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In first-principles calculations, hybrid functional is often used to improve accuracy from local
exchange correlation functionals. A drawback is that evaluating the hybrid functional needs sig-
nificantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-
collinear spin structure increases computing effort by at least eight times. As a result, hybrid func-
tional calculations with SOC are intractable in most cases. In this paper, we present an approximate
solution to this problem by developing an efficient method based on a mixed linear combination of
atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples
and we show that the results compare very well with those of direct hybrid functional calculations
with SOC, yet the method only requires a computing effort similar to that without SOC. The pre-
sented technique provides a good balance between computing efficiency and accuracy, and it can be
extended to magnetic materials.

PACS numbers: 63.20.dk, 73.22.-f, 71.70.Ej

I. INTRODUCTION

Density functional theory (DFT) is a powerful method
for predicting properties of materials such as crystal
structures, electronic bands, phonon dispersions and
other physical quantities. Practically, using appropri-
ate exchange correlation (XC) functional is very impor-
tant for accuracy, especially for predicting band gaps of
materials. It is well known that the local density ap-
proximation (LDA) and general gradient approximation
(GGA) XC functionals tend to severely underestimate
band gaps [1]. Consequently, hybrid functionals (HF)
such as PBE0 [2–5], HSE03 and HSE06 [6–9] were pro-
posed and they often predict very good band gap values
comparable to experiments. A drawback of HF is that
it needs very significant computing resources, generally
several orders of magnitude more compared to that of
LDA or GGA.

In recent years, materials with strong spin-orbit cou-
pling (SOC) have attracted great attention, including
topological insulators [10, 11] Bi2Se3 [12], silicene [13,
14], germanene [13, 14], stanene [13–15], BiH [16, 17],
ZrTe5 [18], Bi4Br4 [19], ZrSiO [20], photoelectric materi-
als PbI2 [21] and BiOCl [22], two-dimensional group-VIB
transition metal dichalcogenides MoS2, MoSe2, WS2, and
WSe2 [23], IIIA-VA direct band-gap semiconductors with
heavy elements GaSb and InSb [24], etc. DFT calcula-
tions including SOC involve non-collinear spin which re-
quires at least eight times more computing time as com-
pared to that without SOC, due to the O(N3) scaling
for solving the Kohn-Sham DFT equations (KS-DFT).
Since many of these SOC materials are semiconductors,
HF calculations are desired to more accurately predict
their band gaps and electronic structures. Unfortunately,
HF+SOC calculations are numerically intractable thus

rarely used - unless the unit cell is extremely small, due
to the huge computational demand. It is the purpose of
this paper to report a practical solution to this problem.

In particular, we propose an efficient approximate tech-
nique for HF+SOC calculations based on a mixed lin-
ear combination of atomic orbital (LCAO) scheme. The
mixed LCAO Hamiltonian is constructed by two parts:
an SOC-free part whose parameters are obtained from
HF calculations without SOC, and an SOC part whose
parameters are obtained from GGA+SOC calculations
(DFT at the GGA level with SOC). Applying this ap-
proach to several non-magnetic materials, the results
are demonstrated to be very close to those of direct
HF+SOC calculation and much more accurate than the
GGA+SOC calculation. Importantly, the required com-
puting time of the mixed LCAO technique is comparable
to that of HF calculation without SOC.

In the rest of the work, the DFT calculations
are performed using the projector augmented wave
method implemented in VASP [25]. The Perdew-
Burke-Ernzerhof (PBE) parametrization of GGA func-
tional [26, 27] and Heyd-Scuseria-Ernzerh hybrid func-
tional (HSE06) [6–9] are used in the DFT calculations,
and the VASP2WANNIER90 interface [28–30] is used
to obtain the LCAO parameters from the DFT re-
sults. Since numerical calculations are for the purpose
of demonstrating the mixed LCAO technique, structure
optimization is omitted.

II. THE METHOD

WANNIER90 [28, 29] is used to construct LCAO or
Wannier-bases Hamiltonian from DFT calculations, and
the resulting LCAO Hamiltonian can reproduce the orig-
inal energy dispersion very well. We start by construct-

ar
X

iv
:1

71
1.

07
64

0v
2 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  5
 D

ec
 2

01
7



2

ing an LCAO Hamiltonian to treat HF+SOC using DFT
calculations.

For a given system, the required computing effort is
most demanding for HF+SOC, followed by HF without
SOC and next followed by GGA+SOC. Clearly and as
explained in the Introduction, if HF+SOC were compu-
tationally affordable in general, the work of this paper
would not be necessary. That is not the case. In the
following we utilize HF without SOC and GGA+SOC to
construct a mixed LCAO Hamiltonian HMIX which we
show to be a very good approximation to HHF+SOC. In
particular, HMIX has two terms, HHF

0 which is obtained
from HF without SOC, andHGGA

so which is obtained from
GGA+SOC,

HMIX = HHF
0 +HGGA

so . (1)

Clearly, constructing HMIX only consumes a time that
is comparable to HF without SOC, thus much more ef-
ficient than that of a full HF+SOC calculation. The
fact that HMIX compare very well with direct HF+SOC
calculations (see below), suggests that the mixed LCAO
scheme provides a viable approximation for the compli-
cated HF+SOC analysis.

