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Abstract

The finite-difference time-domain (FDTD) method is a well established method
for solving the time evolution of Maxwell’s equations. Unfortunately the scheme
introduces numerical dispersion and therefore phase and group velocities which
deviate from the correct values. The solution to Maxwell’s equations in more
than one dimension results in non-physical predictions such as numerical disper-
sion or numerical Cherenkov radiation emitted by a relativistic electron beam
propagating in vacuum.

Improved solvers, which keep the staggered Yee-type grid for electric and
magnetic fields, generally modify the spatial derivative operator in the Maxwell-
Faraday equation by increasing the computational stencil. These modified
solvers can be characterized by different sets of coefficients, leading to differ-
ent dispersion properties. In this work we introduce a norm function to rewrite
the choice of coefficients into a minimization problem. We solve this problem
numerically and show that the minimization procedure leads to phase and group
velocities that are considerably closer to c as compared to schemes with manu-
ally set coefficients available in the literature. Depending on a specific problem
at hand (e.g. electron beam propagation in plasma, high-order harmonic gener-
ation from plasma surfaces, etc), the norm function can be chosen accordingly,
for example, to minimize the numerical dispersion in a certain given propaga-
tion direction. Particle-in-cell simulations of an electron beam propagating in
vacuum using our solver are provided.

1. Introduction

The finite-difference time-domain (FDTD) method is widely used for the
simulation of electromagnetic wave propagation in different scenarios ranging
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from the simulation of antennas to astrophysical problems [1]. It is also the
standard method to solve Maxwell’s equations in particle-in-cell (PIC) simula-
tions, where plasma, represented by macroparticles, and electromagnetic fields
are treated in a self-consistent manner [2]. In the traditional FDTDmethod, also
known as the Yee scheme [3], the electromagnetic fields are located on a stag-
gered grid providing the centered differencing using the nearest grid points. For
many years Yee’s scheme has been extensively used in electromagnetic plasma
simulations leading to many important results. One of the main drawbacks of
Yee’s scheme is the numerical dispersion which leads to a lower than c phase
and group velocity [4], particularly at higher frequencies (here, c is the speed
of light in vacuum). The artificial slow-down of the phase velocity means that
a relativistic electron propagating along a straight line with constant velocity
in free-space will emit artificial numerical Cherenkov radiation [5], which is of
particular interest for PIC simulations, notably in the context of Laser Plasma
Accelerators (LPAs). The deviation of the group velocity from its vacuum value
may also adversely effect simulations of LPAs by modifying wave-breaking.

A lot of effort has been taken to reduce the numerical dispersion of Maxwell
solvers, especially for the LPA simulations using PIC codes [6]. Several ap-
proaches have been proposed including spectral methods [7–12], filtering [13–17],
directional splitting [18, 19] and modified computation stencils [15, 16, 20–28].
In the latter methods the stencil for the computation of the spatial derivatives
of the fields is extended. For the usage in PIC simulations, it is non-trivial to
find a particle current weighting scheme that conserves charge w. r. t. the ex-
tended stencils [15]. Therefore in most cases only the stencil used for the spatial
derivatives for the electric field in the Maxwell-Faraday equation is modified.
Depending on the choice of the coefficients the field solver will have different
dispersion properties. For example, as shown in Ref. [27], one can design a
solver in which higher frequencies can propagate with phase velocities slightly
higher than c. Consequently this leads to a significant reduction of artificial
Cherenkov radiation in a chosen direction, which increases the accuracy of LPA
simulations. Another set of coefficients can lead to dispersion-free propagation
along the chosen axis, as shown in Ref. [25]. For the off-axis propagation the
setups presented in Refs. [25, 27] remain dispersive.

In this paper a systematic approach to modify the computational stencil
in Maxwell solvers is presented. By introducing a norm in coefficient space
a minimization algorithm can automatically deduce stencil coefficients either
with minimized global dispersion or with minimized dispersion in a given range
of frequencies and angles. We show that our approach can lead to dispersion
properties better than those of Maxwell solvers with published coefficient sets.

This paper is organized as follows. In Sec. 2 the extended stencil method is
introduced and conditions for the coefficients are discussed. In Sec. 3 expres-
sions for the dispersion relation are provided. In Sec. 4 we introduce the norm
function, and discuss that simple numerical minimization methods can provide
an optimal set of coefficients for the best (with respect to numerical dispersion)
performance. Examples of optimized stencils and their properties are discussed
in Sec. 5. In Sec. 6 numerical PIC simulation examples are provided. Finally,
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Sec. 7 contains conclusions.

