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Abstract

We propose an algorithm for the orthogonal fast discrete spherical Bessel

transform on an uniform grid. Our approach is based upon the spherical

Bessel transform factorization into the two subsequent orthogonal transforms,

namely the fast Fourier transform and the orthogonal transform founded on

the derivatives of the discrete Legendre orthogonal polynomials. The method

utility is illustrated by its implementation for the numerical solution of the

three-dimensional time-dependent Schrödinger equation.
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1. Introduction

The discrete spherical Bessel transform (DSBT) arises in a number of ap-

plications, such as, e.g., the analysis of the cosmic microwave background [1],

the numerical solution of the differential equations [2, 3, 4], and the numeri-
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cal evaluation of multi-center integrals [5, 6]. Many different SBT algorithms

have been proposed so far [7, 8, 9, 10]. But none of them possess all of the

advantages of their trigonometric progenitor, namely the fast Fourier trans-

form (FFT). These advantages are the performance fastness, the uniform

coordinate grid, and the orthogonality.

An example of the problem requiring the simultaneous presence of all the

advantages is the solving of the Schrödinger-type equation (SE) by means

of the pseudospectral approach [9]. The grid uniformity provides the same

accuracy of the wave function description in the whole domain of definition.

The grid identity for all orders of a spherical Bessel functions (SBF) allows

to switch to the discrete variable representation (DVR) [9]. The DSBT or-

thogonality is needed to provide the hermiticity of the radial part of the

Laplacian operator in DVR. The lack of the Laplacian operator hermiticity

impedes the convergence of iterative methods (such as conjugate gradient

method) for the solution of matrix equations (which are obtained by DVR

from the stationary SE). In the case of time-dependent SE, the hermiticity

of the Laplacian operator is crucial for the conservation of the wave function

norm during the time evolution.

A pioneering approach based upon the convolution integral [7, 11, 12]

requires a number of operations of the order of N log2N for its performing,

just like the FFT does, that means that it is quite fast. However it em-

ploys a strongly nonuniform grid (a node location exponentially depending

on its number). Hence the attempts of its utilization for the SE solving

[2, 3] ended in problems with the strong near-center localization of a wave

function. A method rest on the spherical Bessel functions expansion over
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the trigonometric functions [8] also appears to be quite fast (requiring as

few as (ℓ + 1)N log2N operations) and employs a uniform grid. But it is

not orthogonal and has stability difficulties because of the singular factors

in the spherical Bessel functions expansion over the trigonometric functions.

Next, a Gauss-Bessel quadrature based technique suggested in [9, 13] is or-

thogonal and converges exponentially, but it is not fast (as the number of

operations required scales as N2) and needs an ℓ-dependent grid. Neverthe-

less its fast convergence and the near-uniform grid motivated to apply it for

a time-dependent Gross-Pitaevsky equation [4]. Finally, an approach rest on

the SBF integral representation via Legendre polynomials, proposed in [10],

appears to be fast, makes use of the uniform grid, but it is not orthogonal.

In the present work we are proposing the algorithm for the DSBT that

is orthogonal, fast, and it implies the uniform grid. Our approach is based

upon the SBT factorization into the two subsequent transforms, namely the

FFT and the discrete orthogonal Legendre polynomials derivatives based

transform.

The paper is organized as follows. In Section 2, we develop the orthogo-

nal fast DSBT on a uniform grid. Next, in Section 3, the proposed method

is tested via the evaluation of the Gaussian atomic functions transform and

also the DSBT basis functions comparison to the exact SBFs. In Section 4

the DSBT- and DVR-based approach (DSBT-DVR) for the time-dependent

Schrödinger equation (TDSE) solving is suggested and examined. The ap-

proach efficiency is illustrated by treating of the problem of the Hydrogen

molecular ion ionization by laser pulse. Finally, in Section 5 we briefly dis-

cuss the obtained results as well as the prospects of DSBT and DSBT-DVR
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application.

2. Development of the method

2.1. Basic formulation

A typical problem involving the spherical Bessel transform (SBT) is the

plane wave expansion of a three-dimensional function Ψ(r, θ, φ). The expan-

sion over the spherical harmonics yields a radius-dependent function

Ψℓm(r) =

∮

Yℓm(θ, φ)Ψ(r, θ, φ)dΩ. (1)

If the function Ψ(r, θ, φ) has no singularities, then Ψℓm(r → 0) ∼ rℓ.

Let us introduce the SBT as

cℓ(k) =

√

2

π

∫ ∞

0

χℓ(kr)ψℓ(r)dr (2)

Here we perform the function substitution ψℓ(r) = rΨℓm(r) (a magnetic

quantum number is not used further, therefore from this point on we omit it

from the denotation for the sake of simplification), then execute the expansion

over the functions

χℓ(x) = xjℓ(x), (3)

where jℓ(x) is a spherical Bessel function (SBF) of the first kind. The

functions χℓ(kr) satisfy the normalization condition
∫∞

0
χℓ(kr)χℓ(k

′r)dr =

(π/2)δkk′. The pre-integral factor in (2) is introduced in order to make the

transform (2) unitary.

The beginning of our derivation coincides with the one in the work [10].

But unlike its authors we are going to aim at the factorization of the SBT into
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the two separate transformations, namely the FFT and also the additional

orthogonal transform which we denote Fourie-to-Bessel transform (FtB). The

SBF may be presented as

jℓ(z) =
1

2iℓ

∫ 1

−1

Pℓ(η) exp(izη)dη (4)

where Pℓ(η) is the Legendre polynomial of ℓ-th order. Upon substituting the

latter expression into Eq.(2), we obtain

cℓ(k) =

√

2

π

1

2iℓ

∫ 1

−1

Pℓ(η)

∫ ∞

0

kreikrηψℓ(r)drdη

Here the integral over r is different from the Fourier transform of the func-

tion ψℓ(r) by the presence of the integrand factor kr. This factor might be

represented as a result of taking a derivative of eikrη over η. Thus we get the

expression

cℓ(k) =

√

2

π

1

2iℓ+1

∫ 1

−1

Pℓ(η)
∂

∂η

∫ ∞

0

eikrηψℓ(r)drdη

Making use of the Legendre polynomials parity condition Pℓ(−η) = (−1)ℓPℓ(η),

one may further reduce the integral over η from −1 to 1 to the one in the

limits from 0 to 1 as

cℓ(k) =

√

2

π

1

2iℓ+1

∫ 1

0

Pℓ(η)
∂

∂η

∫ ∞

0

[eikrη − (−1)ℓe−ikrη]ψℓ(r)drdη (5)

Next, let us define a new function

c̃ℓ(k) =

√

2

π

1

2iℓ+1

∫ ∞

0

[eikr − (−1)ℓe−ikr]ψℓ(r)dr (6)

The term [eikr − (−1)ℓe−ikr]/(2iℓ+1) is equal to (−1)⌈ℓ/2⌉ sin(kr) for the even

ℓ and to (−1)⌈ℓ/2⌉ cos(kr) for the odd ones. Hence the expression (6) appears
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to be correspondingly the sine/cosine Fourier transform of the function ψℓ(r),

depending on ℓ being even or odd.

