, e.g., equi-
librium quantities, the current weight function, the numbkaccepted vs. rejected Monte Carlo
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moves of a certain type. The format of this file is transparEath line pertains to a simulation
variable, and the line itself contains the name of the sitradavariable followed by the variables
value. To illustrate this, below is an except afiaate file:

output_stdout_sigma_equil_L_2= T
checkpoint_period= 2000

M_grid_size= 100

n_part= 384

Lx= 20.828469299691541 22.726435154004815
Ly= 21.821584954680326 19.440822063915213
Lz= 20.313660823118358 20.897094137158106
V= 9232.7662932888543

lattice= 2

E_1=  -2398.4613158910693

E_2=  -2417.6552334642806

E=  -2417.6552334642820

M= 19.193917573211365

macro= 87

eta= 0.0000000000000000

switchscalex= 1.0911236359717214

switchscaley=  0.89089871814033939

switchscalez= 1.0287212294780348

sweeps= 200

moves= 154044

moves_lattice= 77022

accepted_moves_lattice= 1

moves_part= 76800

Table[5.5 provides a list of simulation variables, not adseaovered by Table5.4.2, which can
be found instate and could be of interest to the user.
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Table 3: Useful variables found in ti@nteswitch output filestate.

Variable Fortran type Description

n_part INTEGER Number of particles in the system.

Lx REAL(2) Dimension of supercells in x-direction: the first value pers to phase
1 while the second pertains to phase 2.

Ly REAL(2) Dimension of supercells in y-direction: the first value pérs to phase
1 while the second pertains to phase 2.

Lz REAL(2) Dimension of supercells in z-direction: the first value per$ to phase
1 while the second pertains to phase 2.

\% REAL Current volume of the system.

lattice INTEGER Current phase of the system (1 or 2).

E1 REAL Energy of phase 1 for the current displacements.

E_2 REAL Energy of phase 2 for the current displacements.

E REAL Current energy of the system. Thishsl if we are in phase 1 and_2
if we are in phase 2.

M REAL Current order parameter of the system.

macro REAL Current macrostate of the system.

eta REAL The value of the weight function associated with the curneatrostate
of the system.

switchscalex REAL Scaling of the supercell in the x-dimension when perfornarigttice
switch from phase 1 to phase 2. The reciprocal of this is tladirgr
when performing a lattice switch from phase 2 to phase 1.

switchscaley REAL Scaling of the supercell in the x-dimension when perfornarigttice
switch from phase 1 to phase 2. The reciprocal of this is tlairsr
when performing a lattice switch from phase 2 to phase 1.

switchscalez REAL Scaling of the supercell in the x-dimension when perfornarigttice
switch from phase 1 to phase 2. The reciprocal of this is tladirgr
when performing a lattice switch from phase 2 to phase 1.

sweeps INTEGER Number of sweeps performed so far, including over previdomsiia-

tions if we have used theresume argument.
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moves

moveslattice

acceptedmoveslattice

movespart
acceptedmovespart
movesvol
acceptedmovesvol

melts
barrier _-macro_low

barrier -macro_high

block_counts
equil_DeltaF

sigma.equil_DeltaF
equil_lH_1

equil_.H_2

sigmaequil_H_1
sigmaequil_ H_2
equil.v_1
equil_v_2
sigmaequil_V_1

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER
INTEGER

INTEGER

INTEGER
REAL

REAL
REAL

REAL

REAL
REAL
REAL
REAL
REAL

Total number of moves performed so far in total, includingmoprevi-
ous simulations if we have used theesume argument.

Number of lattice moves performed so far, including ovexmas sim-
ulations if we have used theresume argument.

Number of accepted lattice moves so far, including overiprevsimu-
lations if we have used theresume argument.

Number of particle moves performed so far, including ovesvius
simulations if we have used the-esume argument.

Number of accepted particle moves so far, including overiptes sim-
ulations if we have used theresume argument.

Number of volume moves performed so far, including over ey
simulations if we have used theesume argument.

Number of accepted volume moves so far, including over pre/gim-
ulations if we have used theresume argument.