2. Stencils for Maxwell solvers

In order to solve Maxwell’s equations
#‰∇× #‰

E = −∂t
#‰

B , (1)
#‰∇× #‰

B = 1
c2
∂t

#‰

E + µ0
#‰

J , (2)
#‰∇ · #‰

E = ρ

ε0
, (3)

#‰∇ · #‰

B = 0 (4)

on the grid, stencils for the derivative operators have to be imposed. Our
starting point is Yee’s scheme from Ref. [3] which is based on the combination
of a staggered grid with second order accurate central difference stencils. The
Maxwell-Faraday equation Eq. (1) and the Maxwell-Ampere equation Eq. (2) are
used, in a numerical form, to update the fields from one time step to the next.
The remaining equations, Eqs. (3) and (4), are seen as constraint equations.
They must be, numerically, conserved from step to step and they should be
valid at the initial time. In the context of a Particle-in-Cell (PIC) simulation,
it is the task of the current weighting scheme to ensure that #‰∇ · #‰

E is not only
conserved, but reflects the actual charge density given by the same moving
charged particles that are the sources of #‰

J .
The extended stencil scheme is introduced by replacing, in some but not

all the equations, the simple central difference stencil by an extended stencil
that takes additional grid points into account. For an arbitrary field component
at time t = n∆t and position (x, y, z) = (i∆x, j∆y, k∆z) with ∆t,∆x,∆y,∆z
the discretization steps in time and space, respectively, we impose the standard
second order stencil for the time derivative

∂tX → Dt(Xn
i j k) = 1

∆t

(
X
n+ 1

2
i j k −X

n− 1
2

i j k

)
. (5)

To avoid complications in the current deposition inside the PIC Codes the sten-
cil for the Maxwell-Ampere equation Eq. (2) is chosen as the Yee stencil and
therefore remains unmodified:

∇x → Dx(Xn
i j k) = 1

∆x

(
Xn
i+ 1

2 j k
−Xn

i− 1
2 j k

)
, (6)

and similarly for the remaining spatial coordinates. The stencil for the Maxwell-
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Faraday equation Eq. (1) is generalized to:

∇x → D∗x(Xn
i j k) = αx

∆x

(
Xn
i+ 1

2 j k
−Xn

i− 1
2 j k

)
+ δx

∆x

(
Xn
i+ 3

2 j k
−Xn

i− 3
2 j k

)
+ βxy

∆x

(
Xn
i+ 1

2 j+1 k −X
n
i− 1

2 j+1 k

)
+ βxy

∆x

(
Xn
i+ 1

2 j−1 k −X
n
i− 1

2 j−1 k

)
+ βxz

∆x

(
Xn
i+ 1

2 j k+1 −X
n
i− 1

2 j k+1

)
+ βxz

∆x

(
Xn
i+ 1

2 j k−1 −X
n
i− 1

2 j k−1

)
.

(7)

The remaining spatial derivatives D∗y and D∗z are defined similarly with the
coefficients αy, δy, βyx, βyz, αz, δz, βzx, βzy. Note that the definition of the
coefficients is identical to the one used by [27] and [28]. The operator D∗ can be
interpreted as a derivative (D∗ → ∂ for vanishing grid steps) if the coefficients
fulfil the following equations [27]:

αx = 1− 2βxy − 2βxz − 3δx ,
αy = 1− 2βyx − 2βyz − 3δy ,
αz = 1− 2βzx − 2βzy − 3δz.

(8)

Note that at this point we have not yet made a statement about how the
derivatives in Eqs. (3) and (4) are be discretized.

2.1. Conservation of the divergence of the fields
Starting from the modified update equations one can find (see Appendix A),

that in order to be able to obtain the discretized version of the wave equation,
the Maxwell-Gauss equations must be discretized as

#‰

D∗ · #‰

B
n− 1

2
i+ 1

2 ,j+
1
2 ,k+ 1

2
= 0 , (9)

#‰

D · #‰

Eni,j,k =
ρni,j,k
ε0

. (10)

These equations must hold at any grid point i, j, k. As the necessary shifts of
± 1

2 follow from the staggered grid and thus carry no actual information, they
are dropped from now on. Hence, one must use the extended stencil for the
calculation of the divergence of magnetic fields and the standard stencil for
the calculation of the divergence of electric fields, oppositely to the usage of
discretized curl operator described in Eqs. (1) and (2).