On the technical side, while HHF
0 can be constructed

directly from DFT calculation of HF without SOC,
HGGA

so is obtained from DFT of GGA+SOC involving
a procedure for separating out the SOC contributions.
The latter procedure and an associated technical detail
are discussed in the following two subsections.

A. Separating out the SOC contribution

The Hamiltonian H of SOC systems can be divided
into a non-SOC term H0 plus the SOC term Hso:

H = H0 +Hso. (2)

In LCAO representation, H0 involves on-site energy and
hopping integral between different atomic orbitals, and
Hso comes from SOC effects.

In the spin-up and spin-down bases | ↑〉 and | ↓〉, the
non-SOC term H0 can be written as a diagonal 2 × 2
matrix:

H0 =

(
H↑0 0

0 H↓0

)
. (3)

For simplicity, we consider non-magnetic systems in the
rest of this work, but extension to magnetic system can
be readily made without fundamental difficulty. For non-
magnetic materials, H↑0 = H↓0 .

For the SOC term Hso, its original operator form is:

Hso =
~

4m2
0c

2
(∇V × p ) · s ≡ ξL · s, (4)

where ~ is the reduced Planck constant, m0 is the bare
mass of electron, c is the velocity of light, V (r) is the
potential energy, p the momentum, and s the vector of
Pauli matrices representing the spin degrees of freedom.
For clarity we define a constant ξ ≡ ~/(4m2

0c
2) and a

vector operator L ≡ ∇V × p. Hso can then be rewritten
in the following matrix form:

Hso = ξ(Lxsx + Lysy + Lzsz)

= ξ

(
Lz Lx − iLy

Lx + iLy −Lz

)
≡
(
H↑↑so H↑↓so
H↓↑so H↓↓so

)
, (5)

in which H↓↓so = −H↑↑so and H↓↑so = H↑↓†so .
According to Eq. 2 to Eq. 5, the total Hamiltonian for

a non-magnetic system with SOC is:

H ≡
(
H11 H12

H21 H22

)
=

(
H↑0 0

0 H↑0

)
+

(
H↑↑so H↑↓so
H↑↓†so −H↑↑so

)
. (6)

Then, from Eq. 6, we can separate the total Hamiltonian
H to obtain H0 and Hso as the following:

H0 =

(
(H11 +H22) /2 0

0 (H11 +H22) /2

)
, (7)

Hso =

(
(H11 −H22) /2 H12

H21 − (H11 −H22) /2

)
. (8)

Hence, after obtaining the LCAO Hamiltonian
HGGA+SOC from the corresponding DFT calcula-
tion, its SOC part HGGA

so can be separated out using
Eq.8.

B. Mixing the Hamiltonian

With the obtained non-SOC part HHF
0 and SOC part

HGGA
so , the mixed LCAO Hamiltonian HMIX that ap-

proximates HF+SOC is determined by Eq.1. Hereinafter
we use the HSE functional for HF, and PBE functional
for GGA. Then Eq.1 becomes

HMIX = HHSE
0 +HPBE

so . (9)

The “mixing” procedure appears to be a simple addi-
tion. However it should be noted that only when HHSE

0

and HPBE
so are constructed under the same bases can

they be added directly. We achieve this by construct-
ing HHSE

0 and HPBE
so in the same bases |ϕ̃mk〉, and de-

tails are presented in the appendix A. This way, we fi-
nally constructed the mixed Hamiltonian HMIX to treat
HSE+SOC.

III. RESULTS, ANALYSIS AND DISCUSSION

Having constructed HMIX to efficiently treat
HSE+SOC, in this section we demonstrate its ac-
curacy using several material systems. Predicting band
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FIG. 1. Comparison of band structures for the example materials. In each band structure, black circles are the results
from direct HSE+SOC DFT calculation; red thick lines are the reproduced HSE+SOC bands by LCAO fitting; and blue thin
lines are results of our method, i.e. HMIX in Eq. 9.

gap is important, which is one of the reasons to use
HSE in the first place[6–9]. We calculated band gaps
for eight semiconductor materials having heavy ele-
ments thus large SOC, including two-dimensional (2D)
mono-layers of PbI2, WSe2, BiH, Bi4I4 and Bi4Br4; 3D
crystals BiOCl, GaSb, and InSb [24]. The SOC effect is
important for these materials, especially for their band
gaps.

For the eight materials, we performed (very time-
consuming) direct HSE+SOC calculations and using
the results, we constructed an LCAO Hamiltonian
HHSE+SOC: this would not be possible without the full
direct HSE+SOC calculation. Then, we constructed
HMIX following the procedure in the last section which
does not require full HSE+SOC calculation. The three
sets of results are compared: direct numerical data from
full HSE+SOC calculations and from HHSE+SOC, as well
as from HMIX.

