
ar
X

iv
:1

71
0.

06
44

5v
2

 [
he

p-
ph

]
 8

 A
ug

 2
01

8

MatchingTools: a Python library for symbolic effective field theory calculations

Juan C. Criadoa,∗

aCAFPE and Departamento de Fı́sica Teórica y del Cosmos, Universidad de Granada, E-18071 Granada, Spain

Abstract

MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general

models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated

out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms

of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite

them in terms of any chosen set of operators.

Keywords: effective; tree; integration; matching; redundancies; python;

PROGRAM SUMMARY

Program Title: MatchingTools

Licensing provisions: MIT

Programming language: Python (compatible with versions 2 and 3)

Nature of problem:

The program does two kinds of calculations: computing an effective

Lagrangian for the light fields of a field theory by integrating out at

the tree level the heavy fields and performing algebraic manipulations

with tensors in the (effective) Lagrangian.

Solution method:

The tree level integration of heavy fields is done by substituting them

inside the Lagrangian by a covariant derivative expansion of the solu-

tion to their equations of motion. The transformation of Lagrangians

is implemented as an algorithm for finding patterns of tensor products

and replacing them by sums of other products.

1. Introduction

When studying physical phenomena in the framework of

field theory, it is often convenient to describe the low energy be-

havior of the system in a way that does not involve the heavy de-

grees of freedom. A low energy effective theory can be derived

from a more fundamental one, when the latter is known. The

connection between both descriptions is done by integrating out

the heavy fields. The basic idea is to find the set the effective

interactions of the light fields such that the corresponding low

energy observables match, to the desired precision, those com-

puted using the full theory [1, 2].

An important example arises in particle physics, when study-

ing extensions of the Standard Model. The latest experimental

results from the Large Hadron Collider (LHC) do not show any

evidence of direct production of new particles (see for example

[3, 4, 5, 6]). Therefore, the discovery of new physics arising

∗Corresponding author.

E-mail address: jccriadoalamo@ugr.es

within the range of energies of the current phase of the LHC

seems more and more unlikely.

In view of this perspective, it is interesting to extract fea-

tures of physics at higher, currently unreachable energies by

using precision measurements. This can be done using an ef-

fective theory approach. In the Standard Model Effective Field

Theory (SMEFT), the Standard Model is extended to include

non-renormalizable operators (see [7] and references therein).

In this setting, the high energy physics is parametrized in low

energy by the coefficients of the new operators. These coeffi-

cients can be constrained by the experimental data [8, 9, 10, 11,

12, 13, 14, 15, 16, 17]. Another effective approach to extending

the Standard Model is the Higgs effective theory, in which the

gauge symmetry is realized non-linearly [18, 19, 20, 21].

Many of the proposed theories for physics beyond the Stan-

dard Model predict the existence of new, heavy particles [22,

23, 24, 25] The result of integrating out these heavy fields is the

collection of the corresponding coefficients of the operators of

the SMEFT [26, 27, 28, 29].

The procedure of matching can be described algebraically in

terms of tensor calculus manipulations involving the computa-

tion of functional derivatives and the substitution of heavy fields

by other previously obtained expressions [30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41]. The complexity of the process quickly

grows with the number of heavy fields and their interactions. It

is in this context where the development of a computer tool to

automatize the process becomes necessary.

MatchingTools can perform tree-level integration of heavy

fields in any given Lagrangian. It has been developed with the

application to the SMEFT in mind, but it is able to work with

any situation describable by a Lorentz invariant field theory in

which the high energy degrees of freedom to be removed are

scalars, vector-like or Majorana fermions, or vectors. By intro-

ducing the generic solution to their equations of motion, other

types of fields can be treated as well. The validity of Matching-

Tools extends to any level in the expansion in inverse powers of

the cut-off energy of the effective theory.

Preprint submitted to Computer Physics Communications August 9, 2018

http://arxiv.org/abs/1710.06445v2

The Lagrangian resulting from integration usually contains

redundancies: operators that can be written in terms of oth-

ers using identities of the symmetry group, integration by parts

or equations of motion of the light fields [42, 43, 44, 45]. A

complete set of operators that are independent under this set of

transformations is called a basis. Several such bases have been

described [46, 47, 48].

The transformation of the results of an integration to a cho-

sen basis can also be done using MatchingTools. One should

introduce the identities between tensor expressions needed to

transform some operators into others, as well as the desired ba-

sis.

There are other tools for the manipulation of bases of oper-

ators, such as Rosetta [49]. The portion of MatchingTools that

deals with this calculations differs from it in two main points:

first, it allows not only for the transformations between sets of

already independent operators, but for the transformation of any

set of operators into a basis. Moreover, MatchingTools has the

ability of doing transformations not with the operators them-

selves, but with parts of them, allowing for general transforma-

tions between parts of tensor expressions into others. Actually,

MatchingTools can be used as system for tensor calculus ma-

nipulations, not necessarily in the context of an effective field

theory. It provides a fast way of doing complex symbolic cal-

culations with many fields and terms involved, which is safe

against algebraic errors.

A direct application of MatchingTools, which has also served

as an extensive check of its validity, is the integration of all pos-

sible new fields that have linear gauge-invariant renormalizable

couplings to the Standard Model, keeping terms up to dimen-

sion six in the results [50].

A package that implements a similar way of dealing with

the specification of models is FeynRules [51, 52], thought its

objectives are completely distinct. One possible direction for

future work with MatchingTools is making the connection with

FeynRules.

Among other computer tools for calculations in the context

of the SMEFT we have DsixTools [53] (which allows for sev-

eral calculations including a case of tree level matching) and

SMEFTsim [54] (which is able to produce theoretical predic-

tions and constraints for the Wilson coefficients of the dimen-

sion 6 SMEFT).

MatchingTools is available in GitHub

(https://github.com/jccriado/matchingtools) and in the PyPI

repository (https://pypi.python.org/pypi/matchingtools/), so it

can be installed using pip [55] as

pip install matchingtools

This article is organized as follows: section 2 describes the

procedure and the formulas that the library uses for the inte-

gration of heavy particles. Sections 3, 4, 5 and 6 explain the

features of MatchingTools and how to use it. Section 7 pro-

poses a simple example that serves to see the library in action

and as a test case. Some extra features for the applications in

physics beyond the Standard Model are introduced in section 8.

Section 9 is an explanation of how to integrate out new types of

fields that are not included in MatchingTools.

2. Theoretical framework

2.1. Tree level integration

Starting with a high energy theory with action S [φ,Φ] de-

pending on the light and heavy fields φ and Φ the effective ac-

tion S e f f for the light fields is obtained through:

eiS e f f [φ] ∝
∫

DΦeiS [φ,Φ], (1)

where
∫

DΦmeans integrating over all the configurations of the

heavy fields Φ. The configuration that contributes the most to

this integral is the classical configuration Φc, which extremizes

the action. To leading order in (Φ −Φc), we get

S e f f [φ] = S [φ,Φc], (2)

known as the tree level approximation. It is the one that we will

use in this article.