It has been already stated in the literature [26] that Eq. (9) is conserved
automatically, if it is fulfilled in the initial moment. The same holds for Eq. (10),
if one uses the charge conserving current deposition scheme. If both Eqs. (9)
and (10) are fulfilled in the initial setup, one does not need to consider them
throughout the simulation.
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2.2. Initial conditions for divergence equations
Though Eq. (9) is conserved throughout the simulation, one has to be sure

it is zero initially. Solving Eq. (9) for the initial condition might be more
complicated than solving the usual #‰

D · #‰

B = 0, especially if one further extends
the stencil to take into account even more layers. It is, however, possible to
choose the coefficients for the extended stencil in such a way that #‰

D · #‰

B = 0
implies Eq. (9), making it sufficient to solve the simpler #‰

D · #‰

B = 0 for the initial
condition.

Demanding Dt
#‰

D · #‰

B = 0 we find

0 = −1
c
~D · ∂t ~B = ~D ·

(
~D∗ × ~E

)
= (DyD

∗
z −DzD

∗
y)Ex + (DzD

∗
x −DxD

∗
z)Ey + (DxD

∗
y −DyD

∗
x)Ez .

This imposes further conditions for the coefficients:

βij = δj , i, j = x, y, z . (11)

A scheme using a stencil that fulfils Eq. (11) will conserve both #‰

D · #‰

B = 0 and
Eq. (9). In addition it can easily be shown that if the magnetic field fulfils
#‰

D · #‰

B = 0 at any time, it also fulfils Eq. (9).
Apart from an easier initial setup, we do not see any necessity to demand

Eq. (11). A lot of published simulation results rely on extended stencils that do
not agree with Eq. (11), as summarized in Tab. 1. For the time being, we will
consider this constraint as optional and present results both ways.

3. Dispersion relation

The dispersion relation for the discretized Maxwell’s equations as described
by Eqs. (1) and (2) is given by

s2
ω = s2

xAx + s2
yAy + s2

zAz (12)

with the abbreviations

sω =
sin
( 1

2ω∆t
)

c∆t ,

s{x,y,z} =
sin
( 1

2k{x,y,z}∆{x, y, z}
)

∆{x, y, z}

(13)

and
Ax = αx + 2βxy cos(ky∆y) + 2βxz cos(kz∆z)

+ δx(1 + 2 cos(kx∆x)) ,
Ay = αy + 2βyx cos(kx∆x) + 2βyz cos(kz∆z)

+ δy(1 + 2 cos(ky∆y)) ,
Az = αz + 2βzx cos(kx∆x) + 2βzy cos(ky∆y)

+ δz(1 + 2 cos(kz∆z)).

(14)
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From this it can be shown (see Appendix B), that the dispersion relation does
not depend on all six β coefficients independently, but only on the symmetric
part of

β̂ij ≡ ∆x2
jβij . (15)

This reduces the number of free coefficients.
We need to make sure that Eq. (12) must remain well defined, i. e.,

0 ≤ (c∆t)2 (
s2
xAx + s2

yAy + s2
zAz

)
≤ 1 , 0 ≤ ki ≤ π. (16)

The right hand inequality is equivalent to the Courant-Friedrichs-Lewy (CFL)
condition, while equality corresponds to a conditionally stable scenario. Any

The stencil reduces to the well-known Yee stencil for vanishing β and δ.
In this case all α coefficients must be unity as enforced by Eq. (8), and the
dispersion relation simplifies to the well-known Yee dispersion [2]. Note, that in
one dimensional case the Yee scheme is dispersion-free for c∆t = ∆x. However,
as this time step is only conditionally stable, the introduction of particles will
turn the PIC code unstable. Reducing the time step generically introduces
dispersive effects.

Following this observation we want to emphasize that the time step is an
important parameter that must also be taken into account while optimizing the
stencil. This was already recognized in Ref. [26], where the authors proposed
to find a time step numerically such that the correct group velocity of the laser
in a plasma with a given density is ensured. In the following section we will
introduce a norm to evaluate the stencils depending on the coefficients as well
as the time step.

4. A norm function for dispersion relation

In order to quantify the search for the coefficients we propose a norm for
dispersion relation

fw[ω] = ∆x∆y∆z
∫ π

∆x

0
dkx

∫ π
∆y

0
dky

∫ π
∆z

0
dkz w( #‰

k ) ·
(
ω( #‰

k )− c| #‰k |
)2
. (17)

The norm introduced in Eq. (17) is the variance, a measure for the distance of
the grid dispersion relation ω, as given by Eq. (12), to the free-space dispersion
relation ω0 = c| #‰k |. As the grid dispersion relation in turn depends on the
coefficients of the stencil αi, βij , δi and the time step ∆t, we can now optimize
these with respect to the function f [ω]. The norm defined in Eq. (17) allows
the choice of a weight function w = w(kx, ky, kz) to optimize the stencil with
respect to special physical setups, for example, along a given direction by taking
a non-vanishing w in a given cone, or introducing limits on |~k| to select regions
of interest in frequency space.

