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Abstract

We present FMFT — a package written in FORM that evaluates four-loop fully
massive tadpole Feynman diagrams. It is a successor of the MATAD pack-
age that has been successfully used to calculate many renormalization group
functions at three-loop order in a wide range of quantum field theories es-
pecially in the Standard Model. We describe an internal structure of the
package and provide some examples of its usage.
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PROGRAM SUMMARY

Program Title: FMFT

Licensing provisions: GPLv3

Programming language: FORM

Nature of problem:

Reduction of all kinds of fully massive four-loop vacuum integrals to the small set

of master integrals.

Solution method:

Reduction by means of explicit solution for IBP relations for topologies X,H and

BMW. Representation of integrals from topology FG as convolution of one-loop

and two-loop massive propagator-type integrals, each reduced separately using

generalized dimensional recurrence-relations.

Additional comments:

Available for download from URL: https://github.com/apik/fmft/

1. Introduction

In the minimal subtraction schemes (MS) it is usually possible to reduce
calculation of a divergent part of a given L-loop diagram to calculation of
a massless L-loop propagator-type diagram. This is possible because renor-
malization constants are independent of masses and external momenta of a
particular diagram [1]. In practice, an infrared rearrangement (IRR) tech-
nique [2] is used to set all but one external momenta and masses to zero,
provided that no infrared(IR) divergences appear. If there is no way to route
external momentum without introducing an IR divergences, another tech-
nique to calculate divergent parts of L-loop integrals is usually used. It is
based on insertion of an equal auxiliary mass in all propagators of the dia-
gram and setting all external momenta to zero, hence reducing the problem
to calculation of fully massive tadpole integrals [3, 4].

This technique was used in three-loop calculations of Higgs self-coupling
beta-function in the Standard Model [5, 6, 7], in which one needs to evalu-
ate the divergent part of four-point Green function with four external scalar
legs. At four loops, the method was used to find anomalous dimensions
and beta-function in QCD [8, 9, 10], its generalization for the case of ex-
tended fermion sector [11, 12] and also in the course of calculations of higher
moments of anomalous dimensions of operators of twist-2 in QCD [13] and
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N = 4 supersymmetric Yang-Mills theory [14]. Finally, fully massive tadpole
diagrams had found its application in five-loop calculation of vacuum en-
ergy beta-function in scalar theory [15] and recent results for five-loop QCD
renormalization constants [16].

All these results require calculation of thousands of fully massive integrals.
For systematic solution of such a problem the integration by parts(IBP) [17]
relations are usually applied. IBP relations allow one to reduce large number
of initial integrals to a small number of master integrals. It is possible to
carry out the procedure of initial integrals reduction to set of master integrals
in an automatic way and in general case the problem can be solved by the
Laporta algorithm [18]. In some cases one can resolve recurrence relations
originating from IBP identities explicitly and create a special purpose package
for reduction of integrals of special type. Famous examples of such type of
solutions are the MINCER [19] package for reduction of three-loop massless
propagators and the FORCER [20] package, which extends MINCER to the four-
loop level. The problem of reduction of three-loop vacuum-type integrals, not
necessary fully massive, can be solved by the package MATAD [21]. Laporta
algorithm was successfully used for reduction of four-loop tadpoles in [22, 23].
In this article we present the FMFT package for reduction of fully massive
four-loop tadpoles which can find application in calculations of four-loop
renormalization group functions in Standard Model and moments of splitting
functions in QCD.

Integrals reducible by means of FMFT can be attributed to the single
auxiliary topology (1) with ten propagators, i.e.:

In1...n10
=

∫

d[k1]d[k2]d[k3]d[k4]

Dn1

1 Dn2

2 Dn3

3 Dn4

4 Dn5

1;4D
n6

2;4D
n7

3;4D
n8

1;2D
n9

1;3D
n10

1;23

, (1)

where denominators are defined as

Da = k2
a −m2, Da;b = (ka − kb)

2 −m2, Da;bc = (ka − kb − kc)
2 −m2. (2)

In (2) all masses m2 are set to one during integral evaluation. For single scale
integrals the mass dependence can be easily reconstructed from dimensional
considerations. The integration measure is defined as d[k] = eεγE ddk

iπd/2 .

