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Abstract

Lattice-switch Monte Carlo (LSMC) is a method for evaluating the free energy between two
given solid phases. LSMC is a general method, being applicable to a wide range of problems
and interatomic potentials. Furthermore it is extremely efficient, ostensibly more efficient than
other existing general methods. Here we introduce a package, monteswitch, which can be used
to perform LSMC simulations. The package can be used to evaluate the free energy differences
between pairs of solid phases, including multicomponent phases, via LSMC for atomic (i.e.,
non-molecular) systems in the NVT and NPT ensembles. It could also be used to evaluate the
free energy cost associated with interfaces and defects. Regarding interatomic potentials,mon-
teswitchcurrently supports various commonly-used pair potentials, including the hard-sphere,
Lennard-Jones, and Morse potentials, as well as the embedded atom model. However the main
strength of the package is its versatility: it is designed sothat users can easily implement their
own potentials.
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the free energy difference between two solid phases. The package presented hereallows LSMC simulations
to be performed for a variety of interatomic potentials, including commonly-used pair potentials and the
embedded atom model. Furthermore the package is designed sothat users can easily implement their
own potentials. The package supports LSMC simulations in the NVT and NPT ensembles, and can treat
multicomponent systems. A version of the main program is included which is parallelised using MPI. This
program parallelises the LSMC calculation by simulating multiple replicas of the system in parallel.
Restrictions: monteswitch cannot treat molecular systems, i.e., systemsin which the particles exhibit
rotational degrees of freedom, and is restricted to systemswhich can be represented within an orthorhombic
supercell. Furthermore, the interatomic potential is ‘hard-coded’ in the sense that implementing a different
potential requires that the package be recompiled.
Additional comments:monteswitch includes programs to assist with the creation of input files and the
post-processing of output files created by the main Monte Carlo programs. A user manual, a suite of test
cases, a worked example, and a collection of plug-ins to implement various commonly-used interatomic
potentials are also included with the package.
Running time:Depends on the nature of the problem and the underlying computing platform. For the
Zr EAM example in the manuscript one iteration (i.e., one 160,000-sweep weight-function-generation
simulation and one 700,000-sweep production simulation) took a wall-clock time of approximately 1.9
hours on a desktop machine (an iMac14,2 with a 3.2GHz Intel Core i5-4570 processor) exploiting 4 cores
for the 384-atom system, and 17.7 hours for the 1296-atom system. For each ensemble in the hard-sphere
example the 18,000,000-sweep weight-function-generation simulation and two 125,000,000-sweep pro-
duction simulations took a total of approximately 11 hours exploiting 16 cores on one node of a HPC cluster.

[1] A. D. Bruce, N. B. Wilding & G. J. Ackland, Phys. Rev. Lett.79 3002 (1997)

1. Introduction

The stable phase under given conditions is that with the lowest free energy. For this reason,
efficiently calculating free energies is one of the most fundamental problems in theoretical ma-
terials science. A plethora of different methods have been developed to this end, each designed
with a particular problem in mind (see, e.g., Ref. [1]). Unfortunately however, commonly-used
methods for calculating free energies of solid phases oftencannot achieve the accuracy required
for practical applications: an intractable amount of computational effort would be required. This
problem is by no means limited to ‘complicated’ models of particle interactions, but persists even
when simple models are used. For instance it was only relatively recently demonstrated that the
fcc phase is favoured over the hcp phase in the hard-sphere solid – an archetype of a simple
system [2, 3, 4].

Lattice-switch Monte Carlo(LSMC) [2, 3] 1 is a method which can be used to efficiently
evaluate the free energy difference between two solid phases. It has been applied to a wide
range of systems [2, 5, 6, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14], beginning with the hard-sphere solid
[2, 5, 6, 3], where it was used to resolve the aforementioned hcp–fcc problem [2, 3]. The method
was later applied to soft interatomic potentials [4, 11, 14], systems containing multiple particle
species [7, 8], and molecular systems [9, 10, 12, 13]. LSMC has also inspiredphase switch
Monte Carlo, a method for calculating the free energy difference between a solid and a fluid
phase [15], which has also seen some use [15, 16, 17, 18, 19, 20, 21]. As well as being versatile,
LSMC is an accurate method: it is ‘exact’ in the sense that it relies upon no approximations other
than those present in the model of particle interactions it is used in conjunction with. Moreover
for the purposes of evaluating the free energy difference between pairs of solid phases LSMC is

1The reader should be aware that LSMC has also been referred toas lattice-switchingMonte Carlo.
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ostensibly more efficient than other existing general methods [11, 9].2 3 However, despite its
strengths, LSMC has unfortunately yet to have gained widespread popularity. This stems in part
from the lack of an LSMC code which is both widely available and applicable to a wide range of
systems.

With this in mind we have developed a package,monteswitch, which implements the LSMC
method. The package, written in Fortran 95, can be used to evaluate free energy differences
between pairs of solid phases in the NVT and NPT ensembles. Furthermore the package contains
a version of the main executable which is parallelised usingMPI for HPC applications. Note
that the two ‘phases’ under consideration need not necessarily be homogeneous crystals; an
interesting prospect is to usemonteswitchto evaluate free energy costs associated with interfaces
and defects – the former is something which has been done previously using LSMC [5]. 4

Furthermoremonteswitchcan treat systems containing multiple species of particles. However it
should be noted thatmonteswitchcan only treat ‘atomic’ systems (i.e., ‘non-molecular’ systems:
those in which the constituent particles do not have rotational degrees of freedom), and pairs of
phases which can be represented by orthorhombic unit cells.

While steps have been recently been taken to implement LSMC in an existing general-
purpose code,5 we believe thatmonteswitchwill fulfil an important ‘gap in the market’ for
the foreseeable future because it was designed from the outset to be highly-customisable with
regards to the interatomic potential. By contrast general-purpose codes tend to have a fixed set
of interatomic potentials to draw upon. Inmonteswitchall of the procedures pertaining to the
interatomic potential are housed within a single Fortran module. It is intended that users write
their own version of this module which implements the interatomic potential they are interested
in. 6 (A similar scheme is utilised in the molecular dynamics program MOLDY [27]). Tem-
plates are provided withmonteswitchto assist with this. Furthermore modules are included with
monteswitchwhich correspond to some commonly-used interatomic potentials, which can serve
as examples. Of course these modules can also be used withinmonteswitchto perform LSMC
calculations.

Here we provide an introduction tomonteswitch. Note that much of what follows is elabo-
rated upon inmonteswitch’s user manual (included with the package), where we direct interested
readers for more details. The layout of this work is as follows. In the next section we describe the
theory which underpinsmonteswitch. In Section 3 we provide an overview of what is included in
themonteswitchpackage. In Section 4 we describe how interatomic potentials are implemented
in monteswitch, list the various interatomic potentials included withmonteswitch, and describe
how users can implement their own potentials. In Section 5 wedescribe the main Monte Carlo
programs withinmonteswitch. In Section 6 we describe the various utility programs included
with monteswitchfor the creation of input files and post-processing of outputfiles. In Section

2We do not include methods rooted in the harmonic approximation (including the quasi-harmonic approximation
[22, 23]) within the class of ‘general methods’ mentioned here: these methods are not ‘general’ in the sense that they
break down in the anharmonic regime.

3To elaborate, in Refs. [11, 9] LSMC was shown to significantlyoutperform thermodynamic integration (TI) [1, 24].
However the claim that LSMC outperforms TI has proved contentious [5, 25]. Of course, like-for-like comparisons
between the two methods are difficult, since different implementations of LSMC or TI may be more or less efficient than
other implementations. We believe that the claim that LSMC is at leastas efficient as TI reflects the findings of studies
up to the present time.

4We describe how LSMC can be used to evaluate interfacial freeenergies in Section 8.
5Specifically, LSMC is earmarked for inclusion in the general-purpose Monte Carlo codeDL MONTE[26].
6Of course, in doing this the user’s module is free to interface with ‘external’ modules, or even external programs.
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7 we provide two examples to elucidate howmonteswitchcould be used in practice. In the first
example we applymonteswitchto the hard-sphere solid, and testmonteswitchagainst known
LSMC results for this system; in the second we usemonteswitchto determine the hcp–bcc tran-
sition temperature and related quantities for an embedded atom model of Zr. Finally in Section
8 we present our conclusions and outlook.

2. Theoretical background

2.1. Calculating free energy differences

Consider a system which is free to visit two phases 1 and 2 (andonly phases 1 and 2). The
equilibrium phase is that with the lower free energyF , whereF is the Helmholtz free energy
in the NVT ensemble and the Gibbs free energy in the NPT ensemble. It is the free energy
difference between the phases∆F ≡ F1 − F2 which we wish to evaluate, whereF1 andF2

denote the free energies of phases 1 and 2. It can be shown that

∆F = β−1 ln
( p2

p1

)

, (1)

wherep1 and p2 denote the probability of the system being in phase 1 and 2 respectively,β =
1/(kBT), kB denotes Boltzmann’s constant, andT denotes the temperature of the system. For a
simulation which samples the ensemble under consideration, e.g., molecular dynamics,p2/p1

can be determined: measure the relative timet1 andt2 which the system spends in each phase 1
and 2 during the simulation, and substitute these quantities into the above equation, bearing in
mind thatt2/t1 = p2/p1 for a sufficiently long simulation.Hence∆F can in principle be obtained
from such a simulation via the above equation. However, thismethod is usually intractable in
practice for two solid phases, because the time taken for thesystem to transition between the
two phases is too long to allow a reasonable estimate ofp2/p1 to be deduced in a reasonable
simulation time. It may even be the case that, regardless of the phase in which the simulation is
initialised, the systemnevertransitions to the ‘other’ phase during the course of the simulation.
The problem is that, while the regions of phase space corresponding to phase 1 and phase 2
both correspond to probable states of the system at thermodynamic equilibrium, these regions
are separated by afree energy barrier– a region of phase space associated with states which
are very improbable at thermodynamic equilibrium. This barrier inhibits transitions between the
regions of phase space associated with phase 1 and phase 2.