In terms of the new denotation the formula (5) can be rewritten as

cℓ(k) =

∫ 1

0

Pℓ(η)
∂c̃ℓ(kη)

∂η
dη

Upon making the substitution η = q/k this expression takes the following

form

cℓ(k) =

∫ k

0

Pℓ(q/k)
dc̃ℓ(q)

dq
dq

Let us perform the integration by parts, then move the derivative over q to

the Legendre polynomial. As a result we obtain the following formula for the

FtB

cℓ(k) = c̃ℓ(k)−
∫ k

0

P ′
ℓ(q/k)

k
c̃ℓ(q)dq (7)

It is easily seen that c0(k) = c̃0(k), just as expected, since χ0(kr) = sin(kr)

and the Bessel expansion coincides with the Fourier expansion at ℓ = 0.

One may rewrite (7) in the operator form as cℓ(k) = T̂ c̃ℓ(k), where the

integral transform operator T̂ has the kernel

T (k, q) = δ(q − k)− θ(k − q)
P ′
ℓ(q/k)

k
. (8)

Here

θ(x) =



















0, x < 0;

1/2, x = 0;

1, x > 0.

(9)
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is the Heaviside step function. The FtB operator T̂ must be unitary (that is

T̂−1 = T̂ T ), hence the inverse transform is c̃ℓ(k) = T̂ T cℓ(k). The inverse FtB

might be explicitly defined as

c̃ℓ(k) = cℓ(k)−
∫ ∞

k

P ′
ℓ(k/q)

q
cℓ(q)dq. (10)

The substitution of (10) into (7) demonstrates that (10) is indeed inverse

in respect to (7), due to the condition

∫ min(k2,k1)

0

P ′
ℓ(q/k2)

k2

P ′
ℓ(q/k1)

k1
dq =

P ′
ℓ(k2/k1)

k1
θ(k1 − k2) +

P ′
ℓ(k1/k2)

k2
θ(k2 − k1). (11)

This condition holds true since for any polynomial p(x) of the order s ≤ ℓ

true is the expression

∫ 1

−1

P ′
ℓ(x)p(x)dx = p(1)− (−1)ℓp(−1) (12)

In turn, this relation is the consequence of the well-known Legendre polyno-

mials property,

∫ 1

−1

Pℓ(x)x
µdx = 0; µ < ℓ, (13)

following from their orthogonality.

2.2. Discretization of the transform

Let us introduce the coordinate grid with the step ∆r in the following

way

ri = (i− 1/2)∆r; i = 1, . . . , N. (14)
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The elements of vector ψ of the function values are sampled on the grid as

ψi = ψℓ(ri)
√
∆r. (15)

The elements of the Fourier transform matrix are defined as follows

Fni =
1

√

(2− δn0)N

eiknr − (−1)ℓe−iknri

2iℓ+1(−1)⌈ℓ/2⌉

=
1

√

(2− δn0)N
×







sin(knri), even ℓ;

cos(knri), odd ℓ.
(16)

Here the momentum grid is

kn = n∆k; n = pℓ, . . . , Nℓ, (17)

where the momentum step is ∆k = π/rmax, the integration interval size is

rmax = N∆r, and the summation limits are pℓ = [1 + (−1)ℓ]/2 and Nℓ =

N + pℓ − 1, that is n = 0, . . . , N − 1 for the odd ℓ and n = 1, . . . , N for the

even ones.

The Fourier transform may be written in the matrix form as

f = Fψ. (18)

It yields as a result the value of the vector of the Fourier expansion coefficients

f related to the function c̃ℓ(k) as follows:

fn = c̃ℓ(kn)
√
wn (19)

where the weights

wn =

(

1− δn0
2

)

∆k. (20)
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Since the Fourier transform matrix F is orthogonal, then under the transform

the norm is conserved, that is f †f = ψ†ψ. The transform (18) performing

through the FFT algorithm requires the number of operations of the order

of N log2N .

The transform (7) conserves the norm according to
∫ ∞

0

|cℓ(k)|2dk =

∫ ∞

0

|c̃ℓ(k)|2dk (21)

The approximation of the integrals in this relation by the trapezoidal rule

yields

b†b = f †f , (22)

where we introduce the vector b composed of the coefficients of the Bessel

expansion

bn = cℓ(kn)
√
wn. (23)

Next, let us write the direct and inverse discrete FtB (DFtB) in the

following form

b = Tf (24)

f = T−1b. (25)

In order for (22) to hold true, the matrix T has to be orthogonal, that is

T−1 = TT . (26)

If we attempt to apply the trapezoidal rule directly to (7), then we would

obtain

Tnm = δnm − P ′
ℓ(km/kn)

kn

√
wn
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However this technique of the matrix construction does not provide its or-

thogonality. The reason is that the equation (12) does not hold upon the

approximate integration. The employing of the high-order Newton-Cotes

rules instead of the trapezoidal rule does not make the situation better. In

order for (11) to be true, it is necessary for (12) to hold for all the subgrids

with the arbitrary nodes number. The high-order Newton-Cotes rules do not

provide high accuracy for an arbitrary subgrid. Therefore the only way to

preserve the transform orthogonality appears to be the modification of the

integral (7) kernel under the proceeding to the numerical integration.

2.3. Discrete Legendre orthogonal polynomials

In the context of the summation on grids, the properties analogous to

those of the Legendre polynomials are possessed by the so-called discrete

Legendre orthogonal polynomials (DLOP) [14]. DLOP Pℓ(i, N) satisfy the

orthogonality property given by

N
∑

i=0

Pℓ(i, N)Pµ(i, N) = N (ℓ, N)δℓµ (27)

and also the normalizing condition Pℓ(0, N) = 1. Here

N (ℓ, N) =
(N + ℓ+ 1)ℓ+1

(2ℓ+ 1)N ℓ
, (28)

where ij is j-th falling factorial of i, ij = i(i− 1) . . . (i− j+1). DLOP might

be presented as

Pℓ(i, N) =
ℓ

∑

j=0

l(ℓ, j)
ij

N j , (29)

where l(ℓ, j) are coefficients of the expansion of the shifted Legendre polyno-

mial Pℓ(1 − 2x) =
∑ℓ

j=0 l(ℓ, j)x
j . This means that Pℓ(i, N) can be obtained

10



from Pℓ(1 − 2x) through the substitution of ij/N j for xj . As the grid size

increases, DLOP tend to the usual Legendre polynomials according to

Pℓ(i, N) = Pℓ(1− 2i/N) +O(N−2). (30)

Due to the orthogonality condition (27) DLOP possess a property similar

to the property (13), as follows

N
∑

i=0

Pℓ(i, N)is = 0; s < ℓ. (31)

Making use of this fact one can easily prove (as shown in the Appendix)

that for any discrete polynomial p(i) of the order µ ≤ ℓ true is the following

relation

N
∑

i=0

P ′
ℓ(i, N)p(i)wi(N) = (−1)ℓp(N)− p(0) (32)

where the weight function coincides with the weights of the trapezoidal inte-

gration rule for the grid with a unit step

wi(N) = 1− δiN + δi0
2

. (33)

Here we define a new discrete polynomial

P ′
ℓ(i, N) =

2

1 + Pℓ(−1, N − 1)
∇[Pℓ](i, N − 1) (34)

which is proportional to the backward difference

∇[Pℓ](i, N − 1) = Pℓ(i, N − 1)− Pℓ(i− 1, N − 1) (35)

and hence has the order ℓ−1. This polynomial tends to the derivative of the

usual Legendre polynomial as

P ′
ℓ(i, N) =

d

di
Pℓ(1− 2i/N) +O(N−3), (36)

11



that is faster than the DLOP tends to its non-discrete analogue. Therefore

we shall further refer to P ′
ℓ(i, N) as the derivative of the discrete orthogonal

Legendre polynomial (DDLOP). It should be mentioned that this term has

different meanings throughout the literature [14].

