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Abstract

First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis

functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb potential

near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to

apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based

on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new

features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm-

conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not

designed primarily for high accuracy. In this paper, we present our PseudoDojo framework for developing and testing full tables of

pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PseudoDojo is an open source

project, building on the AbiPy package, for developing and systematically testing pseudopotentials. At present it contains 7 different

batteries of tests executed with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then

used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into

a standard and a stringent accuracy table. In total around 70.000 calculations were performed to test the pseudopotentials. The

process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core

corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. The PseudoDojo hence provides

a set of pseudopotentials and general purpose tools for further testing and development, focusing of highly accurate calculations

and their use in the development of ab initio packages. The pseudopotential files are available on the PseudoDojo web-interface

www.pseudo-dojo.org in the psp8, UPF2, and PSML 1.1 formats.
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1. Introduction

Many physical and chemical properties of solids are deter-

mined by the structure and dynamics of the valence electrons.

This is true in particular for the formation of chemical bonds,

but also for the magnetic behavior and for low-energy excita-

tions. In contrast, the core electrons only indirectly affect these

properties. Based on these observations, Density Functional

Theory (DFT) electronic structure calculations often assume

that the complicated interaction between valence electrons and

the ions (formed by the atom nuclei and the core electrons) can

be replaced by an effective potential known as a pseudopoten-

tial (PSP). The core states are thus eliminated and the valence

electrons are described by smooth pseudo-wavefunctions. This

is particularly useful when a planewave (PW) basis set is used

to describe the electronic wavefunctions. Such a basis set has

the nice advantage that its completeness can be systematically

improved thanks to a unique parameter, the maximal kinetic en-

ergy of the planewaves in the basis set, also called the energy

cut-off (Ec). Describing the oscillations of the all-electron (AE)

wavefunctions near the atomic core would indeed require a pro-

hibitively large number of planewaves.

One can safely state that any calculation using pseudopoten-

tials can only be as efficient and accurate as the pseudopoten-

tials that are used. Obviously, the problem of finding good

pseudopotentials could be avoided altogether by using a ba-

sis set that is capable of describing all electronic states on an

equal footing. The all-electron approaches, however, immedi-

ately lose the elegance of the single convergence parameter in

the planewave approach. In a sense the problem of finding a

good pseudopotential is now moved to finding a good basis set.

Recently it was shown that indeed the variations between the

results obtained with different AE-codes can be as large as the

differences between the results of AE-codes and PW-codes. [1]

Norm-conserving pseudopotentials (NCPPs) [2, 3] are

among the first pseudopotentials that were routinely used in re-

alistic calculations and paved the way for the ever expanding

application of density functional theory [4, 5] to solids. It is

because of the elegance of the norm-conserving approach that
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NCPPs are supported by many ab-initio codes. The relatively

simple and robust formalism of the NCPP also means that new

developments are usually implemented for NCPPs first, see e.g.

the recent availability of the temperature dependence of the

electronic structure [6].

Unfortunately, many NCPP tables still in use nowadays

for first-principles calculations were generated long ago, be-

fore the advent of optimization techniques such as the RRKJ

method. [7] Even more importantly, no systematic validation

of these tables is available. Very few of these pseudopoten-

tials allow one to perform non-collinear calculations with the

inclusion of the spin-orbit (SO) term. Last but not least, most

of these legacy NCPPs employ only one projector per angu-

lar channel, hence it is difficult to find NCPPs including semi-

core states or pseudopotentials with good scattering properties

at high energies.

Presently many NPCC tables are available: The HGHK ta-

bles [8, 9] provides spin orbit coupling but it was not primarily

designed for PW applications and, indeed, on average rather

large cutoffs are needed. The NC tables previously available

for use with ABINIT,1 contain semi-core states for selected

elements but the input files and the pseudopotential genera-

tor are not available anymore. The tables from the OPIUM

project [10] have RRKJ optimization but not all the atoms of

the periodic table are available and multiple projectors for a

given angular channel are not supported. NC potentials from

the QUANTUM-ESPRESSO community are available [11] in

the UPF format, but do not have more than one projector. The

SG15 table [12] was designed for efficiency and does not have

non-linear core corrections.

As compared to the more recently developed ultrasoft pseu-

dopotentials [13] (USPP) and the projector-augmented-wave

method [14] (PAW), calculations using NCPPs usually require

a larger kinetic energy cutoff making them less efficient. The

implementation of both the PAW and USPP formalisms is how-

ever much more demanding. Moreover little is known about

the reliability of these two approaches when applied beyond

standard ground state calculations. [15] In contrast NCPPs have

been used for decades in different ab-initio fields.

NCPPs continue to represent a valid choice for ab-initio cal-

culations because of the simplicity and robustness of the for-

malism. We also believe that many future developments in first

principles codes will be first implemented within the NCPP

formalism and eventually generalized to the USPP/PAW case

(NCPPs can be seen as a particular case of the USPP/PAW for-

malism under certain assumptions). For all the reasons men-

tioned above the ab-initio community would greatly benefit

from the availability of a periodic table of reliable and accurate

NCPPs.

With this in mind, we have constructed a new NCPP table,

using the PBE exchange-correlation functional[16], distributed

within the PseudoDojo (PD-PBE), using the new framework

of the optimized norm-conserving Vanderbilt pseudopotential

1Originally designed by Allan and Klein and later extended by one of us

(MJV) for reference still provided on the ABINIT web-site under ’previous

atomic datasets’

(ONCVPSP). [17, 18] The main advantage of ONCVPSP is that

it produces NCPPs that are usually softer, i.e. lead to converged

results at lower cutoff energies, and more accurate (semi-core

states can be included via multiple projectors) than traditional

NCPPs. Moreover, ONCVPSP is interfaced with libxc [19]

and can therefore generate NCPPs for many XC flavors with

or without spin-orbit (SO) terms. Our main goal is to pro-

vide a set of well-tested and accurate NCPPs that can be used

for (a) applications in which the USPP/PAW formalism is not

available or not implemented, (b) high-throughput calculations

(HTC) and/or systematic studies involving NCPPs e.g. valida-

tion of a new PAW/USPP implementation or comparison of the

accuracy of the different formalisms in different domains like

NC+GW vs PAW+GW. See for example our recent systematic

study on the convergence properties of GW.[20]

The PseudoDojo is an open source project hosted on github

and provides a user web-interface at pseudo-dojo.org. We pro-

vide pseudopotential files that can be used immediately, as well

as the corresponding inputs so that users can tune or change

some parameters (e.g. the XC functional) according to their

needs. Moreover, we provide an open source python toolbox,

that can be used for the automatized generation and validation

of pseudopotentials. The pseudopotential files are available on

the PseudoDojo web-interface in the ABINIT psp8 format, in

the UPF2 format and in the PSML 1.1 XML format shared by

SIESTA and ABINIT. The input files, the results of the genera-

tion, and the test results are presented via jupyter notebooks[21]

as static HTML pages. Finally, each pseudopotential is linked

to a DojoReport file with a full record of the different tests that

were performed to validate the pseudopotential (cutoff conver-

gence, ∆-Gauge, GBRV tests [22]). One can hence easily com-

pare PSPs for a given element and then select the most appro-

priate one according to a chosen criterion (e.g. efficiency vs

accuracy).

The remaining of this article is organized as follows: The

ONCVPSP formalism and the most important differences with

respect to standard NCPPs are discussed in section 2. Subse-

quently the PseudoDojo project is presented in Section 3 includ-

ing the python framework used for the automatic generation and

validation of the pseudopotentials (PSPs) as well as the web in-

terface that provides access to the PSPs. Section 4 describes the

general strategy employed to generate the PD-PBE. Sections 5

and 6 describe the performance of the PSPs in convergence, ∆-

Gauge, [23] and GBRV [22] tests. A detailed discussion per

group of elements of the choices made and the parameters em-

ployed for the pseudization is given in section 7.