The number of times the system has melted.

The macrostate number corresponding to the lowest cuyratitiwed
macrostate (relevant only when artificial dynamics is eaedpl

The macrostate number corresponding to the highest ciy@idwed
macrostate (relevant only when artificial dynamics is eedpl

The total number of blocks considered so far for block aviegag
The free energy dierence between the phasBs{ F»; extensive) eval-
uated using block averaging.

The uncertainty irequil_DeltaF evaluated using block averaging..
The energy (for NVT simulations) or enthalpy (for NPT sintidas) of
phase 1 evaluated using block averaging.

The energy (for NVT simulations) or enthalpy (for NPT sintidas) of
phase 2 evaluated using block averaging.

The uncertainty irequil_H_1.

The uncertainty irequil_H_2.

The volume of phase 1 evaluated using block averaging.

The volume of phase 2 evaluated using block averaging.

The uncertainty irequil_V _1.
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sigmaequil_V_2
R.1

R.2

u

M _grid

M _counts 1

M _counts 2

eta grid

trans

equil_umsd.1
equil_umsd.2
sigma.equil_umsd.1

sigma.equil_umsd.2
equil_L_1

equil_L_2

sigmaequil L _1
sigmaequil L -2

REAL

REAL (n_part,3)
REAL (n_part,3)
REAL (n_part,3)
REAL(M_grid_size)

INTEGER (M_grid_size)
INTEGER (M grid_size)
REAL(M_grid_size)
REAL(M_grid_size,M grid_size)
REAL (n_part)

REAL (n_part)

REAL (n_part)

REAL (n_part)
REAL(3)

REAL(3)

REAL(3)
REAL(3)

The uncertainty irequil_V _2.

The current lattice vectors for phase 1.

The current lattice vectors for phase 2.

The current displacement vectors.

Array containing the minimum order parameter for each mstete:
macrostaten corresponds to order parameters betwikgrid (n) and
M_grid(n+ 1).

M _counts 1(n) is the number of times macrostatehas been visited
while the system was in phase 1 so far, including over pres/gmula-
tions if we have used theresume argument.

M _counts 2(n) is the number of times macrostatehas been visited
while the system was in phase 2 so far, including over prevgmula-
tions if we have used theresume argument.

eta grid (n) is the value of the weight function for macrostate
trans(m, n) is the number of inferred transitions from macrostateo
macrostate; it is the matrixC ¢ in Sectior 2.5.2.

equil_umsd_1(n) is the mean-squared displacement of particfeom
its lattice site in phase 1, evaluated using block averaging
equil_umsd_2(n) is the mean-squared displacement of particfeom
its lattice site in phase 2, evaluated using block averaging
sigma.equil_umsd_1(n) is the uncertainty irquil_umsd_1(n).
sigma.equil_umsd_2(n) is the uncertainty irquil_umsd_2(n).

The 1st, 2nd and 3rd values in the arequil_L_1 are the mean x-,
y- and z-dimensions of the supercell in phase 1, evaluatied idock
averaging.

The 1st, 2nd and 3rd values in the arequil_L _2 are the mean x-,
y- and z-dimensions of the supercell in phase 2, evaluatied idock
averaging.

sigma.equil_L _1(n) is the uncertainty irequil_L _1(n).

sigma.equil_L _2(n) is the uncertainty irequil_L _2(n).



5.6. Resuming a checkpointed simulation

The command-line argumentesume continues an ‘old’ simulation, whose variables are
contained in the filestate in the current directory. The ‘resumed’ simulation is rum foe
number of Monte Carlo sweeps specified in the variabd@_sweepsn state. By default this
is the number of sweeps which were performed in the old sitimmathough one of course this
can be manually altered if one wants the resumed simulatibe bf a diferent length to the old
simulation. For a simulation invoked using the argumenisume, the filedata is amended: the
resumed simulation does not overwrite tieeta file; all information from the old simulation is
retained in it.