It follows from the relation (36) that the integral kernel in Eq.(7) can be

approximated on the grid (17) by means of DDLOP according to

P ′
ℓ(km/kn)

kn
∆k = −P ′

ℓ(n−m, 2n) +O[(∆k)−3]. (37)

2.4. Transform matrix

Let us suppose the transform matrix T has the elements as follows:

Tnm = αn [δnm − Lnm] , (38)

where the lower triangular matrix L is an approximation of the kernel of the

integral (7) via (37), defined by

Lnm = −θ(n−m)P ′
ℓ(n−m, 2n)

√

1− δm0

2
. (39)

Here the Heaviside function θ(n −m) is specified in (9), and the additional

factor
√

1− δm0

2
provides the weight function (20) in the productTf . Defined

in such a way Tnm exist only for n ≥ n0ℓ where

n0ℓ =

⌈

ℓ+ 1

2

⌉

, (40)

since there are no DLOP of the order ℓ at smaller n.

By making use of Eq.(32), one may show (see the Appendix for details)

that the rows of the matrix I− L are mutually orthogonal, that is

Nℓ
∑

l=pℓ

[δnl − Lnl][δml − Lml] = α−2
n δnm; n ≥ n0ℓ (41)

12



The rows of the matrix T are equal to those of the matrix I − L multiplied

by the normalizing constants

αn =

{

∑

l

[δnl − Lnl]
2

}−1/2

. (42)

Here the normalizing constants αn → 1 at n→ ∞.

Since the approximation (37) implies the error scaling as O[(∆k)3], the

result of the DFtB defined by matrix (38) differs from the result of the exact

FtB by the value O[(∆k)2].

2.5. Completion of the basis

The Eqs.(38,39) define only N −n0ℓ+1 rows in the transform matrix. In

order to make the basis complete we have to supplement it by extra n0ℓ − 1

vectors that are orthogonal to all other ones.

The DDLOP property Eq.(32) (which Eq.(41) follows from) leads to the

fact that the basis vectors specified via Eqs.(38,39) are to be orthogonal to

any polynomial of the order s ≤ ℓ−1. That is to say, one might construct the

extra basis vectors from the polynomials of the order s ≤ ℓ− 1. To provide

these extra vectors to be orthogonal to not only the basic basis vectors, but

to each other as well, we shall choose them as the DLOPs (not the DDLOP!)

of the corresponding orders.

So we shall define the extra basis vectors as follows

Tnm = αnPl(n)(Nℓ −m, 2Nℓ)

√

1− δm0

2
; n ∈ [pℓ, n0ℓ − 1] , (43)

where the polynomial order is

l(n) = 2n− pℓ, (44)
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and the normalizing constant is αn =
√

2/N [l(n), 2Nℓ], where N is given in

Eq.(28).

Now let us elucidate the physical meaning of the extra basis vectors (43).

For this purpose we shall derive their appearance in coordinate representa-

tion. First, let us begin with the expression for the coefficient

bn =

Nℓ
∑

m=pℓ

αnPl(n)(Nℓ −m, 2Nℓ)

√

1− δm0

2
fm (45)

and proceed making use of the relation between the DLOP and the usual

Legendre polynomial

Pℓ(N −m, 2N) ≈ Pℓ (m/N) .

By changing the summation to integration we get

bn ≈ αn

∫ kmax

0

Pl(n)(q/kN)c̃ℓ(q)dq,

where kN = N∆k. Finally, substitute here (6) and use Eq.(4) to obtain

bn ≈ kNαn

iℓ+1−l(n)

√

2

π

∫ ∞

0

jl(n)(kNr)ψℓ(r)dr (46)

Thus, bn at n < n0ℓ are the coefficients of the expansion in the functions

jl(n)(kNr) (while bn at n ≥ n0ℓ are the coefficients of the ψℓ(r) expansion in

χℓ(knr)). At r → 0 asymptotics are χℓ(kr) ∼ rℓ+1 and jl(n)(kNr) → rl(n).

Since l(n) ≤ ℓ−1, the additional basis vectors represent the high-momentum

wave-function components converging to zero slower than rℓ+1. That is to

say, the additional vectors emerge to be a linear combination of the non-

regular SBFs (SBFs of the second kind).

If ψℓ(r) appears to be a result of the spherical harmonics expansion of

a 3D function having the continuous derivatives up to order ℓ + 1, then

14



ψℓ(r → 0) ∼ rℓ+1, hence it should be bn = 0 at n < n0ℓ. In the case when

the function possesses singularities such components become non-zero and

should be considered as having the energy larger than that of the component

specified by the coefficient bN .

Thus, our DSBT does not yield coefficients for the small momenta kn, n <

n0ℓ. The reason for this is that at such kn there exist no SBF of the first

kind satisfying the boundary conditions (see also the Section 3).

2.6. Fast multiplication by transform matrix

The fast transform might be accomplished by means of the technique

proposed in the work [10], except that we shall use DDLOP instead of the

Legendre polynomials.

First, let us expand DDLOP over the powers of the variable m in the

following way:

P ′
ℓ(n−m, 2n) = −

ℓ−1
∑

ν=0

ξℓν(n)m
ν . (47)

Upon substituting this expansion into (24) one obtains

bn = αnfn − αn

ℓ−1
∑

ν=0

ξℓν(n)sνn. (48)

Here we introduce the notation

sνn =
δν0√
2
f0 +

n−1
∑

m=1

mνfm +
1

2
nνfn. (49)

The sum (49) can be evaluated through the recurrence relation

sνn = sν,n−1 +
1

2
[nνfn + (n− 1)νfn−1] . (50)
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Thereby the sums calculation for all the n ∈ [n0ℓ, N ] requires as less as N

operations. In total one needs to evaluate ⌈ℓ/2⌉× (N +1− n0ℓ) sums (⌈ℓ/2⌉
appearing because of the fact that the half of the coefficients in (47) are zero

due to the DDLOP parity), then to perform the summation over ν in (48),

resulting in the altogether operations number scaling as ℓN .

At n < n0ℓ the coefficients bn are to be computed according to (45). That

means that for every n < n0ℓ one has to calculate the vectors scalar product

that requires extra O(ℓN) operations, that is the operations number scaling

is the same as for the bn evaluating for n ≥ n0ℓ via (50,48). In sum, to

accomplish the transform (24) one needs to perform O(ℓN) operations.