2. Formalism

The accuracy of the ONCVPSP pseudopotentials is based on

the use of two projectors and generalized norm conservation

to reproduce the binding and scattering properties of the all-

electron potentials. The underlying formalism of generalized

norm conservation was developed by Vanderbilt and used to

generate ultrasoft pseudopotentials (USPPs) [13]. Suppose we

construct several radial pseudo-wavefunctions ϕi at energies εi

and angular momentum ℓ, which agree with all-electron radial

2



wavefunctions ψi outside a “core radius” rc, have continuous

values and first derivatives at rc, and satisfy

〈

ϕi

∣

∣

∣ ϕ j

〉

rc

=
〈

ψi

∣

∣

∣ ψ j

〉

rc

(1)

where the notation indicates that norms and overlaps are cal-

culated inside rc. These ϕi obey generalized norm conserva-

tion in the sense that the integrated charge density inside rc of

any linear combination of the ϕi equals that of the correspond-

ing combination of ψi. Let these actually be r times the radial

wavefunctions so that the kinetic energy operator simplifies to

T = [−d2/dr2 + ℓ(ℓ + 1)/r2]/2 in atomic units. We introduce

the projectors

|χi〉 = (εi − T − Vloc) |ϕi〉 , (2)

where Vloc is a local potential agreeing with the all-electron po-

tential outside rc, and form the non-local operator

VNL =
∑

i, j

|χi〉 (B
−1)i j

〈

χ j

∣

∣

∣ (3)

where

Bi j =
〈

ϕi

∣

∣

∣ χ j

〉

. (4)

Generalized norm conservation is sufficient to prove that Bi j is a

symmetric matrix, so VNL is a Hermitian operator. Furthermore,

for solutions of the non-local radial Schrödinger equation

(T + Vloc + VNL) ϕ = εϕ , (5)

d lnϕ/dr and d2 ln ϕ/dεdr will agree with those of all-electron

solutions ψ at each εi for r ≥ rc [13] In fact Eq.(3) is trans-

formed using the eigenvectors of Bi j to form orthonormal pro-

jectors |χ̃i〉 for a computationally convenient diagonal VNL.

It is straightforward to show that these principles apply to

positive-energy scattering as well as bound-state solutions, par-

alleling the result for basic norm conservation.[24] The local

potential Vloc is generally chosen to be a smooth polynomial

continuation of the all-electron potential VAE to the origin, con-

tinued from the smallest rc among the included ℓ. This allows

considerable flexibility which can sometimes be exploited to

further extend the range of log-derivative agreement for one or

more ℓ. Note that ultrasoft pseudopotentials are constructed

from ϕi which do not satisfy Eq. (1), but are compensated by

the introduction of an overlap operator on the right side of the

radial Schrödinger equation and an augmentation contribution

to the charge density [13].

The strategy employed in ONCVPSP to obtain the accu-

racy of two-projector ultrasoft potentials and nearly competitive

convergence while retaining the simplicity of norm conserva-

tion is to enlist the convergence metric introduced by Rabe and

coworkers (RRKJ).[7] They observed that the error in the ki-

netic energy made by truncating the radial Fourier expansion of

a pseudo-wavefunction ϕ at some cutoff wave vector qc was an

accurate predictor of the convergence error made by similarly

truncating the planewave expansion in calculations for solids.

An optimization formalism was developed independently for

ONCVPSP [17, 18]. The pseudo-wavefunction is first con-

strained to satisfy M continuity constraints,

dnϕ

drn

∣

∣

∣

∣

∣

rc

=
dnψ

drn

∣

∣

∣

∣

∣

rc

, n = 0, M − 1 . (6)

ϕ is then expanded in a set of N ≥ M + 3 basis functions {ξi},

initially chosen to be an orthogonalized set of spherical Bessel

functions. Employing singular-value analysis, a linear combi-

nation ϕ0 is formed which satisfies Eq. (6), as well as a new set

of N −M “null space” basis functions {ξN
i
}, which are mutually

orthonormal, orthogonal to ϕ0 , and give zero contribution to

Eq (6) when added to ϕ0. A generalized residual kinetic energy

operator is defined as:

〈ξi| Ê
r(qc)
∣

∣

∣ξ j

〉

≡

∫ ∞

qc

ξi(q)ξ j(q)q4dq (7)

using the radial Fourier transform

ξi(q) = 4π

∫ ∞

0

jℓ(qr)ξi(r)r2dr . (8)

The cutoff energy error to be minimized for optimum conver-

gence 〈ϕ| Êr |ϕ〉 can now be expressed as

Er(qc) = 〈ϕ0| Ê
r |ϕ0〉+2

N−M
∑

i=1

yi 〈ϕ0| Ê
r
∣

∣

∣ξN
i

〉

+

N−M
∑

i, j=1

yiy j

〈

ξN
i

∣

∣

∣ Êr
∣

∣

∣ξN
j

〉

(9)

where yi are the coefficients of the ξN
i

basis functions to be

added to ϕ0. The yi are subject to the norm constraint

N−M
∑

i=1

y2
i = 〈ψ | ψ〉rc

− 〈ϕ0 | ϕ0〉rc
. (10)

Standard methods for minimizing Eq. (9) subject to Eq. (10)

can be quite unstable. Instead, the positive-definite Er
i j

matrix,

the last term in Eq. (9), is diagonalized finding its eigenvalues

ei and using its eigenvectors to form the new ”residual” basis

function set {ξR
i
} as linear combinations of the ξN

i
. When these

functions are added to φ0 with coefficients xi to form ϕ, the

residual energy takes the diagonal quadratic form

Er = Er
00 +

N−M
∑

i=1

(

2 fixi + eix
2
i

)

. (11)

where fi = 〈ϕ0| Ê
r
∣

∣

∣ξR
i

〉

. The x
i

satisfy the same norm con-

straint as the y
i

in Eq. (10). The ei span a very large dynamic

range ∼ 106 − 108, which may explain the difficulties in apply-

ing standard optimization procedures to Eq. (9). We next solve

the constraint equation for x1, the coefficient corresponding to

the smallest ei, as a functiion of x2,, ... , xN−M:

x1 = s















〈ψ | ψ〉rc
− 〈ϕ0 | ϕ0〉rc

−

N−M
∑

i=2

x2
i















1/2

. (12)

Its sign s determined by the requirement that f1 x1 be negative

at the minimum. Setting the derivatives of Er with respect to

x2,, ... , xN−M to zero using Eq. (12) for x1 we find

xi = − fi/(ei − e1 − f1/x1) . (13)
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The denominator in Eq. (13) is always positive, so the sum in

Eq. (12) is a monotonically increasing function of |x1| starting

from zero for |x1| = 0, and Eq. (12) can be solved by a straight-

forward interval-halving search on |x1|.[18] The optimum xi are

based on a prescribed qc. However, Eq. (9) can be evaluated

for any cutoff q using yi calculated from the qc-optimized xi,

thereby providing a kinetic-energy-error per electron conver-

gence profile.

The above procedure is applied to the first (lowest energy)

projector ϕ1 in the two-projector generalized norm-conserving

construction. For the second projector, the convergence-

optimized ϕ1 is used to add the linear 〈ϕ1 | ϕ2〉rc
overlap con-

straint to the continuity constraints of Eq. (6). The proce-

dure continues as above, retaining the original spherical-Bessel-

function basis set for convenience, and the coefficients are

found determining the convergence-optimized ϕ2. While there

are only N − M − 1 degrees of freedom for norm conservation

and optimization, convergence profiles are usually quite com-

parable to those for ϕ1. As the broad range of Êr eigenvalues

suggests, convergence improvements decrease rapidly as more

degrees of freedom are added, and 3-5 invariably suffice.

While it is observed that scattering states can be used as well

as bound states to satisfy the generalized norm-conservation

requirements and retain its resulting accuracy, they cannot be

used in the optimization because the radial Fourier transform of

such a ϕ is essentially a delta function of q. To deal with this,

an artificial all-electron bound state is created at each positive εi

by adding a smoothly rising barrier to the all-electron potential

beginning at rc. A satisfactory form is

VAEB(r) = VAE(r) + v∞θ(x)x3/(1+ x3) ; x = (r− rc)/rb , (14)

where the height and shape parameters v∞ and rb are chosen to

bind a state with the appropriate number of nodes at εi and pro-

duce a decaying tail roughly comparable to those of the highest

occupied bound states. The optimized convergence properties

of the corresponding bound pseudo-wavefunctions are typically

comparable to those of the valence functions [17, 18].