The optimal stencil depends on a number of choices, e. g.,

• the number of dimensions,
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Table 1: Norm and coefficients for different schemes, available in the literature, and results
found through our minimization algorithm in 2D with ∆x = ∆y. In this case Pukhov’s scheme
is a special case of Cowan’s scheme. The minimized results which fulfil Eq. (11) are computed
with fixed c ∆t

∆x
.

Scheme fw0(ω) c∆t
∆x βxy = βyx δx δy Eq. (11)

Yee [3] 1.06 0.95√
2 0 0 0 4

NDFX [25] 0.83 1.00 0.125 0 0 8
Cowan [26] 0.93 0.999 0.125 0 0 8
Lehe [27] 1.04 0.96 0.125 −0.021 0 8
min. 1 0.08 0.686 0.110 −0.125 −0.125 8

min. 2 0.63 0.95√
2 −0.013 −0.013 −0.013 4

min. 3 0.42 0.500 −0.065 −0.065 −0.065 4
min. 4 0.36 0.100 −0.125 −0.125 −0.125 4

• the weight function w( #‰

k ),

• the grid aspect ratios Y = ∆y
∆x and Z = ∆z

∆x ,

• choosing to demand any number of further identities, e. g., δi = δj ,

• the choice whether to adhere to Eq. (11) ,

while in any case Eq. (8) must be fulfilled. Depending on these choices the
number of free parameters varies between 1 and 7.

In order to minimize Eq. (17) with respect to the coefficients, we employ
constrained optimization using sequential least squares programming [29, 30].
The constraints are given from Eq. (16), the target function by Eq. (17). Ad-
ditionally a multidimensional cuboid is chosen in parameter space to act as the
search space. The bounds of these cuboid are added to the optimization as ad-
ditional constraints, which prevents the optimizer from running away towards
non-sensical solutions. Of course this cuboid must be chosen large enough such
that it encloses any plausible stencil. The optimization is started on a grid of
possible initial points within the search space, in order to increase the chances of
finding the global minimum. Our code for optimizing the stencils can be found
in Ref. [31].

5. Optimized stencils

A number of numerically optimized stencils in 2D with ∆x = ∆y are shown
in Tab. 1 and compared to published sets of coefficients. In the beginning we
chose a unity weighting function w0( #‰

k ) = 1 and fixed δx = δy yielding manifestly
symmetric stencils. We also fixed βxy = βyx, which does not impose any actual
restriction for the stencil but cancels out a spurious degree of freedom, because
it only depends on the symmetric part Eq. (15). The decreases the number of
free parameters to 3 in case of min. 1. In the cases min. 2 to min. 4, where
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ky∆y

kx∆x
0 1

4π 1
2π 3

4π π0

1
4π

1
2π

3
4π

π
Yee

0 1
4π 1

2π 3
4π π

NDFX

0 1
4π 1

2π 3
4π π

Cowan

0 1
4π

1
2π

3
4π

π

Lehe

0.7

0.8

0.9

1

1.1

ky∆y

kx∆x
0 1

4π 1
2π 3

4π π0

1
4π

1
2π

3
4π

π
min. 1

0 1
4π 1

2π 3
4π π

min. 2

0 1
4π 1

2π 3
4π π

min. 3

0 1
4π

1
2π

3
4π

π

min. 4

0.7

0.8

0.9

1

1.1

Figure 1: The color encodes the phase velocities vph
c

for the minimized stencils listed in Tab. 1.
The corresponding minima and maxima are listed in Tab. 2. It can be seen, that our proposed
scheme (lower right box) has the minimal deviations of the phase velocity from the speed of
light.

we additionally chose to obey Eq. (11), only 2 free parameters remain. In
these cases the minimization tends towards arbitrarily short time steps and it is
necessary to give a lower bound to the time step. The minimization algorithm
generically finds time steps which are below the CFL-condition and should be
stable also in the presence of particles.

Yee’s scheme is said to be stable in the presence of particles with a widely
used time step of 95% of the CFL-condition. Pukhov states that the NDFX
scheme is stable even with a time step c∆t = ∆x, assuming ∆x ≤ min(∆y,∆z)
[25]. According to our norm the NDFX scheme is already a significant improve-
ment over Yee’s scheme. In 2D, Cowan’s scheme differs from Pukhov’s scheme
only in that it chooses a slightly smaller time step which will improve the group
velocity and dispersion around the laser frequency in the plasma [26] while mak-
ing the overall norm slightly worse1. Lehe’s scheme is based upon choosing a
time step first. When c∆t = ∆x is chosen it also reduces to Pukhov’s scheme
[27], Lehe proposes a choice of c∆t = 0.96∆x. The norm of Lehe’s scheme is
almost as high as the norm of Yee’s scheme. In order to understand that we
have to look at the resulting dispersion relations.