Now let us consider the inverse transform. The substitution of (47) into

(25) yields for m ≥ n0ℓ the following:

fm =

n0ℓ−1
∑

n=pℓ

Tnmbn + αmbm −
ℓ−1
∑

ν=0

mν s̃νm, (51)

where

s̃νm =

Nℓ
∑

n=m+1

αnξℓν(n)bn +
1

2
αmξℓν(m)bm. (52)

Next, for m < n0ℓ we obtain

fm =

n0ℓ−1
∑

n=pℓ

Tnmbn −
ℓ−1
∑

ν=0

√

1− δm0

2
mν s̃ν,n0ℓ+1/2 (53)

where

s̃ν,n0ℓ+1/2 = s̃νn0ℓ
+

1

2
αn0ℓ

ξℓν(n0ℓ)bn0ℓ
(54)

The sum (52) may be evaluated according to the recurrence relation

s̃νm = s̃ν,m+1 +
1

2
[αmξℓν(m)bm + αm+1ξℓν(m+ 1)bm+1] . (55)
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Thus, the inverse transform (25) performing requires the number of opera-

tions O(ℓN), just as the direct transform does.

The fast Fourier transform (18) operations number scales as N log2N .

That is the DSBT in total requires O(N log2N) + O(ℓN) operations. At

large N the FFT strongly over-demands the DFtB, hence the overall DSBT

algorithm processing time appears to be defined by the FFT processing time.

3. Numerical test of the method

The method convergence was examined on three grids (14) with the same

space step ∆r = 0.4 and the various values of the space region rmax =

N∆r = 51.2, 102.4, and 204.8. That is, the grids possessed the same maximal

momentum kN = ∆kN = π/∆r and various momentum steps ∆k = π/rmax.

Let us begin with the check of the convergence of our transform for

smooth functions, which are commonly used in atomic physics namely Gaus-

sian atomic orbital functions

ψℓ(r) = Aℓr
ℓ+1 exp(−r2/2). (56)

The Fig.1 shows the absolute value δ = |cnℓ−cℓ(kn)| of the difference between
the exact SBT result cℓ(k) (obtained by the numerical evaluation of the

integral in Eq.(2)) and the DSBT result cnℓ = ∆k−1/2[TFψ]n. It is seen that

upon the rmax increasing the error decreases as 1/r2max (or, equivalently, as

∆k2). It coincides with the convergence rate expected from theory.

In order to reveal the main error source, let us perform the compar-

ison of the exact SBFs with the DSBT basis functions in the coordinate

representation, which correspond to the transform basis vectors. For this
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Figure 1: Deviation of the Gaussian atomic orbitals expansion from exact for rmax=51.2

(solid lines), rmax=102.4 (dashed lines) and rmax=204.8 (dotted lines)

purpose we apply the inverse transform to the vector composed of coeffi-

cients bm = (rmax/2)
1/2w

−1/2
n δmn(k), where n(k) = k/∆k and k is the fixed

momentum. The result function may be written as follows:

χ̃nℓ(ri) = (rmax/2)
1/2w−1/2

n [F†TT ]i,n. (57)

The factor (rmax/2)
1/2 is introduced in order to provide the convergence

χ̃nℓ(ri) → χℓ(knri) at rmax → ∞. The results are presented at the Fig.2.

For every ℓ we chose the momentum k in such a way that for the maximal

∆k grid a basis vector number n(k) = n0ℓ. The n0ℓ-th function has the nodes

number minimal among the functions satisfying the boundary conditions at

r = rmax and the asymptotics ∼ rℓ+1 at r = 0. Upon the step ∆k decreasing

at the fixed k the number n(k) grows and the DSBT basis function in its
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Figure 2: Convergence of the DSBT basis functions to SBFs with decreasing of ∆k.

domain of definition becomes closer to the SBF.

The Fig.3 demonstrates the DSBT basis functions at n < n0ℓ. One can see

these functions behavior is just as expected from (46), that is they are high-

frequency, decrease with distance and have asymptotic behavior different

from ∼ rℓ+1 at r = 0.

In order to demonstrate the main error source, we plot the dependence

of δ = |χ̃n(k)ℓ(r)−χℓ(kr)| on radius (Fig.4). At that we take the momentum

value such that n(k) = 9 even at the smallest grid. It is apparent that the

difference grows with distance. The reason for the difference to be maximal at

r = rN may be understood if one recalls that SBFs asymptotically equivalent

to

χℓ(kr) ≃ sin[kr − ℓπ/2− l(l + 1)/2kr]; r → ∞. (58)
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Figure 3: Extra basis functions for ℓ = 3.

The DSBT basis function satisfies the same boundary conditions as the func-

tions constituting it (sines or cosines) do

χ̃n(k)ℓ(r) ≃ sin(kr − ℓπ/2); r → rN . (59)

That means that there does exist a phase shift l(l + 1)/2krN near the outer

boundary between the approximate and exact functions.

The fact of the amplitude of the difference between the SBFs and DSBT

basis functions growing roughly linearly with r increasing (which is seen

from Fig.4) indicates that the phase shift between these functions grows

linearly with r as well. Such phase shift behavior may be interpreted as

a consequence of the approximate and exact functions wavenumbers being

distinct. Therefore the DSBT basis function has to be closer to the SBF

at such momentum knℓ that provides the exact SBF coincidence with the

DSBT basis function on the grid boundary. This condition might be written

mathematically as

χℓ(knℓrmax) = 0, even ℓ;

χ′
ℓ(knℓrmax) = 0, odd ℓ.

(60)
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Figure 4: Difference between the basis functions and SBFs δ = |χ̃n(k)ℓ(r)−χℓ(kr)| for the
fixed k = 0.490873843.

From the phase shift between the DSBT basis functions and exact SBFs near

the outer boundary one can obtain the approximate expression

knℓ ≃ kn −
ℓ(ℓ+ 1)

2π2kn
∆k2. (61)

On Fig.5, we plot the δ = |χ̃n(k)ℓ(r)−χℓ(knℓr)|, i.e. the difference between
the DSBT basis functions and SBFs for the corrected momentum knℓ. It is

seen that the difference is an order of magnitude less than in the case of

the non-corrected momentum (Fig.4) at the same rmax. Yet the rate of

the basis function convergence to the corrected momentum SBF is still ∆k2

(whereas r ≪ rmax). Thus our transformation result arrears to be more

exact approximation to the expansion in SBFs on the grid knℓ than it is on

the uniform grid kn. However the grid knℓ is non-uniform and ℓ-dependent,
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Figure 5: Difference between the basis functions and SBFs δ = |χ̃n(k)ℓ(r) − χℓ(knℓr)| for
the fixed k = 0.490873843.

and this complicates the application with no convergence rate advantage.

4. An example: Solution of the 3D time-dependent Schrödinger

equation

4.1. Numerical method

As an example of DSBT application we developed the method for a nu-

merical solution of 3D time-dependent Schrödinger equation (TDSE).