The symmetry of Bi j and other consequences of general norm

conservation are strictly true for pseudopotentials based on non-

relativistic all-electron calculations. Nonetheless, we have pro-

ceeded to apply them to scalar-relativistic [25] and fully rela-

tivistic calculations. In practice, an asymmetry of ∼ 10−4 to

10−5 was found for both light and heavy atoms, so Bi j was

simply symmetrized before proceeding. This manifests itself

in disagreements of comparable magnitude in comparisons of

quantities such as eigenvalues and norms computed with the

final pseudopotentials. In the fully relativistic case, the large

component of the Dirac wavefunction is renormalized and only

it is used to compute the Eq. (1) norms and overlaps and the

matching constraints of Eq. (6). This yields errors comparable

to the scalar-relativistic case, and an order of magnitude smaller

than obtained using both components.

Relativistic non-local pseudopotentials are generated as sums

over total angular momenta j = ℓ ± 1/2, j > 0, of terms

VRel
j

(r, r′) like Eq. (3). While these may be used directly in

some applications, most require potentials in the (schematic)

form

V(r, r′) = Vloc +
∑

ℓ

[

VSR
ℓ (r, r′) + L · SVSO

ℓ (r, r′)
]

, (15)

where

VSR
ℓ =

(ℓ + 1)VRel
ℓ+1/2

+ ℓVRel
ℓ−1/2

2ℓ + 1
, VSO

ℓ =
2
(

VRel
ℓ+1/2

− VRel
ℓ−1/2

)

2ℓ + 1
(16)

Direct use of these “scalar-relativistic” and “spin-orbit” po-

tentials as sums and differences is both cumbersome and re-

quires subtractions of many nearly equal quantities in applica-

tions, with the resulting inaccuracies. For these applications,

ONCVPSP forms new projectors
∣

∣

∣χ̃SR
ℓ

〉

and
∣

∣

∣χ̃SO
ℓ

〉

from their

eigenfunctions to create diagonal non-local operators, some of

whose eigenvalue coefficients are negligibly small. Either form

can be selected.

3. The PseudoDojo

3.1. The PseudoDojo python framework

The PseudoDojo is a python framework for the automatic

generation and validation of pseudopotentials. It consists of

three different parts: (1) a database of reference results pro-

duced with AE and PSP codes, (2) a set of tools and graphical

interfaces that facilitate the generation and the initial validation

of the PSPs and (3) a set of scripts to automate the execution of

the different tests in a crystalline environment (automatic gen-

eration of input files, job submission on massively parallel ar-

chitectures, post-processing and analysis of the final results).

The database currently contains the reference all-electron re-

sults for the ∆-Gauge and the GBRV benchmarks as well as

the structural parameters used in these tests. The PseudoDojo

is presently interfaced with ONCVPSP. It provides a GUI to set

up the input parameters and visualize the results of the compar-

ison of the PSP to the atomic reference calculation, e.g. their

logarithmic derivatives. In particular, series of PSPs can be

generated for ranges of input parameters. Finally, after the ini-

tial ’internal’ validation against the atomic reference calcula-

tion the implemented ’external’ tests can be executed via AbiPy

and ABINIT. [26, 27] The currently implemented external tests

include the ∆-Gauge, the GBRV tests, automatic convergence

testing the evaluation of the acoustic modes at Γ within DFPT,

and ghost state testing of the electronic structure up to high en-

ergies (∼ 200 eV above the Fermi level). All of these can be

executed fully automatically on various parallel architectures.

Interface to other DFT codes, additional tests, and other pseu-

dopotential generators can be easily added.

3.2. The Dojo-report

An important aspect of the PseudoDojo is keeping track of

the results of various validation tests. To this end, the Peu-

doDojo creates a report for each pseudopotential. This DojoRe-

port is a human-readable text document in JSON format,2 con-

taining entries for each test. It is automatically produced by the

2JSON (Java-Script object notation) is a language-independent data format

that uses text to represent objects in the form of lists and attribute-value pairs.
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python code at the end of the test. In addition to the raw data it

contains the final results as function of Ec.

The data in the report is in principle not intended for the ab-

initio code.3 The main goal of the DojoReport is to keep a

record of the different tests, so that it can be used by high-level

languages (e.g. python) to read the data and produce plots or

rank pseudopotentials associated to the same element accord-

ing to some criterion. In addition, the information in the Do-

joReport can be used to set up high-throughput calculations.

Finally, new validation tests can be easily added to the JSON

document.

3.3. The PseudoDojo web interface

In addition to the PseudoDojo python framework itself, the

PseudoDojo provides a web-interface [28] for the on-line visu-

alization of both the internal and external validations. The web-

interface allows for a fast visualization of the test results for a

particular pseudopotential, via the HTML version of the Do-

joReport generate automatically from a Jupyter Notebook,[21]

without having to install the python package. Both the pseu-

dopotential files and the corresponding input files can be down-

loaded.

4. The PD-PBE tables

4.1. General design principles

Despite several significant improvements proposed in the lit-

erature, [29, 7, 24, 17, 18] elements with localized d- or f -

electrons are still difficult to pseudize within the NC formalism.

For this reason, unlike other similar projects, e.g. the GBRV

table in which all the ultrasoft pseudopotentials require an Ec

less than 20 Ha [22] or the SG15 table, [12] which is mainly

focusing on efficiency, we do not make any attempt to gener-

ate an entire periodic table of NCPPs that converge below the

same Ec. Instead, we mainly focus on accuracy and transfer-

ability and attempt to tune the pseudization parameters so that

elements with similar electronic configurations require similar

Ec to achieve convergence.

In this first version of the PseudoDojo we present and dis-

cuss the pseudopotentials for the GGA-PBE exchange correla-

tion (XC) functional. [16] For this functional well-tested sets

of reference data are available. Pseudopotentials for the LDA-

PW [30] and PBEsol [31] functionals are also available via the

PseudoDojo web interface, reference values for these function-

als are currently under development. Other XC functionals can

be generated easily, especially since as of version 3.0 the ON-

CVPSP package is interfaced with the libxc library enabling

We decided to use JSON to store our data because code for parsing and gener-

ating JSON data is readily available in many programming languages (python

provides native support for JSON in the python standard library). Besides it can

be used to transmit data between a server and web application, as an alternative

to XML.
3An exception may eventually be the direct use of the hints on the cutoff

energy. Currently, however, there is no specification for this field neither in the

ABINIT format nor in the UPF one.

Pseudo s p d f

H 2 1 0 0

He 2 1 0 0

O-high 2 2 1 0

O 2 2 1 0

F 2 2 1 0

Lanthanides 2 2 2 1

Au-sp 2 2 2 1

Hg-sp 2 2 2 1

Table 1: Number of projectors in the s, p, d, and f channels. All other pseu-

dopotentials are constructed using two projectors per angular channel. The

highest l projector is p of H-Mg (except for F and O where it is d), d for Al-Xe

and Tl-Rn, and f for Cs-Hg except for Ba where it is d.

well over 250 XC functionals. [32] For each flavor of exchange-

correlation functional we define a standard and a stringent ac-

curacy version.

For those elements in which the separation between core and

valence is not obvious, we provide a version with and without

semi-core electrons. As a rule of thumb, NCPPs with semi-

core states are more accurate and transferable since the error

introduced by the frozen-core approximation is reduced. More-

over, semi-core states may be needed for accurate GW calcu-

lations, in particular in those systems in which there is an im-

portant overlap between valence and semi-core electrons and

therefore a significant contribution to the exchange part of the

self-energy. [33, 34] We adapt the notation, e.g. Fe-sp, to indi-

cate additional semi-core states included in the valence.

For elements that show a particularly slow convergence in re-

ciprocal space (e.g. transition metals) we also provide two dif-

ferent versions: normal and high. The default version, normal

accuracy, is designed to give a good description of the scatter-

ing properties of the atom in different chemical environments

with a reasonable Ec. The high-accuracy version, with small

core radii, requires a larger Ec to converge but is more transfer-

able and can be used for accurate first-principles calculations or

for the study of systems under high pressure. The high accu-

racy version is also recommended for calculations in magnetic

systems.

In special cases, discussed in section 7, we also provide low

accuracy pseudopotentials. We do this when the standard ver-

sion converges only at cutoff energies higher than 40 Ha.