This problem can in principle be circumvented with the MonteCarlo method. In the original
incarnation of Monte Carlo, which we refer to ascanonical Monte Carlo[28] (which we contrast
with multicanonicalMonte Carlo later), the system is evolved during the simulation as follows.
Each time step we generate a trial state of the systemσ′, and attempt to change the system to
the trial state from its current stateσ. The traditional approach for NVT ensembles is to perform
a ‘particle move’ to generate a trial state. Here, one particle in σ is moved to yieldσ′. In
NPT ensembles particle moves are supplemented by ‘volume moves’, in which the volume, and
potentially the shape, of the entire system is altered, along with a commensurate rescaling of the
particle positions. We accept the change of state fromσ to σ′ with a probabilitypσ→σ′ , which
is a function of the energies of the statesσ andσ′ in the NVT ensemble, and the enthalpies and
volumes of the statesσ andσ′ in the NPT ensemble. The function also depends on the specific
scheme used to generate stateσ′ from σ (see, e.g., Ref. [1]). The end result is that each state

4
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Figure 1: Schematic diagram illustrating a lattice switch from a state in the square phase of a notional two-dimensional
system to a state in the triangular phase. In the lattice switch the underlying square lattice (red crosses) is transformed
into a triangular lattice (blue crosses), while the displacements of the particles from their lattice sites (black arrows) is
unchanged – the displacement for each particlen is the same before and after the lattice switch. Note also that the lattice
switch here transforms the shape of the system: the red box istransformed into the blue box.

σ is sampled with a probabilitypσ which reflects the underlying ensemble, e.g., for the NVT
ensemble:

pσ ∝ e−βEσ , (2)

whereEσ denotes the energy of stateσ. However, in canonical Monte Carlo one has considerable
freedom as to how trial states are generated; one is by no means limited to the aforementioned
‘traditional’ move set. The prospect therefore exists of generating trial states in a manner which
results in the system traversing a path in phase space which allows ∆F to be calculated in a
reasonable simulation time. Such a path would involve frequent transitions between both phases
1 and 2 by ‘tunnelling’ through the free energy barrier separating them.

2.2. Lattice-switch moves

In LSMC a new type of move, alattice switch, is introduced to supplement the traditional
move set mentioned above. A lattice switch move takes the system directly from one phase to
the other, bypassing any free energy barriers separating the phases. Every time a lattice switch
is accepted, the system transitions to the ‘other’ phase. The salient feature of the move is that
the underlying ‘lattice’ which characterises the current phase is ‘switched’ for a lattice which
characterises the other phase, while thedisplacementsof all particles from their associated lattice
sites are preserved. This is illustrated in Fig. 1 for the square and triangular phases of a notional
two-dimensional system.

More formally, we can characterise a given state of the system as belonging to a solid phase
α if the positions of the particles ‘approximately’ form a lattice characteristic ofα. Let {R(α)

i }
denote the positions of the sites on this lattice, and let{r i} denote the positions of the particles,
wherei ranges from 1 to the number of particles in the system. The position r i of particlei can
be expressed as follows:

r i = R(α)
i + ui , (3)

whereui is the displacement ofi from that lattice site. Note that the displacements{ui} are
necessarily small since the particle positions form an approximateα lattice (and we have chosen
to label particles and lattice sites in a ‘sensible’ manner:such thatRi is the closest lattice site to
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r i). Now, in a lattice switch from phaseα to the ‘other’ phaseα′ we transform the underlying
lattice {R(α)

i } to {R(α′)
i }, while keeping the particle displacements{ui} unchanged. The result is

that the trial state belongs to phaseα′: the positions of the particles in the trial state form an
approximateα′ lattice.

Of course, the above description of a lattice switch is not a complete account of how lattice
switches are implemented inmonteswitch– which supports lattice switches which change the
shape and size of the supercell, as well as the species of the particle. Details of how lattice
switches are implemented inmonteswitchcan be found in the user manual.

2.3. Multicanonical Monte Carlo
One might expect that by regularly making lattice switches,the system will regularly tran-

sition between phases, and hence allow∆F to be efficiently evaluated as described above. Un-
fortunately using canonical Monte Carlo one finds that lattice switches are too rarely accepted
for this approach to be useful. The problem is that the trial stateσ′ generated by a lattice switch
is almost always of much higher energy than the current stateσ, and hence will almost always
be rejected.7 The solution to this problem is to usemulticanonical Monte Carlo[29, 30, 31]
instead of canonical Monte Carlo. Multicanonical Monte Carlo can be regarded as canonical
Monte Carlo, but if the energy for each stateσ were

Ẽσ = Eσ − ησ/β (4)

instead ofEσ, whereησ, known as theweight function, is chosen according to the aims of the
simulation. Note that ifησ > 0 then stateσ is sampled more frequently than would be the case
for the ensemble of interest; and ifησ < 0 thenσ is sampled less frequently. The strength of this
approach is that through judicious choice of the weight function, one can ‘control’ the path the
system traverses through phase space.

Of course, in a multicanonical simulation the states are no longer sampled with probabilities
corresponding to the true ensemble in question – whichis the case for canonical Monte Carlo.
Accordingly the time average of some physical quantityX throughout a long multicanonical
Monte Carlo simulation is not equivalent to the equilibriumvalue ofX for the true ensemble, as it
is in a canonical Monte Carlo simulation. Nevertheless one can obtain the equilibrium value ofX
from a multicanonical simulation by exploiting the fact that, since the weight function is known,
then so is the degree of over- or under-sampling of each state. To elaborate, the equilibrium value
of X in a multicanonical Monte Carlo simulation is given by

〈X〉 ≈

τ
∑

t=1

e−η(t)X(t)

τ
∑

t=1

e−η(t)
, (5)

whereX(t) denotes the quantityX corresponding to the state sampled at timestept, andτ denotes
the total number of timesteps.

7The situation is slightly more complicated for lattice switches which change the system volume. In this case the ex-
tent to which the volume of the system is expanded/contracted influences how likely the lattice switch is to be successful.
Accordingly the order parameter defined later in Eqn. (7) for‘selecting’ gateway states (defined in a moment) takes a
slightly different form for volume-altering lattice switches inmonteswitch– see themonteswitchuser manual for more
details. Aside from that the forthcoming discussion applies generally: to both volume-altering and volume-preserving
lattice switches.
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2.4. Multicanonical Monte Carlo in LSMC

How does multicanonical Monte Carlo resolve the problem that lattice switch moves are too
rarely accepted to be useful? Recall that lattice switches are usually rejected because they result
in a trial state with a much higher energy. There are, however, a small number of states ‘close’
to those realised at equilibrium for each phase from which a lattice switch yields a trial state
σ′ which is of comparable energy toσ. From such states a lattice switch has a good chance
of being accepted. We refer to such states asgateway states, since they provide the key to
jumping between both phases. It is these states which we wishto over-sample, and we set the
weight function accordingly. The idea is that by over-sampling these states, lattice switches are
accepted reasonably often, enabling both phases to be explored in a reasonable simulation time.
This in turn allows us to determinep1 andp2, and hence∆F via Eqn. (1). Specifically,p1 and
p2 are obtained via Eqn. (5):

pα = 〈θα〉 ≈

τ
∑

t=1

e−η(t)θα(t)

τ
∑

t=1

e−η(t)
, (6)

whereθα(t) takes the value 1 if the system is in phaseα at timestept and 0 otherwise.
How should the weight function be engineered such that gateway states are over-sampled?

Consider a stateσ, and letσ′ denote the state which results from a lattice switch performed from
σ. Let us define the state-dependent quantity

Mσ =















(Eσ − Eσ′ ) if σ belongs to phase 1

−(Eσ − Eσ′ ) if σ belongs to phase 2.
(7)

This quantity provides a practical means for resolving gateway states, states corresponding to
equilibrium (for the true ensemble under consideration) for phase 1, and states corresponding
to equilibrium for phase 2. Accordingly we refer toM as theorder parameter. Consider first
gateway states. Above we illustrated that gateway states correspond to the conditionEσ ≈ Eσ′ .
As can be seen from the above this corresponds to states withMσ ≈ 0. By contrast, if|Mσ| ≫ 0,
then the two states have significantly different values ofE. In this case, while switching from the
state with the higher value ofE to that with the lower value ofE is guaranteed, the converse is not:
the two states are not concordant with switchingto and fromboth phases.|Eσ| therefore provides
a measure of how ‘un-gateway-like’ stateσ is, with zero corresponding to ‘very gateway-like’.
Consider now phase-1-equilibrium states. From such stateswe generally expect a lattice switch
to be unsuccessful, and henceEσ′ ≫ Eσ. Therefore for such statesMσ ≪ 0. Finally consider
phase-2-equilibrium states. Similarly we generally expect a lattice switch from such states to
be unsuccessful, and henceEσ′ ≫ Eσ. However this timeMσ ≫ 0. We therefore have three
regimes:Mσ ≪ 0 corresponds to phase-1-equilibrium states;Mσ ≈ 0 corresponds to gateway
states; andMσ ≫ 0 corresponds to phase-2-equilibrium states.

With this in mind, if we choose the weight functionησ to take the same valueηM for all states
with the sameM and also chooseηM to be peaked atM = 0 and to decay monotonically with
|M|, then the weight function corresponds to a ‘force’ which drives the system towards gateway
states, allowing the system to transition between the phase-1 and phase-2 regions of phase space,
corresponding toM ≪ 0 andM ≫ 0 respectively, in a reasonable simulation time. This is, of
course, just aqualitativedescription of a form forηM which is sufficient for our purposes. As
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one might expect, the quantitative details of the weight functionηM strongly affect the efficiency
of the path traversed though phase space with regards to calculating∆F ; a ‘bad’ weight function
might result in the system getting stuck in one phase, or an unimportant region of phase space,
for a long time. Furthermore, it is not obviousa priori what a suitable weight function for a
given system should be. Hence one mustgeneratea weight function which leads to an efficient
sampling of phase space. After thisweight function generation simulation, the resulting weight
function can be used in aproduction simulationto calculate∆F as described earlier.

However in practice one cannot treatM as an unbounded continuous variable as above; one
cannot define an arbitrary weight function in computer memory via this scheme. Hence in prac-
tice one considers a finite range ofM which is divided intoNmacro bins, each corresponding to
a distinct range of ‘M-space’. Each bin itself corresponds to a macrostate: the macrostate is the
collection of states corresponding to the range ofM-space covered by the bin. We will henceforth
explicitly take this discretisation ofM into account, and letM denote the macrostate correspond-
ing to theMth bin, whereM = 1, 2, . . . ,Nmacro. Accordingly letηM denote the weight function
for macrostateM.