Fig. 1 sketches the phase velocity on the grid, defined as

vph = ω

| #‰k |
, (18)

1In 3D Cowans scheme uses an additional set of grid points which are not included neither
in our definition nor in the NDFX.

8



Table 2: Maximal and minimal phase velocities for the setups listed in Tab. 1 and shown in
Fig. 1.

Scheme min( vph
c ) max(vph

c )
Yee 0.70 1
NDFX 0.71 1
Lehe 0.72 1.03

Scheme min( vph
c ) max( vph

c )
min. 1 0.90 1.08
min. 2 0.72 1.05
min. 3 0.76 1.09
min. 4 0.78 1.11

ky∆y

kx∆x
0 1

4π 1
2π 3

4π π0

1
4π

1
2π

3
4π

π
Yee

0 1
4π 1

2π 3
4π π

Lehe

0 1
4π 1

2π 3
4π π

Cowan

0 1
4π

1
2π

3
4π

π

min. 1

0.7

0.8

0.9

1

1.1

Figure 2: The color encodes the group velocities |vg|
c

for some of the stencils listed in Tab. 1.

and Tab. 2 gives an overview about the maximal deviations of the phase velocity
from the speed of light. The plots clearly show, that for the proposed sets of
coefficients the phase velocity has less deviations from c than in any of the
other sets available. As the norms do not vanish, the phase velocity on the
grid is not equal to the speed of light for all ~k. Lehe’s set of coefficients and
our proposed sets have phase velocities larger than the speed of light c. In the
case of the minimized scheme this is due to our choice of optimization metric.
If, initially, the phase velocity is too small in one region, the stencil will be
modified to increase it. This in turn causes the phase velocity to overshoot in
other regions. As the norm weights all regions equally, an equilibrium between
too small and too large phase velocities across the whole k space is found. This
is also the reason why the norm of Lehe’s scheme is so high: it was optimized for
propagation along the x axis, while our norm optimizes for the whole #‰

k space.
This speedup of the phase velocity in the minimized cases is smaller than the
slowdown of phase velocities in the Yee, Pukhov and Cowan setups.

As can be seen in Fig. 2, the group velocities

|vg| =
∣∣∣∣dωd~k

∣∣∣∣
show the same qualitative behaviour as the phase velocities. In general, taking
the derivative amplifies the deviations from c. Please note that the modified
schemes, even when optimized with respect to the phase velocity, generally have
group velocities closer to c and will model the laser pulse propagation more
accurately than Yee’s scheme. As is the case with the phase velocities in both
Lehe’s scheme and in our minimized schemes the peak group velocity is slightly
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faster than c.

5.1. Reproducing the published stencils using optimization
Interestingly, if certain constraints and conditions are employed in the op-

timization, it is, in 2D with ∆x = ∆y, possible to reproduce the schemes by
Pukhov and Lehe. If the lower bound for the time step is set to ∆t = ∆x

c the
optimization produces the NDFX scheme. Setting the bounds for δy tightly
around zero and the upper bound for the time step to ∆t = 0.96∆x

c reproduces
Lehe’s scheme with δx = −0.021.

5.2. Optimizing close to a specific axis of propagation
Choosing a weight function, e. g.

w = e
−
(
ky∆y

0.1

)2

, (19)

enables us to find a stencil which has good dispersion properties when propa-
gating along the x axis, i. e. with small ky∆y. Optimizing numerically with
respect to this norm we find a stencil that is, on the axis, better than Lehe’s
stencil, see Tab. 3. With a time step of c∆t

∆x = 1.0 we could not find a stencil
that is better than NDFX on the axis, while a time step of c∆t

∆x = 0.999 allowed
for an improvement of Cowan’s scheme. It is also interesting to note, that our
approach allows to find coefficients such that the scheme is stable even if the
time step c∆t > ∆x.

Table 3: Norm with weight function from Eq. (19) in 2D with ∆x = ∆y and coefficients for
the schemes referenced in text and two optimized schemes found through our minimization
algorithm with fixed c ∆t

∆x
.