First, band structures of the eight compounds calcu-
lated by our method via HMIX of Eq.9 is plotted in Fig.1,
together with those from the direct HSE+SOC calcu-
lation and its fitting HHSE+SOC. The full HSE+SOC
data are presented in black circles and the bands from
HHSE+SOC are in thick red lines: these are used as bench-
marks to compare to our results by HMIX which are pre-
sented in thin blue lines. We can see that the bands cal-

culated by our method via HMIX of Eq.9 (thin blue lines)
are qualitatively consistent to the benchmark results for
all cases. In particular, band dispersions by HMIX and
the benchmark HHSE+SOC agree well for PbI2, WSe2,
GaSb, and InSb; and the agreement is somewhat reduced
for BiOCl, BiH, Bi4I4, and Bi4Br4. In the latter cases,
although the heavy element Bi gives rise to some quan-
titative difference, there is no qualitative discrepancy for
the full range of the Brillouin zone.

Second, quantitatively we compare the band gaps of
HMIX and the benchmark HHSE+SOC in Table I. The
band gaps obtained by HMIX are close to those of the
benchmark HHSE+SOC for five of the eight compounds
PbI2, WSe2, BiOCl, GaSb, and InSb [see the column
labeled by |∆1|/g(HHSE

+SOC) column in Table I]. But for
three compounds BiH, Bi4I4 and Bi4Br4 - especially Bi4I4
which has a very small band gap, the discrepancy is large.
As a supplement, we also show the calculated band gaps
by PBE+SOC in Table I: they are not only quantitatively
quite different from the benchmark results, two of them
are even qualitatively wrong (GaSb, InSb).

As for the three compounds with band gaps of HMIX

showing large discrepancy to the benchmark, BiH, Bi4I4
and Bi4Br4, they are all relevant to topological insula-
tors which exhibit band inversion near the Fermi level
when SOC is considered and have normal bands with
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TABLE I. Comparison of band gaps (in unit of eV) from different Hamiltonians HHSE
+SOC, HMIX, HPBE

+SOC, and H̃MIX, in

which H
HSE(PBE)
+SOC is an alternative denotion of HHSE(PBE)+SOC due to the space limit in table and H̃MIX is defined as H̃MIX =

H̃HSE
0 +HPBE

so (for H̃HSE
0 see eq. 10 for details). The band gap of a Hamiltonian h is denoted as g(h). ∆1 = g(HMIX)−g(HHSE

+SOC),

∆2 = g(H̃MIX)−g(HHSE
+SOC), and absolute relative deviations are also shown in percentages. For BiH, the gap we list here is the

band gap opened by SOC at the Dirac point K(K′) [16, 17]. For GaSb and InSb, PBE+SOC calculations give wrong metallic
results with no gaps.

g(HHSE
+SOC) g(HMIX) g(HPBE

+SOC) ∆1 |∆1|/g(HHSE
+SOC) g(H̃MIX) ∆2 |∆2|/g(HHSE

+SOC)

PbI2 2.569 2.648 1.862 0.079 3.08% 2.626 0.057 2.22%

WSe2 1.619 1.702 1.247 0.083 5.13% 1.703 0.084 5.19%

BiOCl 3.496 3.556 2.511 0.060 1.72% 3.502 0.006 0.17%

GaSb 0.526 0.527 Metal 0.001 0.19% 0.531 0.005 0.95%

InSb 0.175 0.174 Metal −0.001 0.57% 0.182 0.007 4.00%

BiH 1.567 1.267 1.252 −0.300 19.10% 1.260 −0.307 19.60%

Bi4I4 0.020 0.206 0.170 0.186 930.0% 0.202 0.182 910.0%

Bi4Br4 0.166 0.021 0.357 −0.145 87.35% 0.047 −0.119 71.69%

SOC not considered. Concretely, 2D monolayers of BiH
and Bi4Br4 are topological insulators[19]. As for Bi4I4
monolayer, although it is not a topological insulator, it
lies near the transition point between normal and topo-
logical insulator which makes it also sensitive to SOC.
The impact of topological properties on the accuracy of
our method needs to be analyzed.

Recall that we used HMIX = HHSE
0 +HPBE

so to approx-
imate HHSE+SOC which can be written as

HHSE+SOC = H̃HSE
0 +HHSE

so (10)

where H̃HSE
0 and HHSE

so were obtained directly from
HHSE+SOC using Eq.7 and Eq.8, respectively. Therefore,
any discrepancy between HMIX and HHSE+SOC has two
sources: (i) the discrepancy between the non-SOC part
HHSE

0 (obtained from HSE without SOC) and H̃HSE
0 ; (ii)

the discrepancy between the SOC part HPBE
so and HHSE

so .
We analyze these terms in the next two subsections.

A. HSE without SOC

In this subsection we analyze the source of discrepancy
in the non-SOC part HHSE

0 (obtained from HSE without
SOC) and H̃HSE

0 . Since DFT is based on ground state
electronic density, any discrepancy should be due to the
difference between densities calculated by the two ap-
proaches [31]. To illustrate this, we proceed by making
use of a model Hamiltonian as follows:

H =
∑
c

ε0ca
†
cac +

∑
v

ε0va
†
vav

+
∑
c,c′

ξSOc,c′a
†
cac′ +

∑
v,v′

ξSOv,v′a†vav′ (11)

+
∑
c,v

(ξSOc,va
†
cav + h.c.)

where the first and second terms are the non-SOC part
H0, the third to fifth terms — denoted as HSO

c,c , HSO
v,v , and

HSO
c,v respectively, constitute the SOC part Hso. In Eq.11,

ac(v) and a†c(v) are respectively annihilation and creation

operators for the c conduction (v valence) band[32] eigen-
state ψ0c (ψ0v) of H0 whose eigenenergy is ε0c (ε0v).