Except for some noticeable exceptions listed in Table 1, all

the PSPs of our tables contain two projectors per angular chan-

nel. This ensures a logarithmic derivative in close agreement

with the AE counterpart up to at least 3-5 Ha. In many cases,

we achieve agreement even up to 10 Ha. Further element spe-

cific details will be discussed in section 7.

In general, we enforce the continuity of the derivatives of the

pseudized potentials at rc up to the fourth order (M in eqn 6,

input parameter ncon=4). This is done in order to avoid possi-

ble problems in the computation of elastic properties introduced

by the RRKJ optimization technique (see also the discussion in

Ref. [17, 18]). Those pseudopotentials that deviate from this

rule are listed in Table 2 and discussed in more detail in sec-
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Pseudo s p d

In-spd 5 5 4

In-d 5 5 4

Ga-low 3 3 3

Fe-sp 3 3 3

Fe-sp-high 3 3 3

Table 2: Order of the derivative of the pseudized potential that is still continu-

ous. Only those pseudopotentials are listed that deviate from having continuity

up to exactly the fourth-order derivative at the core radius for each angular

channel.

tion 7. A drawback of this additional requirement is that it usu-

ally leads to pseudopotentials that are slightly harder than the

ones obtained by enforcing continuity up to the third order as it

is commonly done. In general, we found that one can decrease

the required Ec by ∼ 5 Ha if ncon=3 (continuous derivatives up

to third order) is used.

It is well known that nonlinear core corrections (NLCC) im-

prove the transferability of pseudopotentials. [35] PSPs that do

not include semi-core states usually improve the most. How-

ever, even when semi-core states are present, adding NLCCs

has benefits. They remove the nonphysical oscillations of the

local part close to the origin, oscillations which often appear in

the case of gradient-corrected functionals when the total local

potential is unscreened. These oscillations create problems if

the potentials are represented in a non-planewave basis sets but

also tend to spoil convergence in Fourier and real space.

In PD-PBE, a NLCC is included in all the PSPs with elec-

trons frozen in the core except for the third row semi-core

PSPs (Na-sp – Cl-sp) and Ne. We use a recently implemented

NLCC following Teter, which contains two parameters. [36]

These model core charges are by construction smooth in both

real and reciprocal space, which significantly improves conver-

gence. Teter suggested to use these two parameters to minimize

the difference between the chemical hardness of the pseudo and

the AE wavefunction. [36] In constructing PD-PBE, however,

we did not observe a clear correlation between the PSP qual-

ity (in reproducing AE results for crystalline test systems) and

the level at which the pseudized wavefunction reproduces the

AE chemical hardness. Teter’s approach, on the other hand,

revealed to be quite successful in the case of elements with lo-

calized AE core charges. Standard models, indeed, produce

charges that are either too peaked and thus difficult to inte-

grate on a homogeneous mesh in real-space or model charges

with strong oscillations in the high-order derivatives required

for DFPT calculations. This can spoil the convergence of the

physical properties with the cutoff energy and have disastrous

effects for density functional perturbation theory calculations,

in particular for the fulfillment of the acoustic sum rule. This is

the reason why we add a test in the PseudoDojo for the acous-

tic modes at Γ. Large deviations from zero (when the ASR is

not enforced by the code) usually indicate that the model core

charge and its derivatives cannot be correctly described with

a sufficiently small cutoff energy and these inaccuracies will

likely affect the phonon modes at other q-points as well.

5. Convergence and energy cutoff hints

The different options described in the previous section lead

for most elements to several PSPs. To assist users in selecting

pseudopotentials, we define two tables: standard and stringent

accuracy, both of which contain only one PSP per element. For

about half the elements, the stringent table contains a different,

more accurate, PSP than the standard table. In this and the next

section, we evaluate the results of the convergence studies and

the validation tests for these two tables.

The design of the PD-PBE allows for different required en-

ergy cutoffs (Ec) for each pseudopotential. Moreover, different

physical properties usually show a different convergence behav-

ior with respect to Ec. Typical examples are phonons and the

bulk modulus, which are much more sensitive to the truncation

of the PW basis-set than, e.g., the total energy. It is however

useful to have an initial estimate for the starting Ec for the con-

vergence study, both for ’normal’ users and for high-throughput

calculations (HTC). We therefore provide calculated high, nor-

mal, and low precision hints for Ec: E
h,n,l
c based on different

tests.4

The ONCVPSP code already provides initial hints for Ec

based on the convergence of the electronic eigenvalues in the

atomic environments (ǫ). We used these values to define an ini-

tial mesh of Ec values (a dense sub-mesh with a step of 2 Ha

around the initial value provided by the PSP generator contin-

ued by a coarse mesh with a step of 10 Ha to ensure absolute

convergence). On this mesh, we use the PseudoDojo frame-

work to compute the ∆-Gauge, the GBRV parameters, and the

phonons at Γ as a function of Ec. The final results as well as the

total energies used for fitting the EOS curve are all saved in the

DojoReport.

The hints are calculated according to the parameters speci-

fied in Table 3. Using the hint for one of the accuracies ensures

that the absolute value of the indicated quantity is smaller than

the indicated bound. Oc indicates the converged value of ob-

servable O, which is obtained from the largest Ec grid point.

This point is initially 22 Ha higher than the high precision es-

timate given by ONCVPSP. All curves are however inspected

manually to ensure convergence. In an automatic fashion, ad-

ditional grid-points are added until a curve is approved with a

converged tail.5 The hints are reported in the DojoReport of

each PSP file and listed in the supplementary material. Fig. 1

4We decided to introduce three different levels of precision because one can

use this information to implement automatic HTC workflows that are both ef-

ficient and reliable. For example, one can perform an initial HTC screening on

many systems with the low precision Ec in order to select the most promising

candidates and then refine the search with calculations done with the normal or

the high precision Ec. In the same spirit, one can implement machine-friendly

convergence studies in which the convergence of the physical property of inter-

est is validated without any human intervention by just analyzing the difference

between a calculation done with the “normal” setup and the one performed with

the high-precision version.
5Again, the additional points are stored in the DojoReport. A fully auto-

matic evaluation of the degree of convergence turned out to be too optimistic.

Especially quantities like the ∆-Gauge turned out to occasionally have an os-

cillating behavior necessitating human inspection.
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Observable unit low normal high

ǫ − ǫAE (mHa/electron) – < 1 < 1

∆1 − ∆
c
1

(meV) < 2 < 1 < 0.5

TE - TEc (meV/atom) < 10 < 5 < 2

Table 3: Criteria for the low, normal and high hints of PD-PBE. ǫ indicates the

maximal deviation among electronic energy (not used for the low hint crite-

rion), ∆1 the revised ∆-Gauge as introduced in Ref [37]. TE indicates the total

electronic energy per atom obtained at the equilibrium volume defined in the

reference equilibrium structure as given the ∆-Gauge benchmark.

Zval lmax El
c En

c Eh
c

count 72.00 72.00 72.00 72.00 72.00

mean 12.00 2.03 32.74 37.25 43.36

std 5.24 0.56 7.69 7.77 8.13

min 1.00 1.00 14.00 18.00 24.00

25% 8.00 2.00 28.75 33.00 38.75

50% 13.00 2.00 33.50 38.00 44.00

75% 16.00 2.00 38.00 42.00 48.25

max 25.00 3.00 50.00 55.00 65.00

Table 4: Statistics on the low, normal and high hints for the standard table.

summarizes the hints for the high and standard tables,6 Tables 4

and 5 report the statistics on the two tables.

Low Normal High
Precision hint

0

20

40

60

80

E c
 (H

a)

standard
stringent

Figure 1: Violin plot of the hints for the standard and high tables.