2.2. Equations of motion and their solution

To obtain the classical configuration of the heavy fields it is

necessary to solve their equations of motion. They are deter-

mined from the condition: δS/δΦ = 0.

The variation of a local action S =
∫

dmxL can be written as

δS

δΦ
=

∑

n

(−1)nDµ1
Dµ2
· · ·Dµn

∂L
∂(Dµn

· · ·Dµ2
Dµ1
Φ)
, (3)

which we have expressed in terms of a covariant derivative D

for the gauge group of the low energy effective field theory. It is

convenient to split the action into a quadratic and an interaction

part:

S =

∫

dmxLquad + S int, Lquad = −Φ†PΦ, (4)

where P is some differential operator.

For the bosonic fields, the solution to the equation of motion

will be given by the application of the inverse of P to a func-

tional derivative of the interaction action. P−1 can be expanded

in each case in powers of Dµ/M. For fermions, the solution

will be given as a system of two equations. Recursive substitu-

tion of one into the other will give the solution to any order in

Dµ/M. Because we usually limit the dimension of the opera-

tors appearing in the effective Lagrangian we will only need to

substitute a finite number of terms of these infinite expansions.

Several fields can be integrated out together. The solution to

the equation of motion of each of them may involve the oth-

ers, but they can be replaced recursively by their corresponding

solutions to the equations motion to obtain solutions that only

involve the light fields to the desired order.

The Lagrangian Lquad and the solution to the equations of

motion is, for the following types of fields:

• Real scalar:

Lquad = −1

2
Φ(D2 + M2)Φ, (5)

Φc =

∞
∑

n=0

(−1)n D2n

M2n+2

δS int

δΦ
. (6)

2

• Complex scalar:

Lquad = −Φ†(D2 + M2)Φ, (7)

Φc =

∞
∑

n=0

(−1)n D2n

M2n+2

δS int

δΦ†
, (8)

Φ†c =

∞
∑

n=0

(−1)n D2n

M2n+2

δS int

δΦ
. (9)

• Real vector:

Lquad =
1

2
Vµ

{

ηµν(D
2 + M2) − DνDµ

}

Vν, (10)

Vc = − 1

M2

∞
∑

n=0

Qn δS int

δV
, (11)

where Q is a differential operator that acts on a Lorentz

vector and gives a Lorentz vector as:

(QV)µ :=
DνDµ − ηµνD2

M2
Vν. (12)

• Complex vector:

Lquad = V†µ
{

ηµν(D
2 + M2) − DνDµ

}

Vν, (13)

Vc = − 1

M2

∞
∑

n=0

Qn δS int

δV†
, (14)

V†c = − 1

M2

∞
∑

n=0

Qn δS int

δV
. (15)

• Vector-like fermion (using two-component spinor nota-

tion):

Lquad = iF
†
Lα̇σ̄

α̇α
µ DµFLα + iF

†α
R
σ
µ
αα̇DµF

α̇
R

−M(F
†
Lα̇

F α̇R + F
†α
R

FLα), (16)

(Fc)Lα =
i

M
σ
µ
αα̇DµF

α̇
R +

1

M

δS int

δF†α
R

, (17)

(Fc)α̇R =
i

M
σ̄α̇αµ DµFLα +

1

M

δS int

δF†
Lα̇

, (18)

(Fc)
†
Lα̇ = − i

M
σ
µ
αα̇DµF

†α
R
− 1

M

δS int

δF α̇
R

, (19)

(Fc)
†α
R
= − i

M
σ̄α̇αµ DµF

†
Lα̇ −

1

M

δS int

δFLα
. (20)

• Majorana fermion:

Lquad = iF
†
α̇σ̄
α̇α
µ DµFα

−1

2

(

ǫαβFβFα + F
†
α̇ǫ
α̇β̇F

†
β̇

)

, (21)

(Fc)β = ǫαβ

(

iσ̄α̇αµ DµF
†
α̇ +
δS int

δFα

)

, (22)

(Fc)
†
β̇
= ǫβ̇α̇















iσ̄α̇αµ DµFα +
δS int

δF†α̇















. (23)

3. Creation of models

In this section we will describe how to create a model using

the module matchingtools.core. It assumes that the classes

and functions that are used are in the namespace. To import all

the classes and functions that appear here do

from matchingtools.core import (

Tensor, Operator, OperatorSum

TensorBuilder, FieldBuilder,

D, Op, OpSum,

number_op, power_op)

The from ... import ... style is recommended, as the

expressions that appear when using this library tend to be long,

so having the short names directly accessible is preferable.

3.1. Creation of tensors and fields

In MatchingTools, the basic building blocks for everything

are the objects of the class Tensor, which we simply call ten-

sors here. Examples of tensors are fields (light and heavy), sym-

metry group related tensors (such as Pauli matrices) or coupling

constants (including gauge couplings, Yukawa couplings and

masses).

Tensors have an attribute is_field that is True if and only

if they are spacetime dependent (i.e., they are fields). Fields can

have derivatives applied to them. The attribute num_of_der

counts the number of derivatives that apply to a field. Deriva-

tives are understood here to be covariant derivatives Dµ corre-

sponding to the gauge group of the low energy effective theory.

Each derivative applies only to one field. The Leibniz rule is

used whenever a derivative of a product is encountered. Ten-

sors can be either commuting of anti-commuting, which is dis-

tinguished by the attribute statistics. It can be set equal

to either boson or fermion, both being variables defined in

this module. Finally, all tensors have an attribute indices, a

list of integer numbers representing their tensor indices; and

an attribute name, an identifier. Other attributes, content and

exponent, are for internal use. Names starting with the char-

acter ’$’ are also reserved for internal calculations.

To create the tensors and fields of a model, the classes

TensorBuilder and FieldBuilder should be used. For ex-

ample, the Pauli matrices σa
i j

could be defined as

sigma = TensorBuilder("sigma")

and then used when needed as sigma(i1, i2, i3) where i1,

i2 and i3 are the indices. Similarly, a boson field φ (with its

conjugate φ∗) and a fermion f (with its separate chiralities and

their conjugates) are defined as

phi = FieldBuilder("phi", 1, boson)

phic = FieldBuilder("phic", 1, boson)

fL = FieldBuidler("fL", 1.5, fermion)

fR = FieldBuidler("fR", 1.5, fermion)

fLc = FieldBuidler("fLc", 1.5, fermion)

fRc = FieldBuidler("fRc", 1.5, fermion)

The second argument of FieldBuilder is the dimension of

the field.

3

3.2. Definition of the interaction Lagrangian

Once all the tensors are created, we are ready to define the

interaction Lagrangian. It should be a sum of operators, which

in turn are just products of fields. Using the functions OpSum

and Op:

int_lag = -OpSum(Op(...), Op(...), ...)