The command-line argumenteset invokes a simulation from an olgltate file similarly
to -resume, except that it resets all ‘counter variables’ to zero. Tids the fect of starting a
‘new’ simulation whose nature corresponds to the old sitimriabut instead uses the state of the
system specified istate. By contrast, the argumenhew initialises the state to be such that
the particles form a perfect crystal lattice, which usudibes not correspond to an equilibrated
state. By ‘counter variables’ we mean those such as vasatdscribing the number of moves
performed for each move type, the number of accepted movestdh move type, and variables
pertaining to equilibrium quantities. For a simulationdked using the argumenteset, the
file data is overwritten, i.e., the information from the ‘old’ simti@n is not retained.

5.7. MPI simulations

As mentioned at the beginning of this chapter, the progmateswitchmpi is
the MPI-parallelised analogue afonteswitch. To build upon what was already said,
monteswitchmpi is identical to the program, except that instead of a singteuktion for
stop_sweepdVonte Carlo sweepsionteswitch mpi runsn simulations — replicas — in parallel
using MPI, each being approximatediop_sweepgn sweeps in length. Accordingly, during the
simulation multipledata- andstate-format files are created — one for each replica. These are
namedstate_0, state_1, state_2, etc., and similarly for theata-format files. At the com-
pletion of all replicas, the results of block averaging fralhtreplicas are combined and stored in
the filestate. The state stored istate corresponds to the statesmtate_ 0.

Further details of the parallelisation are as follows. &fplicas are always initialised to be in
the same state. For a new simulation this is determined bipithéattice variable inparams_in
similarly to monteswitch. For a resumed simulation this is the state contained irsthee
file from which the simulation is to be resumed. We emphasiaedl replicas of the system
are initialised with the same statehen the-resume argument is used withonteswitch mpi.
The filesdata_n are therefore always overwritten mpnteswitch mpi when the-resume
argument is invoked since, given the nature of the pars#létin, there is no continuity between
the replicas in subsequent simulations. The exceptiompigee'0’, whose state is always stored
in the filestate, as well astate_0.

6. Utility programs

As mentioned earliemonteswitclcontains a number of utility programs which assist with
post-processing of the data and the construction of inps.flWe now describe these programs.
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6.1. Programs for generatingattices_infiles

The program&attices_in hcp_fcc, lattices in bee fecc andlattices_in bec hep
createlattices_in files containing reference states corresponding to, réispgc hcp—fcc,
bce—fce and bee—hcep lattice switches. Usage of these progisaas follows:

lattices_in_hcp_fcc <rho> <nx> <ny> <nz>
lattices_in_bcc_fcc <rho> <nx> <ny> <nz>
lattices_in_bcc_hcp <rho> <nx> <ny> <nz>

The command-line argumemtsho>, <nx>, <ny> and<nz> constitute the free parameters for
thelattices_in file to be created. The first argumentho> is the density (i.e., the number of
particles per unit volume) of the reference states to caost{Note that both states necessarily
have the same density). The second, third and fourth argismer>, <ny> and<nz> are inte-
gers which correspond to the number of unit cells (desciiib@dmoment) which will be tiled in
the x-, y- and z-directions respectively to construct theesoell for each phase. The programs
output the desiredlattices_in file to stdout. Hence one must redirect the output to creae th
requiredlattices_in file, e.g.,$ ./lattices_in_hcp_fcc 0.5 2 3 5 > lattices_in
What follows is a description of the unit cells for each pdipbases for each program.

6.1.1. lattices_in_hcp_fcc

The unit cell here contains 12 particles. The particles grea over 6 planes in the z-
direction; each plane contains two particles. The positiohthe particles corresponds to a
stacking sequence for the planes of ABCABC for the fcc unlit emd ABABAB for the hcp
unit cell.

6.1.2. lattices_in_bce_fec

The unit cell here is the conventional 2-particle body-oeshtetragonal (bct) unit cell; for the
bcce(fec) lattice the relative dimensions of the bct unit tekach Cartesian direction correspond
to the bct representation of the bec(fcc) lattice.

6.1.3. lattices_in_bcc_hcp

The unit cell here contains 4 particles. The bcc unit cethés4-particle face-centred tetrago-
nal (fct) corresponding to the fct representation of thelbttice. The hep unit cell is the “fct-like’
representation of the hcp lattice.