6. Discussion of the validation per table

6.1. ∆-Gauge

The ∆-Gauge is defined as the integral over the difference

between the equation of state curve calculated using two dif-

ferent computational approaches within a predefined volume

6We use violin plots generated with the Matplotlib and Seaborn python

packages to compare the different distributions of the test results. We use the

Scott method to compute the kernel bandwidth and cut the plots off at the ex-

tremal values. Full details on the generation are included in the supplementary

material

Zval lmax El
c En

c Eh
c

count 70.00 70.00 70.00 70.00 70.00

mean 13.79 2.03 37.19 41.77 47.83

std 6.82 0.56 10.80 10.72 10.80

min 1.00 1.00 14.00 18.00 24.00

25% 8.25 2.00 31.25 36.00 42.00

50% 14.00 2.00 37.00 42.00 48.00

75% 19.00 2.00 43.50 47.50 52.00

max 27.00 3.00 62.00 66.00 72.00

Table 5: Statistics on the low, normal and high hints for the stringent table.

range expressed in meV per atom.[23] The physical quantities

that are related to the ∆-Gauge are the parameters of the Birch-

Murnaghan equation of state: the equilibrium volume V0, the

bulk modulus B, and the first derivative of the bulk modulus

B1. It was introduced by Cottenier and coworkers in 2014 and

presently already 24 data sets have been calculated. This large

number of data sets, involving 13 different codes (including 5

AE codes), makes the ∆-Gauge very useful in the validation

of PSPs. [1] To test a PSP, one compares the results calcu-

lated using a PSP with those calculated using a reference AE

code. The ∆-Gauge averaged over the periodic table between

the most reliable AE data sets is around 0.3 - 0.5 meV. In this

work we use Wien2k results as a reference. [1] The average

delta of the NCPP tables with respect to the Wien2k results

is 1.4.7 The drawbacks of the ∆-Gauge are however that the

prescribed computational settings for the calculation are rather

stringent making it unsuitable for fast pre-testing. Moreover,

only single element compounds are included and only ground

state properties are tested.

Low Normal High
Precision hint
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standard
stringent

Figure 2: Violin plot of the distribution of ∆ values calculated at the low, nor-

mal, and high hints. The outliers, occurring at about 10.4, 7.7, and 5.9 for each

Ec hint in the standard table, are Cr, Mn, and Fe respectively.

Figure 2 summarizes the results of the ∆-Gauge tests for the

standard and stringent tables. A full table of the results per

71.4 is the average excluding the old FHI table, which has an average ∆-

Gauge of 13.4. This value is however strongly dominated by a few elements,

and hence not representative.
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pseudo is available in the supplementary information. For the

∆-Gauge test, the most significant difference between the two

tables is confined to three elements: Cr, Mn, and Fe. For these

elements the structures used in the ∆-Gauge test are magnetic.

To resolve the magnetic structure a harder PSP is needed. When

we exclude these three elements the mean ∆-Gauge are 0.70

and 0.64 for the standard and high tables.

Low Normal High
Precision hint
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Δ'
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au
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standard
stringent

Figure 3: Violin plot of the distributions ∆’-Gauge values calculated at the

low, normal, and high hints. Again Cr, Mn, and Fe are outliers in the standard

table. In addition Hg (6.4), Sr (6.1), and Ba (5.0) appear as outliers also in the

stringent table.

The design of the ∆-Gauge is such that elements for which

the bulk modulus is very soft are hard to test. The noble gas

solids for instance always have a low ∆-Gauge. To remedy this,

Jollet et al. have introduced a renormalized version of the ∆-

Gauge : the ∆’-Gauge.[37] For the latter, a value less than 2 in

general indicates an accurate potential for ground state struc-

tural properties. Figure 3 summarizes the results of the ∆’-

Gauge tests for the standard and high tables. In addition to

what we have learned from the ∆-Gauge , the ∆’-Gauge shows

that Hg, Sr, and Ba are problematic elements. Their ∆’-Gauge

values, 7.2 (6.4), 6.1 (6.2), and 5.0 (4.8) respectively (stringent

in brackets), are relatively high. We did not manage to create

high accuracy versions that have a significantly better ∆’-Gauge

without becoming prohibitively expensive.

For both the high and low tables, Figs 2 and 3 indicate that

the low and high hints already result in a converged ∆-Gauge

and ∆’-Gauge. This is made clearer in Fig. 4, which show the

errors at low and normal Ec hint with respect to their converged

values at the high hint. A similar convergence is observed for

the equilibrium volume V0. The outlier in V0 is Ne. Since the

bulk modulus of the solid state structure of Ne is however very

small, the equation of state curve is very flat. This is a generic

feature for all the crystal cases where the energy landscape is

flat. This is thus not a problem of PSP but of the system. As a

result, an error in V0 does not affect the ∆-Gauge significantly.

Figure 5 shows that the convergence of B and B1 is a factor

of 10 to 100 slower than that of V0 and the ∆-Gauge itself.
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Figure 4: Violin plot of the distribution of the error in V0 and a0 and ∆-Gauge

at the low and normal hint as compared to their values at the high hint.
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Figure 5: Violin plot of the error in B and B1 at the low and normal hint as

compared to their values at the high hint.

6.2. The GBRV dataset

Complementary to the ∆-Gauge test we also perform the

GBRV test on the two tables. [22] The GBRV tests consist

of two parts. In the first test, the optimal lattice parameter of

FCC and BCC single element structures are compared to AE

reference values. In the second test, the lattice parameters of

rocksalt, half-heusler and perovskite structures are compared.

Reference values for noble gas FCC and BCC structures are

however not present. We confirm the observation of Garrity et

al. that the FCC and BCC results show a strong correlation, see

section 6.5. We hence only discuss here the FCC results. The

noble gases are not present in the GBRV tests since the FCC

and BCC structures do not bind in GGA-PBE.

Figure 6 summarizes the distribution of the relative errors of

the lattice parameter of the FCC GBRV test. Also for the GBRV

test, we observe that both the low and normal hints already pro-

vide rather converged results, see also Fig. 4. In contrast to the

∆-Gauge tests, however, the high table does not significantly

improve the GBRV test results. This difference partially relates

to the fact that the GBRV tests do not contain any magnetic
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Figure 6: Violin plot of the relative error on the lattice parameter of the GBRV

test set.

GBRV GBRV pslib VASP this

PAW USPP

ABO3 0.089 0.078 0.200 0.127 0.185

hH 0.126 0.111 0.144 0.140 0.116

rocksalt 0.129 0.121 0.216 0.150 0.184

Table 6: GBRV average errors (relative error in % in the lattice parameter)

per compound group as compared to the GBRV-PAW, GBRV-USPP, pslib, and

VASP results. [22]

systems whereas the ∆-Gauge tests do. In the ∆-Gauge tests

we observe the strongest difference between the high and low

tables for magnetic systems. Finally, we observe that in the

GBRV tests the NCPPs tend to underestimate the lattice pa-

rameter with respect to the AE reference. The same trend is

observed for the PAW data-sets that have performed the GBRV

tests. [22, 37]

Besides the FCC and BCC elemental structures the GBRV

reference data also contains 63 rocksalt structures, 54 half-

heuslers (hH), and 138 perovskites (ABO3). The presence of

these multiple-element systems allows for a real test of trans-

ferability. A full account of the GBRV compound test is given

in the supplementary material. The high-table results do not

differ significantly from the results obtained for the standard ta-

ble. We therefore discuss here only the latter at normal Ec hint.

Table 6 compares the performance of our standard table to that

of various existing PAW data sets and USPP tables. Clearly all

tables are of similar accuracy. Within the distribution, PD-PBE

does not perform best but it also does not perform worst in any

of the structure types.

To investigate if the PSP for one specific element is perform-

ing badly in the GBRV compound test we summarize the re-

sults per element in Fig. 7. We observe that our PSPs tend to

slightly underestimate the AE lattice parameters although the

distribution of our relative error is quite symmetric and peaked

around the mean value. The other tables also tend to underesti-

mate the AE reference but some with broader distribution. The

elements that stand out most in the FCC and BCC tests F, S,

and K also stand out in the compound test. Cs and Rb on the

Formula Type AE GBRV GBRV pslib VASP this

PAW USPP

CdPLi hH 5.969 5.957 5.955 5.945 5.952 5.946

SrHfO3 ABO3 4.155 4.141 4.148 4.133 4.146 4.140

LiAuS hH 6.015 5.995 5.994 6.008 5.993 5.993

HfO rocksalt 4.611 4.586 4.596 4.574 4.584 4.594

LiF rocksalt 4.076 4.076 4.074 4.081 4.067 4.062

KNiF3 ABO3 4.039 4.035 4.036 4.037 4.036 4.026

VO rocksalt 4.192 4.189 4.190 4.192 4.191 4.180

NaCl rocksalt 5.714 5.702 5.701 5.696 5.701 5.698

LiI rocksalt 6.038 6.023 6.020 6.030 6.021 6.021

SrLiF3 ABO3 3.884 3.883 3.881 3.884 3.884 3.873

KZnF3 ABO3 4.132 4.134 4.133 4.130 4.139 4.121

SrTaO3 ABO3 4.066 4.070 4.067 4.050 4.067 4.055

SrOsO3 ABO3 3.982 3.979 3.983 3.986 3.992 3.972

CaO rocksalt 4.839 4.834 4.834 4.828 4.842 4.826

Table 7: The outliers (relative error larger than 0.25 %) in the GBRV com-

pound tests. The columns list the lattice parameter of the conventional cell in

Angstrom.

other hand perform better in the compounds than in the single

element tests.
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Figure 7: GBRV compound tests error per element (figure to be put over two

columns.)