The minus sign is defined for operator sums and individual

operators. The function OpSum creates an object of the class

OperatorSum, a container for a list of operators representing

their sum. The function Op creates an Operator that contains

a list of tensors and represents their product:

Op(tensor1(i1, i2, ...),

tensor2(i3, i4, ...), ...)

Positive indices are used to express contraction. During the

creation of the model, any index should be contracted with an-

other, so we will only use here positive ones. When indices

are repeated inside the same operator, the corresponding con-

traction is understood. For example, the product of tensors

ri j slimnmtn jl would be written as

Op(r(0, 1), s(3, 0, 4, 5, 4), t(5, 1, 3))

To introduce a covariant derivative inside an operator, the

appropriate function is D, whose first argument is the Lorentz

index of the derivative and whose second one is the tensor to

which it is to be applied:

D(i1, tensor(i2, ...))

For numeric coefficients, the function number_op creates an

operator with only one special tensor representing a number (its

name is "$number" and has an attribute content with the ac-

tual number). Multiplication is defined for operators, so the

operator iVµS
∗
aDµS a can be expressed as

number_op(1j) * Op(V(0), Sc(1), D(0, S(1)))

Tensors representing a symbolic constant exponentiated to

some power can be created using the function power op, that

takes the base (a string) and the exponent (a number) (repre-

sented by an extra internal attribute of tensors: exponent) and

optionally some indices and returns an operator containing only

the corresponding tensor. This is useful specially for the masses

of the heavy particles, which tend to appear several times with

different powers in all calculations.

A summary of the tools presented in this section is shown in

table 1.

3.3. Dealing with spinors

MatchingTools uses the two-component spinor formalism

to treat spinor fields following the conventions in [56]. The

module matchingtools.core defines the following tensors

to work with them:

Tensors t name = TensorBuilder("t name")

Fields f name = FieldBuilder("f name", dim,

statistics)

Lagrangian lag = -OpSum(Op(...), Op(...), ...)

Operators Op(tensor1(i1, i2, ...), ...)

Derivatives Op(..., D(i1, tensor(...)), ...)

Num. coef. number_op(number) * Op(...)

Symb. power inv_mass_sq = power_op("M", -2)

Table 1: Summary of the tools for the creation of a model.

• epsUp and epsDown: the totally anti-symmetric tensors

ǫαβ and ǫαβ with two undotted two-component spinor in-

dices defined by ǫ12 = −ǫ21 = −ǫ12 = ǫ21 = 1.

• epsUpDot and epsDownDot: the totally anti-symmetric

tensors ǫα̇β̇ and ǫα̇β̇ with two dotted two-component spinor

indices given by ǫα̇β̇ = (ǫαβ)
∗ and ǫα̇β̇ = (ǫαβ)∗.

• sigma4 and sigma4bar: the tensorsσ
µ
αα̇ and σ̄α̇αµ given by

σµ = (I2×2, ~σ) and σ̄µ = (I2×2,−~σ), where ~σ is the three-

vector of the Pauli matrices. The first index of sigma4 and

sigma4bar corresponds to the Lorentz index.

4. Integration

This section explains how to use the classes that repre-

sent the heavy fields as well as the function integrate,

to integrate them out. They belong to the module

matchingtools.integration. To import them do:

from matchingtools.integration import (

RealScalar, ComplexScalar,

RealVector, ComplexVector,

VectorLikeFermion, MajoranaFermion,

integrate)

To integrate out the heavy fields from a previously defined

Lagrangian we should specify which of the fields are heavy.

This is done using the classes:

• RealScalar. Its constructor receives as arguments the

name of the field and the number of indices it has.

• ComplexScalar. Requires a field–conjugate field pair.

The arguments of the constructor are the name of the field,

the name of its conjugate and its number of indices.

• RealVector. The arguments are the name of the field

and the number of indices. The first index of the field is

understood to be the Lorentz vector index.

• ComplexVector. The arguments are the name of the field,

the name of its conjugate and the number of indices. The

first index of both fields should be their corresponding

Lorentz vector index.

4

• VectorLikeFermion. The first argument of the construc-

tor is the name of the field. The second and third are

the names of the left-handed and right-handed parts. The

fourth and fifth are their conjugates. The last is the number

of indices. The first index of the each of the four fields is

taken to be their two-component spinor index.

• MajoranaFermion. The arguments are the name of the

field and the name of its conjugate. The first index of both

fields should be their two-component spinor index.

The constructors for the bosons have the optional argu-

ments: order (default 2), specifying the order in (D/M)2

to which the solution to the equation of motion is to be ex-

panded, and max dim (default 4), representing the maximum

allowed dimension for the operators appearing in this expan-

sion. Both bosons and fermions receive the optional argument

has flavor (default True) stating whether the heavy field has

a flavor index. In case it is true, the flavor index is taken to be

the last one.

The heavy field classes include the quadratic terms for the

kind of particle they represent, as well as the solutions to the

equations of motion presented in section 2. The mass of a

field f is represented by a tensor whose name is of the form

mass = "M" + f.name. This tensor has one index if the

heavy field has flavor and none otherwise.

Therefore, the first step for integration is defining the heavy

fields:

heavy_f = HeavyFieldClass("field_name", ...)

Given an interaction Lagrangian int lag, the integration is

done using the function integrate, which takes as arguments

a list of the heavy fields, the interaction Lagrangian and a max-

imum dimension max dim for the operators of the effective the-

ory. It returns the corresponding effective Lagrangian:

heavy_fields = [heavy_f_1, heavy_f_2, ...]

eff_lag = integrate(

heavy_fields, int_lag, max_dim)

5. Transformations of the effective Lagrangian

After integration, the effective Lagrangian contains in gen-

eral operators that are not independent. To rewrite it in terms of

a set of independent operators some manipulations are needed,

such as using identities for combinations of tensors related to

the symmetry groups, integrating by parts to move derivatives

from some fields to others, or using the equations of motion of

the light fields.

The matchingtools.transformations module intro-

duces the functions for doing this kind of manipulations and

for the simplification of the Lagrangian. We will describe here

the functions that are imported with

from matchingtools.transformations import (

simplify, apply_rules)

First, the function simplify returns a simplified version of

the Lagrangian it gets as an argument. Tensors representing a

number that appear inside an operator are collected and mul-

tiplied. Tensors representing a symbolic constant exponenti-

ated to some power are also collected to give only one tensor

with the correct exponent. simplify also looks for Kronecker

deltas (tensors with the name "kdelta" and two indices) re-

moves them by contracting the corresponding indices.

The transformations of a Lagrangian are done using what we

call here rules. A rule is a pair (a tuple with two elements)

whose first element is an operator representing a pattern and

whose second element is an operator sum representing a re-

placement. They are used by the function apply rules to find

occurrences of the pattern and replace them by the replacement.

A rule is written as

rule = (Op(...), OpSum(Op(...), Op(...), ...))