The Hamiltonian in Eq.11 can be analyzed by pertur-
bation theory. We take the non-SOC H0 as the unper-
turbed Hamiltonian and the SOC term Hso as the per-
turbation. Note that Hso = HSO

c,c + HSO
v,v + HSO

c,v can be
divided into two types according to their SOC effects:
HSO

c,c and HSO
v,v are the “type-I” terms, HSO

c,v is the “type-

II” term. The type-I term HSO
c,c + HSO

v,v couples conduc-
tion bands with other conduction bands as well as valence
bands with other valence bands. We distinguish two situ-
ations. (i) If the unperturbed band gap is large relative to
the type-I SOC effect, the type-I term only splits bands
and no band crossing occurs. This is the “weak type-
I SOC” which does not make any significant difference
between the unperturbed and perturbed charge densities
(see Appendix B for details). (ii) If the unperturbed band
gap is small relative to the type-I SOC effect, some split
bands near the band gap will cross the Fermi level so that
the charge density is altered. This is the “strong type-I
SOC” [cf. Fig. 2(b)].

As for the type-II SOC HSO
c,v , it mixes valence bands

with conduction bands, for instance the first-order per-
turbed valence band state ψv is

ψv ≈
1

C
(ψ0v +

∑
c

αcψ0c), (12)

in which αc = ξSOc,v /(ε0v − ε0c) and C is a normalization
constant. As a result, the type-II SOC term alters charge
density via the sum of all occupied states, i.e. all valence
band states in the presence of band gap [cf. Fig. 2(c)].

Let us first understand why for the five normal band
insulators PbI2, BiOCl, WSe2, GaSb and InSb, HMIX
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FIG. 2. Type-I and type-II SOC effects in an
HSE+SOC DFT calculation. Here Bi4Br4 is taken as
example. (a)-(c) are the band structures of different Hamil-
tonians. (a) Bands of the Hamiltonian without SOC (H0),
where the red (green) lines represent the valence (conduction)
band composition of H0. (b) Bands perturbed by the strong
type-I SOC term, which results in band splittings that make
valence (conduction) bands cross Fermi energy. (c) Bands in
(b) perturbed further by the type-II SOC term, in which case
the gap opens again. Here it is obvious that charge density is
changed from (a) to (c), because the valence bands in (c) mix
some parts of the previous conduction (green) bands in (a).

TABLE II. Major orbital compositions of the highest valence
band and the lowest conduction band for each example ma-
terial. The orbital compositions listed for WSe2 are only for
band edges at the K(K′) point. The p orbital means the
collective of px, py, and pz orbitals. Biin and Biex mean
different Bi atoms located at interior and exterior positions
respectively.

valence band conduction band
PbI2 I-p Pb-p

WSe2 [33] W-dxy&dx2−y2 W-dz2

BiOCl O-p&Cl-p Bi-p
GaSb Sb-p Ga-p
InSb Sb-p In-p

BiH [17] Bi-px,y Bi-px,y

Bi4I4 [19] Biin-px&Biex-px Biin-px&Biex-px

Bi4Br4[19] Biin-px&Biex-px Biin-px&Biex-px

agrees with the benchmark HHSE+SOC very well. For
these compounds, the properties of their lowest conduc-
tion band differ significantly from those of highest va-
lence band, especially in orbital compositions and posi-
tions (cf. Table.II). This makes the type-II SOC hopping
ξSOc,v composed mostly of the SOC interactions between

different atoms, and hence ξSOc,v are very small. WSe2 is
an exception because its band-edge orbitals locate at the
same atom W. However the W-dxy&dx2−y2 orbitals have
opposite mirror symmetry compared to W-dz2 orbital,
which still makes ξSOc,v small. Furthermore, the gaps of

the normal band insulators are large compared to ξSOc,v ,

TABLE III. Gap comparison of two Hamiltonians dif-
fering by HSO

c,v (in unit of eV). H −HSO
c,v means the total

Hamiltonian with full SOC H excluding HSO
c,v , which equals

H0 + HSO
c,c + HSO

v,v . ∆cv = g(H) − g(H − HSO
c,v ). Gaps listed

here are calculated in HSE+SOC case to exemplify the slight
effects of the type-II SOC HSO

c,v in the normal band insulators.

g(H −HSO
c,v ) g(H) ∆cv |∆cv|/g(H)

PbI2 2.554 2.569 0.015 0.58%
WSe2 1.604 1.619 0.015 0.93%
BiOCl 3.442 3.496 0.054 1.54%
GaSb 0.521 0.526 0.005 0.95%
InSb 0.171 0.175 0.004 2.29%

i.e. |ε0v − ε0c|�
∣∣ξSOc,v ∣∣. Consequently the perturbed va-

lence band eigenfunction ψv can at most slightly mix with
the conduction band ψ0c since αc � 1 (see Eq. 12), which
means type-II SOC has almost no effect. This is shown
in table III which illustrates band gaps of H −HSO

c,v and
H differ by less than 2.3%. In addition, their band gaps
are also large enough compared to the type-I SOC hop-
ping ξSOv,v′ and ξ,SOc,c′ , hence this is the weak type-I SOC
case which makes no change of charge density if type-
II SOC is not considered. We conclude that for nor-
mal band insulators, both type-I and type-II SOC effects
contribute very little change to the charge density from
ρ0 =

∑
v ψ
∗
v0ψv0 to ρ =

∑
v ψ
∗
vψv. This is why that in

DFT calculations of these compounds, H0 of HSE with-
out SOC (HHSE

0 ) and HSE+SOC (H̃HSE
0 ) are very close

to each other since charge densities are very close.