Scheme fw(ω) c∆t
∆x βxy = βyx δx δy

Yee [3] 0.036 0.95√
2 0 0 0

Lehe [27] 0.008 0.96 0.125 −0.021 0.000
min. 5 0.002 0.96 0.133 −0.017 −0.019

NDFX [25] 1.5 · 10−7 1.00 0.125 0 0
Cowan [26] 4.5 · 10−5 0.999 0.125 0 0

min. 6 6.2 · 10−7 0.999 0.128 −0.0005 0

5.3. Non-square grid aspect ratio
An advantage of our scheme is, that due to the minimization algorithm, an

optimal set of coefficients for any ratio ∆x/∆y can easily be constructed, while
analytically prescribed coefficients have to make tradeoffs. Fig. 3 shows the
phase velocities for a grid with a large aspect ratio ∆y = 10∆x. Similar to
Fig. 1 we find that the dispersion relation of the proposed scheme is closer to
the free dispersion relation than any other scheme available.

10
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Figure 3: The color encodes the phase velocities vph
c

for setups with ∆y = 10∆x. The norms
|ωG| of these dispersion relation are from left to right 20.7, 2.1, 0.24, 0.059. Of these stencils
only the Yee stencil adheres to Eq. (11). Note that Figs. 1 and 3 use the same colorbar.

6. Numerical examples

Fig. 4 shows results of a PIC simulation performed with the EPOCH code [32]
for different Maxwell solvers. All Maxwell solvers presented in this paper, in-
cluding the proposed scheme, are submitted to be included into the EPOCH
code. The plots show the numerical Cherenkov radiation for an relativistic elec-
tron bunch with γ = 10 propagating under different angles θ with respect to the
x-axis. Along the x-axis, θ = 0◦, Lehe’s solver produces only a negligible amount
of artificial Cherenkov radiation but draws a tail behind the electron bunch (see
also [27]), which is also due to the numerical dispersion of the grid. Our pro-
posed solver emits significantly less numerical Cherenkov radiation compared
to the Yee case and does not generate the tail structure. For electron bunches
propagating under the angle to the x axis, our scheme always generates sig-
nificantly less numerical Cherenkov radiation. This is useful in scenarios when
several electron bunches propagating under different angles have to be mod-
elled, for example, in astrophysical cases or when modelling multi-laser-beam
irradiation of targets.

7. Conclusions

A scheme to minimize the phase velocity errors in FDTD schemes using ex-
tended stencils to calculate the spatial derivative was proposed. By introducing
the norm function, describing the difference of the grid dispersion relation to
the free-space dispersion relation, one can generate an optimal set of coefficients
for a given physical problem, e.g. to get rid of the numerical dispersion along
a given axis or directions. Our scheme generates significantly less numerical
Cherenkov radiation than Yee’s scheme and generates no tail as compared to
Lehe’s scheme. Although the proposed scheme (or any of the FDTD schemes)
does not completely remove the Cherenkov instability, it can significantly de-
crease it. In principle, it is also possible to apply our idea for minimization of
the numerical group velocity error or for minimization of the numerical error of
both phase and group velocities at the same time. Another advantage of our
scheme is that an optimal set of parameters can be constructed for any ratio of

11
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Figure 4: The transverse field strength in arbitrary units is plotted to visualize the numerical
Cherenkov radiation of an electron bunch with γ = 10 for various solvers and different angles
θ with respect to the x-axis. The angles are from top to bottom θ = 0◦, θ = 45◦, θ = 90◦,
the solvers from left to right are Yee, Lehe, the proposed solver “min. 1” (see Tab. 1).

grid steps. In general, our scheme provides a more homogeneous and close to c
distribution of phase velocity for all directions, which makes this scheme suitable
for multi-beam irradiation scenarios and scenarios relevant to astrophysics.
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Appendix A. Wave equations emerging from the Leapfrog scheme

In this appendix we show how the update equations of the Maxwell solver
imply wave equations for the fields. This computation is a necessary homework

12



that gives us additional information on how the update equations need to be
used. Note that actual PIC codes might use half steps in order to calculate both
#‰

E and #‰

B at the same point in time. In those cases the update equations in the
code are different from the ones presented here. In case of the EPOCH code it
can be shown easily that they are equivalent [32].