6.2. Post-processingtate files

monteswitch post is a tool for post-processing the fieate generated byionteswitch
or monteswitchmpi. It can be used to extract useful information from that fildheEtate
file which the program operates on is that in the current thrgc The command-line arguments
determine the task performed by the program. Usagenteswitch post is as follows, where
the function of each command-line argument is describealnel

monteswitch_post -extract_wf
monteswitch_post -extract_M_counts
monteswitch_post -extract_pos [<species>]
monteswitch_post -extract_R_1 [<species>]
monteswitch_post -extract_R_2 [<species>]
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monteswitch_post -extract_u [<species> <phase>]

monteswitch_post -calc_rad_dist <bins>

monteswitch_post -merge_trans <state_in_1> <state_in_2> <state_out>
monteswitch_post -extract_lattices_in <vectors_in_1> <vectors_in_2>
monteswitch_post -extract_pos_xyz

monteswitch_post -set_wf <wf_file>

monteswitch_post -taper_wf

6.2.1. —eztract_uwf

Extract the weight function fromtate and output it to stdout. In the output the first token
on each line is the order parameter, and the second is thespomding value of the weight
function.

6.2.2. —eztract_ M counts

Extract order parameter histograms fremate and output them to stdout. In the output the
first token on each line is the order parameter, the secohe isdrresponding number of counts
for phase 1, and the third is the corresponding number oftsdonphase 2.

6.2.3. —eztract_pos [<species>]

Extract the current positions of the particles, and outipeitrt to stdout. In the output the first,
second and third tokens on each line are the x-, y- and z-owaisas respectively for a particle.
If the optional argumentspecies> is present then only the positions for particles belonging t
speciexspecies> are output.

6.2.4. —eztract R.1 [<species>]

Extract the current positions of the lattice sites for phgsend output them to stdout. In the
output the first, second and third tokens on each line are-the &nd z-coordinates respectively
for a particle. If the optional argumertpecies> is present then only the sites for particles
belonging to speciesspecies>in phase 1 are output.

6.2.5. ~eztract R.2 [<species>]

Extract the current positions of the lattice sites for pHasand output them to stdout. In the
output the first, second and third tokens on each line are-the &nd z-coordinates respectively
for a particle. If the optional argumertpecies> is present then only the sites for particles
belonging to speciesspecies>in phase 2 are output.

6.2.6. —eztract_u [<species> <phase>]

Extract the displacements of the particles, and output tteestdout. In the output the first,
second and third tokens on each line are the x-, y- and zatispients respectively for a particle.
If the optional argumentsspecies> and<phase> are present then only the displacements for
particles belonging to specigspecies> in phase<phase> are output.

6.2.7. —calc_rad_dist <bins>

Calculate the radial distribution function, based on theent state of the system, and output
it to stdout.<bins> is the number of bins to be used in the function.
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6.2.8. -merge_trans <state_in_1><state_in_2> <state_out>

Combine thdarans matrices from the filesstate_in_1> and<state_in_2>, and store the
result in the file<state_out>, where all variables irstate_out> other than the matrigans
are inherited fronxstate_in_1>. This argument can be used for pooling the results of meltipl
simulations which utilise the same underlying ‘order paggangrid’M _grid _size

6.2.9. —eztract_lattices_in <vectors_in_1> <vectors_in_2>

Output the geometrical properties of the system in the folwha lattices_in file. The
argumentvectors_in_1> and<vectors_in_2> can be eithepos orR. If <vectors_in_1>
is pos, then the positions of the particles in phase 1 of the forthiog lattices_in file will
be the positions of the particles in phase 1 in shate file; if <vectors_in_1> iSR, then the
positions of the particles in phase 1 of thettices_in file will be the current lattice vectors
(i.e.,R-1) corresponding to phase 1 in theate file. Similar applies fokvectors_in_2> with
phase 2.