Finally, in Table 7 we list those systems in the GBRV com-

pound tests that have an error of more than 0.25% with respect

to the AE reference.

A general observation over all GBRV tests is that the ele-

ments that show larger deviations in our NCPP table like F also

stand out in the PAW tables. [22, 37] This seems to suggest that

the error originates from the freezing of the core rather than

from pseudizing the valence electrons. However for the most

problematic elements, F, S, Cs, Rb, and K adding additional

states to the valence partition turned out to be very difficult.

6.3. Ghost state detection

The separable non-local operator that enters the pseudo

Hamiltonian can lead to eigenstates for a given quantum num-

ber l which are not ordered in energy by the number of nodes.

As a result, eigenstates with nodes can appear with energies

below the nodeless eigenstate, or the nodeless state can be fol-

lowed directly by states with more than one node. [38, 39] The

second projector in the ONCVPSP scheme is usually very ef-

ficient in removing these so-called ghost states in the occupied
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Pseudo ǫ Alt Pseudo

Mg 80 Mg-sp

Cd 73 Cd-sp

Sn-d 60 Sn-spd-high

Sb-d 20 Sb-spd-high

Te-d 77 Te-spd-high

Hg 66 Hg-sp

Tl-d 60 Tl-spd-high

Pb-d 70 Pb-spd-high

Bi-d 70 Bi-spd-high

Po-d 58 Po-spd-high

Table 8: Pseudopotentials that have a ghost state present in the first 200 eV

of unoccupied space. ǫ gives the energy (eV) at which the ghost appears. Alt

Pseudo provides the high-accuracy alternative that does not show any sign of

ghost states.

and low energy unoccupied energy range. The eventual appear-

ance of ghost states at higher energies is, however, unavoidable.

Since we aim at generating PSPs that can be used also to cal-

culate properties requiring an accurate description of the unoc-

cupied region, i.e. optical properties or GW calculations, we

explicitly test our PSPs for the presence of ghost states. This

is done in the elemental solids by scanning the band structure

and the density of states for dispersionless states, up to ener-

gies around 200 eV above the Fermi level. Ghost states could

be removed in many cases by tuning the position of the sec-

ond projector. Also, the addition of more semi-core states was

found to improve the quality of the logarithmic derivative at

high energies. Table 8 lists those PSPs that even after careful

optimization of the input parameters still contain ghost states in

the first 200 eV of unoccupied space and lists the ‘ghost-free’

alternatives.

Note that the ghost states listed here are all so high in energy

that for ground state calculations they do not cause any prob-

lem. Only for applications that require an accurate description

of the unoccupied space as well (like GW and optical proper-

ties), do the nonphysical resonances introduced by the ghost

states lead to incorrect results.

6.4. Phonon modes at Γ

Calculating the phonon modes at Γ allows for the evalua-

tion of two useful quantities even when no reference values are

available. First, it allows for an evaluation of the rate of conver-

gence of the optical modes. Second, evaluating how strongly

the acoustic sum rule is broken for the acoustic modes provides

another test for the PSPs.

The convergence of the optical phonon modes is illustrated in

Fig. 8. In contrast with properties like the equilibrium volume

and the ∆-Gauge the phonon modes are by far not converged at

the low Ec hint.

The breaking of the acoustic sum rule (ASR) is shown in

Fig. 9, except for a few outliers the error remains within 2 cm−1.

We note that, although only slightly, the error is larger in the

high table than in the standard table. This is caused by the
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Figure 8: Violin plot of the distribution of the relative errors in the highest

optical phonon (HOP) and lowest optical phonon (LOP) at Γ at the low and

normal hint as compared to their values at the high hint, after enforcing the

acoustic sum rule.
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Figure 9: Violin plot of the distribution of the absolute errors in the highest

acoustic phonon (HAP) and lowest acoustic phonon (LAP) at Γ not enforcing

the acoustic sum rule. The outliers are Ne (∼14), Mg (∼11), Na (∼6), Ge (∼4),

an Cu (∼4) all in cm−1.

harder pseudopotentials. All of the values obtained are easily

corrected by standard techniques for imposing the ASR.

6.5. Correlations between the tests

Performing different tests makes sense provided the results

do not correlate strongly. To investigate the correlation be-

tween the different tests, the correlation matrix between the

GBRV FCC and BCC, ∆-Gauge, ∆’-Gauge, and the absolute

error in the acoustic sum rule for the phonon mode is shown in

figure 10.

As indicated above, the FCC and BCC GBRV tests show a

very strong correlation which means that performing both does

not add additional information. ∆-Gauge and ∆’-Gauge also

show some correlation, as expected, but considering both still

adds information. The GBRV tests and the two ∆-Gauge test

on the other hand hardly show any correlation. The error on the

acoustic phonon modes finally seems to be completely decou-

pled from all other tests.
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the lattice parameters of the GBRV tests, Delta and Delta prime the ∆-Gauge

and ∆’-Gauge tests and ASR the absolute error in the first acoustic mode. The

diagonal shows the distribution of the test results.

7. Discussion of individual pseudopotentials

7.1. H, He

The 1s wavefunctions in H and He are rather localized. One

should therefore exercise special care to find values for the

pseudization radii that give a good compromise between ac-

curacy and efficiency. In H the pseudization radius for the 1s

is set to 1.0 a.u and 1.25 a.u in He. Both PSPs contain two s

projectors.
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Figure 11: The main test results for H and He PSPs. The blue, green, and red

data are calculated at the high, normal, and low Ec hints respectively. The noble

gases are not present in the GBRV tests since the FCC and BCC structures do

not bind in GGA-PBE.

The p orbitals in H and He are not bound in GGA-PBE hence

we use only one projector for the p channel. The main test

results for the H and He pseudopotentials are shown in Fig. 11.

7.2. Li, Be

In Li and Be, the 1s states are more localized than in H and

He and the p orbitals are bound. We include the 1s electrons in

the semicore, which yield PSPs that are more transferable and

accurate, at the price of a non-negligible increase in the Ec, see

Fig. 12. For this reason, the PD-PBE provides two versions for

elements. The standard version uses a s channel cutoff radius of

1.4 a.u for Li and 1.35 a.u for Be with an indicative Ec of 35 Ha

and 42 Ha, respectively. The local part of the PSPs is obtained

by pseudizing the AE potential and two projectors both for s

and p. The high accuracy versions mainly differ from the stan-

dard ones in the use of smaller rc for the s channel (1.2 a.u. both

for Li and Be) and, consequently, have a slower convergence in

reciprocal space.
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Figure 12: The main test results for Li and Be PSPs. The blue, green, and red

data are calculated at the high, normal, and low Ec hints respectively.

7.3. B, C, N, O, F, Ne

In this set of elements, the 1s states are in the core, and the

Ec is governed by the spatial localization of the 2p states. The

choice of rc for the p channel has therefore a significant impact

on the transferability of the PSPs. We use two projectors per

angular channel and a pseudized version of the AE potential

as local part. The maximum angular momentum explicitly in-

cluded in these PSPs is the p channel, lmax = 1. For O and F in

addition a single d projector is added to improve transferability.

An overview of the evolution of the main test results for these

PSPs is shown in Fig. 13.