2. Internal structure and usage details

Since FMFT is written in FORM [24], its installation reduces to extraction of
distribution archive to an appropriate place. For proper operation of the FMFT
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Figure 1: Base topologies with 9 lines (a),(b), and 8 lines (c),(d)

package at least FORM version 4 is required. The latter supports PolyRatFun,
which is used for polynomial division and factorization.

The main steps of operation of the FMFT package are explained in the
dia. 1. The detailed description of each step can be found in the following
sections.

2.1. Reduction of the top-level topologies

We can associate any fully massive four-loop tadpole integral with one
of two top-level nine propagator topologies: planar H (see fig. 1(a)) and
nonplanar X (see fig. 1(b)) or their subtopologies. If we shrink one of the
lines in a diagram corresponding to topologies H or X, we get an integral
corresponding to either BMW (see fig. 1(c)) or FG (see fig. 1(d)). All other
integrals can be associated with topology FG and its subtopologies.

As a rule, in the course of integral reduction the most time-consuming
part is not the reduction of integrals of the top-level topologies, e.g., X,H and
BMW, but the reduction of integrals with smaller number of lines, which
still have large powers of propagator denominators and numerator. All such
integrals in the case of four-loop tadpoles can be mapped onto the topology
FG. Due to this, for topologies X, H and BMW we use recurrence relations
obtained from the rules generated by the the LiteRed package [25]. Our
main goal, however, is to optimize the reduction of the topology FG.

2.2. Reduction of topology FG

The main idea of the reduction strategy for topology FG implemented
in FMFT is based on the observation that the corresponding integrals can be
represented as a convolution of two propagator-type integrals:

4



JFG =

∫

d[p]









 k2 − pk1 − p

k1 k2
k1 − k2

k4 − p

k4

p











. (3)

One of these integrals is two-loop (F), while another one is one-loop
(G). The main difference between the standard IBP reduction and the pro-
posed approach is the application of reduction to each part separately. Both
parts are propagator-type diagrams with all propagators having equal masses
and arbitrary external momentum. For the reduction of one- and two-
loop propagator-type integrals with arbitrary masses and external momenta
there exists a closed-form solution as a set of generalized recurrence rela-
tions [26]. The latter are also implemented in the form of Mathematica

package TARCER [27].
Possible presence of numerators involving scalar products like k1 · k4 or

k2 · k4, which connect both integrals and do not let to apply reduction rules
immediately. To disentangle integrals we need to apply tensor reduction to
one of the integrals first. The easiest way is to express one-loop integral G
in the form:

Gµ1...µr(n;n1, n2) =

∫

dnk
kµ1

. . . kµr

dn1

1 dn2

2

, (4)

d1 = k2 −m2 , d2 = (k − p)2 −m2.

Then applying the general formula for one-loop tensor integral reduction [28],
we can express it as a sum of scalar integrals with shifted space-time dimen-
sion. For the one-loop propagator case the general expression is reduced
to

Gµ1...µr(d;n1, n2) = (−1)r
[r/2]
∑

j=0

(

−
1

2

)j
{

[g]j[p]r−2j
}

µ1...µr
(5)

×
Γ(n1 + r − 2j)

Γ(n1)
G(d+ 2(r − j);n1 + r − 2j, n2),

where the structure
{

[g]a[p]b
}

µ1...µr
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Diagram 1 Main steps of four-loop tadpoles reduction with FMFT

1. Apply the reduction rules for topologies X, H, BMW

2. Map the integrals onto topology FG expressible as a convolution
of two-loop (F) and one-loop (G) integrals

3. Reduce tensor one-loop integral corresponding to the G part of
the integral to a scalar one with shifted space-time dimension