6.2.10. ~eztract_pos_zyz

Extract the positions of the particles, and output them douwst in ‘.xyz’ format. In the
output the first line contains the number of particles, theoad line is a comment line, and the
subsequent lines contain the particle positions and spettie first token is the ‘element’ (set to
‘A for species ‘1, ‘B’ for species ‘2', ..., ‘Z' for specie®6, and ‘?’ otherwise), and the second,
third, fourth and fifth tokens are the x-, y- and z-coordisatspectively.

6.2.11. -set_wf <wf_-file>

Alters the weight function istate to correspond to that specified in the fikef file>. The
format of the file<wf _file> must be analogous to the format of the weight function oubgut
this program via theextract_wf argument described above: the file must conkhigrid _size
lines, each containing two tokens (extra lines and tokeasgmored), which both should be of
typeREAL. The first token on each line is ignored, while the secondrisleee treated as the new
weight function: the value of the weight function for madaisi is set to the value of the second
token on ling in <wf_file>.

6.2.12. -taper_wf

‘Tapers’ the weight function in thetate file. To elaborate, it is assumed that the weight
function has a single local minimum in tid < O region (the region associated with phase 1)
and a single local minimum in thel > O region (associated with phase 2), with a maximum
at M ~ 0 separating the two minima. Lekin1 denote the value of the weight function at the
minimum in theM < 0 region, and leMnin 1 denote the location of this minimum. In tié < 0
region the weight function is tapered by setting = nmin1 for all M < Mpin1. Similarly the
weight function is tapered in thiel > O region by settingim = 77min2 for all M > Mnin2. Thus
the weight function is ‘flattened’ for the regions M-space ‘outwith’ the two minima. This
prevents oversampling of these regions, which is unnepeasd indficient.

7. Examples

We now present results obtained usingnteswitchior two systems in order to elucidate how
monteswitcktould be used in practice.
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7.1. Hard-sphere solid: hcp vs. fcc

The first system we consider is the hard-sphere solid. Thitesyhas been studied exten-
sively with LSMC [2,[5,/3, 13], and accordingly makes an ebar@l testing ground fomon-
teswitch LSMC studies of this system have focused on calculatingrée energy dterence
between the hcp and fcc phases. We have done the samenositigswitcHor a 216-particle
system, with the aim of validatingnonteswitclagainst the results of other studies. Specifically
we consider the NVT ensemble at reduced density0.7778, whergis related to the number
density of the system by the equatiom = p/ V2; and the NPT ensemble BBs> = 14.58,
whereo denotes the hard sphere diameter. For the NPT ensemble wiglephothanisotropic
volume moves which allow the Cartesian dimensions of theaghl to vary independently, and
isotropic volume moves in which the supercell’s shape, but not sizegistrained. Note that
for each of the three ensembles we considered, i.e., the Nig&mable, the isotropic NPT en-
semble and the anisotropic NPT ensemble, we used the yilityramlattices_in hcp_fcc
(see Sectiohl6) to generate the releveattices_in input file required by the main programs
monteswitch andmonteswitchmpi (Sectiorh).

For each of the three ensembles we used the following preed¢dwbtain the hcp—fcc free
energy diference, and, in the case of the NPT ensembles, the dens$iti@siophasgncp andprce.
We first performed a number of short conventional Monte Csirfaulations in each phase. The
aim of these was to determine quantities to be used in thiedoming LSMC simulations, such
as the maximum particle and volume move sizes, and the apat®pange of order-parameter
space to consider. Then we performed an LSMC simulation deroto generate the weight
function. In the weight-function-generation simulatioms used artificial dynamics to quickly
generate an accurate weight function. Moreover we wsetteswitch mpi to parallelise the
simulation: we ran 16 replicas of the system in parallel. ®eight-function-generation simula-
tions each consisted of 18,000,000 Monte Carlo sweeps30QQ sweeps per replica). Fig. 2
shows the weight function obtained from a weight-functgemeration simulation for the NVT
ensemble, along with the evolution of the order parameteof@ of the replicas during that
simulation. Note that order-parameter space is explorstesyatically, concordant with artifi-
cial dynamics as described in Sectlon 2.5.3. Using this tdignction we then we performed
‘production’ LSMC simulations to determine the hcp—fcosfrenergy dierence — and alsencp
andgi.c for the NPT systems. For each ensemble we performed two ptiodusimulations,
where each production simulation consisted of 125,000s0@ps, again using 16 replicas in
parallel viamonteswich mpi (7,812,500 sweeps per replica). Thus the total number afyaro
tion sweeps for each ensemble was 250,000,000. Finallyethats from all production replicas
for each ensemble were pooled to obtain the final results.