2.5. Weight function generation

The weight function can be generated in many different ways, some of which are more effi-
cient than others. We now list the methods implemented inmonteswitch. All of these methods
share the same notion of the ‘ideal’ weight functionη∗M, which leads to all macrostates within
the considered order parameter range to be sampled with equal probability in the multicanonical
Monte Carlo simulation.

2.5.1. Visited states method
The visited states method(see Ref. [31] and references therein) is arguably the simplest

method for generating the weight function. In the visited states method, the simulation consists
of a number of ‘blocks’, which themselves consist of a large number of Monte Carlo sweeps.
Multicanonical sampling is used throughout, and the weightfunction is updated at the end of
each block. The weight function is different – closer to the ideal – in each subsequent block, and
the number of visits to all macrostates during each block is used to inform the weight function
to be used in the next block. Eventually the weight function converges on the ideal: it provides
a ‘flat’ macrostate histogram; the weight function is such that all macrostates are sampled with
equal probability. Specifically, the following scheme is used to update the weight function at the
end of each block:

η
(n+1)
M = η

(n)
M − ln

{ C(n)
M + 1

∑

M′
(C(n)
M′ + 1

)

}

+ k, (8)

where whereC(n)
M denotes the number of states belonging to macrostateM visited during block

n; η(n)
M denotes the weight function for blockn; the summation overM′ on the denominator of

the fraction is over all macrostates 1, 2, . . . ,Nmacro; andk is an inconsequential arbitrary constant,
which we choose such that the minimum value ofη(n+1)

M over allM is 0.

2.5.2. Transition matrix method
A more sophisticated method than the visited states method,which is significantly more

efficient, is thetransition matrix method[31, 32]. This method exploits the fact that the ideal

8



weight functionη∗M is related to thecanonicalprobabilitypM of the system being in macrostate
M via the equation

η∗M = A− ln pM, (9)

whereA is an arbitrary constant.pM in turn can be determined from themacrostate transition
probability matrixTMM′ , which describes the probability that the system, currently in macrostate
M, transitions to macrostateM′ in the canonical ensemble. In the transition matrix method we
determineTMM′ , and then use this to obtainpM, and finally the ideal weight functionη∗M via
Eqn. (9).
TMM′ is determined as follows. During the simulation we keep track of the number of

transitions between all pairs of macrostates, which we store in a matrixCMM′ – whereCMM′
denotes the number of transitions from macrostateM to macrostateM′. We then useCMM′ to
obtain an estimate forTMM′ via the equation

TMM′ ≈
CMM′ + 1

∑

M′′

(CMM′′ + 1
)

. (10)

HoweverCMM′ is not simply the number ofobservedtransitions fromM to M′ during the
simulation, but rather the number ofinferred transitions. To elaborate, consider a trial state
σ′ generated from a stateσ which, if accepted, would take the system from macrostateM to
macrostateM′, and let thecanonicalprobability of the move being accepted bepσ→σ′ . Instead
of performing the updateCMM′ → CMM′ + 1 if the move is accepted andCMM′ → CMM′ if it is
not – which would result inCMM′ being the number of observed transitions fromM toM′ – we
perform the update

CMM′ → CMM′ + pσ→σ′

CMM → CMM + 1− pσ→σ′
(11)

regardless of whether it is accepted or not. Note that the canonical quantitypσ→σ′ is always used
in the update procedure, which leads toCMM′ being the inferred number of canonical transitions
betweenM andM′. Because of this one can use any method for exploringM-space: canonical,
multicanonical, or something else. We elaborate on this point in a moment.

Having determinedTMM′ , our task is to now calculatepM. It can be shown that the
macrostates obey the following detailed balance condition[31]:

TM′MpM′ = TMM′ pM. (12)

SettingM′ =M + 1 and rearranging the above gives

p(M+1) =
TM(M+1)

T(M+1)M
pM. (13)

Using this equation,pM can be obtained from the matrixTMM′ via the following procedure.
Firstly, one chooses some arbitrary value forp1. 8 With this p2 can be obtained from the above
equation (M = 1 in Eqn. (13)). This in turn can be used to obtainp3 (M = 2 in Eqn. (13)),

8In this sectionp1 andp2 denote the probability of the system being in macrostates 1 and 2,not the probabilities of
the system being in phases 1 and 2.
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which in turn can be used to obtainp4, etc., untilpNmacro is obtained. Finally, one normalises the
resulting functionpM such that

Nmacro
∑

M=1

pM = 1, (14)

as is required. The final step is to usepM to obtain an estimate for the ideal weight function.
This is done simply by substitutingpM into Eqn. (9).

2.5.3. Methods for exploring M-space
As alluded to above, since the updates toCMM′ always use the canonical probabilities of

transitioning between states, with the transition matrix method one canchoosehow M-space is
explored.monteswitchsupports a number of ways of doing this.

The first method is to use multicanonical sampling to exploreM-space with a continuously
evolving weight function, where the weight function at a given time is the current estimate for
the ideal weight function derived from the currentCMM′ as described above. This is the ‘natural’
way of applying the transition state method.

The second method is to use what we refer to asartificial dynamicsto force the system to
explore all macrostates in a reasonable amount of time. In this method, the system is first locked
into a macrostate for a certain period of time. After that period of time has elapsed, the ‘barriers’
preventing the system from moving into an adjacent macrostate is moved such that the system
is free to transition into an adjacent macrostate. Once thisoccurs, the system is locked into this
new macrostate, and the procedure starts again. There is of course the question of which adjacent
macrostate to ‘open’ to the system. Assuming we are not in macrostateM = 1 or Nmacro, then
there are two options: (M + 1) and (M− 1). In monteswitchone can specify whether to select
the new macrostate at random [33], or whether to sweep through the macrostates systematically,
e.g., to explore macrostates 3, 4, 5, . . . , (Nmacro− 1),Nmacro, (Nmacro− 1), . . . , 3, 2, 1, 2, 3, . . . . This
method is faster than the ‘natural’ method just described because one does not have to wait for
the weight function to evolve such that it pushes the system to explore macrostates which are
unlikely to be visited in the canonical ensemble.

3. Package structure

The monteswitchpackage consists of a number of programs, as well as a user manual, a
suite of test cases, a worked example, and a suite of Fortran modules corresponding to different
interatomic potentials. The programs are:

• monteswitch

• monteswitch mpi

• monteswitch post

• lattices in hcp fcc

• lattices in bcc fcc

• lattices in bcc hcp
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monteswitch and monteswitch mpi are the key programs of the package: they per-
form Monte Carlo simulations. By contrastmonteswitch post, lattices in hcp fcc,
lattices in bcc fcc andlattices in bcc hcp are utility programs:monteswitch post

is for post-processing one of the output files created by the main programs; and
lattices in hcp fcc, lattices in bcc fcc andlattices in bcc hcp are for generating
one of the input files for the main programs. We elaborate uponthese programs in later sections.

4. Interatomic potentials

The fileinteractions.f95 in the main directory of the package contains the Fortran mod-
ule, namedinteractions mod, which determines the interatomic potential to be utilisedby
themonteswitchprogramsmonteswitch,monteswitch mpi andmonteswitch post after the
package is compiled. By defaultinteractions.f95 corresponds to the embedded atom model
(EAM) [34]; to implement a specific interatomic potential one must copy the corresponding
interactions.f95 file to interactions.f95 in the main directory of the package, and then
compile the package.

4.1. Structure ofinteractions mod

The moduleinteractions mod contains the following procedures which interface with the
mainmonteswitchprogramsmonteswitch andmonteswitch mpi:

• initialise interactions, which initialises the variables within the module, possibly
by reading variables from one or more input files, for ‘new’ simulations;

• export interactions, which exports the module variables to a file for the purposesof
checkpointing the simulation;

• import interactions, which imports the module variables from the aforementioned file
to resume a checkpointed simulation;

• after accepted part interactions, after accepted vol interactions and
after accepted lattice interactions, which perform any housekeeping tasks
required by the module (e.g., updating neighbour lists) after, respectively, a particle,
volume and lattice switch move has been accepted;

• after all interactions, which performs any housekeeping tasks required by the mod-
ule after all moves, including rejected moves;

• calc energy scratch, which calculates the energy of the system ‘from scratch’ for a
specified state;

• calc energy part move, which calculates the energy of the system given that one parti-
cle has moved.

Users wishing to write their own versions ofinteractions.f95 to implement their
own interatomic potentials must write their own versions ofeach of the above proce-
dures. To assist with this, two templates forinteractions.f95 are provided withmon-
teswitch. These can be found in the directoryInteractions within the package. The file
interactions TEMPLATE minimal.f95 contains a ‘bare’ version ofinteractions.f95,
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i.e., it leaves the above procedures empty to be filled in by the user. The file
interactions TEMPLATE pair.f95 allows quick generation ofinteractions.f95 files for
pair potentials, something which we elaborate upon below. Both templates contain comments
which provide guidance to the user.

Note that there is freedom in how the module variables are initialised for a new simulation –
via the procedureinitialise interactions. Normallyinitialise interactionswould
read the variables – which parametrise the potential under consideration – from one or more
input files. We emphasise that these input files, and their formats, depend on the specific version
of interactions.f95whichmonteswitchis used in conjunction with.

4.2. Potentials included withmonteswitch

The Interactions directory within the package contains a number of versions of
interactions.f95, which correspond to various interatomic potentials. The most important
of these are as follows.

4.2.1. Embedded atom model
The file interactions EAM.f95 implements the embedded atom model (EAM) [34] for

metals (but not alloys). Here the energy of the system is given by

E =
1
2

∑

i, j,i

φ(r i j ) +
∑

i

F(ρi), (15)

ρi =
∑

j,i

ρ(r i j ), (16)

wherer i j is the separation between particlesi and j, andφ, F andρ are functions which must be
specified and constitute the parametrisation of the EAM potential. If interactions EAM.f95

is used then one input file, namedinteractions in, is required by the programsmonteswitch
andmonteswitch mpi to input the potential for new simulations. This file must be adescription
of the EAM potential to be used in DYNAMO/LAMMPS ‘setfl’ format [35].

4.2.2. Soft pair potentials
Table 4.2.2 gives a list of soft pair potentials included with monteswitch, along with the name

of the correspondinginteractions.f95 file in Interactions. All of these potentials are
implemented in the same way. Firstly, the pair potentialφ(r) is assumed to be 0 for inter-particle
separationsr greater than some cut-off distancerc. In other words the potential istruncated
at rc. Secondly, only pairs of particles within a distancer list of each other at the start of the
simulation interact with each other throughout the entire simulation. To clarify the difference
betweenrc andr list: the former is the distance at which the potential is truncated, while the latter
determines which particles are in each others’neighbour list, which remains constant throughout
the simulation.