Next, we analyze the three compounds where HMIX

has significant discrepancy to the benchmark HHSE+SOC.
As discussed above, these compounds have inverted
bands (BiH, Bi4Br4) or near-inverted bands (Bi4I4), the
orbital compositions of their conduction bands are sim-
ilar to those of valence bands around the Fermi energy
(cf. Table.II). Hence

∣∣ξSOc,v ∣∣ is not small in general and
can be close to or even larger than |ε0v − ε0c|. Accord-
ing to Eq.12, this makes αc not small and the type-II
SOC significantly perturb ψv. In addition, the large SOC
strength of Bi can lead to a strong type-I SOC that make
conduction and valence bands cross the Fermi energy [see
Fig. 2(b)]. Due to the strong type-I and type-II SOC ef-
fects, the charge density changes significantly from ρ0 to
ρ, which makes HHSE

0 and H̃HSE
0 differ from each other.

Quantitatively, we compare the band gaps ofHHSE
0 and

H̃HSE
0 in Table. IV, from which we observe that the gaps

of HHSE
0 are very close to those of H̃HSE

0 for PbI2, BiOCl,
WSe2, GaSb and InSb, but not so close for Bi4I4 and
Bi4Br4. As a comparison, we also show the gaps of HPBE

0

and H̃PBE
0 = HPBE+SOC

0 −HPBE
so in Table IV. It should

be pointed out that because the PBE gaps without SOC
are smaller than HSE gaps, i.e. |εv0 − εc0| are smaller in
PBE, ψv will mix more ψ0c if ξSOc,v and ρ0 are assumed to
be the same in HSE and PBE. Hence the gap differences
of PBE are worse than those of HSE for GaSb, Bi4I4 and
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TABLE IV. Gap comparison of Hamiltonians without SOC (in unit of eV): HHSE
0 vs H̃HSE

0 as well as HPBE
0 vs

H̃PBE
0 . Similar to H̃HSE

0 , we define H̃PBE
0 = HPBE+SOC − HPBE

so which means the non-SOC part separated out from the
PBE+SOC Hamiltonian. ∆HSE

0 = g(HHSE
0 )− g(H̃HSE

0 ) and ∆PBE
0 = g(HPBE

0 )− g(H̃PBE
0 ). Note that BiH without SOC shows

Dirac-cone type of bands with no gaps for comparison, and InSb is calculated to be metallic in PBE without SOC and does
not have gaps either.

g(H̃HSE
0 ) g(HHSE

0 ) ∆HSE
0 |∆HSE

0 |/g(H̃HSE
0 ) g(H̃PBE

0 ) g(HPBE
0 ) ∆PBE

0 |∆PBE
0 |/g(H̃PBE

0 )
PbI2 3.279 3.286 0.007 0.21% 2.529 2.517 −0.012 0.47%
WSe2 1.996 1.995 −0.001 0.05% 1.554 1.547 −0.007 0.45%
BiOCl 3.722 3.773 0.051 1.37% 2.753 2.782 0.029 1.05%
GaSb 0.773 0.769 −0.004 0.52% 0.123 0.114 −0.009 7.32%
InSb 0.429 0.421 −0.008 1.86% Metal Metal - -
BiH Dirac Dirac - - Dirac Dirac - -
Bi4I4 1.050 1.085 0.035 3.33% 0.657 0.610 −0.047 7.15%

Bi4Br4 0.806 0.771 −0.035 4.34% 0.408 0.283 −0.125 30.64%

Bi4Br4, especially for Bi4Br4, as shown in table IV.

B. PBE with SOC

Having understood the discrepancy in the non-SOC
partHHSE

0 (obtained from HSE without SOC) and H̃HSE
0 ,

in this subsection we analyze the discrepancy between the
SOC part HPBE

so and HHSE
so . For different XC functionals

such as PBE and HSE, there are two major reasons that
make Hso different in PBE and HSE.