F is one of the elements for which the GBRV tests show the

largest error. This is also observed in the PAW tables that have

been tested with the GBRV test. In addition it is observed that

the F PSPs perform badly in describing atomization energies or

molecular systems. [40]

Ne is one of the few elements with frozen core states for

which adding non-linear core corrections does not improve

transferability. The AE core is rather localized and therefore

difficult to model without spoiling convergence. Especially the
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equation of state curves obtained in the in the ∆-Gauge cal-

culations tend to be far from the reference curves. Moreover,

solving the electronic self-consistency problem turned out to be

unstable for many of the model core charges tried.
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Figure 13: The main test results for B to Ne PSPs. The blue, green, and red

data are calculated at the high, normal, and low Ec hints respectively.

7.4. Na, Mg

In both PSPs with 2s and 2p in the valence no non-linear core

corrections are applied. As for Ne, the very strong localization

of the 1s core makes creating a transferable model core charge

very complicated. Adding the 2s and 2p significantly improves

both the ∆-Gauge and GBRV test results. In addition, for Mg,

the ghost state at around 80 eV is removed.
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Figure 14: The main test results for Na and Mg PSPs. The blue, green, and red

data are calculated at the high, normal, and low Ec hints respectively.

7.5. Al, Si, P, S, Cl, Ar

In this series the 2s, 2p and 3s states are full and the 3p

orbitals are gradually filled. The shell with n = 2 is well sepa-

rated from the n = 3 electrons and can be safely frozen in the

core. Moreover the 3s and 3p electrons are rather delocalized

and their pseudization does not pose any problem in the NC for-

malism. For these elements, it is common practice to include d

projectors in order to improve the transferability.

For the purpose of convergence studies and the comparison

to AE results we also provide a version with 2s and 2p in the

valence for this series of elements. The high Ec required for

these PSPs and non-systematic accuracy improvement make

them however hardly useful for standard application. They are

therefore not part of the high table.
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Figure 15: The main test results for the Al to Ar PSPs. The blue, green, and red

data are calculated at the high, normal, and low Ec hints respectively.

7.6. K, Ca

The default versions for these two elements have the 3s and

3p in the valence and contain two d projectors to improve trans-

ferability. Given the reasonable Ec hints and the good test re-

sults, see Fig. 16, these are part both of the standard and high

table.

7.7. 3d transition metals

For the 3d transition metals, the 3s and 3p states are part of

the valence partition. For both Fe PSPs, the degree of continu-

ity at the pseudization radius was lowered to the third deriva-

tive. Generation a PSP for Fe with continuous derivatives up

to fourth order at the pseudization radius leads to prohibitively

large requirements on the Ec.

The most complicated elements in this series are Cr, Mn, and

Fe. Especially obtaining a PSP that performs well in the mag-

netic structures of the ∆-Gauge test is very hard. The standard

versions, with a still reasonable Ec hint, have ∆-Gauge results

that are well beyond what is usually considered acceptable (see

Fig. 17). The high accuracy version fixes this, however at the

cost of a considerable increase in the Ec needed. Both the stan-

dard and the high versions, however perform equally well in the

(non-magnetic) GBRV tests.
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Figure 16: The main test results for the K and Ca PSPs. The blue, green, and

red data are calculated at the high, normal, and low Ec hints respectively.
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Figure 17: The main test results for the 3d transition metal PSPs. The blue,

green, and red data are calculated at the high, normal, and low Ec hints respec-

tively.

7.8. Ga, Ge, As, Se, Br, Kr

In these elements, the 3d shell is full and we have a progres-

sive filling of the 3p states. The 3d electrons, however, overlap

with the 3p states and therefore can play a role in determining

the physical properties of a crystalline system. For this reason,

our standard table contains pseudopotentials with 3d electrons

in valence for Ga, Ge, As, Se, while 3d electrons are frozen in

Br and Kr. This is our recommended configuration albeit the

presence of the localized 3d states leads to a relatively large Ec,

see Fig. 18. A version of Ga-Ge-As-Se with the 3d electrons

frozen in the core is also available for low Ec applications.

For Br (and as well for I) we also provide a version with 3s,

3p, and 3d (4s, 4p, 4d for Iodine) in the valence. These are pro-

vided mainly for the use in accurate GW calculations in which

the inclusion of entire electronic shells can be important, see

e.g. Ref 41 for the example on I. For ground state calculations

the 3d (4d) valence has been found to be sufficiently accurate

and is therefore the choice for the stringent table.
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Figure 18: The main test results for the Ga to Kr PSPs. The blue, green, and

red data are calculated at the high, normal, and low Ec hints respectively.

7.9. Rb, Sr

The main test results and Ec hints for the PSPs for Rb and

Sr are shown in Fig. 19. For both elements, very reasonable Ec

hints can be achieved. The alkaline elements from Rb down-

ward start to show a decreasing performance in the GBRV test.

As for F and S, this is in line with the results obtained for PAW

data sets in the GBRV tests. Attempts to make harder, more

accurate PSPs did not lead to improved GBRV results.
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Figure 19: The main test results for the Rb and Sr PSPs. The blue, green, and

red data are calculated at the high, normal, and low Ec hints respectively.
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7.10. 4d transition metals

The PSPs for the 4d transition metals all contain the 4s and

4p states in the valence. This leads to both reasonable Ec en-

ergies and test results, see figure 20. Only Ru and Rh have ∆-

Gauge results that are only barely acceptable. The ∆’-Gauge

results for these two PSPs (1.5 and 2.2) are still well within the

acceptable range. The relatively high bulk modulus of these

two elemental solids (310 and 250) causes the high ∆-Gauge

values. For Cd, finally, we provide three versions. The ver-

sion with the 4s and 4p states in the core (Cd) gives the best

results for the ∆-Gauge but the GBRV is far from ideal. In-

cluding the 4s and 4p states in the valence (Cd-sp) improves

the GBRV results at the price of a non-negligible increase of Ec

while the ∆-Gauge worsens. Decreasing the core radius in the

high-accuracy version (Cd-sp-high) leads to acceptable GBRV

and ∆-Gauge results but at the cost of a larger Ec. Our standard

table includes Cd-sp while the stringent table uses Cd-sp-high.
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Figure 20: The main test results for the 4d transition metal PSPs. The blue,

green, and red data are calculated at the high, normal, and low Ec hints respec-

tively.

7.11. In, Sn, Sb, Te, I, Xe

In the series from In to I, we provide three different versions

of core-valence partitioning: no n = 4 states in the valence (ex-

cept for In), 4d in the valence, and the full n = 4 shell in the va-

lence. For all these pseudopotentials ∆-Gauge , ∆’-Gauge and

GBRV are well within the acceptable range. The main differ-

ence lies in the description of the unoccupied space. The PSPs

for which all n = 4 states are frozen in the core show devia-

tions in the logarithmic derivative starting around 3 Ha above

the Fermi level. Including the 4d, which lie 0.7-1.5 Ha below

the Fermi level, introduces ghost states in the elemental solid

between 20 and 80 eV above the Fermi level. Finally including

the full n = 4 shell we see no sign of ghost states and the log-

arithmic derivatives agree well up to 7-10 Ha above the Fermi

level. The cost for this accuracy is an increase in Ec of 20-

30 Ha, see Fig. 21.

For Xe we freeze the full n = 4 shell. The tests did not

reveal any ghost states but the logarithmic derivative shows a

sharp deviation around 4 Ha above the Fermi level. A version

with the full n = 4 shell in the valence is also available but not

included in our recommended tables.
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Figure 21: The main test results for the In to Xe PSPs. The blue, green, and red

data are calculated at the high, normal, and low Ec hints respectively.

7.12. Cs, Ba

The pseudopotentials for Cs and Ba both have the 5s and

5p states in the valence. For Cs, the transferability could be

improved by adding explicit f projectors. For Ba, also a PSP

is provided based on a reference state in which a 6s-electron

is excited to the 5d-state. This version improves the ∆-Gauge

results but at the same time worsens the GBRV test results to a

similar degree, see Fig. 22.
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Figure 22: The main test results for the Cs and Ba PSPs. The blue, green, and

red data are calculated at the high, normal, and low Ec hints respectively.
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7.13. 5d transition metals

For the 5d transition metals we observed that including only

the 5d in the valence led to PSPs that sometimes have good test

results for ∆-Gauge and GBRV but tend to have ghost states

only a few eV above the Fermi level. For this reason, we always

include the 5s and 5p in the valence partition.