Appendix A.1. Numerical Scheme
In order to design a consistent numerical scheme, we need to make sure

that the numeric forms of Maxwell’s equations and those derived from them are
equivalent to their continuum counterparts. We start with the update equations,
which are nothing but some choice of a discretization of Eqs. (1) and (2). We
then find the corresponding numeric forms of #‰∇ · #‰

E = ρ
ε0
, #‰∇ · #‰

B = 0 and
0 = ∂tρ + #‰∇ · #‰

J which we need to ensure, such that we find also the correct
numerical forms of the wave equations(

1
c2
∂2
t −∆

)
#‰

B = µ0
#‰∇× #‰

J , (A.1)(
1
c2
∂2
t −∆

)
#‰

E = − 1
ε0

#‰∇ρ− µ0∂t
#‰

J . (A.2)

The update equations

B
n+ 1

2
x|i,j+ 1

2 ,k+ 1
2

= B
n− 1

2
x|i,j+ 1

2 ,k+ 1
2

+ ∆t
(
D∗zE

n
y|i,j+ 1

2 ,k+ 1
2
−D∗yEnz|i,j+ 1

2 ,k+ 1
2

)
,

(A.3)

B
n+ 1

2
y|i+ 1

2 ,j,k+ 1
2

= B
n− 1

2
y|i+ 1

2 ,j,k+ 1
2

+ ∆t
(
D∗xE

n
z|i+ 1

2 ,j,k+ 1
2
−D∗zEnx|i+ 1

2 ,j,k+ 1
2

)
, (A.4)

B
n+ 1

2
z|i+ 1

2 ,j+
1
2 ,k

= B
n− 1

2
z|i+ 1

2 ,j+
1
2 ,k

+ ∆t
(
D∗yE

n
x|i+ 1

2 ,j+
1
2 ,k
−D∗xEny|i+ 1

2 ,j+
1
2 ,k

)
,

(A.5)

En+1
x|i+ 1

2 ,j,k
= Enx|i+ 1

2 ,j,k
+c2∆t

(
DyB

n+ 1
2

z|i+ 1
2 ,j,k
−DzB

n+ 1
2

y|i+ 1
2 ,j,k
− µ0J

n+ 1
2

x|i+ 1
2 ,j,k

)
,

(A.6)

En+1
y|i,j+ 1

2 ,k
= Eny|i,j+ 1

2 ,k
+c2∆t

(
DzB

n+ 1
2

x|i,j+ 1
2 ,k
−DxB

n+ 1
2

z|i,j+ 1
2 ,k
− µ0J

n+ 1
2

y|i,j+ 1
2 ,k

)
,

(A.7)

En+1
z|i,j,k+ 1

2
= Enz|i,j,k+ 1

2
+c2∆t

(
DxB

n+ 1
2

y|i,j,k+ 1
2
−DyB

n+ 1
2

x|i,j,k+ 1
2
− µ0J

n+ 1
2

z|i,j,k+ 1
2

)
(A.8)

result from replacing the second order accurate, central stencilsDi in the update
equations for the magnetic field of Yee’s scheme by the extended stencils D∗i .
The update equations can be written in vectorial form as

Dt
#‰

Bni+ 1
2 ,j+

1
2 ,k+ 1

2
= − #‰

D∗ × #‰

Eni+ 1
2 ,j+

1
2 ,k+ 1

2
, (A.9)

1
c2
Dt

#‰

E
n+ 1

2
i,j,k = #‰

D × #‰

B
n+ 1

2
i,j,k − µ0

#‰

J
n+ 1

2
i,j,k , (A.10)
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where the components correspond to the update equations when shifted by
one half step into the corresponding direction. When we apply the numerical
divergence operator #‰

D to Eq. (A.10), this shifting is automatically taken care
of by the stencil in the numerical divergence operator. Suppressing the indices
for clarity, we obtain

0 = #‰

D ·
(

#‰

D × #‰

B
)

(A.11)

= #‰

D ·
(

1
c2
Dt

#‰

E + µ0
#‰

J

)
(A.12)

= µ0ε0Dt
#‰

D · #‰

E + µ0
#‰

D · #‰

J . (A.13)

When we define
#‰

D · #‰

E =: ρE
ε0

(A.14)

we can deduce

0 = DtρE + #‰

D · #‰

J . (A.15)

With all indices in place, this actually means

0 = Dt(ρE)n+ 1
2

i,j,k + #‰

D · #‰

J
n+ 1

2
i,j,k (A.16)

= 1
∆t

(
(ρE)n+1

i,j,k − (ρE)ni,j,k
)

+ 1
∆x

(
J
n+ 1

2
x|i+ 1

2 ,j,k
− Jn+ 1

2
x|i− 1

2 ,j,k

)
(A.17)

+ 1
∆y

(
J
n+ 1

2
y|i,j+ 1

2 ,k
− Jn+ 1

2
y|i,j− 1

2 ,k

)
+ 1

∆z

(
J
n+ 1

2
z|i,j,k+ 1

2
− Jn+ 1

2
z|i,j,k− 1

2

)
.