As for the EAM potential just described, for the soft potentials an input file
interactions in, is required by the programsmonteswitch andmonteswitch mpi to in-
put the potential for new simulations. The format of this fileis as follows: each variable which
parametrises the potential corresponds to a specific line ininteractions in, and each line
must contain a string (we recommend the name of the variable followed immediately by an ‘=’
character with no spaces), followed by whitespace, followed by the value of the variable. The
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final column of Table 4.2.2 gives the order of variables as they should appear, one per line, in
interactions in for each potential. Note that in all casesrc and r list are included as input
variables. Furthermore there is a variableNlist, which determines the size of the array used in
the program to store the neighbour lists. Details regardingthis variable can be found in the user
manual. To illustrate the above, here is an exampleinteractions in file for the Lennard-Jones
potential (interactions LJ.f95):

lj_epsilon= 1.0

lj_sigma= 1.0

lj_cutoff= 1.5

list_cutoff= 1.000000001

list_size= 14
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Table 1: Soft interatomic pair potentials included withmonteswitch

Potential File name Expression for potential Order of variables in
interactions in

12-10 interactions 12-10.f95 A/r12 − B/r10 A, B, rc, r list, Nlist

12-6 interactions 12-6.f95 A/r12 − B/r6 A, B, rc, r list, Nlist

Buckingham interactions Buckingham.f95 Aexp(−r/ρ) −C/r6 A, ρ, C, rc, r list, Nlist

Gaussian interactions Gaussian.f95 −Aexp(−Br2) A, B, rc, r list, Nlist

Lennard-Jones interactions LJ.f95 4ǫ
[

(σ/r)12− (σ/r)6] ǫ, σ, rc, r list, Nlist

9-6 Lennard-Jones interactions LJ 9-6.f95 4ǫ
[

(σ/r)9 − (σ/r)6] ǫ, σ, rc, r list, Nlist

Morse interactions Morse.f95 E0

{

[

1− exp
(−k(r − r0)

)

]2
− 1

}

E0, k, r0, rc, r list, Nlist

n-m interactions n-m.f95
[

E0/(n−m)
][

m(r0/r)n − n(r0/r)m]

n, m, r0, rc, r list, Nlist

Yukawa interactions Yukawa.f95 Aexp(−kr)/r A, k, rc, r list, Nlist

1
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4.2.3. User-defined pair potentials
As mentioned above, the fileinteractions TEMPLATE pair.f95 is a template which can

be used to easily createinteractions.f95 files for user-defined pair potentials. Instructions
are provided in the file regarding how the file should be modified to realise the user’s potential
of interest. In fact this template was used to create the filesfor almost all of the pair potentials
described above.

4.2.4. Hard/penetrable spheres
The fileinteractions HS multi.f95 implements the penetrable (including hard) spheres

model, where the sphere diameter is allowed to vary with particle species. Here, the pair potential
between two particles belonging to speciessandt is given by

φst(r) =















ǫ if r < 1
2(σs + σt)

0 otherwise,
(17)

whereσs denotes the diameter of spheres belonging to speciess. Again, the input file for the new
simulations in the programsmonteswitchandmonteswitch mpi is namedinteractions in,
and its format is similar to theinteractions in files for the soft pair potentials described
above. In this case however the order of the variables isǫ, Nspecies, σ, r list, andNlist, whereNspecies

is the number of species to consider, andσ is anNspecies-dimensional vector (to be specified on a
single lineinteractions in) containing the diameters for each species 1, 2, . . . ,Nspecies. Note
that hard spheres correspond to the limitβǫ → ∞, and hence hard spheres can be implemented
by settingǫ to a high value.

5. Monte Carlo simulation programs

The key programs in the package aremonteswitch andmonteswitch mpi. The main pur-
pose of these programs is to perform LSMC simulations, though they can also be used to perform
‘conventional’ Monte Carlo simulations.monteswitch mpi is the MPI-parallelised analogue of
monteswitch. While inmonteswitch one simulation is performed, inmonteswitch mpi mul-
tiple simulations are performed in parallel. These simulations are identical except for the seed
used for the random number generator. Hencemonteswitch mpi is simply a convenient means
to exploit parallelisation in order to obtain results quickly. In terms of usage and simulation
methodologymonteswitch andmonteswitch mpi are almost identical. For this reason we fo-
cus onmonteswitchbelow, where it should be assumed that what is said formonteswitch mpi

also applies formonteswitch mpi unless otherwise stated.

5.1. Overview of functionality

monteswitch can treat phases which can be represented by orthorhombic supercells in the
NVT and NPT ensembles, where in the NPT ensemble both isotropic volume moves and volume
moves which allow the shape of the system to alter are supported. Multicomponent systems
are allowed, howevermonteswitch cannot treat ‘molecular’ systems in which the particles
have orientational degrees of freedom: rotational Monte Carlo moves are not implemented in
monteswitch.

monteswitch supports both canonical and multicanonical sampling, where the multicanon-
ical sampling is performed over the LSMC order parameter described in Section 2.4. Regarding
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weight function generation,monteswitch supports all of the methods described in Section 2.5.
Note that the option to perform canonical sampling enables conventional Monte Carlo simula-
tions to be performed. Note also that, like all other LSMC implementations the authors are aware
of, monteswitch explicitly keeps track of two states of the system during a simulation, one cor-
responding to phase 1 and one corresponding to phase 2. At anypoint during the simulation only
one of these is the ‘actual’ state of the systemσ, while the other is the stateσ′ which would result
if a lattice switch were performed fromσ. For instance if the system were in phase 1, thenσ
would belong to phase 1 andσ′ would belong to phase 2. During a simulation the actual stateσ

is evolved via particle moves, and additionally volume moves for the case of the NPT ensemble,
in the conventional manner. However the ‘other’ stateσ′ is evolved contemporaneously withσ
so thatσ′ is always what would result if a lattice switch were performed fromσ. It is necessary
to continuously trackσ′ in this manner because the LSMC order parameter forσ depends on the
energy, and possibly also the volume, ofσ′ (see Section 2.4 for details). Regarding lattice switch
moves, if such a move is accepted, then the actual state is simply relabelled fromσ toσ′, while
σ is relabelled as the ‘other’ state.

monteswitch also supports on-the-fly evaluation of physical quantitiesand their uncertain-
ties during the simulation via block averaging (see, e.g., Ref. [1]). It also supports the ability to
check whether or not the system has ‘melted’, i.e., whether or not one or more of the particles
have strayed ‘too far’ from their lattice sites. In a similarvein, it is possible inmonteswitch to
perform simulations in the centre-of-mass reference frame, which provides a means of suppress-
ing spurious melting due to ‘drift’ in the centre-of-mass ofthe system during the simulation.

The random number generator utilised bymonteswitch is the Mersenne Twister (MT19937)
[36].

5.2. Command-line argument usage
The command-line arguments passed tomonteswitch determine the nature of the invoked

simulation. Usage ofmonteswitch is as follows:

monteswitch [-seed <seed>] -new [-wf]

monteswitch [-seed <seed>] (-resume|-reset)

The function of each of these arguments is described below.

5.3. Seeding the random number generator
The command-line argument-seed allows the user to specify the seed for the forthcoming

simulation explicitly. If the argument-seed is absent then a seed is generated using the system
clock.

5.4. Running a new simulation
The command-line argument-new invokes a new simulation ‘from scratch’. In this case

the simulation is initialised using information containedin input files located in the current
directory. The input files required bymonteswitch will depend on the specific version of
interactions.f95 utilised when compilingmonteswitch(see Section 4). However it is only
the input files which contain information pertaining to the interatomic potential which are
version-dependent; the remaining information used to initialise a simulation are read from in-
put files which are universal to all versions ofmonteswitch, namelylattices in, params in

andwf in. The first two of these are compulsory: they are read by all newsimulations. By
contrastwf in is optional, only being read if the command-line argument-wf is present.
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5.4.1. Input file:lattices in

We now describe these files, beginning withlattices in. This file contains specifications
for two states (i.e., supercell dimensions and particle positions), one for each phase. These two
states serve two purposes. Firstly, they act as prospectiveinitial state for the simulation: if the
system is to be initialised in phase 1, then the phase-1 statewill be used as the initial state, and
similarly if the system is to be initialised in phase 2. Secondly, they determine the nature of the
lattice switch. The fractional position of particlei for phaseα specified inlattices in is used
as the lattice site fori in phaseα during lattice switches. Furthermore the supercell dimensions
specified for each phase inlattices in determine how the supercell is transformed during
lattice switches. Specifically, ifL(α)

x , L(α)
y and L(α)

z denote the supercell dimensions specified
for phaseα in lattices in, then thex-, y- andz-dimensions of the supercell are multiplied
by factorsL(2)

x /L
(1)
x , L(2)

y /L
(1)
y andL(2)

z /L
(1)
z respectively during a lattice switch from phase 1 to

phase 2, and byL(1)
x /L

(2)
x , L(1)

y /L
(2)
y andL(1)

z /L
(2)
z during a lattice switch from phase 2 to phase 1.