First, according to Eq. 4, different potential energy V
makes different SOC parameters. For HSE, its exchange
potential V HSE

x is composed of a short-ranged part V SR
x

and a long-ranged part V LR
x , where V SR

x is produced by
mixing the non-local Fock potential V F

x (i.e. the exact ex-
change potential) and the PBE exchange potential V PBE

x

in short range, while V LR
x is solely the PBE exchange

potential V PBE
x in long range. Since the unscreened Fock

potential V F
x is generally larger than the PBE exchange

potential, the resulting V HSE
x with V PBE

x replaced par-
tially by the unscreened V F

x , should also be larger than
V PBE
x in general. This is demonstrated by the SOC hop-

ping parameters of HSE and PBE in Fig. 3, in which
the HSE ones are consistently larger than the PBE ones.
Taking BiH as an example: it has a hexagonal structure
like graphane and has Dirac cones at K and K ′ points
in the Brillouin zone without SOC. With SOC, a topo-
logical band gap opens at K (K ′) point and this gap
depends only on the strength of SOC. Hence, the larger
gap of HSE+SOC than that of our method shown in
Fig1(f) means that the SOC strength of HSE+SOC is
larger than that of our method, i.e. HHSE

so is larger than
HPBE

so . For other topological insulators similar to BiH,
i.e. the ones which have Dirac points or node lines before
including SOC, such as ZrTe5[18] and ZrSiO families[20]
which have band inversion before considering SOC just
as BiH does, they share similar source of discrepancy to
BiH in our method[34]. Second, if ξSOc,v and ρ0 of PBE
and HSE are assumed to be the same, using the per-

turbation theory, for near-inverse band insulator (Bi4I4)
or inverse band topological insulator (Bi4Br4), different
gaps between PBE and HSE make ψv mix at different ra-
tios with ψ0c, resulting in different charge densities which
gives further differences of V and Hso between PBE and
HSE.

To quantitatively understand the difference between
HHSE

so and HPBE
so , we compare the gaps of two Hamil-

tonians: one is HHSE+SOC, and the other is HHSE+SOC

with its SOC part HHSE
so replaced by HPBE

so , i.e. H̃MIX in
Table I. We can see from Table I (especially the last col-
umn) that the gap differences induced by the difference
between HHSE

so and HPBE
so are relatively small for band

insulators PbI2, BiOCl, WSe2, GaSb and InSb, but large
for BiH, Bi4I4 and Bi4Br4.

According to these analyses, for normal band insu-
lators, the differences between HHSE

0 and H̃HSE
0 are as

small as the differences between HHSE
so and HPBE

so . This
is why our method works so wy our method works so
well for the five compounds PbI2, WSe2, BiOCl, GaSb
and InSb (see Table I). But for the three near-inverse
and inverse band insulators BiH, Bi4I4 and Bi4Br4, the
differences between HHSE

so and HPBE
so are much larger

[cf. the |∆HSE
0 |/g(H̃HSE

0 ) column in table IV and the
|∆2|/g(HHSE

+SOC) column in table I]. Furthermore, by com-
paring ∆1 and ∆2 in Table I, we conclude that the error
of our method is dominated by the difference between
HHSE

so and HPBE
so , and this error are large for the near-

inverse and inverse band insulators. Note, however, al-
though the relative deviation of our HMIX with respect to
HHSE+SOC is large for Bi4I4 and Bi4Br4, their absolute
deviations are actually not large, as illustrated by the
not-so-large differences of the SOC hopping parameters
between PBE and HSE shown in Fig.3.

We therefore conclude that our method is a very good
approximation for normal band insulators and, for near-
inverse or inverse band insulators which have very small
band gaps, our method is still reasonable in that it can
provide qualitatively correct results.
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FIG. 3. On site SOC parameters in Hamiltonian. The blue circles (red squares) are from PBE+SOC (HSE+SOC),

and lines are provided to guide the eye. For p-orbitals, three circles (squares) mean
∣∣∣〈p↑x ∣∣∣Ĥso

∣∣∣ p↑y〉∣∣∣, ∣∣∣〈p↑y ∣∣∣Ĥso

∣∣∣ p↓z〉∣∣∣ and∣∣∣〈p↑z ∣∣∣Ĥso

∣∣∣ p↓x〉∣∣∣ respectively. For d-orbitals of W in the figure, eight circles (squares) mean
∣∣∣〈d↑z2 ∣∣∣Ĥso

∣∣∣ d↓xz〉∣∣∣, ∣∣∣〈d↑z2 ∣∣∣Ĥso

∣∣∣ d↓yz〉∣∣∣,∣∣∣〈d↑xz ∣∣∣Ĥso

∣∣∣ d↑yz〉∣∣∣, ∣∣∣〈d↑xz ∣∣∣Ĥso

∣∣∣ d↓x2−y2

〉∣∣∣, ∣∣∣〈d↑xz ∣∣∣Ĥso

∣∣∣ d↓xy〉∣∣∣, ∣∣∣〈d↑yz ∣∣∣Ĥso

∣∣∣ d↓x2−y2

〉∣∣∣, ∣∣∣〈d↑yz ∣∣∣Ĥso

∣∣∣ d↓xy〉∣∣∣, and
∣∣∣〈d↑x2−y2

∣∣∣Ĥso

∣∣∣ d↑xy〉∣∣∣ re-

spectively. Biin and Biex mean Bi atoms in different positions [19]. It should be pointed out that the orbitals here are the
orthonormalized orbitals (see eq. A13 in Appendix A).

C. Discussions

The purpose of this work is to develop a reasonably
accurate, qualitatively correct and computationally effi-
cient method to perform HSE+SOC calculations within
DFT. We have so far demonstrated the accuracy of our
method and understood the source of discrepancy when
dealing with near-inverse and inverse band insulators.