4. Reduce the F part of the integral with a numerator:

(a) cancel scalar products, if possible
(b) substitute integrals with irreducible scalar products by

scalar integrals in shifted space-time dimension (by means
of tables)

(c) apply dimension recurrence relations to convert integrals
with shifted space-time dimension to the initial dimension

(d) reduce the obtained scalar integrals (in original space-time
dimension) to a set of master integrals

5. Do partial fractioning in p2 (the momentum, external to F and
G)

6. Rewrite (1− loop)⊗(2 − loop) as an integral FG with a different
mass on line with p5 and arbitrary power n5

7. Apply recurrence relations to reduce the power n5 of the topology
FG to zero or one

is symmetric with respect to µ1 . . . µr Lorentz indices and is constructed from
a metric tensors gµν and b momenta p.

The resulting scalar integrals with shifted space-time dimension can be
reduced to master integrals in the initial space-time dimension by means of
dimension recurrence relations(DRR) from [26]. The latter are also used in
the course of two-loop integral reduction (see below).

2.3. Generalized recurrence relations and the reduction of two-loop massive

propagator-type integrals

After splitting the topology FG into parts and the tensor reduction of
one-loop subdiagram via (5), we end up with a convolution of the scalar one-
loop propagator-type diagram and a two-loop diagram with a numerator.
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The most general form of two-loop diagram can be represented as

T abxyz
n1n2n3n4n5

=

∫

d[k1]d[k2]
(k1 · p)

a(k2 · p)
b(k1 · k1)

x(k2 · k2)
y(k1 · k2)

z

Cn1

1 Cn2

2 Cn3

3 Cn4

4 Cn5

5

, (6)

where massive denominators are introduced in accordance with (3):

C1 = k2
1 −m2, C2 = k2

2 −m2, C3 = (k1 − p)2 −m2, C4 = (k2 − p)2 −m2,

C5 = (k1 − k2)
2 −m2 . (7)

The rules from [26] can be used to cancel some of scalar products in the
numerator and denominator of (6), leading to integrals with x, y, z = 0. In
particular, if we have all ni > 0 we are only left with scalar integrals without
numerator. If some of ni are equal to zero then the irreducible scalar products
in the numerator, (k1 · p) and (k2 · p), cannot be canceled. Due to this, the
general form of two-loop subintegral we need to reduce can be cast into:

T ab
n1n2n3n4n5

=

∫

d[k1]d[k2]
(k1 · p)

a(k2 · p)
b

Cn1

1 Cn2

2 Cn3

3 Cn4

4 Cn5

5

, (8)

The integrals (8) with irreducible numerator can be reduced to a combina-
tion of scalar integrals in shifted space-time dimension using rules from [26]1.
To speed up the calculation we prefer to use tables for such substitutions.
The latter were pre-generated in advance, instead of generating them on the
fly. The substitution rules stored in the tables distributed with the package
should be sufficient for most of practical applications and allow to reduce in-
tegrals with a+b ≤ 20. For higher powers of numerator, RHS of substitution
rules stored in tables becomes too long and it is more efficient to implement
reduction for integrals (8) with negative powers of denominators instead of
performing dimensional shifts on integrals with irreducible numerators.

As a next step we use DRR to connect scalar integrals in shifted space-
time dimension with integrals in initial space-time dimension and reduce later
to a set of irreducible integrals. For such a purpose we follow along the lines
of [26] and implement in the FMFT package a set of DRR connecting integrals
with space-time dimension d + 2 and d together with recurrence relations

1Alternatively reduction rules for the integrals with negative indices can be used and
will be implemented in future versions of the code.
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to reduce integrals with fixed space-time dimension to the following master
integrals:

[

F[11111], V[1111], J[211], J[111], T2[111],

G[11]G[11], G[11]T1[1], T1[1]T1[1]

]

⊗

[

G[11]

T1[1]

]

. (9)

In (9) G and T1 are one-loop self-energy and tadpole integrals respectively,
T2 is the two-loop tadpole and F,V,J are two-loop integrals with five, four
and three lines, respectively, as defined in [26]. All possible one- and two-loop
integrals entering convolution (9) are listed in Appendix A.