Below is a pedagogical example of alattices in file, which corresponds to phase 1 being an
8-particle bcc supercell and phase 2 being an 8-particle hcpsupercell, where the phase-1 state
consists entirely of particles belonging to species ‘1’andthe phase-2 state consists of a mixture
of species ‘1’ and ‘2’. Note that in this case the species of some of the particles is transformed
during lattice switches.

bcc-hcp, rho = 0.5, nx,ny,nz = 1, 1, 2 # Comment line

8 # Number of particles

2.2449241 # x-dimension for phase 1

1.5874012 # y-dimension for phase 1

4.4898482 # z-dimension for phase 1

0.0000000 0.0000000 0.0000000 1 # Coords and species for phase 1

0.5000000 0.5000000 0.0000000 1

0.5000000 0.0000000 0.2500000 1

0.0000000 0.5000000 0.2500000 1

0.0000000 0.0000000 0.5000000 1

0.5000000 0.5000000 0.5000000 1

0.5000000 0.0000000 0.7500000 1

0.0000000 0.5000000 0.7500000 1

2.4494897 # x-dimension for phase 2

1.4142136 # y-dimension for phase 2

4.6188021 # z-dimension for phase 2

0.0000000 0.0000000 0.0000000 1 # Coords and species for phase 2

0.5000000 0.5000000 0.0000000 2

0.3333333 0.0000000 0.2500000 1

0.8333333 0.5000000 0.2500000 2

0.0000000 0.0000000 0.5000000 1

0.5000000 0.5000000 0.5000000 2

0.3333333 0.0000000 0.7500000 1

0.8333333 0.5000000 0.7500000 2

5.4.2. Input file:params in

The second compulsory input file for a new simulation isparams in. This file contains the
variables which determine the nature of the simulation. Each variable corresponds to a specific
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single line in the file, and each line must consist of an arbitrary string (we recommend the name of
the variable followed immediately by an ‘=’ character with no spaces), followed by whitespace,
followed by the value of the variable. To illustrate this, below is an excerpt from aparams in

file:

init_lattice= 1

M_grid_size= 100

M_grid_min= -82.0

M_grid_max= 48.0

enable_multicanonical= T

beta= 9.403

P= 0.0

enable_lattice_moves= T

enable_part_moves= T

enable_vol_moves= T

part_select= "rand"

part_step= 0.3

enable_COM_frame= T

vol_dynamics= "UVM"

vol_freq= 1

vol_step= 0.03

stop_sweeps= 160000

equil_sweeps= 0

enable_melt_checks= T

melt_sweeps= 100

melt_threshold= 3.0

melt_option= "zero_current"

A full list of the variables which must appear in aparams in, as well as a description of their
function, is provided in the user manual included with the package. The key variables are listed
in Table 5.4.2. Numerous examples ofparams in files are included withmonteswitchwhich
serve as templates for users.

18



Table 2: Important control variables formonteswitch to be specified in
theparams in input file.

Variable Type Description
init lattice INTEGER Starting phase for the simulation (1 or 2).
M grid size INTEGER Number of macrostates to divide the considered order parameter range (M grid min to

M grid max) into.
M grid min REAL Minimum of considered order parameter range.
M grid max REAL Maximum of considered order parameter range.
enablemulticanonical LOGICAL T enables multicanonical sampling using the current weight function;F enables canonical

sampling.
beta REAL Inverse temperature:β = 1/(kBT).
P REAL Pressure (only relevant in NPT ensemble simulations).
enable lattice moves LOGICAL T enables lattice switch moves (performed after every particle and volume move).
enablepart moves LOGICAL T enables particle moves.
enablevol moves LOGICAL T enables volume moves and selects the NPT ensemble;F selects the NVT ensemble. A

volume move will be attempted on averagevol freq times per sweep.
part select CHARACTER(30) Flag determining how the next particle to move is selected:"cycle" selects particles se-

quentially,"rand" selects particles at random.
part step REAL Particle move maximum size; particles are moved according to a random walk, with a maxi-

mum move size ofpart step in any Cartesian direction.
enableCOM frame LOGICAL T performs the simulation in the centre-of-mass reference frame;F uses the lab frame. Using

the centre-of-mass frame prevents ‘drift’ in the centre-of-mass, which is convenient because
it keeps particles close to their lattice sites.

vol dynamics CHARACTER(30) Flag determining which type of volume moves are performed:"FVM" (fixed volume move)
keeps the supercell shape unchanged during a volume move;"UVM" (unconstrained volume
move) allows the x-, y- and z-dimensions to move independently.

vol freq INTEGER Number of volume moves performed per sweep on average if volume moves are enabled. We
recommend that this be set to 1.

vol step REAL Volume move maximum step size; the volume is moved accordingto a random walk in ‘ln(V)-
space’, with a maximum move size ofvol step.

stop sweeps INTEGER Total number of Monte Carlo sweeps to perform in the simulation.

1
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equil sweeps INTEGER Number of sweeps to disregard before the system is considered to be equilibrated; statistics
are not gathered during these sweeps for block averaging (see below).

enablemelt checks LOGICAL T enables periodic checks of whether the system has ‘melted’,i.e., if one or more of the par-
ticles has moved more than a distance ofmelt threshold from its lattice site in any Cartesian
direction then the system is considered to have ‘melted’.

melt sweeps INTEGER Period (sweeps) to check for melting.
melt threshold REAL Seeenablemelt checks.
melt option CHARACTER(30) Flag determining what the simulation does if the system has ‘melted’: "zero 1" and

"zero 2" move the system to the zero-displacement states in phases 1 and 2, respectively;
"zero current" does the same but for the current phase;"stop" stops the simulation. For
"zero 1", "zero 2", "zero current" the system is allowed to re-equilibrate before statis-
tics are gathered for bock averaging. Also, the current block is disregarded for the purposes
of block averaging.

enabledivergencechecks LOGICAL T enables periodic checks of whether the energy of the system is correct, given that during
particle moves the energy of the system isamended, as opposed to being calculated from
scratch every move. If the energy of the system differs from its ‘true’ energy by an amount
divergencetol then the simulation is stopped.

divergencesweeps INTEGER Period (sweeps) to perform energy checks as just mentioned.
divergencetol REAL Seeenabledivergencechecks.
output file period INTEGER Period (sweeps) at which information about the simulation is output to the filedata.
output stdout period INTEGER Period (sweeps) at which information about the simulation is output to stdout.
checkpoint period INTEGER Period (sweeps) at which the simulation is checkpointed, i.e., how often all simulation vari-

ables are output to the filestate.
update eta LOGICAL T results in the weight function being periodically updated everyupdate eta sweepssweeps,

according to the method specified inupdate eta method; F results in the weight function
not being updated – it remains frozen at its current state.

update eta sweeps INTEGER Period (sweeps) at which the weight function is updated.
update trans LOGICAL T results in the transition matrix being updated;F results in it not being updated.
update eta method CHARACTER(30) Method used to update the weight function:"VS" uses the visited states method;"shooting"

uses the transition matrix method.
enablebarriers LOGICAL T enables artificial dynamics; forF the system is free to explore any macrostate, but is con-

strained to reside within the considered order parameter range (M grid min toM grid max).

2
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barrier dynamics CHARACTER(30) Flag determining how the macrostate barriers will evolve during artificial dynamics. All
methods lock the system into a single macrostate forlock movesmoves, before unlocking
an adjacent macrostate. Once the system has moved into the adjacent macrostate, the sys-
tem is then locked into that macrostate, and the procedure starts again."random" evolves
the macrostate the system is locked into via a random walk: the next macrostate is decided
with equal probability to be that above or that below the current macrostate."pong up"

moves to increasingly higher macrostates until the upper limit of the supported order param-
eter range is encountered, at which point it reverses direction and proceeds to increasingly
lower macrostates until it reaches the lower limit of the order parameter range, at which
point it reverses direction, etc."pong down" instead moves initially to increasingly lower
macrostates.

lock moves INTEGER The number of moves to lock the system into one macrostate forif artificial dynamics is used.
calc equil properties LOGICAL T enables internal calculation of various physical quantities, and associated uncertainties, via

block averaging.
block sweeps INTEGER The number of sweeps which comprise a ‘block’ which will be used to evaluate physical

quantities and their associated uncertainties via block averaging.2
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5.4.3. Input file:wf in

The command-line argument-wf allows one to specify the initial weight function to be used
in the simulation: if-wf is present, then the initial weight function is read from thefile wf in. If
-wf is absent thenwf in is not read, and the weight function is initialised to 0 for all macrostates.
wf in must containM grid size lines (whereM grid size is specified inparams in), each
containing two tokens (extra lines and tokens are ignored),which both should be of typeREAL.
The first token on each line is ignored, while the second tokens are treated as the weight function:
the value of the weight function for macrostatei is initialised to the value of the second token
on line i in wf in. Note that the format ofwf in is analogous to that output by the program
monteswitch post in conjunction with the-extract wf argument – see Section 6.2.

5.5. Simulation output

During a simulation information is periodically output to afile data and (optionally) stdout.
Exactly what information is output is controlled by flags in the input fileparams in. data can
be used to deduce how the system evolves with time during the simulation. The format of this
file is transparent: each line contains a simulation variable (e.g., energy, volume), followed by
the sweep number, followed by the value of the variable. To illustrate this, below is an excerpt
from adata file:

Lx: 250 20.506880155055160 22.375541637220159

Ly: 250 21.983483940969180 19.585057663268277

Lz: 250 20.142474063147095 20.720990682970093

V: 250 9080.4825242547813

lattice: 250 2

E: 250 -2420.3817246101821

M: 250 12.808541584236991

eta: 250 9.9865126253137664

barrier_macro_low: 250 84

Lx: 500 20.470022712854778 22.335325610873863

Ly: 500 21.965084799027686 19.568665891297709

Lz: 500 20.294516764376276 20.877400237511747

V: 500 9124.9380258152232

lattice: 500 2

E: 500 -2409.3469532112986

M: 500 1.1974997526594968

eta: 500 54.025947498280964

barrier_macro_low: 500 84

Lx: 750 20.472567199702674 22.338101960615028

Ly: 750 21.653559219100391 19.291128151472556

Lz: 750 20.503721368631055 21.092613455213190

V: 750 9089.3805950278784

lattice: 750 1

In addition todata, a file state is also created by the program periodically throughout a
simulation. This file contains a snapshot of all the simulation variables, and can be used for
checkpointing (discussed in a moment), or to extract the ‘results’ of the simulation, e.g., equi-
librium quantities, the current weight function, the number of accepted vs. rejected Monte Carlo
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moves of a certain type. The format of this file is transparent. Each line pertains to a simulation
variable, and the line itself contains the name of the simulation variable followed by the variables
value. To illustrate this, below is an except of astate file:

output_stdout_sigma_equil_L_2= T

checkpoint_period= 2000

M_grid_size= 100

n_part= 384

Lx= 20.828469299691541 22.726435154004815

Ly= 21.821584954680326 19.440822063915213

Lz= 20.313660823118358 20.897094137158106

V= 9232.7662932888543

lattice= 2

E_1= -2398.4613158910693

E_2= -2417.6552334642806

E= -2417.6552334642820

M= 19.193917573211365

macro= 87

eta= 0.0000000000000000

switchscalex= 1.0911236359717214

switchscaley= 0.89089871814033939

switchscalez= 1.0287212294780348

sweeps= 200

moves= 154044

moves_lattice= 77022

accepted_moves_lattice= 1

moves_part= 76800

Table 5.5 provides a list of simulation variables, not already covered by Table 5.4.2, which can
be found instate and could be of interest to the user.
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Table 3: Useful variables found in themonteswitch output filestate.