The indices that appear in tensors inside the rule can be

general integer numbers. Non-negative integers represent con-

tracted indices, as explained in section 3. Negative indices are

used for free indices and those in the replacement should match

the corresponding ones in the pattern. For example the substi-

tution of σa
i j
σb

kl
by 2δilδk j − δi jδkl can be done using the rule

rule_fierz_SU2 = (

Op(sigma(0, -1, -2), sigma(0, -3, -4)),

OpSum(number_op(2) * Op(delta(-1, -4),

delta(-3, -2)),

-Op(delta(-1, -2),

delta(-3, -4))))

To transform the Lagrangian using integration by parts or

equations of motion of the light fields the user should also spec-

ify the corresponding rules following this procedure.

The function apply rules repeatedly tries to apply every

rule of a list to each operator in an operator sum. If the pattern

matches some part of an operator, the rule is applied and the

operator sum updated. The first argument to apply rules is

the operator sum, the second is the list of rules and the last one

is the number of iterations. It returns the resulting operator sum.

To rewrite the Lagrangian in terms of a chosen set of inde-

pendent operators the procedure is: define the rules to get to

the desired basis, add some rules to identify the operators and

apply the function apply rules.

The basis operators should be defined using tensor op, a

function that creates an operator with one tensor inside whose

name is the argument of the function. Then write a rule to iden-

tify it. For example, for the operator OφD = (φ†Dµφ)(D
µφ)†φ

we would write

OphiD = tensor_op("OphiD")

rule_def_OphiD = (

Op(phic(0), D(1, phi(0)),

D(1, phic(0)), phi(0)),

OpSum(OphiD))

5

If the basis operator in question has some flavor indices,

flavor tensor op is to be used instead of tensor op. It

creates a callable object that takes the corresponding free in-

dices as arguments. As an example, for the operator (Oeφ)i j =

l̄LiφeR jφ
†φ we would have:

Oephi = flavor_tensor_op("Oephi")

rule_def_Oephi = (

Op(lLc(0, 1, -1), phi(1), eR(0, -2),

phic(2), phi(2)),

OpSum(Oephi(-1, -2)))

6. Output

The class matchingtools.output.Writer serves to

nicely represent an effective Lagrangian. It is convenient that

the final result is represented as a list of the coefficients of the

operators in the basis. That is, if each of the terms of the La-

grangian contains a tensor that represents an operator of the

basis, we would like to see what are the tensors that multiply

each of them. This is what Writer does. If eff lag is our

final effective Lagrangian and op names is a list of the names

of the tensors representing the operators in the basis, do

eff_lag_writer = Writer(eff_lag, op_names)

The constructor admits an optional argument conjugates, a

dictionary whose keys are the names of all the tensors involved

in the final output and whose values are the names of their con-

jugates. This helps Writer collect pairs of conjugate products

of tensors returning their real or imaginary part.

The string representation can be obtained just by using the

str method of the class Writer. To write it to a text file use

eff_lag_writer.write_text_file(filename).

The method write latex filewrites a LaTeX file with the

representation. It receives four arguments: the name of the out-

put file, the LaTeX representation of the tensors, the LaTeX

representation of the coefficients of the basis operators and a

list of the strings to be used to represent the indices. The La-

TeX representations are given by dictionaries whose keys are

the names of the tensors to be represented (or whose coefficient

is to be represented) and whose values are the corresponding

code. This code should contain placeholders for the necessary

indices written as "{}" (Python’s format style). To produce the

characters "{", "}" in the final code they should appear dupli-

cated in the dictionary values.

For a better LaTeX output for the numerical coefficients, the

parameter passed to number op in the definitions should be ei-

ther an int or a fractions.Fraction. In this context, the

imaginary unit can be introduced by multiplying by the opera-

tor core.i op.

7. An example

In this section we will be creating a simple model to show

some of the features of MatchingTools. The model is described

as follows: it has S U(2)×U(1) gauge symmetry and contains a

complex scalar doublet φ (the Higgs) with hypercharge 1/2 and

a real scalar triplet Ξ with zero hypercharge that couple as:

Lint = −κΞaφ†σaφ − λΞaΞaφ†φ, (24)

where κ and λ are a coupling constants and σa are the Pauli

matrices. We will then integrate out the heavy scalar Ξ to obtain

an effective Lagrangian which we will finally write in terms of

the operators

Oφ6 = (φ†φ)3, Oφ4 = (φ†φ)2,

O(1)

φ = φ
†φ(Dµφ)

†Dµφ, O(3)

φ = (φ†Dµφ)(D
µφ)†φ,

ODφ = φ
†(Dµφ)φ

†Dµφ, O∗
Dφ = (Dµφ)

†φ(Dµφ)†φ.
(25)

Notice that this is not an independent set of operators, as

some linear combinations of them are total derivatives. Because

the purpose of this section is to present a very simple model, we

will not be doing integration by parts and therefore we will not

simplify the results any further.

7.1. Creation of the model

The required imports are

from matchingtools.operators import (

TensorBuilder, FieldBuilder, Op, OpSum,

number_op, tensor_op, boson, fermion, kdelta)

from matchingtools.integration import (

RealScalar, integrate)

from matchingtools.transformations import (

apply_rules)

from matchingtools.output import Writer

We will need three tensors, the Pauli matrices and the cou-

pling constants:

sigma = TensorBuilder("sigma")

kappa = TensorBuilder("kappa")

lamb = TensorBuilder("lamb")

We will also use three fields: the Higgs doublet, its conjugate

and the new scalar:

phi = FieldBuilder("phi", 1, boson)

phic = FieldBuilder("phic", 1, boson)

Xi = FieldBuilder("Xi", 1, boson)

Now we are ready to write the interaction Lagrangian:

interaction_Lagrangian = -OpSum(

Op(kappa(), Xi(0), phic(1),

sigma(0, 1, 2), phi(2)),

Op(lamb(), Xi(0), Xi(0),

phic(1), phi(1)))

6

7.2. Integration

To integrate out the heavy Ξ we write

heavy_Xi = RealScalar("Xi", 1, has_flavor=False)

effective_Lagrangian = integrate(

[heavy_Xi], interaction_Lagrangian, 6)

7.3. Transformations of the effective Lagrangian

After the integration we get operators that contain

(φ†σaφ)(φ†σaφ). This product can be rewritten in terms of the

operator (φ†φ)2. To do this, we can use the S U(2) Fierz iden-

tity:

σa
i jσ

a
kl = 2δilδk j − δi jδkl. (26)

We now know that we can define a rule to transform every-

thing that matches the left-hand side of the equality into the

expression in the right-hand side with the code

fierz_rule = (

Op(sigma(0, -1, -2), sigma(0, -3, -4)),

OpSum(number_op(2) * Op(kdelta(-1, -4),

kdelta(-3, -2)),

-Op(kdelta(-1, -2),

kdelta(-3, -4))))

We should now define the operators in terms of which we

want to express the effective Lagrangian

Ophi6 = tensor_op("Ophi6")

Ophi4 = tensor_op("Ophi4")

O1phi = tensor_op("O1phi")

O3phi = tensor_op("O3phi")

ODphi = tensor_op("ODphi")