Concerning computational efficiency: our method for
HSE+SOC calculation takes essentially the same time
as an HSE calculation without SOC. Taking WSe2 for
example, in our calculations, one PBE+SOC electronic
step takes 1.3 minute using 32 CPU cores, one HSE
(without SOC) electronic step takes 5.6 minute using 128
CPU cores, and one full HSE+SOC electronic step takes
50.5 minute using 128 CPU cores. Therefore our tech-
nique is nearly an order of magnitude faster than the full
HSE+SOC calculation. We checked that for all the cases
we investigated, our method is faster by several times
to more than an order of magnitude that the full direct
HSE+SOC approach.

So far we analyzed non-magnetic compounds, but the
method can be easily extended to magnetic materials for
which H↑0 and H↓0 are not equal anymore but can be
obtained in an additional spin-colinear DFT calculation.
Namely, our method can be extended to magnetic mate-
rials by performing a spin-colinear PBE calculation and
a PBE+SOC calculation to extract HPBE

so ; then perform-
ing a spin-colinear HSE calculation to obtain HHSE

0 . The
results are added together to obtain HMIX for the mag-
netic material.

The method developed in this work is not only suitable
for LCAO, but also useful for accelerating HSE+SOC
DFT calculations. Usually, two initializations are used

to save computing time during HSE+SOC calculations:
(a) using charge density and wave function from a
PBE+SOC calculation as initialization, (b) using charge
density and wave function from a HSE calculation with-
out SOC as initialization. However, both will actually
not accelerate calculation significantly. This is because
for (a), H0 of PBE+SOC differ quite a lot from that
of HSE+SOC; and for (b), it lacks Hso. Then, naturally,
our method provides a better starting charge density and
wave functions for full HSE+SOC DFT calculation be-
cause HMIX is closer to HHSE+SOC than HPBE+SOC or
HHSE

0 .

IV. SUMMARY

In summary, we have developed an efficient mixed
LCAO technique to perform HSE+SOC DFT calcula-
tions. The LCAO Hamiltonian is obtained by mixing
a non-SOC part and an SOC part. The non-SOC part
is constructed by SOC-free HSE, and the SOC part by
PBE+SOC. As a result, the mixed LCAO technique re-
quires a computing time comparable to that of a non-
SOC HSE calculation, thus saving about one order mag-
nitude in computing time compared to a full direct
HSE+SOC calculation.

Applying the method to eight non-magnetic com-
pounds demonstrates that the mixed LCAO Hamiltonian
can well approximate that of the full HSE+SOC. In par-
ticular, the method works very well for normal band in-
sulators, and it is also reasonable to give qualitatively
correct results for near-inverse and inverse band insula-
tors having very small band gaps. We find that the errors
in our method came from the difference between HHSE

so
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and HPBE
so more than the difference between H̃HSE

0 and
HHSE

0 in most cases. Our method can be easily extended
to other hybrid functionals and magnetic materials, and
it can also be used to provide good initial conditions for
full direct HSE+SOC calculation.
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Appendix A: LCAO representation and interpolation

Using VASP2WANNIER90 [28–30], we can project the
local orbitals gn(r) onto the Bloch manifold ψmk deter-
mined by VASP at wave vector k to obtain

|ϕnk〉 ≡
Nb∑

m=1

|ψmk〉 〈ψmk| gn〉, (A1)

Ak
mn ≡ 〈ψmk| gn〉 , (A2)

where gn is localized trial orbitals serving as the initial
guess of the Wannier functions, and Nb is the number of
bands considered or the dimension of the Bloch manifold
at k. Thus obtained |ϕnk〉 are only determined by the
local orbitals gn, for |ϕnk〉 can be Fourier transformed
to gRn (r) ≡ gn(r −R) in which R is lattice vector. To
show this, first apply the Bloch theorem ϕnk(r −R) =
e−ik·Rϕnk(r) to eq. A1 to get

|ϕnk〉 = eik·R
Nb∑

m=1

|ψmk〉 〈ψmk| gRn
〉
, (A3)

and then do Fourier transformation to get

1

N

∑
k

e−ik·R |ϕnk〉

=
1

N

∑
mk

|ψmk〉 〈ψmk| gRn
〉

=
∣∣gRn 〉 (A4)

where N is the number of unit cells (also the number
of k points). In the above equation, we have used the

completeness relation

1

N

∑
mk

|ψmk〉 〈ψmk| = 1 (A5)

due to the normalization convention 〈ψmk| ψnk′〉 =
Nδmnδkk′ [29]. The inverse transformation of eq. A4
shows that |ϕnk〉 is just the Bloch sum of gn:

|ϕnk〉 =
∑
R

eik·RgRn . (A6)

Under the bases of |ϕnk〉, the Hamiltonian matrix is
Hk = Ak†EkAk with matrix elements

Hk
ij = 〈ϕik| Ĥ |ϕjk〉

=
1

N2

∑
m,n

〈ϕik| ψmk〉 〈ψmk| Ĥ |ψnk〉 〈ψnk| ϕjk〉

=
∑
m,n

Ak†
imE

k
mnA

k
nj (A7)

in which Ekmn = δmnεnk and εnk is the eigenenergy of
the Bloch state |ψnk〉. In the above equation, eq. A5
and the relation 〈ψnk| ϕjk〉 = NAk

nj (see eq. A1 and

A2) are used. Because gRn and hence |ϕnk〉 are not or-
thonormalized, the eigen equation of Hk is