As a result of application of the above-mentioned relations, the integral in
the form (3) can be represented as a sum of different convolutions of one- and
two-loop massive propagator-type master integrals (9) and a p2-dependent
function. This p2-dependent function has the form of a product of scalar
propagators with momentum p2 and different masses, not necessary equal to
m2. The masses different from m2 arise from coefficients dependent on p2

and m2 in front of integrals. Such a coefficients goes to denominator when
integral is substituted into other relations. Fortunately only quadratic in
p2 denominators arise during reduction of massive propagator-type integrals
and number of these new masses is fixed and the section 2.4 is devoted to
the problem of reduction of such tadpole integrals with different masses.

2.4. Recurrence relations for tadpoles with different masses

At the last stage of reduction by applying partial fractioning to p2- de-
pendent denominators each term of the integrand of (3) can be represented
as a convolution of one and two-loop integrals with fixed indices from the
set (9) and a single p2-dependent propagator:

Ji(n,mj) =

∫

d[p]
Fi(p

2)Gi(p
2)

(

p2 −m2
j

)n . (10)

Here for each of the integrals Ji the corresponding integrals Fi(p
2) and

Gi(p
2) have fixed propagator powers given by combinations from (9) and

the mass m2
j takes one of the possible values: m2

j = {0, m2, 3m2, 4m2, 9m2}.
The denominator power n can be either positive or negative, whereas for
subsequent evaluation we need to reduce it to zero or one.

One of the possible ways to construct recurrence relations connecting
integrals in the form of (10) with different propagator powers n is to apply
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original Laporta ideas [18] and derive difference equations for the integrals,
in which one of the propagator powers is treated symbolically and all others
are fixed numbers.

Unfortunately, the application of Laporta reduction algorithm to the in-
tegrals with symbolic power of one of the propagators is not a well-developed
field and there is no publicly available software tools. Due to this, we de-
cided to use the following trick. Instead of a system of difference equations
for integrals Ji(n,mj), we construct system of differential equations

∂Li

∂M2
= AikLk (11)

for auxiliary integrals Li = Ji(1,M) in the variable M2, which was kept as
symbol during all the steps.

For further discussion we need to separate two cases: the first one, when
integral (10) has n ≥ 0, and the second one, when p2- dependence is in the
numerator. The second case will be considered later, but now we want to
focus on the first case.

We can see that the expansion of scalar M2-dependent propagator of

one of the Li integrals in a small dimensionless variable z =
M2

−m2

j

m2 has the
following form:

1

p2 −M2
=

1

p2 −m2
j

+
m2

(

p2 −m2
j

)2 z +
m4

(

p2 −m2
j

)3 z
2 + . . . (12)

If we set m2
j in (12) to be equal to one of the values of our interest, we can

relate the n-th coefficients of Li integral expansions in the variable z with
the integral Ji(n + 1, mj). At the same time, we can look for a solution of
the system (11) in the form of formal series (13) in small variable z:

Li =
∞
∑

n=0

ci,nz
n, z =

M2 −m2
j

m2
. (13)

From Eqs. (12) and (13) we can construct the following relation (14):