ODphic = tensor_op("ODphic")

and then use some rules to express them in terms of the fields

and tensors that appear in the effective Lagrangian

definition_rules = [

(Op(phic(0), phi(0), phic(1), phi(1),

phic(2), phi(2)),

OpSum(Ophi6)),

(Op(phic(0), phi(0), phic(1), phi(1)),

OpSum(Ophi4)),

(Op(D(2, phic(0)), D(2, phi(0)),

phic(1), phi(1)),

OpSum(O1phi)),

(Op(phic(0), D(2, phi(0)),

D(2, phic(1)), phi(1)),

OpSum(O3phi)),

(Op(phic(0), D(2, phi(0)),

phic(1), D(2, phi(1))),

OpSum(ODphi)),

(Op(D(2, phic(0)), phi(0),

D(2, phic(1)), phi(1)),

OpSum(ODphic))]

To apply the S U(2) Fierz identity to every operator until we

get to the chosen operators, we do

rules = [fierz_rule] + definition_rules

max_iterations = 2

transf_eff_lag = apply_rules(

effective_Lagrangian, rules,

max_iterations)

7.4. Output

The class Writer can be used to represent the coefficients of

the operators of a Lagrangian as plain text and write them to a

file

final_coef_names = [

"Ophi6", "Ophi4", "O1phi",

"O3phi", "ODphi", "ODphic"]

eff_lag_writer = Writer(

transf_eff_lag, final_coef_names)

eff_lag_writer.write_text_file(

"simple_example_results.txt")

It can also write a LaTeX file with the representation of these

coefficients and export it to pdf to show it directly. For this to

be done, we should define how the objects that we are using are

represented in LaTeX code and the symbols we want to be used

as indices

latex_tensor_reps = {"kappa": r"\kappa",

"lamb": r"\lambda",

"MXi": r"M_{{\Xi}}",

"phi": r"\phi_{}",

"phic": r"\phi^*_{}"}

latex_op_reps = {

"Ophi":

r"\frac{{\alpha_{{\phi}}}}{{\Lambda^2}}",

"Ophi4":

r"\alpha_{{\phi 4}}"}

latex_indices = ["i", "j", "k", "l"]

eff_lag_writer.write_latex(

"simple_example", latex_tensor_reps,

latex_op_reps, latex_indices)

The expected result is a .tex file (ready to be compiled) with

the coefficients of the operators we defined.

8. Extras for beyond the Standard Model applications

MatchingTools includes a subpackage called extras, with

some modules defining tensors and rules that are useful for

the applications to physics beyond the Standard Model. These

modules are SU2, SU3, Lorentz, SM and SM dim 6 basis.

Other modules will be added in the future and will be avail-

able in the GitHub repository of the program, as well as in its

updates in the pypi repository [55].

7

8.1. The SU2 module

This module defines the following tensors related to S U(2):

• epsSU2: The totally antisymmetric tensor ǫi j with two

doublet indices and ǫ12 = 1.

• sigmaSU2: The Pauli matrices σa
i j

. The first index is the

triplet index, whereas the second and third are the doublet

ones.

• CSU2 and CSU2c: the Clebsh-Gordan coefficients CI
aβ with

the first index I being a quadruplet index, the second a a

triplet index, and the third β a doublet index. The tensor C

contracted with the corresponding three objects produces

a singlet.

• epsSU2triplets: Totally antisymmetric tensor ǫabc with

three S U(2) triplet indices such that ǫ123 = 1.

• fSU2: Totally antisymmetric tensor with three S U(2)

triplet indices given by fabc =
i√
2
ǫabc.

It also implements the rules for taking expressions with ǫi jǫkl,

σa
i j
σa

kl
, CI

apǫpmσ
a
i j

CI∗
bq
ǫqnσ

b
kl

or contractions of anti-symmetric

tensors, and rewriting them in terms of Kronecker deltas. All

the rules are collected in the list rules SU2. The LaTeX rep-

resentation of the tensors defined is given by the dictionary

latex SU2.

8.2. The SU3 module

The S U(3) tensors defined in this module are:

• epsSU3: Totally antisymmetric tensor ǫABC with three

S U(3) triplet indices such that ǫ123 = 1.

• TSU3: S U(3) generators (TA)BC =
1
2
(λA)BC, where λA are

the Gell-Mann matrices. The first index is the octet index.

The second and third are the anti-triplet and triplet ones.

• fSU3: S U(3) structure constants fABC .

The rule for transforming ǫi jkǫilm into a combination of Kro-

necker deltas is implemented. It is included in the one-element

list rules SU3. The LaTeX representation of the tensors de-

fined is in latex SU3.

8.3. The Lorentz module

This module includes the tensors epsUp, epsUpDot,

epsDown, epsDownDot, sigma4, sigma4bar from

matchingtools.operators and defines:

• eps4: Totally antisymmetric tensor ǫµνρσ with four

Lorentz vector indices where ǫ0123 = 1.

• sigmaTensor: Lorentz tensor

σµν =
i

4

(

σ
µ
αγ̇σ̄

νγ̇β − σναγ̇σ̄µγ̇β
)

. (27)

The list rules Lorentz contains the rules for substituting

ǫαβǫα̇β̇ by 1
2
σ̄µ,α̇ασ̄

β̇β
µ , ǫαβǫα̇β̇ by 1

2
σ̄
µ
αα̇σ̄µ,ββ̇ and contracted ǫ ten-

sors by combinations of Kronecker deltas.

8.4. The SM module

Here, the tensors corresponding to the Standard Model fields

and its gauge coupling constants, Yukawa couplings and CKM

matrix are defined.

The Standard Model fields are:

• phi and phic: The Higgs boson and its conjugate. One

S U(2) doublet index.

• lL and lLc: The left-handed lepton doublet. Its indices

are, in order: the two-component spinor index, the S U(2)

doublet index and the flavor index.

• qL and qLc: The left-handed quark doublet. Its indices

are: the two-component spinor index, the S U(3) triplet (or

anti-triplet) index, the S U(2) doublet index and the flavor

index.

• eR and eRc: The right-handed electron. Indices: two-

component spinor and flavor.

• uR and uRc: The right-handed up quark. Indices: two-

component spinor, S U(3) triplet (or antitriplet) and flavor.

• dR and dRc: The right-handed down quark. Indices: two-

component spinor, S U(3) triplet (or antitriplet) and flavor.

• bFS: U(1) field strength tensor. Two Lorentz vector in-

dices.

• wFS: S U(2) field strength tensor. Two Lorentz vector in-

dices and one S U(2) triplet index.

• gFS: S U(3) field strength tensor. Two Lorentz vector in-

dices and one S U(3) octet index.

The constant tensors are:

• gb and gw: The U(1) and S U(2) gauge coupling constants.

• ye, yec, yd, ydc, yu and yuc: The diagonalized Yukawa

matrices for the leptons, the down quarks, the up quarks

and their conjugates. They have two indices: the first one

corresponds to the flavor of the doublets and the second to

the flavor of the singlets.