The index E indicates that this charge density ρE is at this point not an external
input but a function of the electric field which is in turn a function of the currents
at all earlier times and the charge density in the initial condition. If we have
both ρ and #‰

J as external inputs, we need to make sure that ρ and ρE are
consistent. This is the task of the current weighting scheme, which calculates
the #‰

J
n+ 1

2
y|i,j,k such that ρn = ρnE ⇒ ρn+1 = ρn+1

E [35]. At this point it becomes
clear that this would become more complicated if we used the extended stencil
also in Eq. (A.10).

Taking the extended numerical divergence of Eq. (A.9), we find

0 = − #‰

D∗ ·
(

#‰

D∗ × #‰

E
)

(A.18)

= #‰

D∗ ·
(
Dt

#‰

Bni+ 1
2 ,j+

1
2 ,k+ 1

2

)
(A.19)

= Dt

(
#‰

D∗ · #‰

Bni+ 1
2 ,j+

1
2 ,k+ 1

2

)
. (A.20)
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Appendix A.2. Magnetic Wave Equation
Let us have a look at the wave equations. Note, that we can shift Eq. (A.3)

by one timestep to obtain

−Bn−
3
2

x|i,j+ 1
2 ,k+ 1

2
= −Bn−

1
2

x|i,j+ 1
2 ,k+ 1

2
+ ∆t

(
D∗zE

n−1
y|i,j+ 1

2 ,k+ 1
2
−D∗yEn−1

z|i,j+ 1
2 ,k+ 1

2

)
.

(A.21)

We can then start from Eq. (A.3) and insert Eqs. (A.7), (A.8) and (A.21) to
obtain

B
n+ 1

2
x|i,j+ 1

2 ,k+ 1
2

= B
n− 1

2
x|i,j+ 1

2 ,k+ 1
2
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2
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2
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2

)
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2
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2
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2
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2
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2
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2

)
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Recognizing the second order temporal derivative stencil D2
t we find

1
c2
D2
tB

n− 1
2

x|i,j+ 1
2 ,k+ 1

2
=
(

#‰

D∗ · #‰

D
)
B
n− 1

2
x|i,j+ 1
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2
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2
i,j+ 1
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2
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2
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2 ,k+ 1

2
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2
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2
,

where we also used DiD
∗
j −D∗jDi = 0. When we accept #‰

D∗ · #‰

D = #‰

D · #‰

D∗ as our
new extended Laplacian operator ∆∗, we find

1
c2
D2
tB

n− 1
2

x|i,j+ 1
2 ,k+ 1

2
= ∆∗Bn−

1
2

x|i,j+ 1
2 ,k+ 1

2
+ µ0

(
#‰

D∗ × #‰

J
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2
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2 ,k+ 1
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)
x
, (A.22)

under the condition that
#‰

D∗ · #‰

B
n− 1

2
i+ 1

2 ,j+
1
2 ,k+ 1

2
= 0 (A.23)

at any point. At this point we succeeded in finding the correct numerical form
of Eq. (A.1)

1
c2
D2
t

#‰

B
n− 1

2
i+ 1

2 ,j+
1
2 ,k+ 1

2
= ∆∗ #‰
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J
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2
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2 ,j+
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2 ,k+ 1

2
. (A.24)
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Appendix A.3. Electric Wave Equation
For the electric field we find

En+1
x|i+ 1

2 ,j,k
= Enx|i+ 1

2 ,j,k
+ c2∆t

(
DyB
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2
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+ c2∆tµ0J
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+ c2∆t2Dy
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n
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2 ,j,k
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Which we can write as
1
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or
1
c2
D2
t

#‰

Eni,j,k = ∆∗ #‰

Eni,j,k −
1
ε0

#‰

D∗ (ρE)ni,j,k − µ0Dt
#‰

J ni,j,k . (A.30)

This means that the electric field behaves according to the current density #‰

J
and the charge density ρE and we really have to make sure that ρE is equal to
the external charge density.

Appendix B. Symmetries of the extended stencil

Using

s2
x = 1

∆x2 sin2
(

1
2kx∆x

)
= 1

2∆x2 (1− cos(kx∆x)) = 1
2∆x2 (1− cx) (B.1)
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and analogue expressions for s2
y and s2

z we can write the right hand side of
Eq. (12) as

s2
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∑
i=x,y,z

s2
iAi (B.2)
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The term ∑
i,j=x,y,z
i 6=j

∆x2
jβijs

2
i s

2
j =

∑
i,j=x,y,z
i 6=j

β̂ijs
2
i s

2
j (B.8)

clearly only depends on the symmetric part of β̂ij , as the antisymmetric part
cancels out when contracted with the symmetric matrix s2

i s
2
j .
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