An additional difficulty in the series of the 5d transition met-

als is that in PBE the 4 f states lie in the the same energy range

as the 5s and 5p states. For Hf and Ta, the 4 f even lie above the

5p states. Indeed for Hf the agreement with the AE reference

for both the ∆-Gauge and GBRV tests improves significantly

if, besides the 5s and 5p also the 4 f is taken into the valence

partition, see Fig. 23. For Ta, this still improves the ∆-Gauge

results significantly but the GBRV results worsen. For W the

changes are rather small.

For all PSPs for the 5d transition metals it turned out to be

beneficial to include explicit f -projectors even when the 4 f

electrons are frozen in the core.

Finally, we note that, although for W-Hg the ground state

properties can be described well enough with the 4 f frozen, for

optical properties and GW this may not be the case. This is the

case even for elements like Au where the 4 f electrons lie about

3 Ha below the Fermi level.
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Figure 23: The main test results for the 5d transition metal PSPs. GBRV ref-

erence data is not available for Lu and Hg. The blue, green, and red data are

calculated at the high, normal, and low Ec hints respectively.

7.14. Lanthanides

In crystalline systems the lanthanides usually occur in the 3+

oxidation state with three electrons donated to an anion. Typ-

ical examples of lanthanides with 3+ oxidation state are given

by their nitrides. Since in standard KS theory, GGA or LDA,

the strongly localized f states are not described correctly, these

3+ pseudopotentials with 4 f electrons frozen in the core offer

a convenient solution. They are all generated with the valence

configuration: 5s25p65d16s2. It should be stressed, however,

that these pseudopotentials are supposed to be used only if the

f electrons are not important in the physics of the crystal (e.g.

magnetism, bonding, etc). These PSP will be mostly useful

when only the steric effect of the lanthanide is of importance.

Due to this limitation the lanthanide PSPs are not part of the

predefined tables standard and stringent. PSPs for lanthanides

with 4 f states in valence are currently being developed but test-

ing these correctly is a topic on its own and will be presented

elsewhere.

For La, GBRV reference results are available, our La-sp PSP

underestimates the BCC lattice parameter by 0.1%, no∆-Gauge

reference is available for La. For Lu the availability of reference

results is opposite; we find a ∆-Gauge of 1.0 for our Lu-fsp, Lu

is the only exception where the 4 f is included in the valence.

The hints we derive for these two elements based on the con-

vergence of these tests are 50, 55, and 65 and 46, 50, and 58 Ha

(low, normal, high) for La and Lu respectively.

For the other lanthanides, no GBRV or ∆-Gauge reference

data are available. The PSPs presented here are therefore tested

by comparing the relaxed lattice parameters of their nitride rock

salt structures with those obtained from PAW calculations. Fig-

ure 24 compares the lattice parameters obtained using our PSPs

to those obtained using VASP [42] with comparable 3+ PAW

data sets.8
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Figure 24: Lattice parameters of the nitrides of the lanthanide series. Compari-

son of PD-PBE to VASP results obtained with comparable PAW data sets. For

reference also the experimental results are shown.

In general we observe a very decent agreement between the

PD-PBE and the VASP results. Moreover, comparing to the

experimental results we conclude that for the structural proper-

ties of rocksalt nitrides, the 4 f states of Sm-Lu can indeed be

frozen in the core.

7.15. Tl, Pb, Po, At, Rn

For the final set of elements, Tl–Rn, the pseudization of 6p

valence electrons is not very demanding. We provide versions

8In the VASP calculations we use a Gaussian smearing with 1 mH broaden-

ing, precision accurate settings, and converge the lattice parameters with respect

to the kinetic energy cutoff.
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with the 5d in the valence in the standard table and versions

with 5s and 5p in the valence as well in the high table. Both

for the ∆-Gauge and GBRV tests the results are good and also

converge quickly, see Fig. 25.

20

40

E c
 (H

a)

Tl-Rn

0.00

0.25

0.50

Δ-
G

au
ge

 (m
eV

)

Tl-d

Tl-s
pd

-hi
gh

Pb-d

Pb-s
pd

-hi
gh Bi-d

Bi-s
pd

-hi
gh

Po-d

Po-s
pd

-hi
gh Rn

Rn-d

−0.05

0.00

af
cc Δ

 (%
)

Figure 25: The main test results for the Tl to Rn PSPs. GBRV reference data is

not available for Po and Rn. The blue, green, and red data are calculated at the

high, normal, and low Ec hints respectively.

8. Conclusions

In this paper we have presented the PseudoDojo project,

a framework for developing, testing and storing pseudopo-

tentials, and discussed our PD-PBE: an 84 element table of

PBE norm-conserving pseudopotentials. The PseudoDojo is

interfaced with ONCVPSP [17, 18] to generate the PSPs and

ABINIT [26, 27] via the AbiPy package for running the tests.

The PSP files are available on the PseudoDojo web-interface at

www.pseudo-dojo.org in the psp8, UPF2, and PSML 1.1 for-

mats.

The PseudoDojo toolkit contains a graphical interface to the

ONCVPSP [17, 18] code. It enables the generation of (series

of) pseudopotentials and the preparation of tests.

The validation part of the PseudoDojo consists of a se-

ries of 7 tests in crystalline environments: ∆-Gauge, [23] ∆’-

Gauge, [37] GBRV-FCC, GBRV-BCC, GBRV-compound, [22]

ghost state detection, and phonons at Γ, all executed using

ABINIT.[26, 27] By studying the correlation between the re-

sults for the different tests we show that these form a comple-

mentary set. Only the GBRV-FCC and BCC show a strong

correlation, such that performing both does not increase the

amount of information.

The present version of the PD-PBE contains a total of 141

PSPs and defines two tables, with standard and stringent accu-

racy. Both tables contain one PSP per element. For the final

set of PSPs a total of around 70.000 calculations have been

performed during the testing process. All these calculations

have been performed using the PseudoDojo tools building on

the high-throughput framework of the AbiPy project.

In the development of the PD-PBE , valuable insights were

obtained concerning the effects of the core-valence partition-

ing and the non-linear core corrections on the stability, con-

vergence, and transferability of norm-conserving pseudopoten-

tials.

Non-linear core corrections - PSP that have the 1s frozen

in the core and the 2s and 2p completely filled (included in the

valence partition) do not improve upon adding non-linear core

corrections. Often they even become unstable (small changes

in the unit cell volume or Ec lead to drastic changes in the total

energy). For the magnetic 3d transition metals adding well-

balanced non-linear core corrections dramatically improves the

results on magnetic systems. Non-magnetic systems are much

less sensitive and also perform well without non-linear core cor-

rections. In some cases the model core charges for non-linear

core correction can be quite localized. These hard models re-

produce the AE results very well, and can have beneficial ef-

fects on ground state properties, but may render the PSP diffi-

cult to converge, especially in DFPT calculations.

Core-valence partitioning - In the fifth row main group ele-

ments, the description of the unoccupied space improves clearly

by increasing the valence partition. Including 4d alone leads to

actual ghost states in the range of 20-80 eV above the Fermi

level. Including the full n = 4 shell removes all signs of ghost

states up to several hundreds of eV. The exception is Xe for

which putting the n = 4 shell in the valence partition does not

lead to any negative effect. A similar situation arises in the 5d

transition metals. Including only the 5d in the valence partition

for these elements leads to ghost states just above the Fermi

level. Despite the good results obtained for the ∆-Gauge, these

pseudopotentials are not transferable and can perform poorly if

used in other crystalline environments.

Extra projectors - In both the second row B-F and fifth row

transition metals with frozen 4 f , the PSP are improved by the

addition of additional projectors, d and f , respectively.

Supplementary material: PD v0.4 supplementary-data-and-

tests: HTML version of the Jupyter Notebook per-

forming the statistical analysis presented in this work,

PD v0.4 supplementary-correlations-elements: HTML ver-

sion of the Jupyter Notebook performing the element

wise comparison and correlation studies between the tests,

PD v0.4 supplementary-GBRV-compounds-standard: HTML

version of the Jupyter Notebook performing statistical analysis

of the GBRV compound tests and the lanthanide nitride lattice

parameter comparison.
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