Variable Fortran type Description
n part INTEGER Number of particles in the system.
Lx REAL(2) Dimension of supercells in x-direction: the first value pertains to phase

1 while the second pertains to phase 2.
Ly REAL(2) Dimension of supercells in y-direction: the first value pertains to phase

1 while the second pertains to phase 2.
Lz REAL(2) Dimension of supercells in z-direction: the first value pertains to phase

1 while the second pertains to phase 2.
V REAL Current volume of the system.
lattice INTEGER Current phase of the system (1 or 2).
E 1 REAL Energy of phase 1 for the current displacements.
E 2 REAL Energy of phase 2 for the current displacements.
E REAL Current energy of the system. This isE 1 if we are in phase 1 andE 2

if we are in phase 2.
M REAL Current order parameter of the system.
macro REAL Current macrostate of the system.
eta REAL The value of the weight function associated with the currentmacrostate

of the system.
switchscalex REAL Scaling of the supercell in the x-dimension when performinga lattice

switch from phase 1 to phase 2. The reciprocal of this is the scaling
when performing a lattice switch from phase 2 to phase 1.

switchscaley REAL Scaling of the supercell in the x-dimension when performinga lattice
switch from phase 1 to phase 2. The reciprocal of this is the scaling
when performing a lattice switch from phase 2 to phase 1.

switchscalez REAL Scaling of the supercell in the x-dimension when performinga lattice
switch from phase 1 to phase 2. The reciprocal of this is the scaling
when performing a lattice switch from phase 2 to phase 1.

sweeps INTEGER Number of sweeps performed so far, including over previous simula-
tions if we have used the-resume argument.
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moves INTEGER Total number of moves performed so far in total, including over previ-
ous simulations if we have used the-resume argument.

moveslattice INTEGER Number of lattice moves performed so far, including over previous sim-
ulations if we have used the-resume argument.

acceptedmoveslattice INTEGER Number of accepted lattice moves so far, including over previous simu-
lations if we have used the-resume argument.

movespart INTEGER Number of particle moves performed so far, including over previous
simulations if we have used the-resume argument.

acceptedmovespart INTEGER Number of accepted particle moves so far, including over previous sim-
ulations if we have used the-resume argument.

movesvol INTEGER Number of volume moves performed so far, including over previous
simulations if we have used the-resume argument.

acceptedmovesvol INTEGER Number of accepted volume moves so far, including over previous sim-
ulations if we have used the-resume argument.

melts INTEGER The number of times the system has melted.
barrier macro low INTEGER The macrostate number corresponding to the lowest currently allowed

macrostate (relevant only when artificial dynamics is enabled).
barrier macro high INTEGER The macrostate number corresponding to the highest currently allowed

macrostate (relevant only when artificial dynamics is enabled).
block counts INTEGER The total number of blocks considered so far for block averaging.
equil DeltaF REAL The free energy difference between the phases (F1−F2; extensive) eval-

uated using block averaging.
sigma equil DeltaF REAL The uncertainty inequil DeltaF evaluated using block averaging..
equil H 1 REAL The energy (for NVT simulations) or enthalpy (for NPT simulations) of

phase 1 evaluated using block averaging.
equil H 2 REAL The energy (for NVT simulations) or enthalpy (for NPT simulations) of

phase 2 evaluated using block averaging.
sigma equil H 1 REAL The uncertainty inequil H 1.
sigma equil H 2 REAL The uncertainty inequil H 2.
equil V 1 REAL The volume of phase 1 evaluated using block averaging.
equil V 2 REAL The volume of phase 2 evaluated using block averaging.
sigma equil V 1 REAL The uncertainty inequil V 1.
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sigma equil V 2 REAL The uncertainty inequil V 2.
R 1 REAL(n part,3) The current lattice vectors for phase 1.
R 2 REAL(n part,3) The current lattice vectors for phase 2.
u REAL(n part,3) The current displacement vectors.
M grid REAL(M grid size) Array containing the minimum order parameter for each macrostate:

macrostaten corresponds to order parameters betweenM grid (n) and
M grid (n+ 1).

M counts 1 INTEGER(M grid size) M counts 1(n) is the number of times macrostaten has been visited
while the system was in phase 1 so far, including over previous simula-
tions if we have used the-resume argument.

M counts 2 INTEGER(M grid size) M counts 2(n) is the number of times macrostaten has been visited
while the system was in phase 2 so far, including over previous simula-
tions if we have used the-resume argument.

eta grid REAL(M grid size) eta grid (n) is the value of the weight function for macrostaten.
trans REAL(M grid size,M grid size) trans(m, n) is the number of inferred transitions from macrostatem to

macrostaten; it is the matrixCMM′ in Section 2.5.2.
equil umsd 1 REAL(n part) equil umsd 1(n) is the mean-squared displacement of particlen from

its lattice site in phase 1, evaluated using block averaging.
equil umsd 2 REAL(n part) equil umsd 2(n) is the mean-squared displacement of particlen from

its lattice site in phase 2, evaluated using block averaging.
sigma equil umsd 1 REAL(n part) sigma equil umsd 1(n) is the uncertainty inequil umsd 1(n).
sigma equil umsd 2 REAL(n part) sigma equil umsd 2(n) is the uncertainty inequil umsd 2(n).
equil L 1 REAL(3) The 1st, 2nd and 3rd values in the arrayequil L 1 are the mean x-,

y- and z-dimensions of the supercell in phase 1, evaluated using block
averaging.

equil L 2 REAL(3) The 1st, 2nd and 3rd values in the arrayequil L 2 are the mean x-,
y- and z-dimensions of the supercell in phase 2, evaluated using block
averaging.

sigma equil L 1 REAL(3) sigma equil L 1(n) is the uncertainty inequil L 1(n).
sigma equil L 2 REAL(3) sigma equil L 2(n) is the uncertainty inequil L 2(n).
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5.6. Resuming a checkpointed simulation

The command-line argument-resume continues an ‘old’ simulation, whose variables are
contained in the filestate in the current directory. The ‘resumed’ simulation is run for the
number of Monte Carlo sweeps specified in the variablestop sweepsin state. By default this
is the number of sweeps which were performed in the old simulation, though one of course this
can be manually altered if one wants the resumed simulation to be of a different length to the old
simulation. For a simulation invoked using the argument-resume, the filedata is amended: the
resumed simulation does not overwrite thedata file; all information from the old simulation is
retained in it.

The command-line argument-reset invokes a simulation from an oldstate file similarly
to -resume, except that it resets all ‘counter variables’ to zero. Thishas the effect of starting a
‘new’ simulation whose nature corresponds to the old simulation, but instead uses the state of the
system specified instate. By contrast, the argument-new initialises the state to be such that
the particles form a perfect crystal lattice, which usuallydoes not correspond to an equilibrated
state. By ‘counter variables’ we mean those such as variables describing the number of moves
performed for each move type, the number of accepted moves for each move type, and variables
pertaining to equilibrium quantities. For a simulation invoked using the argument-reset, the
file data is overwritten, i.e., the information from the ‘old’ simulation is not retained.

5.7. MPI simulations

As mentioned at the beginning of this chapter, the programmonteswitch mpi is
the MPI-parallelised analogue ofmonteswitch. To build upon what was already said,
monteswitch mpi is identical to the program, except that instead of a single simulation for
stop sweepsMonte Carlo sweeps,monteswitch mpi runsn simulations – replicas – in parallel
using MPI, each being approximatelystop sweeps/n sweeps in length. Accordingly, during the
simulation multipledata- andstate-format files are created – one for each replica. These are
namedstate 0, state 1, state 2, etc., and similarly for thedata-format files. At the com-
pletion of all replicas, the results of block averaging fromall replicas are combined and stored in
the filestate. The state stored instate corresponds to the state instate 0.

Further details of the parallelisation are as follows. All replicas are always initialised to be in
the same state. For a new simulation this is determined by theinit lattice variable inparams in

similarly to monteswitch. For a resumed simulation this is the state contained in thestate

file from which the simulation is to be resumed. We emphasise that all replicas of the system
are initialised with the same statewhen the-resume argument is used withmonteswitch mpi.
The filesdata n are therefore always overwritten bymonteswitch mpi when the-resume
argument is invoked since, given the nature of the parallelisation, there is no continuity between
the replicas in subsequent simulations. The exception is replica ‘0’, whose state is always stored
in the filestate, as well asstate 0.

6. Utility programs

As mentioned earlier,monteswitchcontains a number of utility programs which assist with
post-processing of the data and the construction of input files. We now describe these programs.
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6.1. Programs for generatinglattices in files

The programslattices in hcp fcc, lattices in bcc fcc andlattices in bcc hcp

createlattices in files containing reference states corresponding to, respectively, hcp–fcc,
bcc–fcc and bcc–hcp lattice switches. Usage of these programs is as follows:

lattices_in_hcp_fcc <rho> <nx> <ny> <nz>

lattices_in_bcc_fcc <rho> <nx> <ny> <nz>

lattices_in_bcc_hcp <rho> <nx> <ny> <nz>

The command-line arguments<rho>, <nx>, <ny> and<nz> constitute the free parameters for
thelattices in file to be created. The first argument<rho> is the density (i.e., the number of
particles per unit volume) of the reference states to construct. (Note that both states necessarily
have the same density). The second, third and fourth arguments<nx>, <ny> and<nz> are inte-
gers which correspond to the number of unit cells (describedin a moment) which will be tiled in
the x-, y- and z-directions respectively to construct the supercell for each phase. The programs
output the desiredlattices in file to stdout. Hence one must redirect the output to create the
requiredlattices in file, e.g.,$ ./lattices_in_hcp_fcc 0.5 2 3 5 > lattices_in

What follows is a description of the unit cells for each pair of phases for each program.

6.1.1. lattices in hcp fcc

The unit cell here contains 12 particles. The particles are spread over 6 planes in the z-
direction; each plane contains two particles. The positions of the particles corresponds to a
stacking sequence for the planes of ABCABC for the fcc unit cell, and ABABAB for the hcp
unit cell.

6.1.2. lattices in bcc fcc

The unit cell here is the conventional 2-particle body-centred tetragonal (bct) unit cell; for the
bcc(fcc) lattice the relative dimensions of the bct unit cell in each Cartesian direction correspond
to the bct representation of the bcc(fcc) lattice.