The final results are presented in Tdbld 7.1 along with thatsesf other studies. As can be
seen from the tablemonteswitclis in agreement with the other studies. Note that slightiiedent
NPT results are obtained using isotropic and anisotroplierme moves. This is expected since
isotropic moves constrain the underlying lattice for eabhge to be ‘strictly’ hcp or fcc, while
anisotropic moves allow the system to ‘stretch’ along angt€&an dimension. Interestingly the
densities of both phases are higher when isotropic movassa

7.2. Embedded atom model for Zr: bce vs. hep

As our second example we consider the hcp—bcc transitiom,imddeled using the EAM
potential ‘#2’ developed in Refl_[37]. In Ref._[37] the auth@letermined that the zero-pressure
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Figure 2: Weight function for an LSMC simulation of a 216de hard-sphere system in the NVT ensemble at ~
0.7778; and the evolution of the order parameter vs. simulaiime for one of the replicas during the corresponding
weight-function-generation simulation (inset; only thestfil00,000 sweeps are shown). The regions of order-pagamet
space corresponding to hcp and fcc are indicated. The oedtanyeter is in units of the sphere overlap energyhich

is set stiiciently high during the simulation to realise hard sphesee (Sectioh 4.2.4).

SyStem StUdy ﬂAﬁCCHth ;5hcp ;5fcc
NVT, p = 0.7778 Thiswork 0.00135(5) - -
Ref. [5] 0.00132(4) - -
Ref. [3] 0.00133(4) - -
Ref. [13] 0.00133(3) - -
NPT, PBo = 14.58, iso This work 0.00123(6) 0.77820(6) 0.77820(6)
NPT, PBo2 = 1458, aniso Thiswork 0.00117(9) 0.77759(6) 0.77768(6)
Ref. [3] 0.00113(4) 0.7776(1) 0.7775(1)

Table 4: LSMC results for various 216-particle hard-sprsstems.AFccncp is theintensiveHelmholiz(Gibbs) free
energy diference in the NVT(NPT) ensemble. ‘iso’ refers to isotropptuvne moves, while ‘aniso’ refers to anisotropic
volume moves in which the shape of the supercell is allowedtyp independently in each Cartesian dimension. Uncer-
tainties in the LSMC quantities of this work are standarderiof the mean.
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transition temperatur&ncpncc for this potential was 1233K. They also determined that tie e
thalpy chang@Hncp-.ncc and fractional volume chang®/hepnee/ Vhep associated with the tran-
sition were 0.039 efatom and -0.8% respectively. However these quantities wetermined
indirectlyfrom the results of multiple molecular dynamics simulatigsee Ref. [37] for details).
By contrast we have usedonteswitchio determin€Thepsbee, AHnepobee ANAAVhepsbee/ Vhep di-
rectly via LSMC. Note that this is a more ‘realistic’ example thae girevious one: usually one
is interested in, e.g., the temperature and pressure ahatpbase transition between two phases
occurs, as opposed to the value of the free enefiigrdnce between the phases at one state point
(which was the nature of the previous example).

While LSMC provides a means for calculating the Gibbs freergn diferenceAG between
two phases at a given temperature and pressure, there iggban of how to exploit LSMC to
determine the transition temperature, which by definitstheé temperature at whidG = 0. We
used the following iterative procedure, which in Ref. [4]sgown, for the Lennard-Jones solid,
to outperform other existing methods. We first consideredhdial estimate for the transition
temperaturd @. We then used LSMC to obtain the Gibbs free enerdiedince between the
phases\G = Gpcc — Gnep, the enthalpies and volumes for each phadgd Hoce, Viep @andVice),
as well as uncertainties in these quantities] @ We then substituted these quantities into the
following equation to generate a more accurate estimatthétransition temperatufe?:

: (18)

TO+D = T(”)[l -~ (1 - AH(n))

AGM

whereAH = Hpcec — Hiep, @and the superscriptri’ signifies a quantity obtained from an LSMC
simulation at temperaturg™. (The above equation is, in fact, the Newton-Raphson esima
of the temperatur@ ™Y at whichAG™?Y = 0; see Ref. |[33] for details). We then repeated
all of the above foiT@, T®), etc. until the procedure converged. The procedure was egem
to have converged if the change in temperature for the nesdtion, T™1 — T was less
than its corresponding uncertainty — calculated from pgagiag the uncertainties inH®™ and
AG®™ through Eqn.[(TI8). At this point the next iteration was natfpened, and the enthalpies
and volumes obtained from iteratiorwere used to form our quoted values fiflncpncc and
AVhepobee/ Viep; andT ™D was used as our quoted value Tagp-bee.

We considered two system sizes: a smaller system conta@@hgtoms and a larger system
containing 1296 atoms. Note that both these systems ar#isignly smaller than those used
in Ref. [37]. For both system sizes we used the NPT ensemlfeamisotropic volume moves
(in the sense described in the previous example), and bappsd the iterative procedure with
TM=900K. Furthermore we used the utility prograattices_in_bcc_hcp to generate the rel-
evantlattices_in input files for all simulation. Our procedure for calcul@inG, Hncp, Hoce,
Vhep andViec at a given temperature is similar to that described in theipus example: we first
performed short conventional Monte Carlo simulations iohephase, then a weight-function-
generation simulation, and finally a production simulatiNioteworthy aspects of the procedure
are as follows. Firstly, our weight-function-generatié@mslations consisted of 160,000 Monte
Carlo sweeps using 4 replicas in parallel vienteswitch mpi (40,000 sweeps per replica).
Secondly, we ‘tapered’ the weight function obtained fromeight-function-generation simula-
tion using the utility progranmonteswitch_post before using the weight function in a pro-
duction simulation. Fig.[13 shows the weight function obggirfor the 384-atom system at
T = 127586K (the final iterationn = 3, as is discussed below) before and after tapering.
Tapering was done in order to improve th@ency of the production simulation (see Section
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n T(n) Athp—»bcc AHhcp—»bcc Athp—»bcc/thp Thcp—»bcc
N=384 1 900.00 0.0114(11) 0.0459(4) -0.8(2) 1200(40)

2 1199.91 0.00238(3)  0.0401(2)  -0.810(6) 1275.9(11)

3 1275.86 -0.00003(5) 0.0379(2)  -0.787(7) 1275(2)
N=1296 1 900.00 0.01265(2)  0.04589(7) -0.996(3) 1242.6(11)

2 1242.61 0.001031(10) 0.03930(6) -0.791(7) 1276.1(3)

3 1276.10 -0.00003(2)  0.03835(13) -0.772(5) 1275.1(6)

4 127513 -0.000000(10)0.0383(2)  -0.772(7) 1275.1(3)
Ref. [37] - - - 0.039 -0.8 1233

Table 5: Results of LSMC simulations for Zr potential ‘#2’ Bef. [37]. Results are given for each iteratiorof

the iterative procedure described in the main text, for eaaiem size considered (denotes the number of atoms
in the system). The results of the final iteration, which ard¢ compared to the results of Ref. |[37] (bottom row),
are in bold text. Note that for the LSMC resullacp-bec iS the transition temperature as predicted from the results
of the corresponding LSMC simulation, wherég® is the temperature at which that simulation was performelti. A
temperatures are in KyGncp-bec aNAdAHKcpbec are in eVatom, andAVicpbee/ Vhep iS @ percentage. Uncertainties in
the LSMC quantities are standard errors of the mean.

for details). Finally, at each temperature we peréat a single production simulation
consisting of 700,000 sweeps, again using 4 replicas inlpb{&75,000 sweeps per replica).