Hkφ = εSkφ (A8)

where the overlap matrix Sk is defined by

Sk
ij =

1

N
〈ϕik| ϕjk〉 =

(
Ak†Ak

)
ij
. (A9)

To orthonormalize the bases, we construct ϕ̃nk with
properties 〈ϕ̃mk| ϕ̃nk〉 = Nδmn as follows

|ϕ̃nk〉 =

Nb∑
m=1

|ϕmk〉Tk
mn (A10)

in which Tk is a Hermitian matrix with the property
(Tk)2 = (Sk)−1 and hence can be denoted as Tk =

(Sk)−
1
2 in form. The existence of Tk is guaranteed by the

Hermiticity of Sk. As a result, the Hamiltonian matrix
under the orthonormalized bases |ϕ̃mk〉 is

H(k) = Tk†HkTk = (AkTk)†EkAkTk, (A11)

which can be constructed from the data εmk and Ak
mn

generated by VASP and VASP2WANNIER90 respec-
tively.

Because ϕmk are determined only by gn (eq. A6), Sk

is determined only by ϕmk (eq. A9), Tk is determined
only by Sk, and ϕ̃mk are determined only by ϕmk and
Tk (eq. A10), it can be concluded that the final bases
ϕ̃mk are only determined by the initial local orbitals gn
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and irrelevant to the Bloch states ψmk. This is crucial
for us to add directly HHSE

0 and HPBE
so constructed from

independent DFT calculations, because HHSE
0 and HPBE

so

have the same bases ϕ̃mk as long as the same initial local
orbitals gn are used.

The obtained H(k) from eq. A11 is defined at only a
finite number (N) of k points. If the Hamiltonian at an
arbitrary wave vector q different from the N k points is
required, interpolation has to be done. The interpolation
can be achieved through two steps. First, do a Fourier
transformation for H(k) to get the Hamiltonian element
in real space

HR
nm = 〈0n| Ĥ |Rm〉 =

1

N

∑
k

e−ik·RHnm(k). (A12)

in which |Rm〉 is the Fourier transformation of |ϕ̃mk〉

|Rm〉 =
1

N

∑
k

e−ik·R |ϕ̃mk〉 (A13)

and is an orthonormalized local orbital with property
〈Rn| R′m〉 = δRR′δnm. Then, construct the Hamilto-
nian at arbitrary wave vector q using the k-indepnedent
quantities HR

nm as follows :

Hnm(q) =
∑
R

eiq·RHR
nm. (A14)

We call this procedure LCAO interpolation.

Appendix B: The weak type-I SOC effect

To interpret the effect of the type-I SOC, we consider
the Hamiltonian eq. 11 in the absence of type-II SOC
hoppings ξSOc,v

H =
∑
c

ε0ca
†
cac +

∑
v

ε0va
†
vav

+
∑
c,c′

ξSOc,c′a
†
cac′ +

∑
v,v′

ξSOv,v′a†vav′ , (B1)

in which v, v′ = 1, · · · , Nv represent valence bands,
c, c′ = Nv + 1, · · · , Nb represent conduction bands, Nv

and Nc are the number of valence and conduction bands
respectively, and Nb = Nv + Nc is the total number of
bands considered. Note that the spin index is incorpo-
rated into the band index v and c here for simplicity.
Choosing the eigen states ψ0c/v of H0 as bases, H0 is a
diagonal matrix H0 = diag{Hv

0 , H
c
0} with

Hv
0 = diag{ε01, · · · , ε0Nv

}, (B2)

Hc
0 = diag{ε0,Nv+1, · · · , ε0Nb

}, (B3)

and Hso is a block-diagonal matrix Hso = diag{Hv
so, H

c
so}

with Hv
so and Hc

so being Nv ×Nv and Nc ×Nc matrices
respectively. Hence, the charge density of H0 is

ρ0 =

Nv∑
v=1

|ψ0v|2 =

Nv∑
v=1

|ψv|2 , (B4)

where ψv is the eigen state of Hv = Hv
0 + Hv

so and the
second equality is due to the fact that ψv is related to ψ0v

by a unitary transformation U with ψv =
∑

v′ ψ0v′Uv′v

and Uv′v = 〈ψ0v′ | ψv〉 (For simplicity we use the usual
normalization convention 〈ψ0v| ψ0v′〉 = 〈ψv| ψv′〉 = δvv′

here). This is guaranteed by the absence of type-II SOC
hoppings ξSOc,v .

If the type-I SOC effect is weak, Hso will not make
conduction or valence bands cross the Fermi energy like
Fig. 2(b). This makes the charge density of H = H0+Hso

is just determined by the valence bands ψv

ρ =

Nv∑
v=1

|ψv|2 . (B5)

Considering eq. B4 we have

ρ = ρ0. (B6)

Therefore, the weak type-I SOC effect cannot make dif-
ference between the charge densities ρ and ρ0.
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