Ji(n+ 1, mj) =
ci,n

m2n
, (14)

connecting the integral Ji having the denominator involving m2
j in power n

with the coefficients of expansion of the auxiliary integrals Li in Taylor series
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in z. For each possible m2
j from the set {0, m2, 3m2, 4m2, 9m2} expansion

variable z and system of equations (14) are unique.
Substituting the ansatz (13) into the system (11) and equating the coef-

ficients of equal powers in z, we obtain the system of difference equations in
variable n for the coefficients ci,n and, hence, for the integrals Ji(n,mj). The
constructed system can be transformed to the triangle form and then used
for reduction of the integrals Ji(n,mj) to a set of master integrals having the
form Ji(1, mj) or Ji(0, mj). It should be noticed that one needs to construct
a separate system of recurrence relations for all possible values of the mass
m2

j .
As an example, we consider recurrence relations for the integral of topol-

ogy FG with the following set of indices: n1, n2, n3, n6, n10 = 0 and n4,
n7, n8, n9 = 1. This integral is a product of two one-loop tadpoles T1[1]

with propagators in unit power and a two-loop vacuum integral dependent
on n. One-loop integrals do not contribute to difference equations and can
be discarded, so it is sufficient to write down a recurrence relation only for
the two-loop part (15):

n =θ(n− 3)
n− d

3(n− 1)
n − 2

+θ(n− 2)
d+ 1− 2n

3(n− 1)
n − 1

+θ(n− 2)
d− 2

3(n− 1) n − 1
+δ(n− 2)

2− d

3

n
=θ(n− 2)

d+ 2− 2n

2(n− 1) n − 1
, n > 1. (15)

Here θ(n) with n ≥ 0 and δ(n) with n = 0 are equal to one, while for other
values of n both functions are equal to zero. We can see that such “one-
dimensional” relations affect only single propagator power leading to small
number of terms at each reduction step and can be effectively implemented
in FORM.

In the second case with p2-dependence in the numerator of the inte-
gral (10) it is sufficient to consider m2

j = 0 and n ≤ 0. Such integrals
with arbitrary power n should also be reduced to the integrals Ji(0, 0).

We can use the same auxiliary integrals Li = Ji(1,M) dependent on the
mass M2 and the system of differential equations (11) as before, but now
expand the scalar propagator with mass M2 in the opposite limit, i.e., in
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small z̄ = m2

M2 :

1

p2 −M2
= −

1

m2
z̄ −

p2

m4
z̄2 −

p4

m6
z̄3 + . . . (16)

As before we can construct formal solution of the system (11) in the form
of series:

Li =
∞
∑

n=0

c̄i,nz̄
n, z̄ =

m2

M2
. (17)

Then the integrals (10) with n ≤ 0 will be related to expansion coeffi-
cients (17) in z̄

Ji(−n, 0) = −c̄i,nm
2(n+1). (18)

As in the case of integrals with denominators we substitute the ansatz (17)
into the system (11) and equate the coefficients in front of equal powers of
z̄. In such a way we obtain a system of difference equations for c̄i,n, which
means that we can construct the recurrence relations for reduction of the
integrals Ji(−n, 0) to the integrals of the type Ji(0, 0).

It is necessary to note that after the application of the recurrence relations
to the integrals (10) with m2

j 6= m2 the result can involve the integrals like
Ji(1, mj) with two different masses. On the other hand, we know that if one
applies traditional IBP reduction to the fully massive four-loop tadpoles that
can be expressed in terms of master integrals with only one mass scale [10].
Thanks to this property all integrals Ji(1, mj 6= m) should cancel in the
final answer. Such cancellation is a good check for correctness of the whole
four-loop integrals reduction procedure implemented in the FMFT package.

At this step the main reduction part of FMFT is finished and the result is
expressed in terms of symbolic expressions corresponding to master integrals
from paper [10] and coefficients dependent on d. For the case of four space-
time dimensions result can be expanded in ε near d = 4 − 2ε and actual
expansions for master integrals from [10] can be substituted.