6.1.3. lattices in bcc hcp

The unit cell here contains 4 particles. The bcc unit cell is the 4-particle face-centred tetrago-
nal (fct) corresponding to the fct representation of the bcclattice. The hcp unit cell is the ‘fct-like’
representation of the hcp lattice.

6.2. Post-processingstate files

monteswitch post is a tool for post-processing the filestate generated bymonteswitch
or monteswitch mpi. It can be used to extract useful information from that file. Thestate
file which the program operates on is that in the current directory. The command-line arguments
determine the task performed by the program. Usage ofmonteswitch post is as follows, where
the function of each command-line argument is described below:

monteswitch_post -extract_wf

monteswitch_post -extract_M_counts

monteswitch_post -extract_pos [<species>]

monteswitch_post -extract_R_1 [<species>]

monteswitch_post -extract_R_2 [<species>]
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monteswitch_post -extract_u [<species> <phase>]

monteswitch_post -calc_rad_dist <bins>

monteswitch_post -merge_trans <state_in_1> <state_in_2> <state_out>

monteswitch_post -extract_lattices_in <vectors_in_1> <vectors_in_2>

monteswitch_post -extract_pos_xyz

monteswitch_post -set_wf <wf_file>

monteswitch_post -taper_wf

6.2.1. -extract wf

Extract the weight function fromstate and output it to stdout. In the output the first token
on each line is the order parameter, and the second is the corresponding value of the weight
function.

6.2.2. -extract M counts

Extract order parameter histograms fromstate and output them to stdout. In the output the
first token on each line is the order parameter, the second is the corresponding number of counts
for phase 1, and the third is the corresponding number of counts for phase 2.

6.2.3. -extract pos [<species>]

Extract the current positions of the particles, and output them to stdout. In the output the first,
second and third tokens on each line are the x-, y- and z-coordinates respectively for a particle.
If the optional argument<species> is present then only the positions for particles belonging to
species<species> are output.

6.2.4. -extract R 1 [<species>]

Extract the current positions of the lattice sites for phase1, and output them to stdout. In the
output the first, second and third tokens on each line are the x-, y- and z-coordinates respectively
for a particle. If the optional argument<species> is present then only the sites for particles
belonging to species<species> in phase 1 are output.

6.2.5. -extract R 2 [<species>]

Extract the current positions of the lattice sites for phase2, and output them to stdout. In the
output the first, second and third tokens on each line are the x-, y- and z-coordinates respectively
for a particle. If the optional argument<species> is present then only the sites for particles
belonging to species<species> in phase 2 are output.

6.2.6. -extract u [<species> <phase>]

Extract the displacements of the particles, and output themto stdout. In the output the first,
second and third tokens on each line are the x-, y- and z-displacements respectively for a particle.
If the optional arguments<species> and<phase> are present then only the displacements for
particles belonging to species<species> in phase<phase> are output.

6.2.7. -calc rad dist <bins>

Calculate the radial distribution function, based on the current state of the system, and output
it to stdout.<bins> is the number of bins to be used in the function.
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6.2.8. -merge trans <state in 1> <state in 2> <state out>

Combine thetrans matrices from the files<state in 1> and<state in 2>, and store the
result in the file<state out>, where all variables in<state out> other than the matrixtrans
are inherited from<state in 1>. This argument can be used for pooling the results of multiple
simulations which utilise the same underlying ‘order parameter grid’M grid size.

6.2.9. -extract lattices in <vectors in 1> <vectors in 2>

Output the geometrical properties of the system in the format of a lattices in file. The
arguments<vectors in 1> and<vectors in 2> can be eitherpos or R. If <vectors in 1>

is pos, then the positions of the particles in phase 1 of the forthcoming lattices in file will
be the positions of the particles in phase 1 in thestate file; if <vectors in 1> is R, then the
positions of the particles in phase 1 of thelattices in file will be the current lattice vectors
(i.e.,R 1) corresponding to phase 1 in thestate file. Similar applies for<vectors in 2> with
phase 2.

6.2.10. -extract pos xyz

Extract the positions of the particles, and output them to stdout in ‘.xyz’ format. In the
output the first line contains the number of particles, the second line is a comment line, and the
subsequent lines contain the particle positions and species: the first token is the ‘element’ (set to
‘A’ for species ‘1’, ‘B’ for species ‘2’, ..., ‘Z’ for species26, and ‘?’ otherwise), and the second,
third, fourth and fifth tokens are the x-, y- and z-coordinates respectively.

6.2.11. -set wf <wf file>

Alters the weight function instate to correspond to that specified in the file<wf file>. The
format of the file<wf file> must be analogous to the format of the weight function outputby
this program via the-extract wf argument described above: the file must containM grid size
lines, each containing two tokens (extra lines and tokens are ignored), which both should be of
typeREAL. The first token on each line is ignored, while the second tokens are treated as the new
weight function: the value of the weight function for macrostatei is set to the value of the second
token on linei in <wf file>.

6.2.12. -taper wf

‘Tapers’ the weight function in thestate file. To elaborate, it is assumed that the weight
function has a single local minimum in theM < 0 region (the region associated with phase 1)
and a single local minimum in theM > 0 region (associated with phase 2), with a maximum
at M ≈ 0 separating the two minima. Letηmin,1 denote the value of the weight function at the
minimum in theM < 0 region, and letMmin,1 denote the location of this minimum. In theM < 0
region the weight function is tapered by settingηM = ηmin,1 for all M < Mmin,1. Similarly the
weight function is tapered in theM > 0 region by settingηM = ηmin,2 for all M > Mmin,2. Thus
the weight function is ‘flattened’ for the regions inM-space ‘outwith’ the two minima. This
prevents oversampling of these regions, which is unnecessary and inefficient.

7. Examples

We now present results obtained usingmonteswitchfor two systems in order to elucidate how
monteswitchcould be used in practice.
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7.1. Hard-sphere solid: hcp vs. fcc

The first system we consider is the hard-sphere solid. This system has been studied exten-
sively with LSMC [2, 5, 3, 13], and accordingly makes an excellent testing ground formon-
teswitch. LSMC studies of this system have focused on calculating thefree energy difference
between the hcp and fcc phases. We have done the same usingmonteswitchfor a 216-particle
system, with the aim of validatingmonteswitchagainst the results of other studies. Specifically
we consider the NVT ensemble at reduced density ˜ρ = 0.7778, where ˜ρ is related to the number
density of the systemρ by the equation ˜ρ = ρ/

√
2; and the NPT ensemble atPβσ3 = 14.58,

whereσ denotes the hard sphere diameter. For the NPT ensemble we consider bothanisotropic
volume moves which allow the Cartesian dimensions of the supercell to vary independently, and
isotropic volume moves in which the supercell’s shape, but not size, isconstrained. Note that
for each of the three ensembles we considered, i.e., the NVT ensemble, the isotropic NPT en-
semble and the anisotropic NPT ensemble, we used the utilityprogramlattices in hcp fcc

(see Section 6) to generate the relevantlattices in input file required by the main programs
monteswitch andmonteswitch mpi (Section 5).

For each of the three ensembles we used the following procedure to obtain the hcp–fcc free
energy difference, and, in the case of the NPT ensembles, the densities of each phase ˜ρhcp andρ̃fcc.
We first performed a number of short conventional Monte Carlosimulations in each phase. The
aim of these was to determine quantities to be used in the forthcoming LSMC simulations, such
as the maximum particle and volume move sizes, and the appropriate range of order-parameter
space to consider. Then we performed an LSMC simulation in order to generate the weight
function. In the weight-function-generation simulationswe used artificial dynamics to quickly
generate an accurate weight function. Moreover we usedmonteswitch mpi to parallelise the
simulation: we ran 16 replicas of the system in parallel. Ourweight-function-generation simula-
tions each consisted of 18,000,000 Monte Carlo sweeps (1,125,000 sweeps per replica). Fig. 2
shows the weight function obtained from a weight-function-generation simulation for the NVT
ensemble, along with the evolution of the order parameter for one of the replicas during that
simulation. Note that order-parameter space is explored systematically, concordant with artifi-
cial dynamics as described in Section 2.5.3. Using this weight function we then we performed
‘production’ LSMC simulations to determine the hcp–fcc free energy difference – and also ˜ρhcp

and ρ̃fcc for the NPT systems. For each ensemble we performed two production simulations,
where each production simulation consisted of 125,000,000sweeps, again using 16 replicas in
parallel viamonteswich mpi (7,812,500 sweeps per replica). Thus the total number of produc-
tion sweeps for each ensemble was 250,000,000. Finally, theresults from all production replicas
for each ensemble were pooled to obtain the final results.

The final results are presented in Table 7.1 along with the results of other studies. As can be
seen from the tablemonteswitchis in agreement with the other studies. Note that slightly different
NPT results are obtained using isotropic and anisotropic volume moves. This is expected since
isotropic moves constrain the underlying lattice for each phase to be ‘strictly’ hcp or fcc, while
anisotropic moves allow the system to ‘stretch’ along any Cartesian dimension. Interestingly the
densities of both phases are higher when isotropic moves areused.

7.2. Embedded atom model for Zr: bcc vs. hcp

As our second example we consider the hcp–bcc transition in Zr, modeled using the EAM
potential ‘#2’ developed in Ref. [37]. In Ref. [37] the authors determined that the zero-pressure
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Figure 2: Weight function for an LSMC simulation of a 216-particle hard-sphere system in the NVT ensemble at ˜ρ =

0.7778; and the evolution of the order parameter vs. simulation time for one of the replicas during the corresponding
weight-function-generation simulation (inset; only the first 100,000 sweeps are shown). The regions of order-parameter
space corresponding to hcp and fcc are indicated. The order parameter is in units of the sphere overlap energyǫ, which
is set sufficiently high during the simulation to realise hard spheres (see Section 4.2.4).