Our results are presented in Table] 7.2, where they are cetpaainst those of Ref. [37].
Note that our 384-atom and 1296-atom results are in agreemtmeach other, which means
that finite-size fects are insignificant in the 384-atom system for the queastitve consider
here. Note also that the iterative procedure convergedkiyuior both system sizes: only a few
iterations were needed to pinpoint the transition tempeeab an accuracy of 2K. We empha-
sise that only relatively modest computation@ibet was required to obtain this accuracy: for the
384-atom system each iteration (i.e., one 160,000-sweghtviinction-generation simulation
and one 700,000-sweep production simulation) took a watikctime of~1.9 hours on a desktop
machine (exploiting 4 cored) while for the 1296-atom system each iteration teck7.7 hours.
Our results are in agreement with those of Ref! [37]A6hcp-bec aNAAVhep-bee/ Viep: Regard-
iNg Thepsbeo We fiNdThepbee to be 42K higher than the 1233K quoted in Ref.l [37]. Whethir th
is suficiently close to 1233K to constitute ‘agreement’ dependshenuncertainty in the Ref.
[37] value, which unfortunately is not provided in that studHowever in Ref. [[38] the same
method as in Ref. [37] was used to determiig,-.ucc for a Mg EAM potential; moreover the
uncertainty in the value was stated to be 40K. (Specific@ilys-.ncc was found to be 64540K
for the Mg potential). If this uncertainty carries over te thr study of Ref.|[37], then it follows
that ourThep-nec iS in agreement with that of Ref. [37].

8. Conclusions and outlook

We have describednonteswitch a package for performing lattice-switch Monte Carlo
(LSMC) simulations for atomic systems, and have presergedlts demonstrating itsfecacy.
While here we have only presented results for single-corapberystalline phases, we empha-
sise thatmonteswitctcan be applied more generallynonteswitcicould be used to calculate

9Specifically, the machine we used was an iMac14,2 with a 32(Btél Core i5-4570 processor.
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the free energy dlierence between two multicomponent phases. Moremarteswitctcould
be used to evaluate the free energy of an interface betweesdiids, or the free energy of a
crystallographic defect. The free energy of an interfadsvben two phaseé andB can be
calculated via LSMC by choosing the two supercells usedén fBMC simulation to have the
same amounts oA and B, but diferent amounts oA-B interface [5]. For example if the first
supercell were comprised of superimpogeandB slabs with a stacking sequensgB|A|B, and
similarly for the second supercell but with a stacking sexeedA|B|B, then, while both su-
percells contain twa\ andB slabs, the first supercell contains fodwB interfaces (taking into
account periodic boundary conditions) but the second awhtanly two interfaces. Denoting
the area associated with one interface in the supercefl,asfollows that calculating the free
energy diference between these supercells via LSMC would yield treednergy dference as-
sociated with an areaZ2 of an A—B interface — assuming that the slabs arisiently large that
interfaces do not ‘interact’ with one another. A similar eggch could conceivably be applied to
calculate the free energy of planar defects such as twindeigs. In principle point defects are
also accessible to LSMC. For example the free energy of &Eteefect could be evaluated by
having one supercell be the ‘defect-free’ crystal, whike dther contains a single Frenkel defect.
The prospect of using LSMC in this way requires further exgion.

The main strength ofmonteswitchs its versatility regarding the interatomic potentials it
can implement, which we have demonstrated here by usiogteswitchin conjunction with
an embedded atom model (which is a many-body potential) tamdhard-sphere model. This
versatility is achieved by having the source code for theptidls housed within a Fortran mod-
ule which is amenable to customisation. As well as using rfesdimcluded with the package
which implement some commonly-used potentials, it is guaied that users will wish to write
their own versions of this module to implement their own pdieds. Templates and guidance
are provided with the package to facilitate this. An esgdBciateresting prospect is to develop
modules which interfacenonteswitchwith quantum chemistry programs, in order to calculate
the energy usingb initio methods. Suchab initio LSMC’ would be a valuable tool in examin-
ing the phase stability of systems in which classical modsdsinappropriate. Needless to say
any new modules we develop will be made available to the wéidermunity on the home page
for the package [39].
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