Let us make use of discrete variable representation (DVR). We shall begin

with the function discretization on the 3D grid in the spherical coordinate

system

ψijk = Ψ(ri, arccos ηj , φk)ri
√

∆r∆ηj∆φ (62)
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Here φk = ∆φ(k − 1), k = 1, . . . , Nφ is a polar angle grid; ∆φ = 2π/Nφ is a

grid step; ηj and ∆ηj , j = 1, . . . , Nθ are Gauss-Legendre quadrature nodes

and weights correspondingly. Upon DVR implementation, the transforma-

tion given by Eqs.(1,2) is written as

c = BYψ. (63)

Here c is a vector of coefficients of the expansion in spherical waves

cnlm = clm(k̃n)
√
wn. (64)

Since further we will need identical momentum grids for all the angular mo-

menta ℓ, whereas the grid kn defined by Eq.(17) differs for odd and even ℓ,

we shall now introduce a new grid for the momentum radial component

k̃n = n∆k; n = 1, . . . , N, (65)

and also shall assume clm(k̃N)
√
wN = c0lm for even l. Validity of this proce-

dure may be justified as follows. Due to the subsection 2.5, the coefficient

having n = 0 for all l corresponds to a projection onto a non-regular high-

frequency function. In turn, a non-regular high-frequency function may be

approximated by the sum of regular functions with large momenta. So, as the

highest spectrum part coefficients are evaluated rather inaccurately, one may

assume without loss of accuracy the coefficient with n = 0 to be the value of

the projection on a basis function with large momentum k̃N . Meanwhile, for

a smooth Ψ(r, θ, φ) this coefficient vanishes anyway.

The rest of designations used in Eq.(63) are as follows: B is the SBT

matrix with elements

Bnlmil′m′ = [TlFl]niδll′δmm′ (66)
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and Y is the matrix of the transform to the expansion in spherical harmonics

Yilmi′jk = δii′ [PΦ]lmjk (67)

which might be represented as the product of the matrix with elements

Φjmj′k = δjj′
eimφk

√
2π

√

∆φ (68)

and the matrix

Plmjm′ = P
m

l (ηj)
√

∆ηj δmm′ . (69)

Here P
m

l (η) are associated Legendre polynomials orthonormalized on the

Gauss-Legendre quadrature [15]. The transform Eq.(63) requires O(NrNθN
2
φ)+

O(NrNφN
2
θ ) + O(NθNφNr log2Nr) operations. It should be noted that the

term O(NrNφN
2
θ ) is caused not only by the operation of polar angle P mul-

tiplication by the transform matrix, but also by the multiplication by ma-

trices Tl (matrix multiplication at the fixed l requires O(NrNφl) operations,

whereas the number of different l’s is equal to Nθ). Therefore if one had tried

using (instead of DVR) any methods that do not employ P transformation,

it would not make sense, because it would not imply getting rid of the oper-

ations number quadratic growth with Nθ increasing. However, the transform

algorithm is easily parallelizable, hence may be run in quite modest amount

of computer time even for the large value of Nθ.

Besides, we introduce the matrix

Ỹnlmn′jk = δnn′il[PΦ]lmjk (70)

of the transform to the expansion in terms of modified spherical harmonics

[16] related to the common spherical harmonics as Ỹlm(θ, φ) = ilYlm(θ, φ) (i
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is the imaginary unit here). It can be used to perform the switch to the

momentum DVR

ϕ = Ỹ†BYψ, (71)

where the vector ϕ components relate to the plane wave expansion coeffi-

cients as follows

ϕnjk = ϕ(k̃n, arccos ηj, φk)
√

∆k∆ηj∆φ. (72)

The very possibility of the transition to the plane wave expansion is the

main reason for us having introduced the unified grid for the momentum

radial components, Eq.(65).

One may write the Hamiltonian for a particle in external field as 1

Ĥ =
~̂p 2

2
− ~A(t)~̂p+ U(r, θ, φ, t). (73)

Here ~̂p = −i∇ is the momentum operator, U(r, θ, φ, t) is the potential of

electron-nuclei interaction, and ~A(t) is the vector potential of the external

electric field. The vector potential definition

~A(t) = −
∫ t

0

q~E(t′)dt, (74)

slightly differing from the commonly used one, will be used further for the

sake of expressions brevity. Here q is a particle charge and ~E(t) is the external
electric field strength.

Employing DVR and the transform Eq.(63) allows to represent the Hamil-

tonian as a matrix

H(t) = Y†B†[K− Ỹ( ~A(t)~P)Ỹ†]BY +U(t). (75)

1Here and below all equations are expressed in atomic units

25



Here the kinetic energy operator matrix K, the potential energy operator

matrix U and the momentum operator matrix ~P are diagonal, and their

elements are written as:

Knlmn′l′m′ =
k2nl
2
δnn′δll′δmm′ ; (76)

Uijki′j′k′(t) = U(ri, θj, φk, t)δii′δjj′δkk′; (77)

~Pnjkn′j′k′ = k̃n~njkδnn′δjj′δkk′. (78)

Hence the operations number needed for the multiplication by matrix (75)

scales as the one for the transform Eq.(63). In the absence of the vector

potential the multiplication by the Hamiltonian requires only two transforms,

namely the direct and inverse ones. When the vector potential is non-zero,

one employs the additional couple of angular transforms Y. In the present

case they perform the transition from the expansion in spherical waves to the

one in plane waves (that is, to the DVR in the momentum representation)

and vice versa. Since all the transforms are orthogonal, the Hamiltonian

matrix preserves the original Hamiltonian hermiticity.

Next, we take the opportunity to introduce in the kinetic energy matrix

Eq.(76) the angular momentum-dependent momentum knl. One can define

it either just as knl = k̃n, or in a more advanced fashion, namely via Eq.(60).

We will compare these two ways below.

The TDSE has the form

i
∂ψ(r, θ, φ, t)

∂t
= Ĥψ(r, θ, φ, t). (79)

In the matrix form it is written as

i
∂ψ(t)

∂t
= H(t)ψ(t). (80)
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Since one may perform the fast fast multiplication by matrix of the form

of (75), the time dependent equation can be solved by means of different

approaches, e.g. the leap-frog method or short iterative Lanczos propagator

method [17]. However here we shall use the split-operator method [18]. It

might be represented in the form of equations in the following order:

ψ1(t) = exp[−iU(t + τ/2)τ/2]ψ(t);

c1(t) = BYψ1(t);

c2(t) = exp[−iKτ/2]c1(t);

ϕ2(t) = Ỹ†c2(t);

ϕ3(t) = exp[i( ~A(t + τ/2)~P)τ ]ϕ2(t); (81)

c3(t) = Ỹϕ3(t);

c4(t) = exp[−iKτ/2]c3(t);

ψ4(t) = Y†B†c4(t);

ψ(t+ τ) = exp[−iU(t + τ/2)τ/2]ψ4(t).

This sequence of steps is equivalent to ψ(t + τ) = exp[−iH(t + τ/2)τ ]ψ(t)

with the accuracy O(τ 3), so the method has a global error of O(τ 2). As

the matrices K, U and ~P are diagonal, the exponential functions of them

reduce to the exponential functions of complex numbers. Therefore each step

of the method performing requires a number of operations O(NrNθN
2
φ) +

O(NrNφN
2
θ ) +O(NθNφNr log2Nr).

Upon the employing of the approach that is being presented, the evo-

lution of the phases of free spherical waves is evaluated more precisely, the

greater the evaluation region. It emerges to be an important advantage in

comparison to another space approximation techniques that are commonly
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used today (finite-difference method, finite-element method and so on). This

is extremely helpful for the problems that require the consideration of the

long-duration wavefunction evolution in large space regions in variable ex-

ternal fields.