System Study β∆Ffcc→hcp ρ̃hcp ρ̃fcc

NVT, ρ̃ = 0.7778 This work 0.00135(5) - -
Ref. [5] 0.00132(4) - -
Ref. [3] 0.00133(4) - -
Ref. [13] 0.00133(3) - -

NPT,Pβσ3 = 14.58, iso This work 0.00123(6) 0.77820(6) 0.77820(6)
NPT,Pβσ3 = 14.58, aniso This work 0.00117(9) 0.77759(6) 0.77768(6)

Ref. [3] 0.00113(4) 0.7776(1) 0.7775(1)

Table 4: LSMC results for various 216-particle hard-spheresystems.∆Ffcc→hcp is the intensiveHelmholtz(Gibbs) free
energy difference in the NVT(NPT) ensemble. ‘iso’ refers to isotropic volume moves, while ‘aniso’ refers to anisotropic
volume moves in which the shape of the supercell is allowed tovary independently in each Cartesian dimension. Uncer-
tainties in the LSMC quantities of this work are standard errors of the mean.
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transition temperatureThcp→bcc for this potential was 1233K. They also determined that the en-
thalpy change∆Hhcp→bcc and fractional volume change∆Vhcp→bcc/Vhcp associated with the tran-
sition were 0.039 eV/atom and -0.8% respectively. However these quantities weredetermined
indirectly from the results of multiple molecular dynamics simulations (see Ref. [37] for details).
By contrast we have usedmonteswitchto determineThcp→bcc, ∆Hhcp→bcc and∆Vhcp→bcc/Vhcp di-
rectly via LSMC. Note that this is a more ‘realistic’ example than the previous one: usually one
is interested in, e.g., the temperature and pressure at which a phase transition between two phases
occurs, as opposed to the value of the free energy difference between the phases at one state point
(which was the nature of the previous example).

While LSMC provides a means for calculating the Gibbs free energy difference∆G between
two phases at a given temperature and pressure, there is the question of how to exploit LSMC to
determine the transition temperature, which by definition is the temperature at which∆G = 0. We
used the following iterative procedure, which in Ref. [4] was shown, for the Lennard-Jones solid,
to outperform other existing methods. We first considered aninitial estimate for the transition
temperatureT(1). We then used LSMC to obtain the Gibbs free energy difference between the
phases∆G ≡ Gbcc−Ghcp, the enthalpies and volumes for each phase (Hhcp, Hbcc, Vhcp andVbcc),
as well as uncertainties in these quantities, atT(1). We then substituted these quantities into the
following equation to generate a more accurate estimate forthe transition temperatureT(2):

T(n+1) = T(n)

[

1−
(

1− ∆H(n)

∆G(n)

)]

, (18)

where∆H ≡ Hbcc− Hhcp, and the superscript ‘(n)’ signifies a quantity obtained from an LSMC
simulation at temperatureT(n). (The above equation is, in fact, the Newton-Raphson estimate
of the temperatureT(n+1) at which∆G(n+1) = 0; see Ref. [33] for details). We then repeated
all of the above forT(2), T(3), etc. until the procedure converged. The procedure was deemed
to have converged if the change in temperature for the next iteration,T(n+1) − T(n), was less
than its corresponding uncertainty – calculated from propagating the uncertainties in∆H(n) and
∆G(n) through Eqn. (18). At this point the next iteration was not performed, and the enthalpies
and volumes obtained from iterationn were used to form our quoted values for∆Hhcp→bcc and
∆Vhcp→bcc/Vhcp; andT(n+1) was used as our quoted value forThcp→bcc.

We considered two system sizes: a smaller system containing384 atoms and a larger system
containing 1296 atoms. Note that both these systems are significantly smaller than those used
in Ref. [37]. For both system sizes we used the NPT ensemble with anisotropic volume moves
(in the sense described in the previous example), and bootstrapped the iterative procedure with
T(1)=900K. Furthermore we used the utility programlattices in bcc hcp to generate the rel-
evantlattices in input files for all simulation. Our procedure for calculating∆G, Hhcp, Hbcc,
Vhcp andVbcc at a given temperature is similar to that described in the previous example: we first
performed short conventional Monte Carlo simulations in each phase, then a weight-function-
generation simulation, and finally a production simulation. Noteworthy aspects of the procedure
are as follows. Firstly, our weight-function-generation simulations consisted of 160,000 Monte
Carlo sweeps using 4 replicas in parallel viamonteswitch mpi (40,000 sweeps per replica).
Secondly, we ‘tapered’ the weight function obtained from a weight-function-generation simula-
tion using the utility programmonteswitch post before using the weight function in a pro-
duction simulation. Fig. 3 shows the weight function obtained for the 384-atom system at
T = 1275.86K (the final iteration,n = 3, as is discussed below) before and after tapering.
Tapering was done in order to improve the efficiency of the production simulation (see Section
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n T(n) ∆Ghcp→bcc ∆Hhcp→bcc ∆Vhcp→bcc/Vhcp Thcp→bcc

N = 384 1 900.00 0.0114(11) 0.0459(4) -0.8(2) 1200(40)
2 1199.91 0.00238(3) 0.0401(2) -0.810(6) 1275.9(11)
3 1275.86 -0.00003(5) 0.0379(2) -0.787(7) 1275(2)

N = 1296 1 900.00 0.01265(2) 0.04589(7) -0.996(3) 1242.6(11)
2 1242.61 0.001031(10) 0.03930(6) -0.791(7) 1276.1(3)
3 1276.10 -0.00003(2) 0.03835(13) -0.772(5) 1275.1(6)
4 1275.13 -0.000000(10) 0.0383(2) -0.772(7) 1275.1(3)

Ref. [37] - - - 0.039 -0.8 1233

Table 5: Results of LSMC simulations for Zr potential ‘#2’ ofRef. [37]. Results are given for each iterationn of
the iterative procedure described in the main text, for eachsystem size considered (N denotes the number of atoms
in the system). The results of the final iteration, which are to be compared to the results of Ref. [37] (bottom row),
are in bold text. Note that for the LSMC resultsThcp→bcc is the transition temperature as predicted from the results
of the corresponding LSMC simulation, whereasT(n) is the temperature at which that simulation was performed. All
temperatures are in K,∆Ghcp→bcc and∆Hhcp→bcc are in eV/atom, and∆Vhcp→bcc/Vhcp is a percentage. Uncertainties in
the LSMC quantities are standard errors of the mean.

6.2.12 for details). Finally, at each temperature we performed a single production simulation
consisting of 700,000 sweeps, again using 4 replicas in parallel (175,000 sweeps per replica).

Our results are presented in Table 7.2, where they are compared against those of Ref. [37].
Note that our 384-atom and 1296-atom results are in agreement with each other, which means
that finite-size effects are insignificant in the 384-atom system for the quantities we consider
here. Note also that the iterative procedure converged quickly for both system sizes: only a few
iterations were needed to pinpoint the transition temperature to an accuracy of. 2K. We empha-
sise that only relatively modest computational effort was required to obtain this accuracy: for the
384-atom system each iteration (i.e., one 160,000-sweep weight-function-generation simulation
and one 700,000-sweep production simulation) took a wall-clock time of≈1.9 hours on a desktop
machine (exploiting 4 cores),9 while for the 1296-atom system each iteration took≈ 17.7 hours.
Our results are in agreement with those of Ref. [37] for∆Hhcp→bcc and∆Vhcp→bcc/Vhcp. Regard-
ing Thcp→bcc, we findThcp→bcc to be 42K higher than the 1233K quoted in Ref. [37]. Whether this
is sufficiently close to 1233K to constitute ‘agreement’ depends onthe uncertainty in the Ref.
[37] value, which unfortunately is not provided in that study. However in Ref. [38] the same
method as in Ref. [37] was used to determineThcp→bcc for a Mg EAM potential; moreover the
uncertainty in the value was stated to be 40K. (Specifically,Thcp→bcc was found to be 645±40K
for the Mg potential). If this uncertainty carries over to the Zr study of Ref. [37], then it follows
that ourThcp→bcc is in agreement with that of Ref. [37].

8. Conclusions and outlook

We have describedmonteswitch, a package for performing lattice-switch Monte Carlo
(LSMC) simulations for atomic systems, and have presented results demonstrating its efficacy.
While here we have only presented results for single-component crystalline phases, we empha-
sise thatmonteswitchcan be applied more generally.monteswitchcould be used to calculate

9Specifically, the machine we used was an iMac14,2 with a 3.2GHz Intel Core i5-4570 processor.
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Figure 3: Weight function for Zr potential ‘#2’ of Ref. [37] applied to a 384-atom system atT = 1275.86K. The black
curve with squares corresponds to the ‘raw’ weight functionobtained from the weight-function-generation simulation,
while the red curve with crosses corresponds to the weight function after ‘tapering’. The regions of order-parameter
space corresponding to bcc and hcp are indicated.
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the free energy difference between two multicomponent phases. Moreovermonteswitchcould
be used to evaluate the free energy of an interface between two solids, or the free energy of a
crystallographic defect. The free energy of an interface between two phasesA and B can be
calculated via LSMC by choosing the two supercells used in the LSMC simulation to have the
same amounts ofA andB, but different amounts ofA–B interface [5]. For example if the first
supercell were comprised of superimposedA andB slabs with a stacking sequenceA|B|A|B, and
similarly for the second supercell but with a stacking sequenceA|A|B|B, then, while both su-
percells contain twoA andB slabs, the first supercell contains fourA-B interfaces (taking into
account periodic boundary conditions) but the second contains only two interfaces. Denoting
the area associated with one interface in the supercell asA, it follows that calculating the free
energy difference between these supercells via LSMC would yield the free energy difference as-
sociated with an area 2A of anA–B interface – assuming that the slabs are sufficiently large that
interfaces do not ‘interact’ with one another. A similar approach could conceivably be applied to
calculate the free energy of planar defects such as twin boundaries. In principle point defects are
also accessible to LSMC. For example the free energy of a Frenkel defect could be evaluated by
having one supercell be the ‘defect-free’ crystal, while the other contains a single Frenkel defect.
The prospect of using LSMC in this way requires further exploration.

The main strength ofmonteswitchis its versatility regarding the interatomic potentials it
can implement, which we have demonstrated here by usingmonteswitchin conjunction with
an embedded atom model (which is a many-body potential), andthe hard-sphere model. This
versatility is achieved by having the source code for the potentials housed within a Fortran mod-
ule which is amenable to customisation. As well as using modules included with the package
which implement some commonly-used potentials, it is anticipated that users will wish to write
their own versions of this module to implement their own potentials. Templates and guidance
are provided with the package to facilitate this. An especially interesting prospect is to develop
modules which interfacemonteswitchwith quantum chemistry programs, in order to calculate
the energy usingab initio methods. Such ‘ab initio LSMC’ would be a valuable tool in examin-
ing the phase stability of systems in which classical modelsare inappropriate. Needless to say
any new modules we develop will be made available to the widercommunity on the home page
for the package [39].
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