3. Comparison with other codes and examples

To estimate the FMFT package performance and illustrate its applicability
to reduction of complicated integrals we calculate a nonplanar integral of
topology X (fig. 1(b))

F (n) = I(−n, 1, 1, 1, 1, 1, 1, 1, 1, 1), (19)
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in which the propagator powers are written in accordance with the auxiliary
topology (1). The integral has a nontrivial numerator and we compare the
results of calculation for different numerator powers n. The comparison was
performed with the C++ version of the FIRE 5 [29] package. Code FIRE is
known to be very efficient general-purpose tool for solution of the reduction
problem with many successful applications and not restricted to the reduction
of fully massive tadpoles. It can be used not only for IBP reduction with
the help of Laporta algorithm, but also in combination with the package
LiteRed [25]. When used together FIRE 5 acts as efficient tool for application
of reduction rules from resolved recurrence relations obtained by means of
LiteRed.

n = 3 4 5 6 7 8
FMFT 0:00:11 0:00:27 0:01:55 0:07:35 0:25:31 01:30:31
FIRE 0:01:58 0:09:10 0:28:17 2:16:42 9:19:57 46:42:29

Table 1: Comparison to FIRE, time format is hh:mm:ss

Timing results for reduction of a single integral with FMFT and FIRE 5 are
present in table 1. For the FMFT reduction we use multithread version TFORM

with eight active workers(-w8 option). Similar setup was used for FIRE 5. It
was running on eight CPU cores and in memory reduction was used (options
#memory and #threads 8). In addition, the reduction rules from LiteRed

package were utilized. The main goal of comparison present in table 1 is to
illustrate that FMFT can be used for reduction of complicated integrals as can
bee seen from the time spent for integral reduction with such efficient tool
as FIRE.

In the listing 1 we present simple FORM program to illustrate FMFT usage for
reduction of four-loop integrals. Integral with numerator is defined via pi for
scalar products in the numerator and di = p2i −m2 for massive denominators
in correspondence to one of the top-level topologies fig. 1(a) and fig. 1(b).
The main entry point is the fmft routine. The result of its application is
the reduction of the initial integral to the set of master integrals identified in
the work [10] with coefficients exhibiting exact dependence on the space-time
dimension parameter d.

#-

* load main library code

#include fmft.hh

12



* input with numerator

L ex = p2.p3/d1/d2^2/d4/d5/d6/d7/d8/d9;

* call reduction routines

#call fmft

* expand near d=4-2*ep up to ep^1

#call exp4d(1)

b ep;

Print+s;

.end

Listing 1: Example program

By means of procedure exp4d(n) the result of the reduction can be expanded
in ε up to the order εn near d = 4− 2ε space-time dimensions. Output from
the program calculating integral from the listing 1 is the following:

ex =

+ ep^-4 * ( 3/8 )

+ ep^-3 * ( 25/8 )

+ ep^-2 * ( 137/8 + 3/4*z2 - 81/4*S2 + 3/4*z3 )

+ ep^-1 * ( 363/8 - 3/2*T1ep - 1/2*z2 - 81*S2 -

3/8*z4 + 1/2*D6 - 6*z3)

+ 1/2*PR14ep0 + 1/2*PR15ep0;

+ ep * ( 1/2*Oep(1,PR14) + 1/2*Oep(1,PR15) )

Listing 2: Sample output

where z2,z3,z4 are Riemann zeta functions, S2,T1ep are non zeta parts of
two-loop and D6 three-loop terms of tadpole integrals ε-expansion defined
in [21]. Finite parts of four-loop integrals PR14ep0,PR15ep0 are kept as
symbols and its numerical values can be substituted from [23]. To denote
truncation of ε-expansion series we use common function Oep with first ar-
gument corresponding to order in ε and second argument containing master
integral name.
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Appendix A. Two-loop massive master integrals

F[11111] = T11111 = (A.1)

V[1111] = T01111 = (A.2)

J[211] = T20011 = (A.3)

J[111] = T10011 = (A.4)

T2[111] = T11001 = (A.5)

G[11]G[11] = T11110 = (A.6)

G[11]T1[1] = T11100 = (A.7)

T1[1]T1[1] = T11000 = (A.8)
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