It is worth mentioning that, although we are considering the TDSE solv-

ing only, the reduction of a problem to the multiplication by the matrix of

the form of (75) might be also used in iteration methods for the stationary

elliptic equations solving as well.

4.2. Test on 3D time-dependent harmonic oscillator
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Figure 6: Convergence of the solution to the exact one for the oscillator in external time-

dependent field: first row — the coordinate gauge; second row — the velocity gauge; left

column — external field frequency ω = 1; right column — ω = 2.

As a first benchmark application let us consider the problem of 3D har-
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monic oscillator in external field, that has the analytical solution. As this

problem possesses features somewhat opposite to those which are optimal for

the employing of DSBT-DVR (that is, it needs only the small spatial region

size), it proves to be the most stringent test for the method.

The spherically-symmetric three-dimensional harmonic oscillator poten-

tial is known to be

U0(r) =
r2

2
.

The time-dependent external field can be presented by means of various ways

which are equivalent in terms of theory, but different in terms of their imple-

mentation by a numerical scheme. We have accomplished the calculations

for the external field representation both in the coordinate gauge

V (~r, t) = −qE(t)z;
~A(t) = 0.

and the velocity gauge

V (~r, t) = 0;

~A(t) = A(t)~ez.

The pulse form was supposed to be

A(t) = −A0 sinωt,

and

qE(t) = −∂A
∂t

= ωA0 cosωt.
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We took the external field amplitude to be A0 = 0.25. Computations were

carried out for the two external field frequencies, namely ω = 1 correspond-

ing to the oscillator resonant frequency, and the non-resonant ω = 2. At the

resonant frequency the amplitude of the wavepacket center position oscilla-

tions (against center of coordinate) grows linearly with time, that is, higher

and higher spherical harmonics are excited, whereas in the non-resonant case

only small ℓ harmonics are excited. Initial state function was set equal to

the ground state function.

We used the parameter δ(t) = |1−〈ψosc(~r, t)|ψ(~r, t)〉| to estimate the ap-

proximation error. Here wave function ψosc(~r, t) is the analytical solution for

the three-dimensional harmonic oscillator in a time-dependent external field,

and ψ(~r, t) is the numerical solution. We set the angular basis parameters

Nθ = 16 and Nφ = 1. In order to diminish the error of the split-operator

method (which is of no current interest), the time step has been set very

small.

The Figure 6 shows the error δ(t) of the obtained numerical solution as a

function of time at knl = k̃n for the three grids having the same step ∆r = 0.2,

but different rmax = 12.8, 25.6, and 51.2. It is apparent that the solution

error falls down as O(r−2
max), as one should expect basing on the fact that the

approximate transform error makes the most significant contribution to the

overall scheme error at such scheme parameters.

The Figure 7 presents the same as the Figure 6, except that we have

employed the corrected knl from Eq.(60). One can see that the rate of the

solution convergence to the exact one depending on rmax is the same as in

the case knl = k̃n, but the error absolute value is 4 to 5 times less.
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Figure 7: Convergence of the solution to the exact one for the oscillator in external time-

dependent field for the corrected knl: first row — the coordinate gauge; second row — the

velocity gauge; left column — external field frequency ω = 1; right column — ω = 2.

4.3. Molecule in the pump-probe field

Now let us turn to a problem of more physical use. As a benchmark

example we shall consider the H+
2 molecule in the field of complex-shaped

laser pulse consisting of the short ultraviolet (XUV) pulse combined with

the long infrared radiation (IR) pulse. This emerges as a model of rapidly

developing pump-probe techniques [20]. The electron is emitted after being

subjected to the XUV pumping pulse and then moves under joint action of the

long-range Coulomb field and slowly changing IR probe pulse field. Modeling

of this process requires computations for a long atomic time period as well

as for the large simulation region size rmax (in order for the electron not to
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escape outside its boundaries). Since a large rmax implies a small momentum

step, an DSBT based approach emerges to be perfectly appropriate for this

problem solving.

First we need to estimate the accuracy that our scheme provides for

the singular potential problems which are frequently encountered in atomic

physics. To this end, we have computed the eigenenergies of the approximate

Hamiltonian (75) for the different singular potentials. The ground state en-

ergy and wavefunction have been evaluated by means of the imaginary time

evolution method (that is to substitute t → −it in Eq.(80)). The excited

states have been evaluated via the imaginary time evolution method with

the ortogonalization of the wavefunction to the lower states functions on

each time step.

We shall begin with the considering of the Hydrogen atom whose nucleus

potential is known to be

U0(r) = −1

r
.

The table 1 demonstrates the convergence of the calculated energy with the

grid step ∆r decreasing at the fixed rmax = 102.4. It is seen that calculated

energies of ℓ = 0-states converge to the exact ones quadratically. Meanwhile,

ℓ > 0-states energies hardly depend on ∆r and possess much less errors. The

latter are caused mainly by the very SBT error and decrease quadratically

with rmax increasing. For ℓ = 0, the large error value and rather slow ∆r-

convergence result from the fact that the Coulomb wavefunctions with ℓ = 0

have the first derivative discontinuity at r = 0 and are poorly approximated

by the sin Fourier expansion.

In order to enhance the convergence rate for ℓ = 0, one can replace the
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Table 1: Bound states energies for H.

∆r

n ℓ 0.2 0.1 0.05 Exact

1 0 -0.505927 -0.501575 -0.500405 -0.5

2 0 -0.125738 -0.125197 -0.125051 -0.125

3 0 -0.055774 -0.055614 -0.055571 -0.055555(5)

2 1 -0.125017 -0.125017 -0.125017 -0.125

3 1 -0.055572 -0.055572 -0.055572 -0.125

3 2 -0.055606 -0.055606 -0.055606 -0.055555(5)

exact Coulomb potential with an effective potential constructed in such a

manner that, at a given approximate kinetic energy operatorY†B†KBY, the

approximated Hamiltonian ground state function and energy would coincide

with the exact ones for the ground state of a hydrogen-like ion with a nucleus

charge Z, that is, correspondingly,

ϕZ100(~r) =
Z3/2

√
π

exp(−Zr); EZ10 = −Z
2

2
. (82)

For a nucleus residing in a point with the coordinates ~ra, such a potential is

expressed as

ũZ(~rijk, ~ra) =
[Y†B†[K− EZ10I]BYϕZ(~ra)]ijk

[ϕZ(~ra)]ijk
, (83)

where

[ϕZ(~ra)]ijk = ϕZ100(~rijk − ~ra)ri
√

∆r∆ηj∆φ. (84)

However, since ϕZ100(~r) tends to zero exponentially at large r’s, the expres-

sion (83) would yield the result going to infinity at large |~r − ~ra| due to
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numerical errors. To avoid this, we have chosen to use the following poten-

tial

uZ(~rijk, ~ra) = f(|~rijk − ~ra|)ũZ(~rijk, ~ra)−
[1− f(|~rijk − ~ra|)]Z

|~rijk − ~ra|
. (85)

Here f(r) is the mask function possessing the properties f(0) = 1, f(r →
∞) = 0. In our calculations the mask function of the form

f(r) = exp(−Zr). (86)

was employed. In such a way, the potential (85) coincides with the potential

(83) when |~r − ~ra| is small and with the usual Coulomb potential when it is

large. As all the Coulomb functions at r → 0 have an asymptotic behavior

∼ 1−Zr+O(r2), the increasing of the accuracy of near-r = 0 approximation

of the ground state function ϕZ100(~r) should lead to the increasing of the

accuracy of the approximation of the other Coulomb functions.