• V and Vc: CKM matrix.

The module also includes a list of rules eoms SM, defined

to substitute the equations of motion, replacing derivatives of

the Standard Model fields by a combination of the other fields.

There is a dictionary latex SM containing the LaTeX represen-

tation of the tensors that are defined.

8.5. The SM dim 6 basis module

In this module, the basis for the Standard Model effec-

tive Lagrangian up to dimension six that appears in [29] is

defined. The rules to identify them are given in the list

rules basis definition. The LaTeX representation of

their coefficients is in latex basis coefs. Modules contain-

ing other bases, such as the one in [46], will be added in the

future.

8

9. Using MatchingTools with other types of fields

As explained above, MatchingTools can integrate scalars,

vector-like or Majorana fermions, and vectors in Lorentz-

invariant theories. For this purpose, several classes representing

the heavy fields are supplied. Other kinds of fields (for instance,

with non canonical kinetic terms, spin > 1, or non relativistic)

can be treated as well, once the corresponding class for it is

provided.

Specifically, to treat a new type of field one should define a

Python class implementing the following methods:

• equations of motion. Receives an OperatorSum ob-

ject representing an interaction Lagrangian. Returns a dic-

tionary whose keys are strings with the names of the heavy

fields involved (for example, a field and its conjugate, if it

is a complex boson) and whose values are OperatorSum

objects representing the corresponding solution to their

equation of motion. These solutions can be written in

terms of other heavy fields, but they should be such that

iterative substitutions of their respective equations motion

reaches a point where no heavy fields appear to the desired

order in the dimension of the operators.

• quadratic terms. Does not have any parameters. Re-

turns the kinetic and mass terms of the corresponding

heavy field.

For the definition of these methods, it is recommended to use

the tools provided by the core module. Once such a class is

defined, its objects can be included in the list of heavy fields to

be passed to integration.integrate and they will be dealt

with in the same way as the others.

10. Conclusions

We have presented MatchingTools, a Python library imple-

menting symbolic tree-level integration of heavy fields for any

given model. It is also able to transform the resulting La-

grangian using rules specified by the user to remove redundant

operators. With this program one can safely automatize these

kind of calculations, which practically eliminates the possibil-

ity of algebraic errors and drastically reduces the calculation

times. Even calculations with complex Lagrangians involving

∼ 100 independent terms (thousands of terms in some interme-

diate steps) can be performed in about thirty seconds (using a

2.6 GHz Intel Core i5 processor).

Acknowledgments

The author would like to thank J. de Blas, M. Pérez-Victoria

and J. Santiago for their very useful guidance, comments and

corrections.

Funding: This work was supported by the Spanish MECD

grant FPU14, the Spanish MINECO grants FPA2013-47836-

C3-2-P and FPA2016-78220-C3-1-P (Fondos FEDER) and the

Junta de Andalucı́a grant FQM101.

References

[1] H. Georgi, Weak Interactions and Modern Particle Theory, 1984.

[2] J. F. Donoghue, E. Golowich, B. R. Holstein, Dynamics of the standard

model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2 (1992) 1–540,

[Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.35(2014)].

[3] M. Aaboud, et al., Search for scalar leptoquarks in pp collisions at
√

s =

13 TeV with the ATLAS experiment, New J. Phys. 18 (9) (2016) 093016.

arXiv:1605.06035, doi:10.1088/1367-2630/18/9/093016 .

[4] M. Aaboud, et al., Search for pair production of vector-like top quarks in

events with one lepton, jets, and missing transverse momentum in
√

s =

13 TeV pp collisions with the ATLAS detector, JHEP 08 (2017) 052.

arXiv:1705.10751, doi:10.1007/JHEP08(2017)052 .

[5] A. M. Sirunyan, et al., Searches for W bosons decaying to a top quark and

a bottom quark in proton-proton collisions at 13 TeV, JHEP 08 (2017)

029. arXiv:1706.04260, doi:10.1007/JHEP08(2017)029 .

[6] A. M. Sirunyan, et al., Search for heavy resonances that decay into

a vector boson and a Higgs boson in hadronic final states at
√

s =

13 TeV, Eur. Phys. J. C77 (9) (2017) 636. arXiv:1707.01303,

doi:10.1140/epjc/s10052-017-5192-z .

[7] I. Brivio, M. Trott, The Standard Model as an Effective Field Theory,

arXiv:1706.08945.

[8] Z. Han, W. Skiba, Effective theory analysis of precision electroweak

data, Phys. Rev. D71 (2005) 075009. arXiv:hep-ph/0412166 ,

doi:10.1103/PhysRevD.71.075009 .

[9] J. de Blas, M. Chala, J. Santiago, Global Constraints on Lepton-

Quark Contact Interactions, Phys. Rev. D88 (2013) 095011.

arXiv:1307.5068, doi:10.1103/PhysRevD.88.095011 .

[10] J. de Blas, Electroweak limits on physics beyond the Standard

Model, EPJ Web Conf. 60 (2013) 19008. arXiv:1307.6173,

doi:10.1051/epjconf/20136019008 .

[11] R. S. Gupta, A. Pomarol, F. Riva, BSM Primary Effects,

Phys. Rev. D91 (3) (2015) 035001. arXiv:1405.0181,

doi:10.1103/PhysRevD.91.035001 .

[12] J. Ellis, V. Sanz, T. You, The Effective Standard Model af-

ter LHC Run I, JHEP 03 (2015) 157. arXiv:1410.7703,

doi:10.1007/JHEP03(2015)157 .

[13] A. Falkowski, F. Riva, Model-independent precision constraints on

dimension-6 operators, JHEP 02 (2015) 039. arXiv:1411.0669,

doi:10.1007/JHEP02(2015)039 .

[14] J. de Blas, M. Chala, J. Santiago, Renormalization Group Constraints on

New Top Interactions from Electroweak Precision Data, JHEP 09 (2015)

189. arXiv:1507.00757, doi:10.1007/JHEP09(2015)189 .

[15] L. Berthier, M. Trott, Consistent constraints on the Standard Model

Effective Field Theory, JHEP 02 (2016) 069. arXiv:1508.05060,

doi:10.1007/JHEP02(2016)069 .

[16] A. Pomarol, F. Riva, Towards the Ultimate SM Fit to Close in

on Higgs Physics, JHEP 01 (2014) 151. arXiv:1308.2803,

doi:10.1007/JHEP01(2014)151 .

[17] J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina,

L. Silvestrini, The Global Electroweak and Higgs Fits in the LHC era,

2017. arXiv:1710.05402.

[18] T. Appelquist, C. W. Bernard, Strongly Interacting Higgs Bosons, Phys.

Rev. D22 (1980) 200. doi:10.1103/PhysRevD.22.200 .

[19] A. C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model,

Phys. Rev. D22 (1980) 1166. doi:10.1103/PhysRevD.22.1166 .

[20] A. C. Longhitano, Low-Energy Impact of a Heavy

Higgs Boson Sector, Nucl. Phys. B188 (1981) 118–154.

doi:10.1016/0550-3213(81)90109-7 .

[21] F. Feruglio, The Chiral approach to the electroweak interactions, Int.

J. Mod. Phys. A8 (1993) 4937–4972. arXiv:hep-ph/9301281 ,

doi:10.1142/S0217751X93001946 .

[22] H. Georgi, S. L. Glashow, Unity of All Elementary Particle Forces, Phys.

Rev. Lett. 32 (1974) 438–441. doi:10.1103/PhysRevLett.32.438 .

[23] H. Fritzsch, P. Minkowski, Unified Interactions of Lep-

tons and Hadrons, Annals Phys. 93 (1975) 193–266.

doi:10.1016/0003-4916(75)90211-0 .

[24] N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, The Hierarchy problem

and new dimensions at a millimeter, Phys. Lett. B429 (1998) 263–272.

arXiv:hep-ph/9803315 , doi:10.1016/S0370-2693(98)00466-3 .

[25] L. Randall, R. Sundrum, A Large mass hierarchy from a

9

http://arxiv.org/abs/1605.06035
http://dx.doi.org/10.1088/1367-2630/18/9/093016
http://arxiv.org/abs/1705.10751
http://dx.doi.org/10.1007/JHEP08(2017)052
http://arxiv.org/abs/1706.04260
http://dx.doi.org/10.1007/JHEP08(2017)029
http://arxiv.org/abs/1707.01303
http://dx.doi.org/10.1140/epjc/s10052-017-5192-z
http://arxiv.org/abs/1706.08945
http://arxiv.org/abs/hep-ph/0412166
http://dx.doi.org/10.1103/PhysRevD.71.075009
http://arxiv.org/abs/1307.5068
http://dx.doi.org/10.1103/PhysRevD.88.095011
http://arxiv.org/abs/1307.6173
http://dx.doi.org/10.1051/epjconf/20136019008
http://arxiv.org/abs/1405.0181
http://dx.doi.org/10.1103/PhysRevD.91.035001
http://arxiv.org/abs/1410.7703
http://dx.doi.org/10.1007/JHEP03(2015)157
http://arxiv.org/abs/1411.0669
http://dx.doi.org/10.1007/JHEP02(2015)039
http://arxiv.org/abs/1507.00757
http://dx.doi.org/10.1007/JHEP09(2015)189
http://arxiv.org/abs/1508.05060
http://dx.doi.org/10.1007/JHEP02(2016)069
http://arxiv.org/abs/1308.2803
http://dx.doi.org/10.1007/JHEP01(2014)151
http://arxiv.org/abs/1710.05402
http://dx.doi.org/10.1103/PhysRevD.22.200
http://dx.doi.org/10.1103/PhysRevD.22.1166
http://dx.doi.org/10.1016/0550-3213(81)90109-7
http://arxiv.org/abs/hep-ph/9301281
http://dx.doi.org/10.1142/S0217751X93001946
http://dx.doi.org/10.1103/PhysRevLett.32.438
http://dx.doi.org/10.1016/0003-4916(75)90211-0
http://arxiv.org/abs/hep-ph/9803315
http://dx.doi.org/10.1016/S0370-2693(98)00466-3

small extra dimension, Phys. Rev. Lett. 83 (1999) 3370–3373.

arXiv:hep-ph/9905221, doi:10.1103/PhysRevLett.83.3370 .

[26] F. del Aguila, M. Perez-Victoria, J. Santiago, Observable contribu-

tions of new exotic quarks to quark mixing, JHEP 09 (2000) 011.

arXiv:hep-ph/0007316, doi:10.1088/1126-6708/2000/09/011 .

[27] F. del Aguila, J. de Blas, M. Perez-Victoria, Effects of new lep-

tons in Electroweak Precision Data, Phys. Rev. D78 (2008) 013010.

arXiv:0803.4008, doi:10.1103/PhysRevD.78.013010 .

[28] F. del Aguila, J. de Blas, M. Perez-Victoria, Electroweak Limits on Gen-

eral New Vector Bosons, JHEP 09 (2010) 033. arXiv:1005.3998,

doi:10.1007/JHEP09(2010)033 .

[29] J. de Blas, M. Chala, M. Perez-Victoria, J. Santiago, Observable Effects of

General New Scalar Particles, JHEP 04 (2015) 078. arXiv:1412.8480,

doi:10.1007/JHEP04(2015)078 .

[30] C. M. Fraser, Calculation of Higher Derivative Terms in the

One Loop Effective Lagrangian, Z. Phys. C28 (1985) 101.

doi:10.1007/BF01550255 .

[31] I. J. R. Aitchison, C. M. Fraser, Fermion Loop Contribu-

tion to Skyrmion Stability, Phys. Lett. 146B (1984) 63–66.

doi:10.1016/0370-2693(84)90644-0 .

[32] I. J. R. Aitchison, C. M. Fraser, Derivative Expansions of Fermion

Determinants: Anomaly Induced Vertices, Goldstone-Wilczek

Currents and Skyrme Terms, Phys. Rev. D31 (1985) 2605.

doi:10.1103/PhysRevD.31.2605 .

[33] I. J. R. Aitchison, C. M. Fraser, Trouble With Boson

Loops in Skyrmion Physics, Phys. Rev. D32 (1985) 2190.

doi:10.1103/PhysRevD.32.2190 .

[34] L. H. Chan, EFFECTIVE ACTION EXPANSION IN PERTURBATION

THEORY, Phys. Rev. Lett. 54 (1985) 1222–1225, [Erratum: Phys. Rev.

Lett.56,404(1986)]. doi:10.1103/PhysRevLett.54.1222 .

[35] L.-H. Chan, Derivative Expansion for the One Loop Effective Ac-

tions With Internal Symmetry, Phys. Rev. Lett. 57 (1986) 1199.

doi:10.1103/PhysRevLett.57.1199 .

[36] M. K. Gaillard, The Effective One Loop Lagrangian With

Derivative Couplings, Nucl. Phys. B268 (1986) 669–692.

doi:10.1016/0550-3213(86)90264-6 .

[37] O. Cheyette, Derivative Expansion of the Effective Action, Phys. Rev.

Lett. 55 (1985) 2394. doi:10.1103/PhysRevLett.55.2394 .

[38] F. del Aguila, Z. Kunszt, J. Santiago, One-loop effective lagrangians af-

ter matching, Eur. Phys. J. C76 (5) (2016) 244. arXiv:1602.00126,

doi:10.1140/epjc/s10052-016-4081-1 .

[39] S. A. R. Ellis, J. Quevillon, T. You, Z. Zhang, Mixed heavy-

light matching in the Universal One-Loop Effective Action,

Phys. Lett. B762 (2016) 166–176. arXiv:1604.02445,

doi:10.1016/j.physletb.2016.09.016 .