Table 2: Bound state energies for H with the effective potential in use.

∆r

n ℓ 0.2 0.1 0.05

1 0 -0.500967 -0.500133 -0.500017

2 0 -0.125125 -0.125017 -0.125002

3 0 -0.055593 -0.055561 -0.055556

2 1 -0.125016 -0.125017 -0.125017

3 1 -0.055572 -0.055572 -0.055572

3 2 -0.055606 -0.055606 -0.055606

The table 2 exhibits the same as the Table 1 does, except that the po-
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tential

U0(r) = uZ(~r, 0)

has been used instead of the Coulomb one. One can easily observe the

decreasing of the differences between the calculated energies of ℓ = 0-states

and the exact energies of H atom stationary states, whereas for the ℓ > 0-

states these differences apparently do not increase.

Now turn to the molecular Hydrogen ion H+
2 . When dealing with multi-

nuclear systems, one has to employ a potential with singularities that do not

coincide with the coordinate origin. We shall write the approximate nuclear

potential in the hydrogen molecule in the following way:

U0(r) = u1(~r, ~R/2) + u1(~r,−~R/2).

where ~R is the internuclear vector with the length R = 2 which corresponds

to the equilibrium internuclear distance for the H+
2 ground state. We have

chosen the internuclear direction along the Oz axis orientation, ~R||~eZ . The

Table 3: Bound state energies for H+
2 .

Nθ

State 4 8 16 Exact

1σg -1.066449 -1.094991 -1.101242 -1.102634

2σu -0.618383 -0.659020 -0.666117 -0.667534

table 1 manifests the calculated energies for H+
2 ground and first excited

states converge with the angular basis parameter Nθ increasing at the fixed

∆r = 0.2 and rmax = 102.4. The “exact” energies given here were obtained
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through the calculation via the method [19] based upon the spheroidal co-

ordinates utilizing. The error arising from the grid step is negligible in this

case, therefore the table of convergence over the grid step is not presented

here.

Next let us consider the evolution of the molecular ion H+
2 in the field of

two overlapping linearly polarized laser pulses

~A(t) = AUV (t)~nUV +AIR(t)~nIR.

Here the “XUV” pulse was supposed to have the Gaussian envelope

AUV (t) = −AUV exp

(

−2 ln 2
t2

w2
UV

)

cosωt

where wUV is the full width at half maximum . Next, the “IR” pulse was

chosen to have a compact support and the cos2–envelope, as follows

AIR(t) = −AIR cos2[π(t− tIR)/τIR] cosωIR(t− tIR), |t− tIR| < τIR/2,

where τIR is the overall pulse duration, tIR is the shift of the arrival time of the

IR-pulse center relative to that for the XUV pulse. The external field of this

form is employed in the attosecond streaking method [20]. The XUV-pulse

triggers the ionization, then the detected electrons spectrum dependence on

the time shift tIR enables to determine the IR pulse genuine form, or, in

the case of this form being known, to obtain the time delay of the electron

emission during the ionization process.

The probe pulse parameters was taken to be ωIR = 0.062832, AIR = 0.05,

and τIR = 2TIR = 200 (which are common values in modern attosecond

streaking experiments), and the pump pulse parameters, correspondingly,

were ωUV = |E0| + 0.5 (E0 standing for the molecule ground state energy,
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evaluated by means of the imaginary time evolution method) AUV = 0.25,

and wUV = 10. Both pulses polarization were chosen to be co-directed with

the molecular axis, ~nUV = ~nIR = ~eZ . In all the examples referred to below

we used the numerical scheme parameters as follows: rmax = 409.6, time

step τ = ∆r2/4, evolution beginning time t0 = −τIR/2 + tIR, and evolution

termination time tfin = τIR/2 = 100.
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Figure 8: (left) The probability density P = |Ψ(~r, tfin)|2 versus r at θ = 0 for the different

tIR’s; (right) gray scale map of log10 P versus Cartesian coordinates x and z at y = 0 for

tIR = 0.

The Fig. 8 shows the probability density P (~r, tfin) = |Ψ(~r, tfin)|2 that

the electron is at ~r. The calculations were performed for the scheme param-

eters Nθ = 16 and ∆r = 0.2. Due to the stationary phase approximation,

for the time tfin ≫ wUV and for r ≫ 1, the relation P (~r, tfin) ∼ σ(~r/tfin)

holds, where σ(~k) is the differential cross section of electrons emission de-

pending on momentum. On the left panel of the Fig. 8, the peak near

r = 0 corresponds to the wavefunction of the ground and other stationary

states, whereas the peak centered in the vicinity of r = 100 emerges due to

the one-photon ionization, and and the rest large r peaks are caused by the

multiphoton processes. This is apparently confirmed by the right panel of
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the Fig. 8, where the r = 100 enhanced probability ring has one node de-

pending on θ, the circle of larger radius has two nodes corresponding to the

dipole and quadrupole distributions arising from the absorption of one or two

photons correspondingly. The left panel of the Figure 8 also demonstrates

the probability density dependence on the IR pulse phase at the moment of

the XUV pulse arrival. The theory predicts the probe pulse action causing

the electron momentum shift equal to the magnitude of the IR pulse at the

moment of the electron emission from the molecule (which roughly coincides

with the moment of the XUV pulse arrival). This is exactly what is observed

on the right panel of the Figure 8.
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Figure 9: (left) The pairwise differences ∆ = |P2∆r,Nθ
− P∆r,Nθ

|r2 at the fixed Nθ = 8;

(right) The pairwise differences ∆ = |P∆r,Nθ/2 − P∆r,Nθ
|r2 at the fixed ∆r = 0.2.

Besides, we have examined the probability density P convergence rate

depending on the step ∆r and on the angular basis size, Nθ. The left

panel of the 9 presents the pairwise differences ∆(r) = |P2∆r,Nθ
(r~eZ , tfin) −

P∆r,Nθ
(r~eZ , tfin)|r2 for the probability densities P∆r,Nθ

(~r, tfin) evaluated on

the three grids having the steps ∆r = 0.4, 0.2 and 0.1 at the fixed Nθ = 8.

For the sake of comparison P∆r,Nθ
(r~eZ , tfin)r

2 for ∆r = 0.1 and Nθ = 8 is

plotted on the same figure. It is apparent that even on the coarsest grid
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with ∆r = 0.4 the error is of the order of 1%; this value is quite small in

terms of experimental accuracy which is common in the field in question.

Upon halving the step size, the error drops down by 1-2 orders of magnitude.

However, the error in a particular point decreases non-uniformly, actually as

expected due to the global basis functions using.

The right panel of the 9 displays the pairwise differences ∆(r) = |P∆r,Nθ/2(r~eZ , tfin)−
P∆r,Nθ

(r~eZ , tfin)|r2 for the three different angular bases with Nθ = 4, 8, and

16 at the fixed step ∆r = 0.2, as well as P∆r,Nθ
(r~eZ , tfin)r

2 for ∆r = 0.2 and

Nθ = 16. One can see that the error due to the angular basis small size is

much larger than that due to the radius step. This is related to the molecular

potential non-centrality. For Nθ = 4 the error has magnitude about 25% (in

the vicinity of maxima), whereas upon the basis size increasing up to Nθ = 8

the error drops down to 6%. Therefore Nθ = 16 has been chosen for the main

part of our calculations.