[40] J. Fuentes-Martin, J. Portoles, P. Ruiz-Femenia, Integrating out heavy par-

ticles with functional methods: a simplified framework, JHEP 09 (2016)

156. arXiv:1607.02142, doi:10.1007/JHEP09(2016)156 .

[41] Z. Zhang, Covariant diagrams for one-loop matching, JHEP 05 (2017)

152. arXiv:1610.00710, doi:10.1007/JHEP05(2017)152 .

[42] R. E. Kallosh, I. V. Tyutin, The Equivalence theorem and gauge invariance

in renormalizable theories, Yad. Fiz. 17 (1973) 190–209, [Sov. J. Nucl.

Phys.17,98(1973)].

[43] H. D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B172

(1980) 349–382. doi:10.1016/0550-3213(80)90172-8 .

[44] H. Georgi, On-shell effective field theory, Nucl. Phys. B361 (1991) 339–

350. doi:10.1016/0550-3213(91)90244-R .

[45] C. Arzt, Reduced effective Lagrangians, Phys. Lett.

B342 (1995) 189–195. arXiv:hep-ph/9304230 ,

doi:10.1016/0370-2693(94)01419-D .

[46] B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, Dimension-

Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085.

arXiv:1008.4884, doi:10.1007/JHEP10(2010)085 .

[47] R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner, M. Spira, Ef-

fective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035.

arXiv:1303.3876, doi:10.1007/JHEP07(2013)035 .

[48] E. Masso, An Effective Guide to Beyond the Standard

Model Physics, JHEP 10 (2014) 128. arXiv:1406.6376,

doi:10.1007/JHEP10(2014)128 .

[49] A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva, V. sanz,

Rosetta: an operator basis translator for Standard Model effective field

theory, Eur. Phys. J. C75 (12) (2015) 583. arXiv:1508.05895,

doi:10.1140/epjc/s10052-015-3806-x .

[50] J. de Blas, J. C. Criado, M. Perez-Victoria, J. Santiago, Effective

description of general extensions of the Standard Model: the com-

plete tree-level dictionary, JHEP 03 (2018) 109. arXiv:1711.10391,

doi:10.1007/JHEP03(2018)109 .

[51] N. D. Christensen, C. Duhr, FeynRules - Feynman rules made easy,

Comput. Phys. Commun. 180 (2009) 1614–1641. arXiv:0806.4194,

doi:10.1016/j.cpc.2009.02.018 .

[52] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, B. Fuks, Feyn-

Rules 2.0 - A complete toolbox for tree-level phenomenology, Com-

put. Phys. Commun. 185 (2014) 2250–2300. arXiv:1310.1921,

doi:10.1016/j.cpc.2014.04.012 .

[53] A. Celis, J. Fuentes-Martin, A. Vicente, J. Virto, DsixTools: The Standard

Model Effective Field Theory Toolkit, Eur. Phys. J. C77 (6) (2017) 405.

arXiv:1704.04504, doi:10.1140/epjc/s10052-017-4967-6 .

[54] I. Brivio, Y. Jiang, M. Trott, The SMEFTsim package, theory and

toolsarXiv:1709.06492 .

[55] pip: The pypa recommended tool for installing python packages.

URL https://pypi.python.org/pypi/pip/

[56] H. K. Dreiner, H. E. Haber, S. P. Martin, Two-component spinor

techniques and Feynman rules for quantum field theory and su-

persymmetry, Phys. Rept. 494 (2010) 1–196. arXiv:0812.1594,

doi:10.1016/j.physrep.2010.05.002 .

10

http://arxiv.org/abs/hep-ph/9905221
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://arxiv.org/abs/hep-ph/0007316
http://dx.doi.org/10.1088/1126-6708/2000/09/011
http://arxiv.org/abs/0803.4008
http://dx.doi.org/10.1103/PhysRevD.78.013010
http://arxiv.org/abs/1005.3998
http://dx.doi.org/10.1007/JHEP09(2010)033
http://arxiv.org/abs/1412.8480
http://dx.doi.org/10.1007/JHEP04(2015)078
http://dx.doi.org/10.1007/BF01550255
http://dx.doi.org/10.1016/0370-2693(84)90644-0
http://dx.doi.org/10.1103/PhysRevD.31.2605
http://dx.doi.org/10.1103/PhysRevD.32.2190
http://dx.doi.org/10.1103/PhysRevLett.54.1222
http://dx.doi.org/10.1103/PhysRevLett.57.1199
http://dx.doi.org/10.1016/0550-3213(86)90264-6
http://dx.doi.org/10.1103/PhysRevLett.55.2394
http://arxiv.org/abs/1602.00126
http://dx.doi.org/10.1140/epjc/s10052-016-4081-1
http://arxiv.org/abs/1604.02445
http://dx.doi.org/10.1016/j.physletb.2016.09.016
http://arxiv.org/abs/1607.02142
http://dx.doi.org/10.1007/JHEP09(2016)156
http://arxiv.org/abs/1610.00710
http://dx.doi.org/10.1007/JHEP05(2017)152
http://dx.doi.org/10.1016/0550-3213(80)90172-8
http://dx.doi.org/10.1016/0550-3213(91)90244-R
http://arxiv.org/abs/hep-ph/9304230
http://dx.doi.org/10.1016/0370-2693(94)01419-D
http://arxiv.org/abs/1008.4884
http://dx.doi.org/10.1007/JHEP10(2010)085
http://arxiv.org/abs/1303.3876
http://dx.doi.org/10.1007/JHEP07(2013)035
http://arxiv.org/abs/1406.6376
http://dx.doi.org/10.1007/JHEP10(2014)128
http://arxiv.org/abs/1508.05895
http://dx.doi.org/10.1140/epjc/s10052-015-3806-x
http://arxiv.org/abs/1711.10391
http://dx.doi.org/10.1007/JHEP03(2018)109
http://arxiv.org/abs/0806.4194
http://dx.doi.org/10.1016/j.cpc.2009.02.018
http://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1704.04504
http://dx.doi.org/10.1140/epjc/s10052-017-4967-6
http://arxiv.org/abs/1709.06492
https://pypi.python.org/pypi/pip/
https://pypi.python.org/pypi/pip/
http://arxiv.org/abs/0812.1594
http://dx.doi.org/10.1016/j.physrep.2010.05.002

	1 Introduction
	2 Theoretical framework
	2.1 Tree level integration
	2.2 Equations of motion and their solution

	3 Creation of models
	3.1 Creation of tensors and fields
	3.2 Definition of the interaction Lagrangian
	3.3 Dealing with spinors

	4 Integration
	5 Transformations of the effective Lagrangian
	6 Output
	7 An example
	7.1 Creation of the model
	7.2 Integration
	7.3 Transformations of the effective Lagrangian
	7.4 Output

	8 Extras for beyond the Standard Model applications
	8.1 The SU2 module
	8.2 The SU3 module
	8.3 The Lorentz module
	8.4 The SM module
	8.5 The SM_dim_6_basis module

	9 Using MatchingTools with other types of fields
	10 Conclusions