5. Conclusion

We have developed the algorithm for the DSBT that possesses the advan-

tages of orthogonality, performing fastness and uniform grid. Our approach is

based upon the SBT factorization into the two subsequent orthogonal trans-

forms, namely the fast Fourier transform (requiring the operations number

O(N log2N)) and the orthogonal transform founded on the discrete orthog-

onal Legendre polynomials (requiring the operations number O(ℓN)). Our

discrete transform converges to the exact SBT as the square of the momen-

tum grid step.

Besides, basing on DSBT and DVR, we have also elaborated the 3D
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TDSE solving method (DSBT-DVR). The examination of the DSBT-DVR

algorithm has demonstrated its efficiency for the purposes of solving of time-

dependent problems in atomic and molecular physics. An DSBT based ap-

proach allows to evaluate the free spherical wave functions evolution the more

accurately, the more is the spatial region size. It appears to be an advantage

in comparison to another methods applied in this field. This is especially

helpful for problems like the modelling of the attosecond streaking approach

and other pump–probe techniques, since they require the computation of the

wavefunction evolution under the joint action of long-lasting pulses and the

weak Coulomb field on large spatial regions. Another important preference

of the method proposed is the fast convergence over grid step when applied

to the problems with smooth (or artificially smoothed) potentials.

It should be noted that the current DSBT-DVR version does not make

any use of another helpful DBBT feature, namely the DSBT capability to

be employed for the aim of the evaluation of multi-center integrals [6]. The

leveraging of this capability for the solving of both SSE and TDSE for the

multielectron molecules is expected to be the matter of our future work.
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Appendix A. Proof of transform orthogonality

Let us begin with the demonstration of the Eq.(32) validity. Consider the

sum

σs ≡
N
∑

i=0

∇[Pℓ](i, N − 1)is (A.1)

It may be transformed as follows

σs =

N
∑

i=0

Pℓ(i, N − 1)is −
N
∑

i=0

Pℓ(i− 1, N − 1)is

=

N−1
∑

i=0

Pℓ(i, N − 1)is + Pℓ(N,N − 1)N s

−
N
∑

i=1

Pℓ(i− 1, N − 1)is − Pℓ(−1, N − 1)0s

According to (31), if s < ℓ the sums in the last string equal zero, hence

σ(s) = Pℓ(−1, N − 1)
[

(−1)ℓN s − 0s
]

. (A.2)

Here we also used the DLOP parity property [14]

Pℓ(i, N) = (−1)ℓPℓ(N − i, N). (A.3)

Now let us take an arbitrary discrete polynomial

p(i) =

µ
∑

s=0

Csi
s; µ < ℓ, (A.4)

and consider the sum

σ ≡
N
∑

i=0

∇[Pℓ](i, N − 1)p(i) =

µ
∑

s=0

Csσs (A.5)
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By using Eq.(A.2) we obtain

σ = Pℓ(−1, N − 1)
[

(−1)ℓp(N)− p(0)
]

(A.6)

Next, one can construct the weighted sum

N
∑

i=0

∇[Pℓ](i, N − 1)p(i)wi(N) =

σ − 1

2
∇[Pℓ](0, N − 1)p(0)− 1

2
∇[Pℓ](N,N − 1)p(N)

Making use of the Eqs.(A.6, 35, A.3) and the normalization condition Pℓ(0, N−
1) = 1 yields

N
∑

i=0

∇[Pℓ](i, N − 1)p(i)wi(N) =

1 + Pℓ(−1, N − 1)

2

[

(−1)ℓp(N)− p(0)
]

. (A.7)

After the division of both sides of this equation by [1+Pℓ(−1, N − 1)]/2, we

arrive to Eq.(32).

Now let us prove Eq.(41). As this equation is symmetric with respect to

the exchange of indices n and m, for definiteness we shall assume n > m.

Since Lml = 0 for l > m, one can write

Nℓ
∑

l=pℓ

[δnl − Lnl][δml − Lml] = −Lnm +
m
∑

l=pℓ

LnlLml (A.8)

For sake of the notation simplicity, from now on we designate

λnm ≡
m
∑

l=pℓ

LnlLml (A.9)

So, according to Eq.(A.8), Eq.(41) holds true, when

λnm = Lnm. (A.10)
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The substitution of L elements definition from Eq.(39) yields

λnm =

m
∑

l=pℓ

P ′
ℓ(n− l, 2n)P ′

ℓ(m− l, 2m)

(

1− δl0
2

− δlm
2

)

. (A.11)

By change of the summation index i = m− l we can rewrite (A.11) as

λnm =

m−pℓ
∑

i=0

P ′
ℓ(n−m+ i, 2n)P ′

ℓ(i, 2m)

(

1− δim
2

− δi0
2

)

. (A.12)

Due to Eq.(A.3), DDLOP have the parity property

P ′
ℓ(i, N) = (−1)ℓ−1P ′

ℓ(N − i, N). (A.13)

The sum in Eq.(A.12) might be split into the two sums as

λnm =
1

2

m
∑

i=0

P ′
ℓ(n−m+ i, 2n)P ′

ℓ(i, 2m)

(

1− δi0
2

)

+
1

2

m−1
∑

i=0

P ′
ℓ(n−m+ i, 2n)P ′

ℓ(i, 2m)

(

1− δi0
2

)

. (A.14)

Here we made use of the fact that P ′
ℓ(m, 2m) = 0 when pℓ = 1 at even ℓ.

Next we apply the parity property to both DDLOPs in the summand of the

second sum in Eq.(A.14) and make the summation index change i→ 2m− i

m−1
∑

i=0

P ′
ℓ(n−m+ i, 2n)P ′

ℓ(i, 2m)

(

1− δi0
2

)

=

m−1
∑

i=0

P ′
ℓ(n +m− i, 2n)P ′

ℓ(2m− i, 2m)

(

1− δi0
2

)

=

2m
∑

i=m+1

P ′
ℓ(n +m− i, 2n)P ′

ℓ(i, 2m)

(

1− δi,2m
2

)

The latter sum then might be combined with the (remained unchanged) first

sum in Eq.(A.14) to get

λnm =
1

2

2m
∑

i=0

P ′
ℓ(n−m+ i, 2n)P ′

ℓ(i, 2m)wi(2m). (A.15)
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As P ′
ℓ(n−m+i, 2n) is the polynomial of the order ℓ−1, we can apply Eq.(32)

to obtain

2m
∑

i=0

P ′
ℓ(n−m+ i, 2n)P ′

ℓ(i, 2m)wi(2m)

= (−1)ℓP ′
ℓ(n+m, 2n)− P ′

ℓ(n−m, 2n).

Finally, after using the parity property Eq.(A.13), the result becomes

λnm = −P ′
ℓ(n−m, 2n). (A.16)

Since Lnm = −P ′
ℓ(n − m, 2n) for n > m ≥ n0ℓ > 0, we have thus proved

Eq.(A.10) and therefore Eq.(41).
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